
For Use with MATLAB®

User’s Guide
Version 3

Filter Design
 Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Filter Design Toolbox User’s Guide
© COPYRIGHT 2000–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2000 Online only New for Version 1.0
September 2000 First printing Revised for Vesion 2.0 (Release 12)
June 2001 Online only Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
November 2002 Online only Revised for Version 2.5
June 2004 Online only Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.4 (Release 2006a)

i

Contents

1
What Is Filter Design Toolbox?

Introducing the Filter Design Toolbox 1-2
Key Features . 1-2

Getting Started with the Toolbox . 1-4
Using Specification Objects to Design Filters 1-4
Getting General Filter Specification Object Help 1-5
Creating a Filter Specification Object . 1-5
Changing Specifications for Specification Objects 1-6
Setting Design Parameters . 1-7
Normalizing Frequency Specifications 1-10
Designing Filters From Filter Specification Objects 1-11
Using Design Time Options . 1-12
Comparing Designs . 1-13
Example—Creating a Fixed-Point IIR Filter 1-14

Selected Bibliography . 1-24

2
Designing Fixed-Point Filters

Designing Fixed-Point Filters . 2-3
The Filter Design Process . 2-3
Designing a Filter With Floating-Point Coefficients 2-6
Converting the Filter to Fixed-Point . 2-7
Quantizing Filter Coefficients with Automatic Scaling 2-9
Scaling Filter Coefficients Manually . 2-10
Specifying Arithmetic Rules . 2-12

Working with Fixed-Point Direct-Form FIR Filters 2-14
Obtaining the Filter . 2-14
Creating the Direct-Form FIR Fixed-Point Filter 2-15

ii Contents

Comparing Quantized Coefficients to Nonquantized Coefficients 2-15
Determining the Number of Bits being Used 2-16
Determining the Proper Coefficient Word Length 2-17
Fixed-Point Filtering . 2-18
Generating a Baseline Output for Comparison 2-20
Computing the Fixed-Point Filter Output 2-21
Reducing Filter Output Quantization . 2-21
The Advantages of Guard Bits . 2-22
Avoiding Overflow Without Guard Bits 2-26

Constructing Fixed-Point Filters . 2-28
Defining Quantized and Fixed-Point Filters 2-28
Constructors for Fixed-Point Filters . 2-29
Constructing a Quantized Filter from a
Filter Specification Object . 2-30
Copying Filters to Inherit Properties . 2-31
Fixed-Point Arithmetic Filter Structures 2-32

Data Type Handling in Discrete-Time Filters 2-36
Filter Input Signals, Coefficients, and States 2-36
The CastBeforeSum Filter Property . 2-42

Introduction to Fixed-Point Arithmetic 2-45
Binary Point Interpretation . 2-46
Precision and Dynamic Range . 2-49
Overflows and Scaling . 2-50

3
Designing Multirate Filters

Introducing Multirate Filters . 3-2

Getting Started—Designing Multirate Filters 3-4
Creating Multirate Filters . 3-4
Getting and Setting Filter Coefficients . 3-6
Analyzing Multirate and Multistage Filters 3-8
Filtering with Multirate Filters . 3-9

iii

Specifying Initial Conditions to the Filter 3-11
Streaming Data to the Filter . 3-12
Filtering Multichannel Signals . 3-13
Generating Simulink Blocks . 3-15
Getting Help About Multirate Filters . 3-15

FIR Decimation—Filtering with FIR Decimators 3-18
Creating FIR Decimators . 3-18
Understanding Input Sample Processing and the
 InputOffset Property . 3-19
Filtering with FIR Decimators . 3-21

CIC Filter Example—Using CIC Decimation Filters 3-24
Creating CIC Decimator filters . 3-24
Analyzing CIC Decimation Filters . 3-26
About the MSB at the Filter Output . 3-27
Working with Section Word Lengths . 3-28
CIC Filter States . 3-31
Filter Implementation—Signal Flow Graph 3-33
Reference . 3-35

Analyzing Multirate and Multistage Filters 3-36
Analyzing Single-Stage Multirate Filters 3-37
Comparing Interpolators . 3-38
Performing Multistage Filter Analysis 3-40
Analyzing Multistage Interpolators . 3-42
Analyzing a Multistage Sample-Rate Converter 3-43
Analyzing Other Multistage Configurations 3-45

Audio Example—Audio Sample Rate Conversion 3-47
Creating the Multirate Filters . 3-47
Decreasing the Sample Rate by a Fractional Factor 3-48
Constructing the Fractional Decimator 3-48
Filtering to Change the Sample Rate . 3-49
Comparing the Resampled Signals . 3-49
Increasing the Sample Rate by a Fractional Factor 3-51
Plotting the Original Signal and the Reconverted Signal 3-52
Converting from 48 kHz to 44.1 kHz . 3-53
Plotting the 48 kHz Signal and the 44.1 kHz Signal 3-54

iv Contents

4
Designing Adaptive Filters

Introducing Adaptive Filtering . 4-2

Getting Started with Adaptive Filters 4-4
Tutorial Contents . 4-4
Create the Signals for Adaptation . 4-4
Construct Two Adaptive Filters . 4-5
Choose the Step Size . 4-6
Set the Adapting Filter Step Size . 4-7
Filter with the Adaptive Filters . 4-7
Compute the Optimal Solution . 4-8
Plot the Results . 4-8
Compare the Final Coefficients . 4-9
Reset the Filter Before Filtering . 4-10
Investigate Convergence Through Learning Curves 4-10

Overview of Adaptive Filters and Applications 4-14
Choosing an Adaptive Filter . 4-16
System Identification . 4-17
Inverse System Identification . 4-18
Noise Cancellation (or Interference Cancellation) 4-18
Prediction . 4-19

Adaptive Filters in the Filter Design Toolbox 4-21
Algorithms . 4-21
Using Adaptive Filter Objects . 4-25

Examples of Adaptive Filters That Use LMS Algorithms . 4-26
adaptfilt.lms Example—System Identification 4-27
adaptfilt.nlms Example—System Identification 4-31
adaptfilt.sd Example—Noise Cancellation 4-34
adaptfilt.se Example—Noise Cancellation 4-38
adaptfilt.ss Example—Noise Cancellation 4-42

v

Example of Adaptive Filter That Uses RLS Algorithm . . . 4-47
adaptfilt.rls Example—Inverse System Identification 4-48

Selected Bibliography . 4-52

5
Digital Frequency Transformations

Introduction . 5-2

Definition of the Problem . 5-3
Selecting Features Subject to Transformation 5-6
Mapping from Prototype Filter to Target Filter 5-8
Summary of Frequency Transformations 5-9

Frequency Transformations for Real Filters 5-11
Real Frequency Shift . 5-12
Real Lowpass to Real Lowpass . 5-13
Real Lowpass to Real Highpass . 5-15
Real Lowpass to Real Bandpass . 5-17
Real Lowpass to Real Bandstop . 5-19
Real Lowpass to Real Multiband . 5-21
Real Lowpass to Real Multipoint . 5-23

Frequency Transformations for Complex Filters 5-26
Complex Frequency Shift . 5-26
Real Lowpass to Complex Bandpass . 5-28
Real Lowpass to Complex Bandstop . 5-29
Real Lowpass to Complex Multiband . 5-31
Real Lowpass to Complex Multipoint . 5-33
Complex Bandpass to Complex Bandpass 5-35

vi Contents

6
Using FDATool with the Filter Design Toolbox

Designing Advanced Filters in FDATool 6-5

Switching FDATool to Quantization Mode 6-8

Quantizing Filters in the Filter Design and Analysis Tool 6-12
Coefficients Options . 6-13
Input/Output Options . 6-14
Filter Internals Options . 6-17
Filter Internals Options for CIC Filters 6-21

Analyzing Filters with a Noise-Based Method 6-23
Using the Magnitude Response Estimate Method 6-23
Comparing the Estimated and
Theoretical Magnitude Responses . 6-28
Choosing Quantized Filter Structures 6-28
Converting the Structure of a Quantized Filter 6-28
Converting Filters to Second-Order Sections Form 6-29

Scaling Second-Order Section Filters 6-30

Reordering the Sections of Second-Order Section Filters 6-38
Switching FDATool to Reorder Filters 6-38

Viewing SOS Filter Sections . 6-46

Importing and Exporting Quantized Filters 6-53
To Export Quantized Filters . 6-55

Importing XILINX Coefficient (.COE) Files 6-58

Transforming Filters . 6-59
Original Filter Type . 6-60
Frequency Point to Transform . 6-63
Transformed Filter Type . 6-64
Specify Desired Frequency Location . 6-64

vii

Designing Multirate Filters in FDATool 6-70
Switching FDATool to Multirate Filter Design Mode 6-70
Controls on the Multirate Design Panel 6-71
Quantizing Multirate Filters . 6-81

Realizing Filters as Simulink Subsystem Blocks 6-84
About the Realize Model Panel in FDATool 6-84

Getting Help for FDATool . 6-89
The What’s This? Option . 6-89
Additional Help for FDATool . 6-89

7
Reference for the Properties of Filter Objects

Overview . 7-2

Fixed-Point Filter Properties . 7-3

Adaptive Filter Properties . 7-103

Multirate Filter Properties . 7-117

8
Function Reference

Functions — By Category . 8-2
Adaptive Filter Constructors . 8-3
Discrete-Time Filter Constructors . 8-6
Filter Specification Objects — Response Types 8-8
Filter Specification Objects — Design Methods 8-9
Multirate Filter Constructors . 8-10
Filter Analysis Methods . 8-12
Fixed-Point Filter Construction and Property Functions 8-17

viii Contents

Quantized Filter Analysis Functions . 8-17
SOS Conversion Functions . 8-19
Filter Design Functions . 8-19
Filter Conversion Functions . 8-20

Functions — Alphabetical List . 8-21

A
Bibliography

Advanced Filters . A-2
Adaptive Filters . A-2
Multirate Filters . A-3
Frequency Transformations . A-3

Index

1
What Is Filter Design
Toolbox?

Introducing the Filter Design Toolbox
(p. 1-2)

Describes the toolbox briefly

Getting Started with the Toolbox
(p. 1-4)

Introduces filter design in the toolbox by presenting two
demonstrations

Selected Bibliography (p. 1-24) Lists some books that offer details about digital filtering
and digital signal processing

1 What Is Filter Design Toolbox?

1-2

Introducing the Filter Design Toolbox
The Filter Design Toolbox is a collection of tools that provides advanced
techniques for designing, simulating, and analyzing digital filters. It extends
the capabilities of the Signal Processing Toolbox with filter architectures and
design methods for complex real-time DSP applications, including adaptive
filtering and multirate filtering, as well as filter transformations.

Used with the Fixed-Point Toolbox, the Filter Design Toolbox provides
functions that simplify the design of fixed-point filters and the analysis of
quantization effects. When used with the Filter Design HDL Coder, the Filter
Design Toolbox lets you generate VHDL and Verilog code for fixed-point filters.

Key Features
• FIR filter design, including minimum-order, minimum-phase,

constrained-ripple, halfband, Nyquist, interpolated FIR, and nonlinear
phase

• IIR filter design, including arbitrary magnitude and phase, group-delay
equalizers, constrained-pole radius, peaking, notching, and comb filters

• Multirate filter design, analysis, and implementation, including cascaded
integrator-comb (CIC) fixed-point multirate filters and compensators

• Farrow filter design

• Multirate, multistage filter design

• Wave digital filter design

• IIR filters implemented in second-order sections, including design, scaling,
and section reordering

• Analysis and implementation of digital filters in single-precision
floating-point and fixed-point arithmetic

• Perfect reconstruction and two-channel FIR filter bank design

• Round-off noise analysis for filters implemented in single-precision floating
point or fixed point

• FIR and IIR filter transformations, including lowpass to lowpass, lowpass to
highpass, and lowpass to multiband

Introducing the Filter Design Toolbox

1-3

• Adaptive filter design, analysis, and implementation, including LMS-based,
RLS-based, lattice-based, frequency-domain, fast transversal, and affine
projection adaptive filters

• C code header file generation from filter designs in FDATool. The header file
includes the filter coefficients and information about the filter design

• VHDL and Verilog code generation for fixed-point filters with the Filter
Design HDL Coder

1 What Is Filter Design Toolbox?

1-4

Getting Started with the Toolbox
This section provides an example to get you started using Filter Design
Toolbox. You can run the code in this example from the Help browser (select
the code, right-click the selection, and choose Evaluate Selection from the
context menu) or you can enter the code on the command line. This exercise
also introduces Filter Design and Analysis Tool (FDATool). You use it to design
and analyze filters, and to quantize filters.

As you follow the example, you are introduced to some of the basic tasks of
designing a filter and using FDATool. You will engage some of the quantization
capabilities of the toolbox, and a few of the filter analyses provided as well.

Before you begin this example, start MATLAB® and verify that you have
installed Signal Processing and Filter Design Toolboxes (type ver at the
command prompt). You should see Filter Design Toolbox, Signal Processing
Toolbox, and Fixed-Point Toolbox (to do fixed-point filter design and analysis)
among others, in the list of installed products.

Using Specification Objects to Design Filters
The filter specification (fdesign) objectslet you design many single rate,
multirate, and multistage filters, such as lowpass, highpass, bandpass, and
bandstop IIR and FIR using a range of design algorithms. and many other
types of filters with a variety of constraints. The design process computes the
filter coefficients using the various algorithms available in the Signal
Processing and Filter Design Toolboxes and associates a particular filter
structure to those coefficients.

This tutorial review of filter design contains the following sections:

• “Getting General Filter Specification Object Help” on page 1-5

• “Creating a Filter Specification Object” on page 1-5

• “Changing Specifications for Specification Objects” on page 1-6

• “Setting Design Parameters” on page 1-7

• “Normalizing Frequency Specifications” on page 1-10

• “Using Design Time Options” on page 1-12

• “Comparing Designs” on page 1-13

Getting Started with the Toolbox

1-5

Getting General Filter Specification Object Help
Entering help fdesign in the command window opens the help for filter
specification objects. Various hyperlinks in the help enable you to navigate to
all of the help for the filter specification objects.

You can also enter

help responses
help fdesign/responses

at the command prompt for information about the response types you can
specify for filter specification objects. Both forms return the same information.

Creating a Filter Specification Object
To create a filter specification object, you need to select the response to be used.
For example, to create a lowpass filter you would type:

d = fdesign.lowpass
d =

Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'
Description: {'Passband Frequency';'Stopband...
Frequency';'Passband Ripple (dB)';'Stopband Attenuation (dB)'}
NormalizedFrequency: true
Fpass: 0.45
Fstop: 0.55
Apass: 1
Astop: 60

Notice that each specification is listed as an abbreviation. Fp is the
abbreviation for Fpass (the passband frequency edge) and Fst is the
abbreviation for Fstop (the stopband frequency edge).

The Description property provides a full description of the properties that are
added by the Specification.

get(d, 'description')
ans =

 'Passband Frequency'
 'Stopband Frequency'

1 What Is Filter Design Toolbox?

1-6

 'Passband Ripple (dB)'
 'Stopband Attenuation (dB)'

Changing Specifications for Specification Objects
The Specification property allows you to select different design parameters.
This is a string which lists the specifications that will be used for the design.
To see all valid specifications type:

set(d, 'Specification')
ans =

 'Fp,Fst,Ap,Ast'
 'N,F3dB'
 'N,F3dB,Ap'
 'N,F3dB,Ap,Ast'
 'N,F3dB,Ast'
 'N,F3dB,Fst'
 'N,Fc'
 'N,Fc,Ap,Ast'
 'N,Fp,Ap'
 'N,Fp,Ap,Ast'
 'N,Fp,F3dB'
 'N,Fp,Fst'
 'N,Fp,Fst,Ap'
 'N,Fp,Fst,Ast'
 'N,Fst,Ap,Ast'
 'N,Fst,Ast'
 'Nb,Na,Fp,Fst'

Changing the Specification changes which the properties for the the object:

set(d, 'Specification', 'N,Fc');
d
d =

 Response: 'Lowpass'
 Specification: 'N,Fc'
 Description: {'Filter Order';'Cutoff Frequency'}
 NormalizedFrequency: true
 FilterOrder: 10

Getting Started with the Toolbox

1-7

 Fcutoff: 0.5

Setting Design Parameters
You can set design parameters after creating your specification object, or you
can pass the specifications when you construct your object.

For example:

specs = 'N,Fp,Fst';
d = fdesign.lowpass(specs)
d =

Response: 'Lowpass'
Specification: 'N,Fp,Fst'
Description:{'Filter Order';'Passband Frequency';'Stopband...
Frequency'}
NormalizedFrequency: true
FilterOrder: 10
Fpass: 0.45
Fstop: 0.55

After specifying the specification to use, then specify he values for those
specifications.

N = 40; % Filter Order.
Fpass = .33; % Passband Frequency Edge.
Fstop = .4; % Stopband Frequency Edge.
d = fdesign.lowpass(specs, N, Fpass, Fstop)
d =

Response: 'Lowpass'
Specification: 'N,Fp,Fst'
Description: {'Filter Order';'Passband Frequency';'Stopband
Frequency'}
NormalizedFrequency: true
FilterOrder: 40
Fpass: 0.33
Fstop: 0.4

You can also specify a sampling frequency after all of the specifications have
been entered.

Fpass = 1.3;

1 What Is Filter Design Toolbox?

1-8

Fstop = 1.6;
Fs = 4.5; % Sampling Frequency
d = fdesign.lowpass(specs, N, Fpass, Fstop, Fs)
d =

Response: 'Lowpass'
Specification: 'N,Fp,Fst'
Description: {'Filter Order';'Passband Frequency';'Stopband
Frequency'}
NormalizedFrequency: false
Fs: 4.5
FilterOrder: 40
Fpass: 1.3
Fstop: 1.6

Amplitude specifications can be given in linear or squared units by providing
a flag to the fdesign method. However, the specificationas are always stored
in dB.

Apass = .0575;
specs = 'N,Fp,Ap';
d = fdesign.lowpass(specs, N, Fpass, Apass, Fs, 'linear')
d =

Response: 'Lowpass'
Specification: 'N,Fp,Ap'
Description: {'Filter Order';'Passband Frequency';'Passband
Ripple (dB)'}
NormalizedFrequency: false
Fs: 4.5
FilterOrder: 40
Fpass: 1.3
Apass: 0.999980343384991
Apass = .95;

d = fdesign.lowpass(specs, N, Fpass, Apass, Fs, 'squared')
d =

Response: 'Lowpass'
Specification: 'N,Fp,Ap'
Description: {'Filter Order';'Passband Frequency';'Passband
Ripple (dB)'}

Getting Started with the Toolbox

1-9

NormalizedFrequency: false
Fs: 4.5
FilterOrder: 40
Fpass: 1.3
Apass: 0.222763947111522

An alternative way of changing specifications is by using setspecs. Work with
setspecs the same way as the design function.

specs = 'N,F3dB,Ap';
F3dB = .9;
Apass = 1;
Fs = 2.5;
setspecs(d, specs, N, F3dB, Apass, Fs);
d
d =

Response: 'Lowpass'
Specification: 'N,F3dB,Ap'
Description:{'Filter Order';'3dB Frequency';...
'Passband Ripple (dB)'}
NormalizedFrequency: false
Fs: 2.5
FilterOrder: 40
F3dB: 0.9
Apass: 1

If your object is already set to the correct Specification you can omit that
input argument from your setspecs command.

F3dB = 1.1;
Apass = .5;
Fs = 3;
setspecs(d, N, F3dB, Apass, Fs);
d
d =

Response: 'Lowpass'
Specification: 'N,F3dB,Ap'
Description: {'Filter Order';'3dB Frequency';...

'Passband Ripple (dB)'}

1 What Is Filter Design Toolbox?

1-10

NormalizedFrequency: false
Fs: 3
FilterOrder: 40
F3dB: 1.1
Apass: 0.5

Normalizing Frequency Specifications
To normalize your frequency specifications,use normalizefreq with the filter
specification object.

normalizefreq(d);
d
d =

Response: 'Lowpass'
Specification: 'N,F3dB,Ap'
Description: {'Filter Order';'3dB Frequency';...

'Passband Ripple (dB)'}
NormalizedFrequency: true
FilterOrder: 40
F3dB: 0.733333333333333
Apass: 0.5

normalizefreq also unnormalizes the frequency specifications.

newFs = 3.1;
normalizefreq(d, false, newFs);
d
d =

Response: 'Lowpass'
Specification: 'N,F3dB,Ap'
Description: {'Filter Order';'3dB Frequency';...

'Passband Ripple (dB)'}
NormalizedFrequency: false
Fs: 3.1
FilterOrder: 40
F3dB: 1.13666666666667
Apass: 0.5

Getting Started with the Toolbox

1-11

Designing Filters From Filter Specification Objects
To design filters you use design.

d = fdesign.lowpass;
Hd = design(d)
Hd =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x43 double]
PersistentMemory: false

With no additional (or optional) inputs this syntax for design uses the default
filter design method to design the default filter. To determine which method
was used, use the designmethods method with the 'default' flag.

designmethods(d, 'default')

Default Design Method for class fdesign.lowpass (Fp,Fst,Ap,Ast):
equiripple

Specifying the command without outputs launches FVTool.

design(d)

For a complete list of design methods that apply to d, use designmethods
without additional input arguments.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

To get a better description of each design method use the full input argument
to return the full names for the design methods.

1 What Is Filter Design Toolbox?

1-12

designmethods(d, 'full')
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
Butterworth
Chebyshev Type I
Chebyshev Type II
Elliptic
Equiripple
Interpolated FIR
Kaiser Window
Multistage Equiripple

designmethods also accepts fir or iir flags to return only FIR algorithms or
IIR algorithms.

To design a filter with a specific algorithm, specify the design algorithm at
design time.

design(d, 'kaiserwin')

Using Design Time Options
Many methods have options that are method-specific. For help on these design
options, use help and pass the desired algorithm name as an input argument.

help(d, 'ellip')
DESIGN Design a Elliptic iir filter.
HD = DESIGN(D, 'ellip') designs a Elliptic filter specified by the
FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter
with the structure STRUCTURE. STRUCTURE is 'df2sos' by default
and can be any of the following.

 'df1sos'
 'df2sos'
 'df1tsos'
 'df2tsos'

HD = DESIGN(..., 'MatchExactly', MATCH) designs an Elliptic filter
and matches the frequency and magnitude specification for the band

Getting Started with the Toolbox

1-13

MATCH exactly. The other band will exceed the specification.
MATCH can be 'stopband', 'passband' or 'both', and is 'both' by
default.

 % Example #1 - Compare passband and stopband MatchExactly.
 d = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
 Hd = design(d, 'ellip', 'MatchExactly', 'passband');
 Hd(2) = design(d, 'ellip', 'MatchExactly', 'stopband');

 % Compare the passband edges in FVTool.
 fvtool(Hd);
 axis([.09 .11 -2 0]);

You specify the design options as parameter name/parameter value pairs when
you design the filter.

design(d,'ellip','MatchExactly','passband')

If you wish, you can provide these parameters in a structure. The designopts
method returns a valid structure for your object and specified algorithm with
the default values. Here is an example that uses designopts and a structure
do. The example starts by getting the default design-time options.

do = designopts(d, 'ellip');

Now use the MatchExactly option for the stopband.

do.MatchExactly = 'stopband';
design(d,'ellip',do);

Comparing Designs
design can also help you investigate various designs simultaneously, by
adding an optional input argument that specifies the kinds of filter to design.

Adding the input argument allfir directs design to return all of the FIR
filters the available design methods can create. Begin by designing all of the
FIR filters.

design(d, 'allfir');

The following code returns all of the IIR filters available.

design(d, 'alliir');

1 What Is Filter Design Toolbox?

1-14

Example—Creating a Fixed-Point IIR Filter

Example Background. To introduce you to designing fixed-point filters in the
toolbox, this example uses Filter Design and Analysis Tool (FDATool) to design
an IIR filter. In this case, use the Chebyshev I filter design method to begin the
design process.

During the example, you have the chance to export filters to your MATLAB
workspace, filter some data with the filter, and use the scaling features in
FDATool to improve the filter performance.

One of the salient points in this example is, while second-order section (SOS)
implementations are generally good starting points for fixed-point filter design,
you might find that without scaling your SOS filter, the SOS implementation
may not meet your needs, as this example shows.

To Create a Fixed-Point Filter in FDATool
Filter Design and Analysis Tool (FDATool) is one tool this toolbox provides to
help you design and analyze filters. From the various design panels in the tool,
such as the filter design panel or the multirate filter design panel, you can
design FIR and IIR filters, import or export filters, analyze filters, and more.

As an introduction to using the toolbox, this tutorial takes you through
designing, quantizing, and scaling a filter in FDATool.

1 Open Filter Design and Analysis Tool by entering

fdatool

at the MATLAB command prompt. FDATool opens to show you the following
dialog.

Getting Started with the Toolbox

1-15

2 Under Design Method in the bottom pane, select Chebyshev Type I from
the IIR list and click Design Filter.

1 What Is Filter Design Toolbox?

1-16

FDATool designs a double-precision lowpass filter using the Chebyshev I
design method and displays the filter magnitude response in the FDATool
analysis area. Your new uses seven second-order sections. In the Current
Filter Information area in FDATool, reproduced in the next figure, you see
your filter described by various filter parameters including the filter order
(13) and the structure (direct-form II using second-order sections).

In the figure, next to the current filter information, the curve presents the
filter magnitude response. As intended, it shows a lowpass filter with the
end of the passband at about 9600 Hz.

Getting Started with the Toolbox

1-17

Now export this filter to your workspace so you can use it to filter some data.

3 On the FDATool menu bar, select File—>Export to open the Export dialog.

4 To export the filter to your workspace as a filter object, select Workspace
from Export To and select Objects for Export As. The export dialog looks
like this after you make your selections.

1 What Is Filter Design Toolbox?

1-18

5 Click Export to export the filter with the variable name shown in the
Export dialog. When you return to your workspace in MATLAB, you see the
new object. In this case, the new object is named Hd.

6 In MATLAB, create a vector of random data (with values between 0 and 1)
and filter the data with Hd.

x=rand(1000,1);
y = filter(Hd,x);

Now y contains the data filtered by running x through the filter Hd.

7 Back in FDATool, click on the side bar to switch FDATool to
quantization mode.

8 With the quantization pane displayed in FDATool, switch Filter arithmetic
to fixed-point. Now you see the quantization pane in FDATool, as shown
in this figure.

Getting Started with the Toolbox

1-19

In the analysis area, FDATool shows the magnitude responses for two
filters—your fixed-point (quantized) filter and the reference filter that
accompanies the fixed-point version. Turn on the filter legend (select View—
Legend from the menu bar) to help you identify which response belongs to
each filter.

Zooming in on the curves shows that the two filter responses are very
similar. Note that your fixed-point filter used the default settings in the

1 What Is Filter Design Toolbox?

1-20

quantization pane—16-bit coefficients and fraction lengths selected to
ensure the best precision.

9 Now export the quantized filter to your workspace as an object. Since you are
going to use the same variable name Hd for the quantized filter in your
workspace, select Overwrite variables in the Export dialog.

10 Back in MATLAB, perform the filter process again, using the quantized
filter Hd and the signal x.

yq = filter(Hd,x);

11 This is the important step. Plot y and yq to see how the filtering process
results differed between the double-precision filter Hd and the fixed-point
filter Hd.

plot([y,yq]) % The results are not close to matching.

A look at the plot reveals that the results of filtering the same data (x) with
each filter were very different. Recall that the magnitude responses seemed
to be the same. So quantizing the filter affected the filtering performance in
a way that the magnitude response curve does not show. The answer is that
the arithmetic performed by the filter after quantization is very different
from the double-precision filter before quantization.

Getting Started with the Toolbox

1-21

Again, return to FDATool, which should still be open on your desktop. You are
going to fix the discrepancy between y and yq by reordering the sections of the
fixed-point filter and scaling the filter to improve the performance after
quantization.

1 To access the scaling and SOS filter reordering capability in FDATool, select
Edit—>Reorder and Scale Second-Order Sections from the menu bar.
The Reordering and Scaling of Second-Order Sections dialog opens,
shown below. Note the default settings:

- No reordering option is selected.

- Scaling is not selected.

0 100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Data filtered with double−precision filter
Data filtered with fixed−point filter

1 What Is Filter Design Toolbox?

1-22

2 Review the settings. Set Reordering to Auto.

3 Select Scale in the Scaling area. Review the default settings to be sure
Maximum Numerator is 4 and Overflow Mode is Wrap.

4 Click OK to close the dialog and scale and reorder the filter.

5 One more time, export the now-scaled quantized filter to your workspace as
Hd.

6 Filter the data x again, using the latest Hd filter—now reordered and scaled.

yqs = filter(Hd,x);

7 Finally, plot y and yqs to see if the filtering performance matches now.

Getting Started with the Toolbox

1-23

plot([y,yqs]) % y and yqs are identical.

Here is the plot showing the results. Scaling and reordering the fixed-point
filter restores the filtering performance to match the double-precision filter
performance. The results demonstrate the power of scaling and reordering SOS
filters.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data filtered with double−precision filter
Data filtered with scaled and reordered fixed−point filter

1 What Is Filter Design Toolbox?

1-24

Selected Bibliography
For further information about the algorithms and computer models used to
design filters and apply quantization in the toolbox, refer to one or more of the
following references.

Digital Filters
[1] Antoniou, Andreas, Digital Filters, Second Edition, McGraw-Hill, Inc.,
1993.

[2] Mitra, Sanjit K., Digital Signal Processing: A Computer-Based Approach,
McGraw-Hill, Inc., 1998.

[3] Oppenheim, Alan V., R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, Inc., 1989.

Quantization and Signal Processing
[4] Lapsley, Phil, J. Bier, A. Shoham, and E.A. Lee, DSP Processor
Fundamentals, IEEE Press, 1997.

[5] McClellan, James H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W.
Schafer, and H.W. Schuessler, Computer-Based Exercises for Signal Processing
Using MATLAB 5, Prentice-Hall, Inc., 1998.

[6] Roberts, Richard A. and C.T. Mullis, Digital Signal Processing,
Addison-Wesley Publishing Company, 1987.

[7] Van Loan, Charles, Computational Frameworks for the Fast Fourier
Transform, SIAM, Philadelphia, 1992.

2
Designing Fixed-Point
Filters

Designing Fixed-Point Filters (p. 2-3) Introduces fixed-point filters to get you started using your
own filters

Working with Fixed-Point Direct-Form
FIR Filters (p. 2-14)

Uses the direct-form FIR filter to introduce some
analytical approaches from the toolbox and fixed-point
filters

Constructing Fixed-Point Filters
(p. 2-28)

Describes how you construct quantized filters in the
toolbox

Data Type Handling in Discrete-Time
Filters (p. 2-36)

Provides details about how discrete-time filters handle
different data types as input, coefficients, and states

Introduction to Fixed-Point Arithmetic
(p. 2-45)

Introduces the concepts underlying fixed-point arithmetic
that relate to fixed-point filters

2 Designing Fixed-Point Filters

2-2

In the Filter Design Toolbox you can implement and analyze single-input
single-output filters either as fixed-point filters, or as single-precision or
double-precision floating-point filters. Both the single-precision floating-point
and fixed-point filters are referred to as quantized filters.

You can create a quantized filter from a reference filter, that is, a filter whose
coefficients and arithmetic operations you want to quantize in some fashion.

When you apply a quantized filter to data, not only are the filter coefficients
quantized to your specification, but so are

• The data that you filter, both input and output

• The results of any arithmetic operations that occur during filtering

Refer to “Bibliography” for a list of relevant references on quantized filtering.

This chapter covers what you need to know to construct and use quantized
filters:

• Getting Started with fixed-point filters

• Constructing quantized and fixed-point filters

• Fixed-point filter properties

• Filtering data with fixed-point filters

• Transformation functions for fixed-point filter coefficients

• Working with fixed-point direct-form FIR filters

Most of the filters you create in this toolbox are objects with properties. You can
find much of the basic information you need to know about setting and
retrieving property values in your MATLAB documentation by reading about
the set and get functions.

Designing Fixed-Point Filters

2-3

Designing Fixed-Point Filters
As filter designers begin to use digital filters in applications where power
limitations and size constraints drive the filter design, they move from
double-precision, floating-point filters to fixed-point filters. This tutorial shows
you how to analyze the quantization effects introduced by such a conversion
using discrete-time filter objects (dfilt objects).

This exercise covers the following filter development and analysis processes:

• “Designing a Filter With Floating-Point Coefficients” on page 2-6

• “Converting the Filter to Fixed-Point” on page 2-7

• “Quantizing Filter Coefficients with Automatic Scaling” on page 2-9

• “Scaling Filter Coefficients Manually” on page 2-10

• “Specifying Arithmetic Rules” on page 2-12

Each section builds on the contents and filters from preceding sections, so
progressing through the tutorial from the start is most effective. Otherwise,
code examples that depend on earlier tutorial sections might not work
properly.

The Filter Design Process
The toolbox uses a three step process to design filters.

1 Use fdesign.response to create a filter specifications object. For example,
use fdesign.bandpass or fdesign.decimator.

2 Use designmethods to find out which design methods apply to your filter
specification object.

3 Use one of the design methods from step 2 to design your filter from your
specification object. Two of the design methods might be ellip or cheby2.

Now you have your filter and you can analyze it, test it, filter with it, or create
other filters from your specification object to compare to the first filter.

Here is one example that design two highpass filters using different design
methods, followed by a plot that shows both filter magnitude responses.

2 Designing Fixed-Point Filters

2-4

Notice that the example specifies multiple filter response features in the
specification string argument.

• fp1—cutoff of the first passband

• fst1—first edge of the stopband

• fst2—second edge of the stopband

• fp2—edge of the second passband

• ap1—attenuation in the first passband

• ast—attenuation in the stopband

• ap2—attenuation in the second passband

d=fdesign.bandstop('fp1,fst1,fst2,fp2,ap1,ast,ap2',0.35,0.40,0.55,...
0.60,1,50,1)

d =

 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fpass1: 0.35
 Fstop1: 0.4
 Fstop2: 0.55
 Fpass2: 0.6
 Apass1: 1
 Astop: 50
 Apass2: 1

designmethods(d)

Design Methods for class fdesign.bandstop
(Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

hd(1)=design(d,'butter','filterstructure','df1sos');
hd(2)=design(d,'ellip','filterstructure','df1sos');

Designing Fixed-Point Filters

2-5

hd(1)

ans =

 FilterStructure: 'Direct-Form I, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [13x6 double]
 ScaleValues: [14x1 double]
 PersistentMemory: false

hd(2)

ans =

 FilterStructure: 'Direct-Form I, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 PersistentMemory: false

fvtool(hd)

2 Designing Fixed-Point Filters

2-6

Designing a Filter With Floating-Point Coefficients
Begin this tutorial by designing a lowpass filter specifications object d,
specifying the filter values Fp, Fc, Ap, and Ast. Then use the kaiserwin method
to design a direct-form FIR filter from d.

d=fdesign.lowpass(0.40,0.54,0.05,50)

d =

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

hd(1) Butter design method
hd(2) Ellip design method

Designing Fixed-Point Filters

2-7

 Fstop: 0.54
 Apass: 0.05
 Astop: 50

d contains the specifications for a lowpass filter.

Design the filter from d by applying the kaiserwin design method and specify
the direct-form FIR filter structure.

hd=design(d,'kaiserwin','filterstructure','dffir')

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x44 double]
 PersistentMemory: false

Converting the Filter to Fixed-Point
dfilt objects in the Filter Design Toolbox include a property Arithmetic that
provides the capability to analyze the filter in double-precision floating-point
arithmetic, single-precision floating-point arithmetic, and fixed-point
arithmetic.

With the Fixed-Point Toolbox installed, you can set the Arithmetic property of
the dfilt object hd to fixed to turn quantization on and implement filters that
perform fixed-point arithmetic.

The examples in this section discuss fixed-point filters and assume that you
have installed the Fixed Point Toolbox.

Fixed-Point Filter Properties
Setting the Arithmetic property to fixed adds filter properties to the dfilt
object. The default display of the filter object properties enhances the
readability of the properties by grouping them together in a logical manner.

hd.Arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form FIR'

2 Designing Fixed-Point Filters

2-8

 Arithmetic: 'fixed'
 Numerator: [1x44 double]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

Notice that only writable properties show in the Command Window listing.

Some filter properties, such as CoeffAutoScale, control the display of other
properties. CoeffAutoScale controls the display of NumFracLength and
whether you can write (change) the property value for NumFracLength.

In contrast to the property display that the filter handle hd generates, the get
function returns the complete collection of properties and property values for
the filter, whether you can change the property value or not.

get(hd)
 PersistentMemory: 0
 FilterStructure: 'Direct-Form FIR'
 States: [43x1 embedded.fi]
 Numerator: [1x44 double]
 Arithmetic: 'fixed'
 CoeffWordLength: 16
 CoeffAutoScale: 1
 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
 InputFracLength: 15
 NumFracLength: 16
 FilterInternals: 'FullPrecision'
 OutputWordLength: 33
 OutputFracLength: 31
 ProductWordLength: 31
 ProductFracLength: 31

Designing Fixed-Point Filters

2-9

 AccumWordLength: 33
 AccumFracLength: 31

Quantizing Filter Coefficients with Automatic
Scaling
To determine the number of bits the filter is using to represent the filter
coefficients, you look at the value of the CoeffWordlength property.

hd.CoeffWordLength
ans =

 16

To determine how the coefficients are being scaled, look at the NumFracLength
property.

hd.NumFracLength
ans =

 16

This tells you that the filter coefficients are 16 bits long (the word length), and
the least significant bit (LSB) is weighted by 2-16 (the fraction length). The
section “Notes About Fraction Length, Word Length, and Precision” on
page 2-46 provides more information about interpreting the fraction length in
the data format.

16 bits is the default value the filters use for coefficient word lengths. To
understand the scaling, look at the CoeffAutoScale setting.

hd.CoeffAutoScale % Returns a logical true = 1.

ans =

 1

When the CoeffAutoScale property is true (=1), the filter adjusts the
coefficient fraction length to avoid overflow each time you change the
coefficient word length. Verify this automatic scaling by changing the number
of bits used to quantize the coefficients from 16 bits to 24 bits.

hd.CoeffWordLength = 24;

2 Designing Fixed-Point Filters

2-10

hd.NumFracLength
ans =

 24

The 2-24 weight has been computed automatically to represent the coefficients
with the best precision possible while using the round-to-nearest value round
for the filter property RoundMode . “RoundMode” on page 7-85 provides further
information about RoundMode.

Scaling Filter Coefficients Manually
Setting the CoeffAutoScale property to false turns the NumFracLength
property writable and visible in the display.

h1 = copy(hd); % Keep a copy of the original object for...
% latter comparison

h1.CoeffAutoScale = false
h1 =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [1x102 double]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 24
 CoeffAutoScale: false
 NumFracLength: 24
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 ProductMode: 'FullPrecision'

AccumWordLength: 40
 CastBeforeSum: true

Designing Fixed-Point Filters

2-11

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

The quantized coefficients are always rounded to the nearest value and
saturated when overflow occurs.

Because the scaling process chose the fraction length to avoid overflow,
increasing the fraction length saturates the quantized coefficients, introducing
severe distortion in the magnitude response of the filter. Try increasing the
numerator fraction length to 25 bits.

h1.NumFracLength = 25;

This is more clear when you plot the magnitude response to show the effect of
saturating the coefficients. Here is the code to display the response.

href = reffilter(hd); % Get the reference double-precision...
% floating-point filter.

hfvt = fvtool(href,hd,h1);
set(hfvt,'ShowReference','off'); % Reference already displayed.
legend(hfvt, 'Reference filter', '24 bits - no saturation',...
'24 bits - saturation')

Saturating the coefficients compromises the filter cutoff performance
considerably, shown in the figure.

2 Designing Fixed-Point Filters

2-12

Specifying Arithmetic Rules
After you quantize the coefficients, you need to pay attention to the filter
internal settings that govern how arithmetic is done inside the filter. For the
remainder of this tutorial, you use a classic 16-bit word length filter.

hd.CoeffWordLength = 16;

One property—ProductMode—helps you simulate different filter arithmetic
scenarios in the multipliers and adders of the filter.

Setting these properties to specify full precision (set the property values to
FullPrecision) allows you to determine the minimum resources required to
avoid losing precision during filtering.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Reference filter

24 bits − no saturation

24 bits − saturation

Designing Fixed-Point Filters

2-13

hd.ProductMode = 'FullPrecision'; % (default)
[hd.ProductWordLength hd.ProductFracLength]
ans =

 32 31

[hd.AccumWordLength hd.AccumFracLength]
ans =

 39 31

Given an input format of [16 15] and coefficients format of [16 16]—the current
settings for hd—these responses indicate that you need

• a product register twice the size of the coefficients (or twice the size of the
input).

• an accumulator register with seven guard bits to allow for bit growth during
the accumulation process.

They also tell you the position of the binary point in those registers— the
AccumFraclength and ProductFracLength property values.

Starting from this scenario that allows your filter to perform most accurately,
you can introduce constraints on the product or the accumulator register or
both. The KeepMSB option for the fraction length properties sets the fraction
lengths automatically to avoid overflows while the KeepLSB option sets the
fraction lengths automatically to avoid underflows.

Finally, the SpecifyPrecision option give you full control of the settings. You
need to run your filter to see the effect of these settings on the output.

For further discussion about product and accumulator settings, refer to the
tutorial “Working with Fixed-Point Direct-Form FIR Filters” on page 2-14.

2 Designing Fixed-Point Filters

2-14

Working with Fixed-Point Direct-Form FIR Filters
This chapter ends with a tutorial that illustrates various aspects of working
with direct-form FIR filters using fixed-point arithmetic.

As you follow this example, you learn about these topics:

• “Obtaining the Filter” on page 2-14

• “Creating the Direct-Form FIR Fixed-Point Filter” on page 2-15

• “Comparing Quantized Coefficients to Nonquantized Coefficients” on
page 2-15

• “Determining the Number of Bits being Used” on page 2-16

• “Determining the Proper Coefficient Word Length” on page 2-17

• “Fixed-Point Filtering” on page 2-18

• “Generating a Baseline Output for Comparison” on page 2-20

• “Computing the Fixed-Point Filter Output” on page 2-21

• “Reducing Filter Output Quantization” on page 2-21

• “The Advantages of Guard Bits” on page 2-22

• “Avoiding Overflow Without Guard Bits” on page 2-26

Each section builds on the contents and filters from preceding sections.
Progressing through the tutorial from the start is most effective. Otherwise,
code examples that depend on earlier tutorial sections may not work properly.

Obtaining the Filter
For this tutorial, the FIR filter is not critical. Given the importance of
direct-form FIR filters, use the direct-form structure here—it does not even
need to have linear phase. This demonstration uses a firls design method to
obtain the filter.

To display the filter, pass the filter object to the Filter Visualization Tool
(FVTool).

d = fdesign.lowpass('N,Fp,Fst',80,.11,.19); % Order, and cutoff
 % cutoff freqs.

hd = design(d,'firls','Wpass',1,'Wstop',100);
hfvt = fvtool(hd);

Working with Fixed-Point Direct-Form FIR Filters

2-15

Here is the magnitude response for hd as shown by FVTool.

Creating the Direct-Form FIR Fixed-Point Filter
To create the fixed-point direct-form FIR filter, change the Arithmetic
property setting for hd to fixed-point arithmetic.

set(hd,'Arithmetic','fixed');

Comparing Quantized Coefficients to Nonquantized
Coefficients
There are several parameters for a fixed-point direct-form FIR filter. To start
with, concentrate on the coefficient word length and fraction length (scaling).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

2 Designing Fixed-Point Filters

2-16

Use the Filter Visualization Tool to compare the quantized coefficients filter to
the nonquantized (reference) coefficient filter.

hfvt=fvtool(hd,'Legend','on');

FVTool returns the plot of the magnitude responses for both filters—the
quantized filter and the corresponding reference filter.

Determining the Number of Bits being Used
To determine the number of bits being used in the fixed-point filter hd, look at
the CoeffWordlength property value. Check the CoeffAutoScale setting to
determine how the filter is scaling the coefficients.

get(hd,'CoeffWordLength')
get(hd,'NumFracLength')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter #1: Quantized

Filter #1: Reference

Working with Fixed-Point Direct-Form FIR Filters

2-17

ans =

 16

ans =

 17

These values tells us that hd uses 16 bits to represent the coefficients, and the
least significant bit (LSB) is weighted by 2-17. 16 bits is the default coefficient
word length the filter uses for coefficients, but the 2-17 weight has been
computed automatically to represent the coefficients with the best possible
precision, given the CoeffWordLength value.

You control this scaling through the CoeffAutoScale property. Set
CoeffAutoScale to false to give yourself manual control of the coefficient
scaling. The next command verifies that autoscaling is enabled in filter hd.

get(hd,'CoeffAutoScale') % Returns a logical true.

ans =

 1

Determining the Proper Coefficient Word Length
Make several copies of the filter to try different word lengths. Allow the
coefficient autoscaling process to determine the best precision in each case.

In the figure that follows the code presented here, you see the magnitude
responses for the various version of hd (h1, h2, and the reference filter) so you
can compare the effects of changing the coefficient word length.

h1 = copy(hd);
set(h1,'CoeffWordLength',12); % Use 12 bits.
h2 = copy(hd);
set(h2,'CoeffWordLength',24); % Use 24 bits.
href = reffilter(hd);
set(hfvt, 'Filters', [href, h1, hd, h2],'ShowReference','off');
legend(hfvt,'Reference filter','12 bits','16 bits (original...
CoeffWordLength','24 bits');

2 Designing Fixed-Point Filters

2-18

12 bits (filter h1) is not enough to represent this filter accurately. 16 bits is
enough for many applications.

The remaining sections of this tutorial use 16 bits to represent the filter
coefficients.

As a rule of thumb, expect an attainable attenuation in the stop band of about
5 dB per bit of coefficient length—16-bit coefficients provide about 80 dB
attenuation.

Fixed-Point Filtering
The main purpose of this tutorial is to evaluate the accuracy of the fixed-point
filter when compared to a double-precision floating-point version of the same
filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

href

h1

hd

h2

Working with Fixed-Point Direct-Form FIR Filters

2-19

Through the sections to come you see that representing the filter coefficients so
the magnitude response of the fixed-point filter is close to the double-precision
filter does not ensure the performance of the fixed-point filter during filtering.

Generating Random Test Input Data
To evaluate the accuracy of the fixed-point filter, filter some random data with
both filters. Create 1000 data points with range of [-1,1) to generate random,
uniformly distributed white-noise data using 16 bits of word length.

rand('state',0); % Make results reproducible by initializing the
% random generator.

x = (rand(1000,1)*2-1); % 1000 Data points in the range [-1,1).
xin = fi(x,true,16,15);

Now xin is an array of integers with 1000 members, represented as
a fixed-point object (a fi object).

get(xin)

DataTypeMode: 'Fixed-point: binary point scaling'
 DataType: 'Fixed'
 Scaling: 'BinaryPoint'
 Signed: 1
 WordLength: 16
 FractionLength: 15
 FixedExponent: -15
 Slope: 3.0518e-005
 SlopeAdjustmentFactor: 1
 Bias: 0
 RoundMode: 'round'
 OverflowMode: 'saturate'
 ProductMode: 'FullPrecision'
 ProductWordLength: 32
 MaxProductWordLength: 128
 ProductFractionLength: 30
 SumMode: 'FullPrecision'
 SumWordLength: 32
 MaxSumWordLength: 128
 SumFractionLength: 30
 CastBeforeSum: 1

2 Designing Fixed-Point Filters

2-20

Your Fixed-Point Toolbox documentation provides more information about
fi objects.

Generating a Baseline Output for Comparison
When you evaluate the accuracy of fixed-point filtering, consider three
quantities for comparing between the quantized filter and the reference filter:

1 The ideal filtered output—this is the goal. Compute it using the reference
coefficients and double-precision floating-point arithmetic.

2 The best-you-can-hope-for filtered output—this is the best you can hope to
achieve. Compute this using the quantized coefficients and double-precision
floating-point arithmetic.

3 The filtered output you can actually attain with the quantized filter—this
is the output you compute using the quantized coefficients and fixed-point
arithmetic (compare this to number 2).

Compare what you can actually attain (number 3) to the best you can hope for
(number 2). To compute the best-you-can-hope-for, cast the fixed-point filter to
double-precision and filter with double-precision floating-point arithmetic,
provided by filter hdouble.

xdouble = double(xin); % Cast the input data to doubles.
hdouble = double(hd); % Convert hd to double-precision.
ydouble = filter(hdouble,xdouble);

Notice that you had to cast the input data xin to double format to use it with
the double-precision filter hdouble. Double-precision filters require
double-precision input values.

For completeness, this is how you compute the ideal output (number 1 in the
preceding list). Then you can see how much quantizing just the filter
coefficients affects the filter output.

yideal = filter(href,xdouble); % Reference filter, double data.
norm(yideal-ydouble) % Total error.

ans =

3.4887e-004

Working with Fixed-Point Direct-Form FIR Filters

2-21

norm(yideal-ydouble,inf) % Maximum deviation.

ans =

3.7218e-005

Computing the Fixed-Point Filter Output
Now perform the actual fixed-point filtering. Again, the best you can hope to
achieve is to have an output identical to ydouble.

y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.

ans =

 0.0

norm(double(y)-ydouble,inf) % Maximum deviation.

ans =

 0.0

The error between the filtered results is exactly zero. The accumulator is not
introducing any quantization error. The results of products are represented
with full precision, the default setting.

From that fact we know that no quantization errors are occurring there either.
Finally, the output and accumulator share the same specification for word and
fraction length which eliminates errors induced by quantization at the output.

Reducing Filter Output Quantization
To isolate any other quantization errors that are being introduced in the filter,
you can eliminate quantization error at the output completely by setting the
output format to have the same specifications as the accumulator. Think of this
as being able to look inside the accumulator.

set(hd,'FilterInternals','SpecifyPrecision');
set(hd,'AccumWordLength',get(hd,'ProductWordLength'));

2 Designing Fixed-Point Filters

2-22

set(hd,'OutputWordLength',get(hd,'AccumWordLength'));
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =

8.0623

norm(double(y)-ydouble,inf) % Maximum deviation.
ans =

 0.5000

The errors are exactly zero, indicating that the accumulator is not adding
further quantization to the output. The arithmetic products (multiplies) are set
by default to use full precision, so you know that no errors are occurring in
multiplication operations.

Usually it is not possible to have a full 40-bit output of the filter, so you must
expect some difference between y and ydouble. Nevertheless, you have verified
that in this filtering case, the difference between the ideal filter and the
quantized filter is due to output quantization. This is not always the case—in
some cases bits get lost in the accumulator. In fact overflow can occur in the
accumulator.

The Advantages of Guard Bits
If you compare the product word and fraction lengths with the accumulator
word and fraction lengths, by looking at the filter properties
ProductWordLength, ProductFracLength, AccumWordLength, and
AccumFracLength, as shown here

get(hd,'ProductWordLength')

ans =

 31

get(hd,'ProductFracLength')

ans =

Working with Fixed-Point Direct-Form FIR Filters

2-23

 33

get(hd,'AccumWordLength')

ans =

 35

get(hd,'AccumFracLength')

ans =

 33

You see that the accumulator has 4 extra bits available (AccumWordLength is
35 bits). Having extra accumulator bits is typical of many fixed-point DSP
processors. The extra bits are usually referred to as guard bits. They provide
a safety valve for overflows that occur during filtering calculations.

Using info provides the same information in one display.

info(hd)
Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR
Filter Length : 81
Stable : Yes
Linear Phase : Yes (Type 1)
Arithmetic : fixed
Numerator : s16,18 -> [-1.250000e-001 1.250000e-001)
Input : s16,15 -> [-1 1)
Filter Internals : Full Precision
 Output : s35,33 -> [-2 2) (auto determined)
 Product : s31,33 -> [-1.250000e-001 1.250000e-001) (auto determined)
 Accumulator : s35,33 -> [-2 2) (auto determined)
 Round Mode : No rounding
 Overflow Mode : No overflow

Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.064538
3-dB Point : 0.10001
6-dB Point : 0.11
Stopband Edge : 0.15183
Passband Ripple : 0.01 dB
Stopband Atten. : 60 dB
Transition Width : 0.087288

2 Designing Fixed-Point Filters

2-24

The easiest way of appreciating the value of guard bits is to remove them and
see what happens (adjust the output settings accordingly).

set(hd,'FilterInternals','SpecifyPrecision');
set(hd,'AccumWordLength',get(hd,'ProductWordLength'));
set(hd,'OutputWordLength',get(hd,'AccumWordLength'));

hd

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [1x81 double]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'SpecifyPrecision'

 OutputWordLength: 31
 OutputFracLength: 32

 ProductWordLength: 31
 ProductFracLength: 32

 AccumWordLength: 31
 AccumFracLength: 32

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

Now the accumulator word length matches the product word length of 31 bits,
and the output word length matches the accumulator word length, 32 bits. Now
use hd to filter some data, and plot the results.

Working with Fixed-Point Direct-Form FIR Filters

2-25

y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.

ans =

 3.4641

norm(double(y)-ydouble,inf) % Maximum deviation.
ans =

 1

plot([ydouble,double(y)])
xlabel('Samples'); ylabel('Amplitude')
legend('ydouble','y')

0 100 200 300 400 500 600 700 800 900 1000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Samples

A
m

pl
itu

de

ydouble
y

2 Designing Fixed-Point Filters

2-26

The total error is large because overflow occurred during filtering. The
representable range for the accumulator and output formats [32 32] is -0.5 to
0.5.

In the plot, one of the values around sample 800 is larger than 0.5, indicating
an overflow. Recall that you set the output settings equal to the accumulator
settings. You removed the guard bits by setting the accumulator word length
to 32 bits. So the overflow is occurring in the accumulator itself.

Avoiding Overflow Without Guard Bits
It is possible not to have overflow even when guard bits are not available in the
accumulator.

set(hd,'OutputFracLength',get(hd,'AccumFracLength'));
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.

ans =

 2.4442e-006

ans =

 2.5332e-007

If the filter uses 16 bits for the output word length and sets the output mode to
maintain the best precision for this word length, the resulting error is much
larger—almost two orders of magnitude.

set(hd,'OutputWordLength',16);
set(hd,'OutputMode','BestPrecision');
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.

ans =

 2.7627e-004

norm(double(y)-ydouble,inf) % Maximum deviation.

Working with Fixed-Point Direct-Form FIR Filters

2-27

ans =

 1.5400e-005

From the earlier plots of y and ydouble, you might have realized that one extra
bit was all that would have been required to avoid overflow in those examples.

You can improve the results slightly with this one bit change, but remember
that this is specific to the filter coefficients and input signal in this tutorial.

Reducing the accumulator fraction length from 32 bits to 31 bits provides one
more bit in the integer part of the accumulator word and reduces the filtering
error.

set(hd,'AccumFracLength',31);
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =

 2.7623e-004

ans =

 1.5251e-005

The errors are the same as when the filter used 39 bits for the accumulator and
2-32 to scale the least-significant bit. This indicates that the errors in filtering
are due to quantization effects between the accumulator and the output.

2 Designing Fixed-Point Filters

2-28

Constructing Fixed-Point Filters
You construct filters by

• Using an fdesign.response object combined with a filter design method
such as butter

• Using the appropriate filter constructor function dfilt.structure, where
structure is the filter topology to implement

• Using FDATool design features

• Copying an existing filter

All filter characteristics are stored as properties that you can set or retrieve.
These filter characteristics include

• Filter structure

• Reference filter coefficients

• Filter topology (single section or cascaded second-order sections)

• Fixed-point filter data format parameters such as

- Quantization parameters (word lengths, fraction lengths, and precisions).

- Data type (signed or unsigned fixed-point, double-precision or
single-precision floating-point, and signed or unsigned integers)

- Rounding method used in quantization

- Overflow method used in quantization

• Scaling factors for each section of a second-order section filter

You can specify quantized filter properties by creating a quantized filter with
default property values and then changing some or all of these property values
later.

Defining Quantized and Fixed-Point Filters
With the dfilt objects in this toolbox you can create quantized and fixed-point
filter objects that you use to filter signals or data.

In this user’s guide, we distinguish between fixed-point and quantized filters
only very rarely—mostly we use the terms interchangeably. There is a
difference between them that is worth recalling when you work with the filter
objects in this toolbox.

Constructing Fixed-Point Filters

2-29

Quantized means using limited precision arithmetic, either fixed-point or
floating-point. Underlying all the filters in this toolbox, including the
floating-point filters, is quantized arithmetic.

Roughly explained, quantizing is the act of reducing the precision with which
you represent numeric quantities.

With this in mind, we approximate ideal arithmetic (arithmetic with infinite
precision) using double-precision, floating-point arithmetic and we refer to
floating-point filters as nonquantized, or reference, filters.

Fixed-point arithmetic is a subset of quantized arithmetic, and fixed-point
filters are thus a subset of quantized filters. In fixed-point arithmetic, the word
length and fraction length you use limit the precision of your results.
Arithmetic operations occur without moving the binary, or radix, point. Hence
the name fixed-point or fixed binary-point arithmetic.

In summary, quantized filters use limited precision arithmetic and data
representations. Fixed-point filters use limited precision representations and
fixed-point arithmetic where the binary point location does not change.

Constructors for Fixed-Point Filters
The most direct way to create a fixed-point arithmetic filter (a fixed-point
dfilt object) is to create one with the default properties. Fixed-point filter
object construction requires these steps:

• Create a default double-precision lowpass filter hd by entering something
like this command pair. First create a filter specifications object, and then
design the filter.
d = fdesign.lowpass;
hd = design(d,'equiripple');

• Change the Arithmetic property setting for filter object hd to fixed.

set(hd,'arithmetic','fixed')

MATLAB displays a listing of all of the properties of the filter hd you created,
along with the associated property values. All properties are set to defaults
when you construct a fixed-point filter this way.

2 Designing Fixed-Point Filters

2-30

Constructing a Quantized Filter from a Filter
Specification Object
You construct quantized filters by constructing default filters or filters with
specified filter coefficients. Begin with a set of nonquantized filter coefficients
to implement in a quantized filter.

For this example, start with a filter specification object that defines the
response of the filter to design. This code specifies the filter order, cutoff
frequency, and attenuations for the filter design.

d = fdesign.lowpass('n,fp,fst,ap',3,0.5,0.6,3);

To implement d as a quantized filter, use one of the design methods in the
toolbox to design the filter and then change the value of the Arithmetic
property to fixed:

hd=design(d,'ellip')

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [2x6 double]
 ScaleValues: [0.187365400536859;0.860421232522936;1]
 PersistentMemory: false

set(hd,'arithmetic','fixed'); % Convert to quantized filter.

Because filters designed with second-order section topologies are more robust
against quantization errors than those composed of higher-order transfer
functions, ellip constructs the dfilt object as an SOS filter.

Constructing a Fixed-Point Filter in Second-Order Sections
By default, many of the filter design functions in the toolbox return filters that
use second-order sections. In most cases, this is a desirable feature when you
are using fixed-point arithmetic because SOS filters tend to resist errors
caused by quantization.

Constructing Fixed-Point Filters

2-31

hs = fdesign.bandpass(.3, .4, .6, .7, 80, .5, 60); % Specify the
passband edges and attentuations.

designmethods(hs) % Find an appropriate design method.

Design Methods for class fdesign.bandpass:

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

hd=design(hs,'butter') % Design the filter.

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [13x6 double]
 ScaleValues: [14x1 double]
 PersistentMemory: false

Copying Filters to Inherit Properties
When you have a quantized filter hd with the property values set the way you
want them, you can create a new quantized filter hd2 with the same property
values as hd by entering

hd2 = copy(hd)

This function is convenient to use when you are changing a small number of
properties on a set of filters.

For example, create a 16-bit precision filter hd2 from an FIR reference filter
with

hd = design((fdesign.lowpass('N,fc,ap,ast',80,0.5,.05,50)),...
'equiripple') % Reference filter with double-precision coeffs.;
hd2 = hd;

2 Designing Fixed-Point Filters

2-32

hd2 inherits the property values for hd, but is an independent object that you
can change without affecting hd.

Fixed-Point Arithmetic Filter Structures
When you construct filter objects, the FilterStructure property value is
returned containing one of the strings shown in the following table. Property
FilterStructure indicates the filter architecture and comes from the
constructor you use to create the filter.

After you create a filter object you cannot change the FilterStructure
property value. To make filters that use different structures you construct new
filters using the appropriate object constructors. In some instances, function
convert allows you to change the structure of an existing filter object.

You specify the filter structure by selecting the appropriate dfilt.structure
method to construct your filter. For information about setting properties for
fixed-point filter objects, refer to the reference information for dfilt in your
Signal Processing Toolbox documentation and in this user’s guide, and get and
set in your MATLAB documentation.

The figures included in the reference page for each filter structure, such as
dfilt.dfasymfir, act as aids to help you determine how to enter your filter
coefficients for each filter structure and how the filter performs quantizations
in the filter signal flow. Each reference page also contains an example for
constructing a filter of the given structure.

Filter Constructor Name FilterStructure Property String and Filter Type

dfilt.dfasymfir Antisymmetric finite impulse response (FIR)

dfilt.df1 Direct form I

dfilt.df1sos Direct form I filter implemented using
second-order sections

dfilt.df1t Direct form I transposed

dfilt.df2 Direct form II

dfilt.df2sos Direct form II filter implemented using second
order sections

Constructing Fixed-Point Filters

2-33

Fixed-Point Arithmetic Filter Structure Diagrams
To help you understand where quantizations occur in filter structures like
those provided in the toolbox, the next figure presents the structure for a
direct-form 2 filter, including the quantizations that the quantized filter
incorporates. You see that one or more quantizations accompany each filter
element, such as a delay, coefficient, or summation element. The input to or
output from each element reflects the result of applying the associated
quantization.

Wherever a particular filter element appears in a filter structure, recall the
quantization that accompanies the element. For example, a product
quantization, either numerator or denominator, follows every coefficient
element. A sum quantization, also either numerator or denominator, follows
each sum element.

In this figure, you see the structure for a direct-form 2 IIR filter, with the
arithmetic property value set to 'fixed'.

dfilt.df2t Direct form II transposed.

dfilt.dffir Direct form FIR

dfilt.dffirt Direct form FIR transposed

dfilt.latticear Lattice autoregressive (AR)

dfilt.latticemamin Lattice moving average (MA) minimum phase

dfilt.latticemamax Lattice moving average (MA) maximum phase

dfilt.latticearma Lattice ARMA

dfilt.dfsymfir Symmetric FIR. Even and odd forms

dfilt.scalar Scalar

Filter Constructor Name FilterStructure Property String and Filter Type

2 Designing Fixed-Point Filters

2-34

Note To set the Arithmetic property of an IIR filter to fixed, the leading
denominator coefficient a(1) must one.

Fixed-Point Arithmetic Filter Structures
You choose among several filter structures when you create quantized filters.
You can also specify filters with single or multiple cascaded sections of the
same type. Because quantization is a nonlinear process, different quantized
filter structures produce different results.

About the Filter Structure Diagrams
In the diagrams that appear on each filter structure reference page, you see the
active operators that define the filter, such as sums and gains, and the word
length and fraction length formats that control the processing in the filter.
Notice also that the coefficients are labeled in the figure, to tell you the order
in which the filter processes the coefficients.

While the meaning of the block elements is straightforward, the labels for the
quantizers that form part of the filter are less clear.

Each figure includes text in the form labelformat that represents the existence
of a quantization operation at that point in the structure. format stands for
word length and fraction length applied at that point in the filter flow, and
label specifies the data that the quantization process affects.

For example, in the dfilt.df2 filter shown in earlier, the labels InputFormat
and OutputFormat are the quantizations applied to the filter input and output

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

DenAccumFormat

NumProdFormat

NumAccumFormatDenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1

z
−1

1
input

Constructing Fixed-Point Filters

2-35

data at the labeled location in the filter. InputFormat refers to the
InputWordLength and InputFracLength filter properties and OutputFormat
refers to the OutputWordLength and OutputFracLength filter properties.

Property names like CoeffWordLength and DenFracLength define the
properties that control filter operations with coefficients or denominator
coefficients at that point in the structure and are properties of the filter.

2 Designing Fixed-Point Filters

2-36

Data Type Handling in Discrete-Time Filters
In this section you learn how discrete-time filters (dfilt objects) handle
different data types in significant filtering areas:

• Different data types as input data to your filter

• Different data types to represent your filter coefficients

• Different data types representing the states of your filter

• Reference filter coefficients

How these varied filter areas respond is driven primarily by the value you set
for the Arithmetic property of the filter object. The next sections cover each of
the areas noted above, discussing how each responds when you set the value
for the Arithmetic property.

Property Arithmetic accepts one of three valid entries:

• Double
• Single
• Fixed

Each option affects how the filter handles the states, coefficients, input and
output data, and filter arithmetic. And what you use as input to the filter
object.

Filter Input Signals, Coefficients, and States
Filter object properties and their values directly affect how and in what form
your filter works with input data, the filter coefficients, and the states of the
filter.

In many cases, fixed-point filters use fixed-point objects to handle fixed-point
values such as coefficients, input, or filter states. The Fixed-Point Toolbox
documentation provides details about the fixed-point, or fi, object that dfilt
objects use.

Input Data and the Arithmetic Property Setting
The Arithmetic property setting controls the handling and quantization of
input to the filter. All arithmetic property settings—double, single, fixed—
support the same input data types:

Data Type Handling in Discrete-Time Filters

2-37

• Double-precision floating-point

• Single-precision floating-point

• int*

• uint*

• fi objects

Each Arithmetic property value refines how the filter accepts input data.
When you specify one of the following values for Arithmetic, this is what
happens in the filter.

• double

The filter casts the input data to double-precision format. The filter states
and output are double data type as well. This is the default value for the
filter Arithmetic property. The resulting filter is considered
double-precision and floating-point.

• single

The filter casts the input data to single-precision format. Both the filter
states and the output from the filter are in single data type. This is
a quantized filter that uses single-precision floating-point data format.

• fixed

The filter casts the input data to fixed-point (fi) objects to use fixed-point
formats defined by the filter properties [InputWordLength
InputFracLength], adds properties to the filter object for configuring the
filter, and switches the filter to using fixed-point arithmetic. The added
properties let you determine the data formats (the word length and fraction
length) the filter uses for all filter operations and data.

Filter Coefficients and the Arithmetic Property Setting
Changing the arithmetic mode controls the format the filter uses to represent
coefficients. Discrete-time filters accepts coefficients in any of the following
formats:

• double-precision floating-point

• single-precision floating-point

• int*

2 Designing Fixed-Point Filters

2-38

• uint*

• fi objects

Depending on the setting for Arithmetic, whether double, single, or fixed,
the filter handles the coefficients in the following manner:

• double

The filter casts the coefficients to double data type. Reference coefficients for
the filter are stored in the data type in which you provide them. In this case,
the quantized and reference coefficients for the filter are identical.

• single

The filter casts the coefficients to singles. single data type coefficients are
unchanged. Reference coefficients for the filter are stored in the data type
that you use to provide them.

• fixed

The filter casts the coefficients to fixed-point (fi) objects, using the
[InputWordLength InputFracLength] filter properties to format the
coefficients. The resulting fixed-point filter stores the reference filter
coefficients in the data type that you supply. When you use reffilter, you
get back a reference filter whose coefficients are double-precision
approximations to the actual reference coefficients.

Arithmetic Property Setting and Filter States
How the filter stores and operates on filter states depends on the setting of the
Arithmetic property. You can provide the states in any of the following
formats:

• double-precision floating-point

• single-precision floating-point

• int*

• uint*

• fixed-point (fi) objects

When you set the Arithmetic property value you change how the filter
responds to the state values.

• double

The filter casts the states to double-precision data type.

Data Type Handling in Discrete-Time Filters

2-39

• single

The filter casts the filter states to single-precision data type.
• fixed

The filter casts the states to fixed-point objects, using the [InputWordLength
InputFracLength] filter properties to format the states as

- Fixed-point objects

- Double

Other data types return an error in MATLAB.

When you set PersistentMemory to true, the word length and fraction length
settings for the filter states must be the same as the filter input word length
and fraction length. If these settings do not match, you receive an error.

Note that the filter does not store reference values for the states.

Disabling the autoscaling filter properties such as CoeffAutoScale,
InputAutoScale, and OutputAutoScale results in all the additional fraction
length properties becoming available in the filter. To make disabling the
automatic scaling for a filter easier, use specifyall. When you use

specifyall(hd)

all of the automatic control properties of hd are set to SpecifyPrecision:

• ProductMode

• OutputMode

specifyall also disables the automatic scaling provided by

• CoeffAutoScale

• All other *AutoScale properties for the filter, since this varies from structure
to structure

With autoscaling disabled you have access to the fraction length properties for
coefficients, the accumulator, products, and output values, which lets you set
the precision yourself.

specifyall also helps you return your filter to the default automatic modes.
Use the syntax

specifyall(hd,false)

to reset filter hd to the default automatic mode settings.

2 Designing Fixed-Point Filters

2-40

You may want more information about filter states after you read this review.
Refer to filtstates in your Signal Processing Toolbox documentation for
detail about filter states and the filtstates object the filters use.

Reference Filter Coefficients for Fixed-Point Filters
Quantized or fixed-point filters in the toolbox have both quantized coefficients
(or fixed-point coefficients) that result from changing the Arithmetic property
to fixed or single, and reference coefficients. You can access both sets from
the command line.

How the toolbox stores the reference coefficients for a filter depends on the data
type you use to specify the coefficients—reference filter coefficients are stored
in the data type you specified when you constructed the filter. Retaining the
specified data type prevents the memory for storing the coefficients from
growing unnecessarily.

When you view the fixed-point filter coefficients, you see double-precision
approximations to the actual fixed-point or quantized coefficients used for
filtering. In many cases, the approximation is exact, including when your filter
uses single or double arithmetic.

When the Arithmetic property value is fixed, the approximation is exact if the
software can store the fixed-point values exactly as a double data type value.
Otherwise, you see the double data type approximation of the value.

Returning the double-precision approximations enables the software to
represent the leading denominator coefficient of an IIR filter exactly as a 1,
even if you are working in a fractional mode, such as Q15.

You use the function reffilter to return a filter that has the reference
coefficients that accompany any fixed-point filter. For example, create a
fixed-point direct form filter hd with

d=fdesign.lowpass('n,fc,ap,ast',5,0.45,0.1,50); % Order, cutoff,
% and filter attenuations in dB.

hd = design(d);
hd.arithmetic='fixed';

which has fixed point coefficients

hd.numerator

ans =

Data Type Handling in Discrete-Time Filters

2-41

-0.0122 0.1192 0.3959 0.3959 0.1192 -0.0122

Now change the word length the filter uses to represent the numerator
coefficients.

hd.coeffautoScale=false

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [1x6 double]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: false
 NumFracLength: 16
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'
set(hd,'coeffWordLength',14');
hd.numerator

ans =

-0.0122 0.1192 0.1250 0.1250 0.1192 -0.0122

Using reffilter returns a filter object with reference coefficients, as follows:

hdref=reffilter(hd)

hdref =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x6 double]
 PersistentMemory: false

hdref.Numerator

ans =

2 Designing Fixed-Point Filters

2-42

 -0.0122 0.1192 0.3959 0.3959 0.1192 -0.0122

hdref has the original filter coefficients and is a double-precision filter. The
reference filter coefficients match the original set of fixed-point coefficients for
hd, but not the coefficients as represented by 14 bits.

Fixed-Point Filters and Second-Order Sections
Listed within the dfilt methods for creating quantized filters you find
methods that return second-order section (SOS) versions of the direct-form IIR
filters—df1sos, df1tsos, df2sos, and df2tsos.

The following figure shows how the second-order sections combine to form
a filter, in this case a direct-form II SOS filter. This diagram (or a similar one)
appears with each SOS filter structure as well.

Combining this figure with the structures and signal flows for each SOS filter
helps you work out the details about quantization in the SOS filter.

Using second-order sections is not the same as cascading the filters, as the
dfilt.cascade or dfilt.parallel methods in the Signal Processing Toolbox
allow you to do with any dfilt objects.

The CastBeforeSum Filter Property
Setting the CastBeforeSum property determines how the filter handles the
input values to sum operations in the filter.

After you set the filter Arithmetic property value to fixed, you have the option
of using CastBeforeSum to control the data type of some inputs (addends) to
summations in your filter.

To determine which addends reflect the CastBeforeSum property setting, refer
to the reference page for the signal flow diagram for the specific filter structure.

CastBeforeSum specifies whether to cast selected inputs to summations in the
filter to the summation output format before performing the addition.

OutputFormatInputFormat StageInputFormatStageInputFormat

ScaleValueFormat

NumAccumFormat

ScaleValueFormat ScaleValueFormat

DenAccumFormat StageOutputFormat StageInputFormat StageOutputFormat

If scale value is equal to 1

1
output2

−K− −K−−K− Section nCastSection 1 Section 2 Cast1
input1

Data Type Handling in Discrete-Time Filters

2-43

Setting CastBeforeSum to True
When you specify true for the property value, the results of the affected sum
operations match most closely the results found on most digital signal
processors. Performing the cast operation before the summation adds one or
two additional quantization operations that can add errors to your filter
results.

Setting CastBeforeSum to False
Specifying CastBeforeSum to be false prevents the addends from being cast to
the output format before the addition operation. Choose this setting to get the
most accurate results from summations without considering the hardware
your filter might use.

Notice that the output format for every sum operation reflects the value of the
output property specified in the filter structure diagram. Which input property
CastBeforeSum refers to depends on the structure.

Diagrams of CastBeforeSum Settings
When CastBeforeSum is false, sum elements in filter signal flow diagrams
look like this:

Property Value Description

false Configures filter summation operations to retain
the addends in the format carried from the
previous operation.

true Configures filter summation operations to convert
the input format of the addends to match the
summation output format before performing the
summation operation. Usually this generates
results from the summation that more closely
match those found from digital signal processors

2 Designing Fixed-Point Filters

2-44

showing that the input data to the sum operations (the addends) retain their
format word length and fraction length from previous operations. The addition
process uses the existing input formats and then casts the output to the format
defined by AccumFormat.

Thus the output data has the word length and fraction length defined by
AccumWordLength and AccumFracLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look
like this:

showing that the input data gets cast to the accumulator format word length
and fraction length (AccumFormat) before the sum operation occurs. The data
output by the addition operation has the word length and fraction length
defined by AccumWordLength and AccumFracLength.

+
AccumFormat

+
AccumFormat

Cast

Cast
AccumFormat

AccumFormat

Introduction to Fixed-Point Arithmetic

2-45

Introduction to Fixed-Point Arithmetic
You specify how numbers are quantized using fixed-point arithmetic in this
toolbox with two quantities:

• Word length in bits

• Fraction length in bits

This toolbox does bit-true fixed-point arithmetic for all word lengths. It
properly handles overflows and the results are bit-true when the numbers are
scaled properly. For example, (small numbers + small numbers) works
correctly and (large numbers + large numbers) are right as well.

Fraction lengths used to represent numeric values can be any positive or
negative integer, including integers larger than the associated word length for
the value.

A general representation for a signed two’s-complement binary fixed-point
number is

where

• bi are the binary digits (bits, 0s or 1s).

• The word length in bits is given by w.

• The most significant bit (MSB) is the leftmost bit. It is represented by the
location bw-1. In Filter Design Toolbox, this value represents the sign bit; a 1
indicates the number is negative, and a 0 indicates it is nonnegative.

•
… b0b1bw 2– b5 b3b4 b2bw 1–

Least significant bitBinary pointSign bit

Word length

Fraction length

2 Designing Fixed-Point Filters

2-46

• The least significant bit (LSB) is the rightmost bit, represented by the
location b0.

• The binary point is shown four places to the left of the LSB for this example.

• The fraction length f is the distance from the LSB to the binary point.

Binary Point Interpretation
Where you place the binary point determines how fixed-point numbers are
interpreted in two’s complement arithmetic. For example, the 5-bit binary
number

• 10110 represents the integer –24+22+2 = –10.

• 10.110 represents –2+2–1+2–2 = –1.25.

• 1.0110 represents –2–0+2–2+2–3 = –0.625.

Notes About Fraction Length, Word Length, and Precision
Word length and fraction length combine to make the format for a fixed-point
number, where word length is the number of bits used to represent the value
and fraction length specifies, in bits, the location of the binary point in the
fixed-point representation. Therein lies a problem—fraction length, which you
specify in bits, can be larger than the word length, or a negative number of bits.
This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to
be used in this user’s guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the
binary point) is true only when the fraction length is positive and less than or
equal to the word length. In MATLAB, the format notation is
[word length fraction length].

For example, for the format [16 16], the second 16 (the fraction length) is the
number of fractional bits or bits to the right of the binary point. In this
example, all 16 bits are to the right of the binary point.

It is also possible to have fixed-point formats of [16 18] or [16 -45]. In these
cases the fraction length can no longer be the number of bits to the right of the
binary point since the format says the word length is 16—there cannot be 18
fraction length bits on the right. And how can there be a negative number of
bits for the fraction length, such as [16 -45]?

Introduction to Fixed-Point Arithmetic

2-47

A better way to think about fixed-point format [word length fraction length]
and what it means is that the representation of a fixed-point number is
a weighted sum of powers of two driven by the fraction length, or the two’s
complement representation of the fixed-point number.

Consider the format [B L], where the fraction length L can be positive,
negative, 0, greater than B (the word length) or less than B. (B and L are
always integers and B is always positive.)

Given a binary string b(1) b(2) b(3) ... b(B), to determine the two’s complement
value of the string in the format described by [B L], use the value of the
individual bits in the binary string in the following formula, where b(1) is the
first binary bit (and most significant bit, MSB), b(2) is the second, and on up to
b(B).

The decimal numeric value that those bits represent is given by

value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+...+ b(B)*2^(-L)

L, the fraction length, represents the negative of the weight of the last, or least
significant bit (LSB). L is also the step size or the precision provided by a given
fraction length.

For related information about scaling filters, refer to “Quantizing Filter
Coefficients with Automatic Scaling” on page 2-9, which provides a discussion
of how the toolbox scales filters automatically and how you can scale them
yourself.

Precision
Here is how precision works.

When all of the bits of a binary string are 0 except for the LSB (which is
therefore equal to 1), the value represented by the bit string is given by 2(-L). If
L is negative, for example L=-16, the value is 216.

The smallest step between numbers that can be represented in a format where
L=-16 is given by 1 x 216 (the rightmost term in the formula above), which is
65536. Note that the precision does not depend on the word length.

Look at another example. When the word length is set to 8 bits, the decimal
value of 12 is represented in binary by 00001100. That the decimal value 12 is
equivalent to binary 00001100 indicates that the data format [8 0] is being
used—the word length is 8 bits and fraction length 0 bits, and the precision (the
smallest difference between two adjacent values in the format [8 0], is 20=1.

2 Designing Fixed-Point Filters

2-48

Suppose you plan to keep only the upper 5 bits and discard the other 3. The
resulting precision after removing the right-most 3 bits comes from the weight
of the lowest remaining bit, the fifth bit from the left, which is 23=8, so the
format would be [5 -3].

In this format the precision is 8. The [5 -3] format cannot represent numbers
that are between multiples of 8.

In MATLAB, with the Fixed-Point Toolbox installed

x=8;
q=quantizer([8 0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq

binxq =

00001000

binxq1

binxq1 =

00001

But notice that in [5 -3] format, 00001 is the two’s complement representation
for 8, not for 1; q = quantizer([8 0]) and q1 = quantizer([5 -3]) are not
the same. They cover about the same range—range(q)>range(q1)—but their
quantization step is different—eps(q)= 8, and eps(q1)=1.

Look at one more example. When you construct a quantizer q,

q = quantizer([a,b])

the first element in [a,b] is a, the word length used for quantization. b, second
element in the expression, is related to the quantization step—the numerical
difference between the two closest values that the quantizer can represent.
This is also related to the weight given to the LSB. Note that 2^(-b) = eps(q).

Introduction to Fixed-Point Arithmetic

2-49

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let
q2 use the format [16, -16].

q1 = quantizer([32 0])
q2 = quantizer([16 -16])

Quantizers q1 and q2 cover the same range (they have the same word length),
but q2 has less precision. It covers the range in steps of 216, while q covers the
range in steps of 1.

This lost precision is due to (or can be used to model) throwing out 16 least
significant bits.

An important point is that by setting the format for the output from the sum or
product operation in dfilt objects and filtering, you control which bits are
carried from the filter sum and product operations to the filter output.

For instance, if you use [16 0] as the output format for a 32-bit result from
a sum operation when the original format is [32 0], you are taking the lower 16
bits from the result. If you use [16 -16], you are taking the higher 16 bits of the
original 32 bits. You could even take 16 bits somewhere in between the 32 bits
by choosing something like [16 -8].

Precision and Dynamic Range
A fixed-point quantization scheme determines the dynamic range of the
numbers that can be applied to it. Numbers outside this range are always
mapped to fixed-point numbers within the range when you quantize them.

Precision is the distance between successive numbers occurring within the
dynamic range in a fixed-point representation. The dynamic range and
precision depend on the word length and the fraction length.

For a signed fixed-point number with word length w and fraction length f, the
range is from –2w–f–1 to 2w–f–1–2–f.

For an unsigned fixed-point number with word length w and fraction length f,
the range is from 0 to 2w–f–2–f.

In both cases the precision is 2–f.

2 Designing Fixed-Point Filters

2-50

Overflows and Scaling
When you quantize a number outside of the dynamic range for your specified
format, overflows occur. Overflows occur more frequently with fixed-point
quantization than with floating-point, because the dynamic range of
fixed-point numbers is much less than that of floating-point numbers with
equivalent word lengths.

Overflows can occur when you create a fixed-point quantized filter from an
arbitrary floating-point design. You can normalize your fixed-point filter
coefficients and introduce a corresponding scaling factor for filtering to avoid
overflows in the coefficients.

In this toolbox you can specify how you want overflows to be handled:

• Saturate on the overflow

• Wrap on the overflow

For more about scaling and filters with fraction lengths that exceed the word
length, refer to “Quantizing Filter Coefficients with Automatic Scaling” on
page 2-9, which provides a discussion of how the toolbox scales filters
automatically and how you can scale them yourself.

3

Designing Multirate
Filters

Introducing Multirate Filters (p. 3-2) Introduces multirate filters and discusses uses,
specifications, and definitions

Getting Started—Designing Multirate
Filters (p. 3-4)

Provides a tutorial to show you how to design multirate
filters

FIR Decimation—Filtering with FIR
Decimators (p. 3-18)

Designs an FIR decimator and uses it to filter a signal

CIC Filter Example—Using CIC
Decimation Filters (p. 3-24)

Develops, explains, and uses cascaded integrator-comb
decimators

Analyzing Multirate and Multistage
Filters (p. 3-36)

Provides information about using the toolbox analytical
capabilities to analyze multirate filters

Audio Example—Audio Sample Rate
Conversion (p. 3-47)

Demonstrates sample rate decimations of a 48 kHz signal
to 32 kHz (broadcast audio rate) and 44.1 kHz (CD audio
rate)

3 Designing Multirate Filters

3-2

Introducing Multirate Filters
Over the last few years, developments in multirate filter design and
implementation have brought rapid growth in applying multirate filtering to
signals in digital signal processing. Improved processors and development tools
allow system designers to use multirate filters in a broad range of application
areas, such as:

• POTS audio encryption—encrypts voice sent over plain old telephone
systems (POTS).

• Digital audio—sound handled in digital rather than analog form.
Enncompasses various signal compression schemes, analog-to-digital
conversion techniques, and the opposite conversions, signal reproduction,
and audio improvements.

• Subband speech and image coding—uses the techniques of separating
a signal or image into subbands that each containing only a portion of the
original signal. Then processing the subbands through filters before
reconstructing the original signal from the processed subbands.

Polyphase filters—filters that separate an input signal into constituent
bands that are easier to process, and can then be either recombined or used
after processing—represent one way to accomplish signal separation. Filter
performance depends on the phase differences between the input signals.

• Transmultiplexer design—uses filters to convert time division multiplexing
(TDM) signals to frequency division multiplexing (FDM) format, and the
reverse. FDM combines numerous signals for transmission on a single
communications line or channel. Each signal is assigned a different
frequency (subchannel) within the main channel. TDM puts multiple data
streams in a single signal by separating the signal into many segments, each
having a very short duration. Based on the timing of the signals, each
individual data stream is reassembled at the receiving end.

These represent a few of the growing number of areas in which systems
designers use multirate filters.

Listed below are the examples in this chapter that introduce multirate filters.
Each example includes a tutorial that uses toolbox features to demonstrate
how you work with multirate filters:

• “Getting Started—Designing Multirate Filters” on page 3-4

Introducing Multirate Filters

3-3

• “Audio Example—Audio Sample Rate Conversion” on page 3-47

• “CIC Filter Example—Using CIC Decimation Filters” on page 3-24

• “Audio Example—Audio Sample Rate Conversion” on page 3-47

3 Designing Multirate Filters

3-4

Getting Started—Designing Multirate Filters
This section demonstrates how to use the multirate filter (mfilt) objects
available in the toolbox. By following these procedures you get introduced to
multirate filter development. This tutorial covers the following tasks:

• “Creating Multirate Filters” on page 3-4

• “Getting and Setting Filter Coefficients” on page 3-6

• “Analyzing Multirate and Multistage Filters” on page 3-8

• “Specifying Initial Conditions to the Filter” on page 3-11

• “Streaming Data to the Filter” on page 3-12

• “Filtering Multichannel Signals” on page 3-13

• “Generating Simulink Blocks” on page 3-15

• “Getting Help About Multirate Filters” on page 3-15

Creating Multirate Filters
To develop a multirate filter (mfilt) object, you select the filter structure to be
used by selecting the constructor function, such as mfilt.firdecim or
mfilt.firinterp.

Entering helpwin mfilt at the prompt gives you a list of all supported
structures and constructor functions.

Most multirate filter constructors take the coefficients of the filter as an
optional final right-hand input argument. If you do not specify the coefficients,
the toolbox functions design a default filter according to the interpolation or
decimation factor(s) you provide as input for L or M in the calling syntax, or
both in the case of fractional rate changer filters.

Here is an example that creates an interpolating filter with order of three
interpolation and a decimating filter that decimates by two.

l = 3; % Interpolation factor
m = 2; % Decimation factor
hm1 = mfilt.firinterp(l);
hm2 = mfilt.firtdecim(m);

Both filter constructors return direct-form FIR polyphase Nyquist filters by
default. Nyquist filters tend to be well-suited for decimation and interpolation
work, because the form is computationally efficient due to the zero-valued

Getting Started—Designing Multirate Filters

3-5

coefficients inherent in the design. Used as interpolators, Nyquist filters
preserve the nonzero samples of the upsampled output of the interpolator.

hm1

hm1 =

 FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
 Arithmetic: 'double'
 Numerator: [1x72 double]
 InterpolationFactor: 3
 PersistentMemory: false

hm2

hm2 =

 FilterStructure: 'Direct-Form Transposed FIR Polyphase
Decimator'
 Arithmetic: 'double'
 Numerator: [1x48 double]
 DecimationFactor: 2
 PersistentMemory: false

Filter hm1 is a direct-form FIR polyphase interpolator filter with the cutoff
frequency of π/l and gain of l. hm2 is a direct-form transposed FIR polyphase
decimator with a cutoff frequency of π/m and a gain of 1.

For confirmation, here is the frequency response displayed by the Filter
Visualization Tool (FVTool).

3 Designing Multirate Filters

3-6

hm1 and hm2 are filters and mfilt objects. As objects, they work with a range of
functions (methods) such as filter, freqz, and tf, or display.

Getting and Setting Filter Coefficients
To access and manipulate the coefficients of a filter as a regular MATLAB
vector, you use the common object functions set and get or dot notation. You
can always get the coefficients from the mfilt object (filter). To modify the
coefficients of an existing mfilt object, you set new ones. Direct-form FIR
structures like those of hm1 and hm2 have numerator coefficients only—also
known as the filter weights.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

hm1

hm2

Getting Started—Designing Multirate Filters

3-7

Here are the filter coefficients for hm2.

b = get(hm2,'numerator') % Could use command hm2.numerator as well. Assign the
% coefficients to vector b.

b =

 Columns 1 through 8

 0 -0.0001 0 0.0004 0 -0.0010 0 0.0022

 Columns 9 through 16

 0 -0.0043 0 0.0077 0 -0.0128 0 0.0207

 Columns 17 through 24

 0 -0.0331 0 0.0542 0 -0.1002 0 0.3163

 Columns 25 through 32

 0.5000 0.3163 0 -0.1002 0 0.0542 0 -0.0331

 Columns 33 through 40

 0 0.0207 0 -0.0128 0 0.0077 0 -0.0043

 Columns 41 through 48

After you get the coefficients, create a new Nyquist FIR filter bmod and set the
coefficients of hm2 to the coefficients from bmod.

bmod = firnyquist(8,m,kaiser(9,0.1102*(80-8.71)));
set(hm2,'Numerator',bmod); % Set the modified coefficients.
hm2.numerator

ans =

 Columns 1 through 6

 0 -0.0092 0 0.2522 0.5000 0.2522

 Columns 7 through 9

 0 -0.0092 0

You do not have to use a Nyquist filter to get new filter coefficients; other FIR
filter design techniques in the toolbox work as well.

3 Designing Multirate Filters

3-8

Analyzing Multirate and Multistage Filters
Analyzing multirate or multistage filter objects is similar to analyzing
discrete-time filter (dfilt) objects. Many if not all of the analysis functions for
dfilt objects apply to mfilt objects equally. In particular, the Filter
Visualization Tool (FVTool) provides most of the filter analysis tools you need.

h = fvtool(hm1,hm2);

But one difference is very important. In analyzing multirate and multistage
filters, the filter sample rates become important. The toolbox and tools let you
specify sample rates for all of your analyses.

Additionally, polyphase for mfilt objects provides a tool for analyzing the
polyphase components of mfilt objects. Calling the polyphase method without

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

Magnitude Response

FIR Interpolator (l=3)

FIR Transposed Decimator (m=2)

Getting Started—Designing Multirate Filters

3-9

output arguments (as shown here using filter hm1) starts an FVTool session
with the polyphase subfilters ready for you to analyze.

polyphase(hm1)

polyphase(hm) lets you analyze your filter in more detail, such as checking
that the group delay of each filter phase is flat, the desirable state.

Filtering with Multirate Filters
By default, multirate filters begin with zero-valued filter states. Furthermore
the PersistentMemory property is set to false, meaning that the filter object
properties, such as the filter states, are reset before each filter run. This
built-in reset process allows you to filter the same sequence input data
sequence twice and produce the same output. For example:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−7

−6

−5

−4

−3

−2

−1

0

1

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter #1: Polyphase(1)

Filter #1: Polyphase(2)

Filter #1: Polyphase(3)

3 Designing Multirate Filters

3-10

x = 1:6;
y1 = filter(hm2,x) % First run

y1 =

 0 -0.0184 0.9676

At this point, you can verify that the filter hm2 holds nonzero final conditions
in the filter states.

zf1 = hm2.States

zf1 =

 3.0133
 3.4904
 -0.0369
 0

Run the filter again using the same input data x.

y2 = filter(hm2,x) % Second run

y2 =

 0 -0.0184 0.9676

zf2 = hm2.States

zf2 =

 3.0133
 3.4904
 -0.0369

After the second run, the states of the filter are the same as they were after the
first run. With PersistentMemory property set to false, the filter states were
reinitialized to zeros before the second run.

Getting Started—Designing Multirate Filters

3-11

Specifying Initial Conditions to the Filter
You make it possible to specify the initial conditions for your filter by setting
both of the following:

• The PersistentMemory property to true

• The States property to your initial conditions (ICs)

Setting the PersistentMemory property to true is essential in the process of
specifying initial conditions. If you set your filter ICs to specific values but you
do not enable the filter memory, when you use the filter with input data the ICs
get reset to zeros before the filter runs. As a result you lose your desired ICs
and the results of filtering are not correct, or not what you might anticipate.

When you set the ICs, if you provide a scalar, that value is expanded to the
correct number of states. If you specify a vector of values, its length must be
equal to the number of states for the filter.

For example, using hm2 as the filter, experiment with setting the filter states
before filtering an input data set.

hm2.persistentmemory='true'

hm2.States=zf1

hm2 =

 FilterStructure: 'Direct-Form Transposed FIR Polyphase Decimator'
 Arithmetic: 'double'
 Numerator: [1x9 double]
 DecimationFactor: 2
 PersistentMemory: false

y3=filter(hm2,x)

y3 =

 2.9580 4.9853 2.4440

zf3=hm2.states

zf3 =

 2.9580

3 Designing Multirate Filters

3-12

 3.4904
 -0.0369

As you might have anticipated, the filter output and the filter states are
different now than they were after the first run.

Streaming Data to the Filter
Setting the filter property PersistentMemory to true is a valuable feature
when you are filtering streaming data. Since breaking a signal into sections
and filtering the sections in a loop is equivalent to filtering the entire signal at
once, this example simulates filtering streaming data by using the filter hm2 in
a loop.

reset(hm2); % Clear history of the filter by resetting all states.
xsec = reshape(x(:),2,3); % Break the input signal into

% three sections.
yloop = zeros(1,3); % Preallocate memory for storing

% intermediate results.
for i=1:3,
 yloop(i)=filter(hm2,xsec(:,i));
end
yloop

yloop =

 0 -0.0184 0.9676

y1

y1 =

 0 -0.0184 0.9676

You have verified that yloop (the signal filtered by three sections) is equal to
y1 (entire signal filtered at once). Without changing the property value for
PersistentMemory, this test does not work.

Note that sample mode is a special case where you feed your input data to your
filter one sample at a time. In this operating mode, debugging and cosimulation
might be easier to do.

Getting Started—Designing Multirate Filters

3-13

Filtering Multichannel Signals
Up to this point you have only done single channel filtering, entering a vector
of data x for the filter. When the input signal x is a matrix, the filter interprets
each column of x as an independent input channel. Thus an 11-by-4 matrix
provides 4 channels of input data where each channel contains 11 samples.

As was true for the streaming data case, sample-by-sample filtering is a special
case. In sample mode operation, you have to provide a third input argument to
filter that defines the input matrix dimension, in this case one dimension:

y = filter(hm,2,1)

Before you can continue this tutorial and experiment with multichannel
filtering, you must either reset your filter to the initial states, or set the
PersistentMemory property to false. The toolbox does not let you switch
between single channel and multichannel filtering unless PersistentMemory is
false or you reset the filter manually. If you forget to do this step, MATLAB
returns an error message to tell you to reset your filter.

This example begins by resetting hm2 and defining some data to filter.

reset(hm2);
x = randn(10,3); % Three channel signal; each channel providing

% ten samples.
y = filter(hm2,x)

y =

 0 0 0
 -0.0094 0.0095 -0.0022
 0.0794 0.3678 0.5956
 0.0440 -0.2253 1.1980
 0.6913 0.3884 0.3812

zf = hm2.States

zf =

 0.9268 -0.0027 0.4663
 -0.5359 -0.6960 0.3092
 0.0066 0.0123 -0.0029

3 Designing Multirate Filters

3-14

Notice that the filter object stores the final conditions for each channel
separately. Each column of the States property corresponds to one input
channel or column in the input matrix x.

Filtering Multichannel Data in Loops
When x is a matrix, the filter treats each matrix column as an independent
channel. When you are filtering multichannel data, dim lets you specify which
dimension of the input matrix to filter along—whether a row represents a
channel or a column represents a channel. To filter multichannel data in a loop
environment, you must use the dim input argument to set the processing
dimension.

You specify the initial conditions for each channel individually, when needed,
by setting hm.states to a matrix of nstates(hm)rows (each individual row
containing the states for one channel of input data) and size(x,2) columns
(one column containing the filter states for each channel).

Here is an example that uses the dim input argument to filter the multichannel
input data matrix x.

 Fs = 44.1e3; % Original sampling frequency 44.1kHz
 n = [0:10239].'; % 10240 samples, 0.232s signal.
 x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
 M = 2; % Decimation factor.
 Hm = mfilt.firdecim(M); % We use the default filter.

 % No initial conditions
 y1 = filter(Hm,x); % PersistentMemory is false.
 zf = Hm.States; % Final conditions.

 % Non-zero initial conditions.
 Hm.PersistentMemory = true;
 Hm.States = 1; % Uses scalar expansion.
 y2 = filter(Hm,x);
 stem([y1(1:60) y2(1:60)])% Different sequences at the

% beginning.
 % Streaming data
 reset(Hm); % Clear filter history.
 y3 = filter(Hm,x); % Filter the entire signal in one

% block.

Getting Started—Designing Multirate Filters

3-15

 reset(Hm); % Clear filter history.
 yloop = [];
 xblock = reshape(x,[2048 5]);
 % Filtering the signal section by section is equivalent to

% filtering the entire signal at once.
 for i=1:5,
 yloop = [yloop; filter(Hm,xblock(:,i))];
 end

Generating Simulink Blocks
When the Signal Processing Blockset is installed, you can generate
a Simulink® block of the mfilt object if the Signal Processing Blockset
supports the filter structure. For example hm1, the direct-form FIR polyphase
interpolator that you have been using throughout these examples, can be
rendered as a Simulink block.

block(hm1,'destination','new','blockname','FIR Interp');

This figure shows the block as generated by the toolbox from the filter hm1.

Getting Help About Multirate Filters
Entering helpwin mfilt in the MATLAB Command Window returns a list of
multirate structures that the toolbox supports, as well as functions that
operate on mfilt objects. For further information about a particular structure
or function, enter helpwin mfilt.functionname, which returns the help
information about functionname in a formatted HTML view, or enter help
mfilt.functionname that returns the help information as plain text. For
example:

help mfilt.firinterp % Help on the FIRINTERP structure

returns the following text in the Command Window.

FIRINTERP Direct-Form FIR Polyphase Interpolator.

3 Designing Multirate Filters

3-16

Hm = mfilt.FIRINTERP(L,NUM) returns a direct-form FIR polyphase
interpolator Hm.

L is the interpolation factor. It must be an integer. If not
specified, it defaults to 2.

NUM is a vector containing the coefficients of the FIR lowpass filter
used for interpolation. If omitted, a low-pass Nyquist filter of gain
L

EXAMPLE: Interpolation by a factor of 2 (used to convert from
22.05kHz to 44.1kHz)

L = 2; % Interpolation factor.

Hm = mfilt.firinterp(L); % We use the default filter.

Fs = 22.05e3; % Original sampling frequency: 22.05kHz.

n = 0:5119; % 5120 samples, 0.232 second long
signal.

x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.

y = filter(Hm,x); % 10240 samples, still 0.232 seconds.

stem(n(1:22)/Fs,x(1:22),'filled') % Plot original sampled at
% 22.05kHz.

hold on % Plot interpolated signal (44.1kHz) in
% red.

stem(n(1:44)/(Fs*L),y(25:68),'r')

xlabel('Time (sec)');

ylabel('Signal value')

See also mfilt/HOLDINTERP, mfilt/LINEARINTERP, mfilt/FFTFIRINTERP,
mfilt/FIRFRACINTERP, mfilt/CICINTERP, mfilt/CICINTERPZEROLAT,
FDESIGN/INTERP, FDESIGN/SRC.

You can also enter

help mfilt.polyphase

at the MATLAB prompt to return this information about polyphase.

POLYPHASE Polyphase decomposition of multirate filters.

P=POLYPHASE(Hm) returns the polyphase matrix of the multirate filter
Hm. The ith row of the matrix P represents the ith subfilter.

Getting Started—Designing Multirate Filters

3-17

POLYPHASE(Hm) called with no outputs launches the Filter
Visualization Tool (FVTool) with all the polyphase subfilters to
allow analysis of each component individually.

To use the online help system, use the doc function instead of help.

doc mfilt

opens the Help browser and displays the general help text for multirate filter
objects.

To obtain information about CIC decimation filter objects, enter one of the
following commands:

help mfilt.cicdecim
doc mfilt.cicdecim

at the command prompt, depending on which structure you need to know
about.

For a complete list of the multirate filters that are available in the toolbox,
enter help mfilt.

3 Designing Multirate Filters

3-18

FIR Decimation—Filtering with FIR Decimators
This section demonstrates how you can decrease the sampling rate of a signal
using FIR decimators from the toolbox. To show you how this works, this
section takes you through the following tasks:

• “Creating FIR Decimators” on page 3-18

• “Understanding Input Sample Processing and the InputOffset Property” on
page 3-19

• “Filtering with FIR Decimators” on page 3-21

Creating FIR Decimators
The Filter Design Toolbox supports different structures to perform decimation
including different FIR-based structures and cascaded integrator-comb (CIC)
structures. Entering helpwin mfilt at the prompt gives you a list of all
supported structures.

Start by defining the filter decimation factor for your FIR decimator.

m = 3; % Specify the decimation factor as m.

Because the toolbox uses objects to implement multirate filters, you use the
same methods to create most decimators. First you specify the decimation
factor and then the FIR filter coefficients. If you do not include filter
coefficients when you construct the filter, the toolbox filter constructor returns
a lowpass filter with a cutoff frequency of (π/decimation factor) and a gain of 1.
This example uses mfilt.firdecim to create a direct-form polyphase FIR
decimator. After constructing the filter, you can change the filter coefficients
that are stored in the Numerator property.

Begin by designing an FIR decimator with the decimation factor set to 3.

hm1 = mfilt.firdecim(m); % Default decimator filter

mfilt.firdecim produces filters that decimate signals by integer factors. To
change the sampling rate of a signal by a fractional factor, you might use
a direct-form FIR polyphase sample rate converter. One way to create such a
rate-changing filter is mfilt.firsrc. This structure uses L polyphase
subfilters where L is the interpolation factor. Sample rate convertors use both
a decimation factor and interpolation factor to perform fractional rate
changing.

FIR Decimation—Filtering with FIR Decimators

3-19

l = 2; % Set the interpolation factor.
hm2 = mfilt.firsrc(l,m); % Create the rate changing filter.

Here is the configuration information about hm2.

hm2 =

 FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
 Numerator: [1x72 double]
 RateChangeFactors: [2 3]

PersistentMemory: false
States: [35x1 double]

Understanding Input Sample Processing and the
InputOffset Property
When you decimate signals whose length is not a multiple of the decimation
factor M, the last samples—(nM +1) to [(n+1)(M) -1], where n is an integer—
are processed and used to track where the filter stopped processing input data
and when to expect the next output sample. If you think of the filtering process
as generating an output for a block of input data, where each block has M
elements, every complete input data block yields one output sample.
Incomplete blocks of data (one or more input samples up to one less than the
decimation factor) increment the InputOffset property by one for each sample
in the incomplete block.

Note InputOffset applies only when you set PersistentMemory to true.
Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:

1 The input signal is a multiple of the filter decimation factor. In this case, the
filter processes the input samples and generates output samples for all
inputs as determined by the decimation factor. For example, processing 99
input samples with a filter that decimates by three returns 33 output
samples.

2 The input signal is not a multiple of the decimation factor. When this occurs,
the filter processes all of the input samples, generates output samples as

3 Designing Multirate Filters

3-20

determined by the decimation factor, and has one or more input samples
that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has
decimation factor of 3, you get 33 output samples, and 1 sample that did not
generate an output. In this case, InputOffset stores the value 1 after the
filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into
blocks of data with length equal to your filter decimation factor, the filter
processed one sample from a new block of data. Subsequent inputs to the
filter are concatenated with this single sample to form the next block of
length m.

One way to define the value stored in InputOffset is

InputOffset = mod(length(nx),m)

where nx is the number of input samples in the data set and m is the decimation
factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any
point and start over from there (provided that the PersistentMemory property
is set to true). Being able to resume filtering after stopping a signal lets you
break large data sets in to smalller pieces for filtering. With PersistentMemory
set to true and the InputOffset property in the filter, breaking a signal into
sections of arbitrary length and filtering the sections is equivalent to filtering
the entire signal at once.

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

FIR Decimation—Filtering with FIR Decimators

3-21

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the
entire signal filtered at once).

All of the preceding discussion applies to interpolation filters as well, with
appropriate changes from decimation to interpolation.

Filtering with FIR Decimators
After creating your decimator, you are ready to filter data. Rather than use
random data, as you did earlier, this example uses a more realistic data set.

For this example, define the input signal x as a 1 kHz sinusoid sampled at 44.1
kHz. Here is one way to create x[n].

N = 159;
fs = 44.1e3;
n = 0:N-1;
x = sin(2*pi*n*1e3/fs); % Signal as required. 159 data points.

Now you can use filter hm1 you designed earlier to try decimating x.

Filtering with the Direct-Form FIR Polyphase Decimator hm1
You have data and a decimator in your workspace. Applying the filter to the
data takes two steps—reset the filter and use filter to apply the decimator
to x.

reset(hm1) % Reset the filter history and states to zeros.
y1 = filter(hm1,x);

Two stem plots give a sense of the decimation.

3 Designing Multirate Filters

3-22

y1 contains 53 samples—one-third of the number in x. Filter hm1 decimated
x by two-thirds. Since multirate filters support sample-by-sample processing,
all input samples passed through the filter.

For further information about filtering options in general and specifying initial
conditions for filters in particular, refer to “Getting Started—Designing
Multirate Filters” on page 3-4.

The previous stem plot shows a feature of the filter—a delay of a number of
samples before the filter starts to output the decimated input signal. Called the
transient response, the length of the transient response of the decimator is
equal to half the order of a polyphase subfilter. For hm1, the subfilter order is
24, so the transient response should be 12 samples. This is also the group delay
of the filter.

0 20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

Samples

S
ig

na
l

Input Signal x

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

Samples

S
ig

na
l

Decimated Signal y1

Decimated Signal y1

Input Signal x

FIR Decimation—Filtering with FIR Decimators

3-23

From the plot, it appears that the transient response is about 12 samples long.
The next plot makes this more clear by plotting the decimated signal with a
delayed version of the input x.

delay = mean(grpdelay(hm1)); % Constant group delay equal to its
% mean.

tx = delay+[1:length(x)];
ty = 1:m:m*length(y1);

Plot the output of the direct-form FIR polyphase decimator hm1 and overlay
a shifted version of the original signal using tx and ty.

stem(tx,x,'k');hold on;stem(ty,y1,'filled');

Using the delayed signals makes the transient response clear.

0 10 20 30 40 50 60 70 80 90

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Samples

A
m

pl
itu

de

Original signal

Decimated signal

3 Designing Multirate Filters

3-24

CIC Filter Example—Using CIC Decimation Filters
This demonstration shows how to use multirate cascaded integrator-comb
(CIC) decimation filters in the Filter Design Toolbox. CIC filters are efficient,
multiplierless structures that are often used in high-decimation ratio or
high-interpolation ratio systems.

Digital down convertors and digital up convertors commonly use CIC filters.
Refer to the demonstration program “Design of a Digital Down-Converter for
GSM (Group Speciale Mobile)” in the Filter Design Toolbox demos for an
example that uses a CIC decimator for digital down-conversion processing of a
signal.

To help you understand what CIC filters do and how, this example includes the
following sections:

• “Creating CIC Decimator filters” on page 3-24

• “Analyzing CIC Decimation Filters” on page 3-26

• “Working with Section Word Lengths” on page 3-28

• “CIC Filter States” on page 3-31

• “Filter Implementation—Signal Flow Graph” on page 3-33

• “Reference” on page 3-35

Creating CIC Decimator filters
The Filter Design Toolbox provides a CIC decimating filter structure—the
Cascaded Integrator-Comb Decimator. As you see in the figure below, the
structure is optimized for pipelined implementations such as might be used on
field-programmable gate arrays (FPGAs). The following Simulink model
provides a signal-flow graph of the structure.

Integrator Portion Comb Portion

OutputFormatInputFormat

1
Output

CastCast4Cast3Cast2Cast1 z
−1

z
−(M)

z
−1

z
−(M)

R1
Input

CIC Filter Example—Using CIC Decimation Filters

3-25

With the Fixed-Point Toolbox installed (required for you to use CIC filters), you
create a default cascaded integrator-comb decimator object with this command

hm = mfilt.cicdecim

at the prompt. MATLAB returns the CIC filter with the specifications shown
here.

hm =

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 2
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

SectionWordLengthMode: 'MinWordLengths'

 OutputWordLength: 16

The CIC decimation filter comprises three portions—an integrator portion, a
rate change factor, and a comb portion. Similarly, you can completely specify a
CIC decimation filter with three parameters—a decimation factor r, the
number of individual integrator or comb sections n, and the differential delay
of the comb section m.

The display of the multirate filter object (mfilt) in the Command Window
groups the filter properties together in a logical manner, making the filter
specification more clear.

Only the writable properties appear in the display by default. Changing a filter
property, such as resetting PersistentMemory from false to true reveals more
properties as they become writable—in this case the States property appears
when PersistentMemory is true.

Unlike other multirate filters and discrete-time objects, CIC filter objects allow
only fixed-point arithmetic (the Arithmetic property is always set to fixed)
since these filters are inherently fixed-point filters. Check the value of the
Arithmetic property

3 Designing Multirate Filters

3-26

set(hm,'arithmetic')

ans =

'fixed'

to see that fixed is the only option. As with all filter objects, and all objects in
general, the get function returns the complete set of properties (read-only and
writable) for the filter and object.

get(hm)

Analyzing CIC Decimation Filters
Analyzing CIC filters is the same as analyzing any multirate filter object in the
Filter Design Toolbox. The Filter Visualization Tool (FVTool) provides
graphical access to all analyses.

hm = mfilt.cicdecim(8,1,4);
hfvt=fvtool(hm);
hfvt.showreference='off';

FVTool returns the magnitude response for hm, shown here. As hm is a
fixed-point filter, we suppress the reference filter in the display by setting the
ShowReference property in FVTool to off.

CIC Filter Example—Using CIC Decimation Filters

3-27

After you have the filter displayed in FVTool, you can use any of the filter
analysis capabilities provided to learn more about hm. To perform an analysis,
select one of the analytical options, such as Impulse Response or Round-off
Noise Power Spectrum from Analysis on the FVTool menu bar.

About the MSB at the Filter Output
A significant consideration in CIC filters is the size (number of bits) of data that
can pass through the filter without loss. The most significant bit (MSB) of the
filter represents the maximum number of bits that can be propagated through
the filter while maintaining the integrity of the data.

Parameters R, M, N and the InputWordLength specify the MSB of the filter
output. Since the output of the integrator sections of the filter can grow without
bounds, the MSB at the filter output is also the MSB for all filter sections.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−250

−200

−150

−100

−50

0

50

100

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

CIC Decimator: R=8, M=1, N=4

3 Designing Multirate Filters

3-28

Called Bmax in the reference, the maximum word length in the filter, or most
significant bit (MSB), is both the maximum word length for all of the filter
sections as well as the MSB at the filter output.

Hogenauer defines Bmax , the MSB at the filter output, as follows:

with

• N is the number of filter sections

• M is the comb portion differential delay

• R is the decimation factor

• Bin is the input word length in bits

Working with Section Word Lengths
CIC filters include a property that defines how you specify the section word and
fraction lengths for the filter. Called SectionWordLengthMode, this property
specifies the specific data format (word length and fraction length) the filter
uses when accumulating data in the integrator sections or subtracting data in
the comb sections. SectionWordLengthMode can take one of two values:

• MinWordLengths—the filter calculates the optimal section word lengths
given the filter parameters R (the rate change factor), M (the differential
delay), N (the number of filter sections), and the input and output word
lengths.

• SpecifyWordLengths—you specify the word lengths for the sections by
entering a scalar or a vector of length 2*N. When you provide a scalar, the
filter method expands the scalar into a vector with 2*N elements, applying
the same word length to all sections. If you specify a vector, it must meet
these requirements:

- It must contain 2*N elements.

- The values of the vector elements must be monotonically decreasing.

When you construct a new CIC decimating filter, SectionWordLengthMode is
set to MinWordLength by default.

Using hm as an example, here is the SectionWordLengthMode.

set(hm,'SectionWordLengthMode')

Bmax N 2RMlog Bin 1–+[]=

CIC Filter Example—Using CIC Decimation Filters

3-29

ans =

 'MinWordLengths'
 'SpecifyWordLengths'

In the reference provided later in this section ([1] on page 3-35), Hogenauer
shows that during filtering you can discard least significant bits (LSBs) from
each section (refer to Equation 21 of the reference) of the filter so long as the
error introduced by removing the LSBs is acceptable at the filter output. In this
case, the section word lengths reported by the filter are computed by
subtracting the LSBs from the maximum word lengths in the filter (refer to
Equation 11 in the reference for details).

To help connect the CIC filter designs in the toolbox to the analysis by
Hogenauer, the next example designs a CIC decimator that matches the design
on page 159 of the Hogenauer paper.

m=1; % Set the differential delay to one.
n=4; % Specify the number of sections.
r=25; % Set the rate change factor.
inwl=16; % Set the word length at the filter input.
outwl=16; % Set the filter output word length.

% With the specifications prepared, design the CIC decimator.
hm=mfilt.cicdecim(r,m,n,inwl,outwl);

hm reproduces the referenced filter exactly. To see the correspondence, check
that the word lengths applied to each filter section match those developed in
the reference example, where the MSB is 34 bits.

Filter
Section

Number of LSBs
Discarded

Word Length Calculated in
[1] on page 3-35
(MSB-Discarded LSBs)

1 1 33 (34-1)

2 6 28 (34-6)

3 9 25 (34-9)

4 13 21 (34-13)

3 Designing Multirate Filters

3-30

In the referenced paper by Hogenauer, [1] on page 3-35, the MSB is also called
Bmax. Use get to verify the match.

get(hm,'sectionwordlengths')

ans =

 33 28 25 21 20 19 18 17

For cases where you enter the word lengths explicitly when you construct the
filter, rather than letting the mfilt constructor determine them, by setting
SectionWordLengthMode to SpecifyWordLengths, you enter the word lengths
to use as either a scalar or a vector of length 2*n. Recall from earlier that the
input vector containing the section word lengths must meet two criteria—the
number of elements must be twice the number of filter sections n, and the
element values must be monotonically decreasing.

As you see in this example, when you enter the word length as a scalar, the
filter constructor expands the scalar to apply it as the section word length for
all of the filter sections.

set(hm,'sectionWordLengthMode','SpecifyWordLengths');
hm.sectionWordLengths=32;
get(hm,'sectionWordLengths')

ans =

 32 32 32 32 32 32 32 32

5 14 20 (34-14)

6 15 19 (34-15)

7 16 18 (34-16)

8 17 17 (34-17)

Filter
Section

Number of LSBs
Discarded

Word Length Calculated in
[1] on page 3-35
(MSB-Discarded LSBs)

CIC Filter Example—Using CIC Decimation Filters

3-31

CIC Filter States
The States property of CIC decimation filters contains an object—
filtstates.cic. This object represents or stores the initial conditions of the
filter before filtering and the final conditions after filtering. filtstates.cic
has two properties, Integrator and Comb, that correspond to their respective
portions of the filter. When you construct a CIC filter, the states contain zeros.
After you filter data with the filter, the states contain the values stored in the
filter delay elements. To demonstrate the filter states, the following example
creates a decimator, and then applies the filter to a set of fixed-point input
data.

% Construct the input data set for filter filter some fixed-point
% ones.
x = fi(ones(1,10),true,16,0);
% Construct a decimator to use to filter x.
hm = mfilt.cicdecim(2,1,2,16,16,16);

Take a look at x and hm to see what you have.

x

x =

 1 1 1 1 1 1 1 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signed: true
 WordLength: 16
 FractionLength: 0

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true
hm

hm =

3 Designing Multirate Filters

3-32

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 2
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

SectionWordLengthMode: 'SpecifyWordLengths'

 SectionWordLengths: [16 16 16 16]

 OutputWordLength: 16
get(hm,'states')

ans =

 Integrator: [2x1 States]
 Comb: [2x1 States]

At this point, the states for the filter are zeros. That changes after you filter
a set of data.

hm.inputfraclength = 0; % Set the input to use integer data.
y = filter(hm,x);

You can extract the final states by using the int function and assigning the
output to a variable.

sts = int(Hm.states)
sts =

 10 45
 28 13

As you see, the states now contain nonzero values related to the filtering
operation.

CIC Filter Example—Using CIC Decimation Filters

3-33

This states matrix has dimensions M+1-by-N, where M is the differential delay
of the comb section and N is the number of sections. Filter hm stores the
integrator sections states (hm.states.integrator) in the first row of the states
matrix and stores the states for the comb portion in the remaining rows in the
matrix.

You might have noticed that the States property is not displayed by the default
filter display. When PersistentMemory is set to false, you do not see the states
property in the default listing in MATLAB.

hm % Generate the default filter display.

hm =

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 2
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

SectionWordLengthMode: 'MinWordLengths'

 OutputWordLength: 16

Setting PersistentMemory to true reveals the States property in the filter
display. However, when you use get to review the properties, you see the
States property listed in all instances.

For more information about the fi object used in x above, refer to the
Fixed-Point Toolbox documentation in the online Help system.

Filter Implementation—Signal Flow Graph
The toolbox implements a structure that differs slightly from the one in the
referenced paper by [1] on page 3-35. The difference lies in the location of the
delays in the integrator portion of the filter. We made this change to optimize
the filter for pipelining on hardware such as field-programmable gate arrays
(FPGAs). The following figure shows the flow graph as implemented by

3 Designing Multirate Filters

3-34

mfilt.cicdecim. After the table following the figure, is a short example that
should help interpret the entries in the figure.

The word length and fraction length at each stage of the decimator are shown
in the following table. Either you specify the word length for each filter stage
in the SectionWordLengths property as a vector of integers, or you let the filter
constructor set the word lengths by making MinWordLengths the value for
SectionWordLengthMode. The calculation for each fraction length is shown
below:

Integrator Portion Comb Portion

OutputFormatInputFormat

1
Output

CastCast4Cast3Cast2Cast1 z
−1

z
−(M)

z
−1

z
−(M)

R1
Input

Decimator Word Lengths and Fraction Lengths

Position in the
Signal Flow

Word Length Fraction Length

Filter Input InputWL InputFL

1st Section Output SectionOneWL InputFL

2nd Section Output SectionTwoWL InputFL (SectionTwoWL - SectionOneWL)

3rd Section Output SectionThreeWL SectionTwoFL + (SectionThreeWL - SectionTwoWL)

4th Section Output SectionFourWL SectionThreeFL + (SectionFourWL -
SectionThreeWL)

Nth Section Output Section(N)WL Section(N-1)FL + (Section(N)WL -
Section(N-1)WL)

Filter Output OutputWL FinalSectionFL + (OutputWL - FinalSectionWL)

CIC Filter Example—Using CIC Decimation Filters

3-35

Reference
The following paper formed the basis for developing the CIC filters in the Filter
Design Toolbox. Many more details of the CIC multirate filters are discussed
in this reference.

[1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.

3 Designing Multirate Filters

3-36

Analyzing Multirate and Multistage Filters
Multirate filter analysis presents some differences from analyzing single-rate
discrete-time filters. While most of the same analytical tools apply, the primary
difference is the filter sample rate—what the sample rate is, how it is defined,
and where. Filter sample rate, called Fs in the toolbox, changes depending on
the type of multirate filter you are using. Or more precisely, how the sample
rate is defined changes according to the multirate filter under discussion.

Generally, filter sample rate refers to the rate at which the filter is running:

• For decimators, the filter sample rate equals the sample rate at the filter
input, prior to decimating the input.

• For interpolators, the filter sample rate is equal to the sample rate at the
output of the filter, after interpolation.

• For sample rate change filters, Fs is the input rate multiplied by the
interpolation factor. The decimation factor does not apply to define the
sample rate.

When you provide a sampling frequency for the analysis, the analytical tool,
such as FVTool, assume that the rate specified is the sampling frequency at
which the filter is operating.

Another feature of analyzing multirate filters that have more than one stage is
that the analysis process applies to a filter that is the overall equivalent of the
multistage filter under consideration. Recognizing that the analytical tool you
choose first computes an equivalent filter makes understanding the analytical
process somewhat easier.

For example, a multistage filter that included

• Multiple interpolators

• Multiple decimators

might be reduced to an equivalent filter with

• One equivalent interpolation filter

• One equivalent decimation stage

For more about how the tools develop the equivalent filter they use to analyze
your filter, refer to “Performing Multistage Filter Analysis” on page 3-40.

Analyzing Multirate and Multistage Filters

3-37

A pair of definitions will help as you read this section:

• Multirate filters consist of sections.

• Multistage filters are the result of using cascade or parallel (refer to dfilt
in the Signal Processing Toolbox documentation for more information about
parallel and cascade filter design) to create filters by combining other filters.
Each filter that composes the multistage filter is called a stage.

This tutorial demonstrates how to perform analysis on single-stage and
multistage multirate filters by presenting the following topics:

• “Analyzing Single-Stage Multirate Filters” on page 3-37

• “Comparing Interpolators” on page 3-38

• “Performing Multistage Filter Analysis” on page 3-40

• “Analyzing Multistage Interpolators” on page 3-42

• “Analyzing a Multistage Sample-Rate Converter” on page 3-43

• “Analyzing Other Multistage Configurations” on page 3-45

Analyzing Single-Stage Multirate Filters
You analyze single-stage multirate filters at the rate the filter is operating. As
mentioned in the introduction to this tutorial section, the sample rate you use
depends on the filter your are analyzing.

The following plot overlays the magnitude response of a sample-rate converter,
an interpolator, and a decimator. For the first filter, the input sampling
frequency is 1000/5 and the output sampling frequency is 1000/3. For the
interpolator, the input fs is 1000/4 and the output fs is 1000. Finally, for the
decimator, the input fs is 1000 and the output fs is 1000/3.

Here are the commands to create the three filters to analyze.

h1 = mfilt.firsrc(5,3); % Use a default filter.
h2 = mfilt.firinterp(4); % Use a default filter.
h3 = mfilt.firdecim(3); % Use a default filter.

Now you need to specify the sampling rate and the number of points in the FFT
used.

fs = 1000; nfft = 8192;

3 Designing Multirate Filters

3-38

With the filters in your workspace and the sampling frequency set, use FVTool
to visualize the filters using a common sampling rate.

fvtool(h1,h2,h3,'fs',fs);

Comparing Interpolators
Interpolators and decimators exhibit a lowpass magnitude response. Simple
interpolators, like the CIC interpolator and the hold or linear interpolators,
have a poor lowpass response. However, they are easy to implement and,
except for the linear interpolator, they do not require the filter to perform
multiplications in real-time while filtering data. The following plot compares
the lowpass response of four different interpolators:

• An FIR interpolator (mfilt.firinterp)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−200

−150

−100

−50

0

50

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Sample−Rate Converter

Interpolator

Decimator

Analyzing Multirate and Multistage Filters

3-39

• A linear interpolator (mfilt.linearinterp)

• A hold interpolator (mfilt.holdinterp)

• A CIC interpolator (mfilt.cicinterp)

They each have an interpolation factor of 4. You can see that the quality of the
lowpass filter, such as the sharpness of the lowpass cutoff, depends on which
type of interpolator you use. By design, the CIC interpolator has more gain
than the other interpolators. For the purposes of this analysis, we include
a scalar in cascade with the CIC filter to normalize its gain. Normalizing the
gain makes comparing the different filters easier.

h(1) = mfilt.firinterp(4); % Use the default filter.
h(2) = mfilt.linearinterp(4);
h(3) = mfilt.holdinterp(4);
hcic = mfilt.cicinterp(4,1,3); % 3-section CIC with

% differential delay = 1.
hscalar = dfilt.scalar(1/gain(hcic));
h(4) = cascade(hscalar,hcic); % Add a gain correction...

% filter in cascade.

Use FVTool to see the results of the four filters. An interesting trick you might
notice—naming the filters as indexes of the variable h lets you plot all four
interpolators by passing h to FVTool.

fvtool(h);

3 Designing Multirate Filters

3-40

Performing Multistage Filter Analysis
Using the tools provided in the toolbox, either from the command line or in
FVtool, you can analyze multirate filters of the following form.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

97−tap FIR Filter

Linear Interpolator

Hold Interpolator

3−section CIC Interpolator

Analyzing Multirate and Multistage Filters

3-41

In a multirate filter, any of the blue, red, or green sections is optional. Since
that is true, you can perform analysis on multistage interpolators, multistage
decimators, or multistage sample-rate converters.

When you choose to perform the analysis, the analysis tool computes an
equivalent overall filter for the interpolation section and/or the decimation
section as shown in the next figure, and performs the requested analysis on the
equivalent filter.

In the equivalent filter shown in the figure, the following conversions apply.

• Upsample block L = Lo*L1*L2*...*Lm; (convolved interpolators)

• Downsample block M = Mo*M1*M2*...*Mn; (convolved decimators)

• Interpolator transfer function
H(z) = H1(z^(Lo*L1*...Lm))*H2(z^(Lo*L2...Lm))...Hm(z^(Lo));

• Decimator transfer function
G(z) = G1(z^(Mo*M1*...Mn))*G2(z^(Mo*M2...Mn))...Gn(z^(Mo))

Finally, filters H(z), G(z), and Ho(z) are all operating at the same rate and can
be combined into a single filter on which to perform the analysis. If you specify

H1(z)

Interpolation
Fil ter 1

H2(z)

Interpolation
Filter 2

Hm(z)

Interpolation
Filter 3

Ho(z)

Sample Rate
Converter

Gn(z)

Dec imation
Filter 1

G 2(z)

Decimation
Fil ter 2

G1(z)

Dec imation
Filter 3

L1

Upsample1

L2

Upsample2

Lm

Upsample m

Lo

Upsample

Mo

Downsample

Mn

Downsample n

M2

Downsample 2

M1

Downsample 1

L

Upsample

H(z)

E quivalent
Interpolation

Fil ter

Ho(z)

Sample Rate
Converter

G(z)

Equivalent
Decimation

Filter

M

Downsample

3 Designing Multirate Filters

3-42

a sampling frequency as an input to the analytical tool, the analysis assumes
that the single overall filter (equivalent to the subfilters that have been
combined) is operating at the rate you specified.

Analyzing Multistage Interpolators
Here is an example of how you might analyze a multistage interpolator. Refer
to the demo “Design of a Digital Down-Converter for GSM” in the Filter Design
Toolbox demos for an example in which the Global System for Mobile
Communications (GSM) uses a multistage decimator.

This section cascades four interpolators to form a four stage filter. The fourth
interpolator is a CIC filter. In this case, the sampling frequency specified for
the filter corresponds to the output of the four stage interpolator because this
is the rate at which the equivalent filter operates.

h(1) = mfilt.firinterp(4);
h(2) = mfilt.firinterp(2);
h(3) = mfilt.firinterp(2);
h(4) = mfilt.cicinterp(16);
hc = cascade(h);

hc

hc =

 FilterStructure: Cascade
 Stage(1): Direct-Form FIR Polyphase Interpolator
 Stage(2): Direct-Form FIR Polyphase Interpolator
 Stage(3): Direct-Form FIR Polyphase Interpolator
 Stage(4): Cascaded Integrator-Comb Interpolator
 PersistentMemory: false

To perform the analysis on hc, compute the frequency response between 0 and
200 Hz. set the sampling frequency Fs to 1000 Hz.

[hf,f] = freqz(hc,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))

freqz returns the transfer function for the cascaded filter at the sampling
frequency you entered as an input argument.

Analyzing Multirate and Multistage Filters

3-43

Analyzing a Multistage Sample-Rate Converter
To demonstrate working with multistage sample rate convertors, add some
decimation stages to filter hc to form a multistage sample-rate converter.
Again, the sampling frequency fs you specify as input to freqz once again
represents and is assumed to be the rate of the equivalent filter. And this is the
rate at which the frequency response of hc2 is analyzed. This fs is the fastest
rate in the entire system in this case.

h(5) = mfilt.firsrc(2,3);
h(6) = mfilt.cicdecim(13);
h(7) = mfilt.firdecim(5);
hc2 = cascade(h)

0 2 4 6 8 10 12 14 16 18 20
−300

−250

−200

−150

−100

−50

0

50

100
Magnitude Response

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Filter hc

3 Designing Multirate Filters

3-44

hc2 =

 FilterStructure: Cascade
 Stage(1): Direct-Form FIR Polyphase Interpolator
 Stage(2): Direct-Form FIR Polyphase Interpolator
 Stage(3): Direct-Form FIR Polyphase Interpolator
 Stage(4): Cascaded Integrator-Comb Interpolator
 Stage(5): Direct-Form FIR Polyphase Sample-Rate Converter
 Stage(6): Cascaded Integrator-Comb Decimator
 Stage(7): Direct-Form FIR Polyphase Decimator
 PersistentMemory: false

As you did in the preceding section, compute the frequency response between
0 and 200 Hz using Fs equal to 1000 Hz.

[hf,f] = freqz(hc2,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))

The figure show the frequency response of hc2, the result of adding decimators
and a rate changing filter to hc.

Analyzing Multirate and Multistage Filters

3-45

Analyzing Other Multistage Configurations
In addition to the multistage filters hc and hc2 shown, the toolbox lets you
analyze multistage filters where decimation occurs prior to interpolation,
provided the overall filter interpolation and decimation factors are the same.
Notice that this does not necessarily mean that there is an equal number of
decimation and interpolation stages.

0 2 4 6 8 10 12 14 16 18 20
−400

−300

−200

−100

0

100

200
Magnitude Response

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Filter hc2

3 Designing Multirate Filters

3-46

One multistage structure that you could analyze in the toolbox is this one:

In this case, the analysis tools develop two equivalent filters as shown in the
next figure, where M = M1*M2*…Mn = L1*L2*…Lm = L.

Because the overall interpolation factor L is equal to the overall decimation
factor M, the equivalent filters are operating at the same rate.

As before, when you provide a sampling frequency for the analysis, the tools
assume that the supplied rate is the rate at which both filters are operating.
For this case, this would also be equal to the input and output rate for these
filters.

To see a demonstration about this type of analysis, where you are analyzing
multistage, multirate filters, refer to “Multirate Multistage FIR Filter Design”
in the Filter Design Toolbox demos.

H1(z)

Interpolation
Filter 1

Gn(z)

Decimation
Filter 1

Upsample1

L1

G n(z)

Decimation
Fil ter n

Mn

Downsample n

G2(z)

Dec imation
Filter 2

M2

Downsample 2

M1

Downsample 1

L1

Upsample2

H2(z)

Interpolation
Filter 2

Lm

Upsample m

Hm(z)

Interpolation
Filter m

L

Upsample

H(z)

Interpolation
Filter

G (z)

Dec imation
Fil ter

M

Downsample

Audio Example—Audio Sample Rate Conversion

3-47

Audio Example—Audio Sample Rate Conversion
For a more concrete application of multirate filters, this section illustrates
multirate filters that you might use to perform sample rate conversion on
different audio formats. During this section, you create each of the following:

• FIR sample rate conversion filter

• FIR fractional interpolator

• FIR fractional decimator

To do these tasks, this section contains the following topics:

• “Creating the Multirate Filters” on page 3-47

• “Decreasing the Sample Rate by a Fractional Factor” on page 3-48

• “Constructing the Fractional Decimator” on page 3-48

• “Filtering to Change the Sample Rate” on page 3-49

• “Comparing the Resampled Signals” on page 3-49

• “Increasing the Sample Rate by a Fractional Factor” on page 3-51

• “Plotting the Original Signal and the Reconverted Signal” on page 3-52

• “Converting from 48 kHz to 44.1 kHz” on page 3-53

• “Plotting the 48 kHz Signal and the 44.1 kHz Signal” on page 3-54

Creating the Multirate Filters
All fractional sample rate conversion filters are created in the same way. You
specify the interpolation factor L, and the decimation factor M, and the FIR
filter coefficients. L and M must be relatively prime.

Two integers a and b are relatively prime when they do not share any common
factors. For example, 21 and 54 are not relatively prime—3 is a factor common
to both. 14 and 25 are relatively prime.

When L and M are not relatively prime, they are converted to relatively prime
factors and you get a warning in MATLAB.

If you do not provide filter coefficients when you construct your filter, the filter
design process returns a lowpass filter with a cutoff frequency of π/max(L,M)
and a gain of L in the passband.

Begin by designing a default rate change filter hm1.

3 Designing Multirate Filters

3-48

hm1 = mfilt.firsrc(4,3); % Default sample rate change filter.
hm2 = mfilt.firfracinterp(8,6);

Warning: L and M are not relatively prime. Converting ratio 8/6
to 4/3.
The cutoff frequency of the filter should be approximately pi/4.

MATLAB notifies you that the factors 8 and 6 do not meet the relatively prime
specification and reduces each by the common factor 2. Then MATLAB designs
the filter.

Decreasing the Sample Rate by a Fractional Factor
Suppose you are converting an audio signal recorded at 48kHz to 32kHz for
broadcasting. Consider the following audio sample recorded at 48kHz
(Copyright 2002 FingerBomb) by loading the sample into MATLAB and then
playing the file.

load audio48;

To listen to the original 48 kHz signal, you can use an audio player object in
MATLAB.

p48 = audioplayer(signal48kHz,Fs48); % Create audio player
% object.

play(p48); % Play the track. Use stop(p48) to stop play.

In all, the track lasts about 9 seconds.

Constructing the Fractional Decimator
Reducing the 48kHz sample rate for the signal to 32 kHz requires decimating
the signal by two-thirds (discard one sample out of every three). Decimation by
two-thirds is an example of fractional decimation.

The interpolation factor for this case is 2 and the decimation factor is 3. You
can use a fractional decimator to achieve this sample rate modification. To
avoid making this example more complicated, use the default filter that
mfilt.firfracdecim designs for now.

hfd = mfilt.firfracdecim(2,3); % Use default decimator filter.

Audio Example—Audio Sample Rate Conversion

3-49

hfd

hfd =

 FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
 Numerator: [1x72 double]
 RateChangeFactors: [2 3]

PersistentMemory: false
 States: [36x1 double]

You could also use your own lowpass filter by specifying the coefficients as
a third input argument

hfd = mfilt.firfracdecim(l,m,coeffs)

where coeffs contains the FIR filter coefficients to use.

Filtering to Change the Sample Rate
To use the fractional decimator hfd to convert the sample rate of the signal, you
invoke the filter method with the signal signal48kHz and hfd.

s32 = filter(hfd,signal48kHz);

Once again, you can use an audioplayer object to listen to the down-converted
signal.

p32 = audioplayer(s32,32e3); % Create a new audio player.
play(p32);

Comparing the Resampled Signals
You now have about 9 seconds of audio. Of course, you can find the exact length
in seconds from

length(signal48kHz)/Fs48 % Or length(s32)/32e3.

ans =

 8.9634

For clarity, you should overlay the two signals on a plot to compare them.
Because the audio track contains some 430,000 samples, you show only a small
signal segment. You also have to account for the delay the filter introduces in
the 32 kHz signal (the transient response mentioned earlier). Filter hfd has a

3 Designing Multirate Filters

3-50

group-delay of 36 samples. Since it is running three times faster than the 32
kHz signal, the delay is equivalent to 12 low speed samples.

Note that there are three samples of the 48 kHz signal for every two samples
of the 32 kHz signal. Now to pick some audio data samples to display.

To make the overlay work, you need the same starting point for each signal.
The following code finds common points for the 48 kHz and 32 kHz signals and
displays them in a stem plot.

xindx = 999:1500; % 0.0105 seconds of audio at 48 kHz.
figure
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on;
xindx2 = xindx(1)*32e3/48e3:xindx(end)*32e3/48e3; % Find the same

% start and
% stop times.

stem(xindx2/32,s32(xindx2+12),'r'); % Add 12 samples to account
% for filter transient delay.

Audio Example—Audio Sample Rate Conversion

3-51

Increasing the Sample Rate by a Fractional Factor
You can convert the broadcast quality signal at 32 kHz back to 48 kHz with
a fractional interpolator, perhaps to store it on a digital audio tape (DAT).
Moving from 32 to 48 requires upsampling by 50 percent, achieved using an
interpolation factor of 3 and decimation by 2. Again, you use the fractional FIR
interpolator.

hfi = mfilt.firfracinterp(3,2);
s48 = filter(hfi,s32);

Listening to the up-converted audio might be interesting. Use an audio player
again.

ps48 = audioplayer(s48,Fs48);
play(ps48);

20.8 21 21.2 21.4 21.6 21.8 22 22.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Original signal sampled at 48 kHz
Fractionally resampled signal at 32 kHz

3 Designing Multirate Filters

3-52

Plotting the Original Signal and the Reconverted
Signal
To compare both 48 kHz signals—the original and the twice-converted signal,
you must account for the delay introduced by both the fractional decimation
and the fractional interpolation processes when you converted the signal down
to 32 kHz and back to 48 kHz. In the stem plot shown here, notice that most of
the reconverted signal samples have moved slightly from where they were
originally. This is distortion introduced by converting down to 32 kHz by
decimation and then converting back up to 48 kHz by interpolation.

figure;
xindx = 1000:1500;
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on;
stem(xindx/Fs48*1e3,s48(1037:1537),'r'); % Account for the

% process-induced
% delays.

Audio Example—Audio Sample Rate Conversion

3-53

Different filters achieve different results. You used the default filters which do
not optimize the output.

Converting from 48 kHz to 44.1 kHz
To convert from studio quality audio at 48 kHz to CD quality audio, 44.1 kHz,
you would use a multirate filter better suited for this ratio change
(interpolation factor of 147, decimation factor of 160; decimation by 1.088). To
avoid the startup delay (latency) introduced by the filter, preload half of the
filter states with the beginning of the signal. Doing this step compensates for
the delay caused by filtering and decimation. For this rate change, you use the
FIR sample rate change multirate filter—firsrc.

hsrc = mfilt.firsrc(147,160) % Use default filter coefficients.
hsrc =

21 21.5 22 22.5 23 23.5 24
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Original signal
Down and upsampled signal

3 Designing Multirate Filters

3-54

 FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
 Numerator: [1x3840 double]
 RateChangeFactors: [147 160]

PersistentMemory: true
 States: [26x1 double]

hsrc.persistentmemory = true; % Allows you to set the states
% to eliminate delay.

hsrc.States(13:-1:1) = signal48kHz(1:13); % Preload the states.
s441 = filter(hsrc,signal48kHz(14:end)); % This takes a few

% seconds.

Again, you can play the down-converted signal at 44.1 kHz with a MATLAB
audio player.

p441 = audioplayer(s441,44.1e3);
play(p441);

When you are doing sample-rate conversion with large values of L or M, as you
are in this case where L=147 and M=160, using the mfilt.firsrc structure is
the most effective approach. Other possible fractional rate change structures,
such as mfilt.firfracinterp (where L > M) or mfilt.firfracdecim (where
L < M) may have prohibitively large memory requirements for applications
that require large rate changes.

Plotting the 48 kHz Signal and the 44.1 kHz Signal
Now compare segments of the two signals graphically. In this case you can
verify visually in the stem plot shown that the filter does not introduce delay
since you compensated for its group delay by preloading the states.

figure
xindx = 1:160;
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on
xindx2 = 1:147;
stem(xindx2/44.1,s441(xindx2),'r');

Audio Example—Audio Sample Rate Conversion

3-55

0 0.5 1 1.5 2 2.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Original signal sampled at 48 kHz
Fractionally−converted signal sampled at 44.1 kHz

3 Designing Multirate Filters

3-56

4

Designing Adaptive Filters

Introducing Adaptive Filtering (p. 4-2) Provides a little background on the development of
adaptive filters and the contents of this section

Getting Started with Adaptive Filters
(p. 4-4)

Uses a signal enhancement application to introduce
adaptive filters

Overview of Adaptive Filters and
Applications (p. 4-14)

Provides a short discussion about adaptive filters and
their uses

System Identification (p. 4-17) Learn about the questions to ask when you need an
adaptive filter

Adaptive Filters in the Filter Design
Toolbox (p. 4-21)

Learn about the adaptive filter objects provided in the
toolbox

Examples of Adaptive Filters That Use
LMS Algorithms (p. 4-26)

Presents examples of adaptive filters that use LMS
algorithms to determine filter coefficients

Example of Adaptive Filter That Uses
RLS Algorithm (p. 4-47)

Presents examples of adaptive filters that use RLS
algorithms to determine filter coefficients

Selected Bibliography (p. 4-52) Lists a few books that cover adaptive filters in both detail
and with broad scope

4 Designing Adaptive Filters

4-2

Introducing Adaptive Filtering
Over the past three decades, digital signal processors have made great
advances in increasing speed and complexity, and reducing power
consumption. As a direct result, real-time adaptive filtering is quickly
becoming essential for the future of communications, both wired and wireless.

In the following sections, this guide presents an overview of adaptive filtering;
discussions of some of the common applications for adaptive filters; and details
about the adaptive filters available in the toolbox.

Listed below are the sections that cover adaptive filters in this guide. Within
each section, examples and a short discussion of the theory of the filters
introduce the adaptive filter concepts.

• “Getting Started with Adaptive Filters” on page 4-4 introduces adaptive
filtering through a worked example.

• “Overview of Adaptive Filters and Applications” on page 4-14 presents
a general discussion of adaptive filters and their applications.

- “System Identification” on page 4-17—Using adaptive filters to identify
the response of an unknown system such as a communications channel or
a telephone line.

- “Inverse System Identification” on page 4-18—Using adaptive filters to
develop a filter that has a response that is the inverse of an unknown
system.

- “Noise Cancellation (or Interference Cancellation)” on page 4-18—
Performing active noise cancellation where the filter adapts in real-time to
remove noise by keeping the error small.

- “Prediction” on page 4-19—describes using adaptive filters to predict
a signal’s future values.

• “System Identification” on page 4-17 describes the important considerations
for selecting an adaptive filter for an application.

• “Adaptive Filters in the Filter Design Toolbox” on page 4-21 lists the
adaptive filters included in the toolbox.

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 4-26
presents a discussion of using LMS techniques to perform the filter
adaptation process.

Introducing Adaptive Filtering

4-3

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 4-47
discusses adaptive filters based on the RMS techniques for minimizing the
total error between the known and unknown systems.

For more detailed information about adaptive filters and adaptive filter theory,
refer to the books listed in “Selected Bibliography” on page 4-52.

4 Designing Adaptive Filters

4-4

Getting Started with Adaptive Filters
This demonstration illustrates one way to use a few of the adaptive filter
algorithms provided in the toolbox.

This example uses a signal enhancement application as an illustration. While
there are about 30 different adaptive filtering algorithms included with the
toolbox, this example demonstrates two algorithms—least means square
(LMS), adaptfilt.lms, and normalized LMS, adaptfilt.nlms, for adaptation.

Tutorial Contents
As you follow this tutorial, you encounter these subjects.

• “Create the Signals for Adaptation” on page 4-4

• “Construct Two Adaptive Filters” on page 4-5

• “Choose the Step Size” on page 4-6

• “Set the Adapting Filter Step Size” on page 4-7

• “Filter with the Adaptive Filters” on page 4-7

• “Compute the Optimal Solution” on page 4-8

• “Plot the Results” on page 4-8

• “Compare the Final Coefficients” on page 4-9

• “Reset the Filter Before Filtering” on page 4-10

• “Compute the Learning Curves” on page 4-11

• “Compute the Theoretical Learning Curves” on page 4-12

Create the Signals for Adaptation
The goal is to use an adaptive filter to extract a desired signal from
a noise-corrupted signal by filtering out the noise. The desired signal (the
output from the process) is a sinusoid with 1000 samples.

n = (1:1000)';
s = sin(0.075*pi*n);

To perform adaptation requires two signals:

Getting Started with Adaptive Filters

4-5

• a reference signal

• a noisy signal that contains both the desired signal and an added noise
component.

Generate the Noise Signal
To create a noise signal, assume that the noise v1 is autoregressive, meaning
that the value of the noise at time t depends only on its previous values and
on a random disturbance.

v = 0.8*randn(1000,1); % Random noise part.
ar = [1, 1/2]; % Autoregression coefficients.
v1 = filter(1,ar,v); % Noise signal. Applies a 1-D digital

% filter.

Corrupt the Desired Signal to Create a Noisy Signal
To generate the noisy signal that contains both the desired signal and the
noise, add the noise signal v1 to the desired signal s. The noise corrupted
sinusoid x is

x = s + v1;

where s is the desired signal the the noise is v1. Adaptive filter processing
seeks to recover s from x. To complete the signals needed to perform adaptive
filtering, the process requires a reference signal.

Create a Reference Signal
Define a moving average signal v2 that is correlated with v1. This v2 is the
reference signal for the examples.

ma = [1, -0.8, 0.4 , -0.2];
v2 = filter(ma,1,v);

Construct Two Adaptive Filters
Two similar adaptive filters—LMS and NLMS—form the basis of this example,
both sixth order. Set the order as a variable in MATLAB and create the filters.

l = 7; % Seven taps or weights. Order equals 6.
halms=adaptfilt.lms(l)

halms =

4 Designing Adaptive Filters

4-6

 Algorithm: 'Direct-Form FIR LMS Adaptive Filter'
 FilterLength: 7
 StepSize: 0.1
 Leakage: 1
 PersistentMemory: false

hanlms=adaptfilt.nlms(l)

hanlms =

 Algorithm: 'Direct-Form FIR Normalized LMS Adaptive Filter'
 FilterLength: 7
 StepSize: 1

 Leakage: 1
 Offset: 0
 PersistentMemory: false

Choose the Step Size
LMS-like algorithms have a step size that determines the amount of correction
applied as the filter adapts from one iteration to the next. Choosing the
approprite step size is not always easy, usually requiring experience in
adaptive filter design.

• A step size that is too small increases the time for the filter to converge on
a set of coefficients. This becomes an issue of speed and accuracy.

• One that is too large may cause the adapting filter to diverge, never reaching
convergence. In this case, the issue is stability—the resulting filter might not
be stable.

As a rule of thumb, smaller step sizes improve the accuracy of the convergence
of the filter to match the characteristics of the unknown, at the expense of the
time it takes to adapt.

The toolbox includes an algorithm—maxstep—to determine the maximum step
size suitable for each LMS adaptive filter algorithm that still ensures that the
filter converges to a solution. Often, the notation for the step size is μ.

[mumaxlms,mumaxmselms] = maxstep(halms,x)
[mumaxnlms,mumaxmsenlms] = maxstep(hanlms) % Always equal to 2.

Warning: Step size is not in the range 0 < mu < mumaxmse/2:

Getting Started with Adaptive Filters

4-7

Erratic behavior might result.
mumaxlms =

 0.2270

mumaxmselms =

 0.1356

mumaxnlms =

 2

mumaxmsenlms =

 2

Set the Adapting Filter Step Size
The first output of maxstep is the value needed for the mean of the coefficients
to converge while the second is the value needed for the mean squared
coefficients to converge. Choosing a large step size often causes large variations
from the convergence values, so choose smaller step sizes generally.

halms.stepsize = mumaxmselms/30; % You can set this graphically.
inspect(halms) % Opens the Property Inspector in MATLAB.
hanlms.stepsize = mumaxmsenlms/20;
inspect(hanlms)

If you know the step size to use, set the step size value when you create the
filter with the step input argument.

halms = adaptfilt.lms(n,step); Adds the step input argument.

Filter with the Adaptive Filters
Now you have set up the parameters of the adaptive filters and are ready to
filter the noisy signal. The reference signal, v2 is the input to the adaptive
filters, while x is the desired signal in this configuration.

4 Designing Adaptive Filters

4-8

Through adaptation y, the output of the filters, tries to emulate x as closely as
possible.

Since v2 is correlated only with the noise component v1 of x, it can only really
emulate v1. The error signal, the desired x, minus the actual output y,
constitutes an estimate of the part of x that is not correlated with v2 — s, the
signal to extract from x.

[ylms,elms] = filter(hlms,v2,x);
[ynlms,enlms] = filter(hnlms,v2,x);

Compute the Optimal Solution
For comparison, compute the optimal FIR Wiener filter.

filterbw = firwiener(L-1,v2,x); % Optimal FIR Wiener.
filteryw = filter(bw,1,v2); % Estimate of x using Wiener.
filterew = x-yw; % Estimate of actual sinusoid.

Plot the Results
Plot the resulting denoised sinusoid for each filter—the Wiener filter, the LMS
adaptive filter, and the NLMS adaptive filter—to compare the performance of
the various techniques.

plot(n(900:end),[ew(900:end), elms(900:end),enlms(900:end)]);
legend('Wiener filter denoised sinusoid','LMS denoised...
sinusoid', 'NLMS denoised sinusoid');

As a reference point, include the noisy signal as a dotted line in the plot.

hold on
plot(n(900:end),x(900:end),'k:')
hold off

Getting Started with Adaptive Filters

4-9

Compare the Final Coefficients
Finally, compare the Wiener filter coefficients with the coefficients of the
adaptive filters. While adapting, the adaptive filters try to converge to the
Wiener coefficients.

[bw.' hlms.Coefficients.' hnlms.Coefficients.']
ans =

 1.0221 0.8751 1.0411
 0.3345 0.1201 0.3601
 0.1217 -0.0118 0.1077
 0.0483 -0.0183 0.0081
 0.1179 0.0558 0.0420
 0.0637 -0.0049 -0.0290

900 920 940 960 980 1000
−3

−2

−1

0

1

2

3

Time index (n)

A
m

pl
itu

de

Wiener filter denoised sinusoid
LMS denoised sinusoid
NLMS denoised sinusoid

4 Designing Adaptive Filters

4-10

 0.0216 -0.0235 -0.0222

Reset the Filter Before Filtering
Adaptive fiters have a PersistentMemory property that you can use to
reproduce experiments exactly. By default, the PersistentMemory is false.
The states and the coefficients of the filter are reset before filtering and the
filter does not remember the results from previous times you use the filter.

For instance, the following succesive calls produce the same output when
PersistentMemory is false.

[ylms,elms] = filter(hlms,v2,x);
[ylms2,elms2] = filter(hlms,v2,x);

To keep the history of the filter when filtering a new set of data, enable
persistent memory for the filter by setting the PersistentMemory property to
true. In this configuration, the filter uses the final states and coefficients from
the previous run as the initial conditions for the next run and set of data.

[ylms,elms] = filter(hlms,v2,x);
hlms.PersistentMemory = true;
[ylms2,elms2] = filter(hlms,v2,x); % No longer the same.

Setting the property value to true is useful when you are filtering large
amounts of data that you partition into smaller sets and then feed into the filter
using a for-loop construction.

Investigate Convergence Through Learning Curves
To analyze the convergence of the adaptive filters, look at the learning curves.
The toolbox provides methods to generate the learning curves, but you need
more than one iteration of the experiment to obtain significant results.

This demonstration uses 25 sample realizations of the noisy sinusoids.

n = (1:5000)';
s = sin(0.075*pi*n);
nr = 25;
v = 0.8*randn(5000,nr);
v1 = filter(1,ar,v);
x = repmat(s,1,nr) + v1;
v2 = filter(ma,1,v);

Getting Started with Adaptive Filters

4-11

Compute the Learning Curves
Now compute the mean-square error. To speed things up, compute the error
every 10 samples.

First, reset the adaptive filters to avoid using the coefficients it has already
computed and the states it has stored.

reset(hlms);
reset(hnlms);
M = 10; % Decimation factor.
mselms = msesim(hlms,v2,x,M);
msenlms = msesim(hnlms,v2,x,M);
plot(1:M:n(end),[mselms,msenlms])legend('LMS learning...
curve','NLMS learning curve')

In the next plot you see the calculated learning curves for the LMS and NLMS
adaptive filters.

4 Designing Adaptive Filters

4-12

Compute the Theoretical Learning Curves
For the LMS and NLMS algorithms, functions in the toolbox help you compute
the theoretical learning curves, along with the minimum mean-square error
(MMSE) the excess mean-square error (EMSE) and the mean value of the
coefficients.

MATLAB may take some time to calculate the curves. The figure shown after
the code plots the predicted and actual LMS curves.

reset(hlms);
[mmselms,emselms,meanwlms,pmselms] = msepred(hlms,v2,x,M);
plot(1:M:n(end),[mmselms*ones(500,1),emselms*ones(500,1),...
pmselms,mselms])
legend('MMSE','EMSE','Predicted LMS learning curve',...
'LMS learning curve')

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time index (n)

M
S

E

LMS learning curve
NLMS learning curve

Getting Started with Adaptive Filters

4-13

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time index (n)

M
S

E

MMSE
EMSE
Predicted LMS learning curve
LMS learning curve

4 Designing Adaptive Filters

4-14

Overview of Adaptive Filters and Applications
This section presents a brief description of how adaptive filters work and some
of the applications where they can be useful.

Adaptive filters self learn. As the signal into the filter continues, the adaptive
filter coefficients adjust themselves to achieve the desired result, such as
identifying an unknown filter or canceling noise in the input signal. In the
figure below, the shaded box represents the adaptive filter, comprising the
adaptive filter and the adaptive recursive least squares (RLS) algorithm.

Block Diagram That Defines the Inputs and Output of a Generic RLS Adaptive
Filter

The next figure provides the general adaptive filter setup with inputs and
outputs.

Block Diagram Defining General Adaptive Filter Algorithm Inputs and Outputs

text

SUMAdaptive FIR or IIR Digital Filter

RLS Adaptive Algorithm

Input Signal
x(k)

Output Signal
y(k)

Desired Signal
d(k)

Error Signal
e(k)

+

_

text

SUMAdaptive FIR or IIR Digital Filter

Adapting Algorithm

Input Signal
x(k)

Output Signal
y(k)

Desired Signal
d(k)

Error Signal
e(k)

+

_

Overview of Adaptive Filters and Applications

4-15

Filter Design Toolbox includes adaptive filters of a broad range of forms, all of
which can be worthwhile for specific needs. Some of the common ones are:

• Adaptive filters based on least mean squares (LMS) techniques, such as
adaptfilt.lms, adaptfilt.filtxlms, and adaptfilt.nlms

• Adaptive filters based on recursive least squares (RLS) techniques. For
example, adaptfilt.rls and adaptfilt.swrls

• Adaptive filters based on sign-data (adaptfilt.sd), sign-error
(adaptfilt.se), and sign-sign (adaptfilt.ss) techniques

• Adaptive filters based on lattice filters. For example, adaptfilt.gal and
adaptfilt.lsl

• Adaptive filters that operate in the frequency domain, such as
adaptfilt.fdaf and adaptfilt.pbufdaf.

• Adaptive filters that operate in the transform domain. Two of these are the
adaptfilt.tdafdft and adaptfilt.tdafdct filters

An adaptive filter designs itself based on the characteristics of the input signal
to the filter and a signal that represents the desired behavior of the filter on its
input.

Designing the filter does not require any other frequency response information
or specification. To define the self-learning process the filter uses, you select
the adaptive algorithm used to reduce the error between the output signal y(k)
and the desired signal d(k).

When the LMS performance criterion for e(k) has achieved its minimum value
through the iterations of the adapting algorithm, the adaptive filter is finished
and its coefficients have converged to a solution. Now the output from the
adaptive filter matches closely the desired signal d(k). When you change the
input data characteristics, sometimes called the filter environment, the filter
adapts to the new environment by generating a new set of coefficients for the
new data. Notice that when e(k) goes to zero and remains there you achieve
perfect adaptation, the ideal result but not likely in the real world.

The adaptive filter functions in this toolbox implement the shaded portion of
the figures, replacing the adaptive algorithm with an appropriate technique.
To use one of the functions, you provide the input signal or signals and the
initial values for the filter.

4 Designing Adaptive Filters

4-16

“Adaptive Filters in the Filter Design Toolbox” on page 4-21 offers details
about the algorithms available and the inputs required to use them in
MATLAB.

Choosing an Adaptive Filter
Selecting the adaptive filter that best meets your needs requires careful
consideration. An exhaustive discussion of the criteria for selecting your
approach is beyond the scope of this User’s Guide. However, a few guidelines
can help you make your choice.

Two main considerations frame the decision—how you plan to use the filter
and the filter algorithm to use.

When you begin to develop an adaptive filter for your needs, most likely the
primary concern is whether using an adaptive filter is a cost-competitive
approach to solving your filtering needs. Generally many areas determine the
suitability of adaptive filters (these areas are common to most filtering and
signal processing applications). Four such areas are

• Filter consistency—Does your filter performance degrade when the filter
coefficients change slightly as a result of quantization, or you switch to
fixed-point arithmetic? Will excessive noise in the signal hurt the
performance of your filter?

• Filter performance—Does your adaptive filter provide sufficient
identification accuracy or fidelity, or does the filter provide sufficient signal
discrimination or noise cancellation to meet your requirements?

• Tools—Do tools exist that make your filter development process easier?
Better tools can make it practical to use more complex adaptive algorithms.

• DSP requirements—Can your filter perform its job within the constraints of
your application? Does your processor have sufficient memory, throughput,
and time to use your proposed adaptive filtering approach? Can you trade
memory for throughput: use more memory to reduce the throughput
requirements or use a faster signal processor?

Of the preceding considerations, characterizing filter consistency or robustness
may be the most difficult.

The simulations in the Filter Design Toolbox offers a good first step in
developing and studying these issues. LMS algorithm filters provide both

Overview of Adaptive Filters and Applications

4-17

a relatively straightforward filters to implement and sufficiently powerful tool
for evaluating whether adaptive filtering can be useful for your problem.

Additionally, starting with an LMS approach can form a solid baseline against
which you can study and compare the more complex adaptive filters available
in the toolbox. Finally, your development process should, at some time, test
your algorithm and adaptive filter with real data. For truly testing the value of
your work there is no substitute for actual data.

System Identification
One common adaptive filter application is to use adaptive filters to identify an
unknown system, such as the response of an unknown communications
channel or the frequency response of an auditorium, to pick fairly divergent
applications. Other applications include echo cancellation and channel
identification.

In the figure, the unknown system is placed in parallel with the adaptive filter.
This layout represents just one of many possible structures. The shaded area
contains the adaptive filter system.

Using an Adaptive Filter to Identify an Unknown System

Clearly, when e(k) is very small, the adaptive filter response is close to the
response of the unknown system. In this case the same input feeds both the
adaptive filter and the unknown. If, for example, the unknown system is
a modem, the input often represents white noise, and is a part of the sound you
hear from your modem when you log in to your Internet service provider.

text

Unknown System

Adaptive Filter SUM
x(k)

d(k)

y(k) e(k)
_

+

4 Designing Adaptive Filters

4-18

Inverse System Identification
By placing the unknown system in series with your adaptive filter, your filter
adapts to become the inverse of the unknown system as e(k) becomes very
small. As shown in the figure the process requires a delay inserted in the
desired signal d(k) path to keep the data at the summation synchronized.
Adding the delay keeps the system causal.

Determining an Inverse Response to an Unknown System

Including the delay to account for the delay caused by the unknown system
prevents this condition.

Plain old telephone systems (POTS) commonly use inverse system
identification to compensate for the copper transmission medium. When you
send data or voice over telephone lines, the copper wires behave like a filter,
having a response that rolls off at higher frequencies (or data rates) and having
other anomalies as well.

Adding an adaptive filter that has a response that is the inverse of the wire
response, and configuing the filter to adapt in real time, lets the filter
compensate for the rolloff and anomalies, increasing the available frequency
output range and data rate for the telephone system.

Noise Cancellation (or Interference Cancellation)
In noise cancellation, adaptive filters let you remove noise from a signal in real
time. Here, the desired signal, the one to clean up, combines noise and desired
information. To remove the noise, feed a signal n'(k) to the adaptive filter that
represents noise that is correlated to the noise to remove from the desired
signal.

Adaptive FilterUnknown System SUM
x(k)

d(k)

y(k) e(k)
+

_

Delay

s(k)

Overview of Adaptive Filters and Applications

4-19

Using an Adaptive Filter to Remove Noise from an Unknown System

So long as the input noise to the filter remains correlated to the unwanted noise
accompanying the desired signal, the adaptive filter adjusts its coefficients to
reduce the value of the difference between y(k) and d(k), removing the noise
and resulting in a clean signal in e(k). Notice that in this application, the error
signal actually converges to the input data signal, rather than converging to
zero.

Prediction
Predicting signals requires that you make some key assumptions. Assume that
the signal is either steady or slowly varying over time, and periodic over time
as well.

Predicting Future Values of a Periodic Signal

Accepting these assumptions, the adaptive filter must predict the future values
of the desired signal based on past values. When s(k) is periodic and the filter
is long enough to remember previous values, this structure with the delay in
the input signal, can perform the prediction. You might use this structure to
remove a periodic signal from stochastic noise signals.

Adaptive Filter SUMn'(k)

d(k)

y(k) e(k)
+

_

s(k) + n(k)

x(k)

Adaptive Filter SUM
s(k)

d(k)

y(k) e(k)
+

_
x(k)

Delay

4 Designing Adaptive Filters

4-20

Finally, notice that most systems of interest contain elements of more than one
of the four adaptive filter structures. Carefully reviewing the real structure
may be required to determine what the adaptive filter is adapting to.

Also, for clarity in the figures, the analog-to-digital (A/D) and digital-to-analog
(D/A) components do not appear. Since the adaptive filters are assumed to be
digital in nature, and many of the problems produce analog data, converting
the input signals to and from the analog domain is probably necessary.

Adaptive Filters in the Filter Design Toolbox

4-21

Adaptive Filters in the Filter Design Toolbox
Filter Design Toolbox contains many objects for constructing and applying
adaptive filters to data. As you see in the tables in the next section, the objects
use various algorithms to determine the weights for the filter coefficients of the
adapting filter. While the algorithms differ in their detail implementations, the
LMS and RLS share a common operational approach—minimizing the error
between the filter output and the desired signal.

Algorithms
For adaptive filter (adaptfilt) objects, the algorithm string determines which
adaptive filter algorithm your adaptfilt object implements. Each available
algorithm entry appears in one of the tables along with a brief description of
the algorithm. Click on the algorithm in the first column to get more
information about the associated adaptive filter technique.

• LMS based adaptive filters

• RLS based adaptive filters

• Affine projection adaptive filters

• Adaptive filters in the frequency domain

• Lattice based adaptive filters

4 Designing Adaptive Filters

4-22

Least Mean Squares (LMS) Based FIR Adaptive Filters

For further information about an adapting algorithm, refer to the reference
page for the algorithm.

Adaptive Filter
Method

Adapting Algorithm Used to Generate Filter
Coefficients During Adaptation

adaptfilt.adjlms Adjoint LMS FIR adaptive filter algorithm

adaptfilt.blms Block LMS FIR adaptive filter algorithm

adaptfilt.blmsfft FFT-based Block LMS FIR adaptive filter
algorithm

adaptfilt.dlms Delayed LMS FIR adaptive filter algorithm

adaptfilt.filtxlms Filtered-x LMS FIR adaptive filter algorithm

adaptfilt.lms LMS FIR adaptive filter algorithm

adaptfilt.nlms Normalized LMS FIR adaptive filter algorithm

adaptfilt.sd Sign-data LMS FIR adaptive filter algorithm

adaptfilt.se Sign-error LMS FIR adaptive filter algorithm

adaptfilt.ss Sign-sign LMS FIR adaptive filter algorithm

Adaptive Filters in the Filter Design Toolbox

4-23

Recursive Least Squares (RLS) Based FIR Adaptive Filters

For more complete information about an adapting algorithm, refer to the
reference page for the algorithm.

Affine Projection (AP) FIR Adaptive Filters

To find more information about an adapting algorithm, refer to the reference
page for the algorithm.

Adaptive Filter
Method

Adapting Algorithm Used to Generate Filter
Coefficients During Adaptation

adaptfilt.ftf Fast transversal least-squares adaptation
algorithm

adaptfilt.qrdrls QR-decomposition RLS adaptation algorithm

adaptfilt.hrls Householder RLS adaptation algorithm

adaptfilt.hswrls Householder SWRLS adaptation algorithm

adaptfilt.rls Recursive-least squares (RLS) adaptation
algorithm

adaptfilt.swrls Sliding window (SW) RLS adaptation algorithm

adaptfilt.swftf Sliding window FTF adaptation algorithm

Adaptive Filter
Method

Adapting Algorithm Used to Generate Filter
Coefficients During Adaptation

adaptfilt.ap Affine projection algorithm that uses direct
matrix inversion

adaptfilt.apru Affine projection algorithm that uses recursive
matrix updating

adaptfilt.bap Block affine projection adaptation algorithm

4 Designing Adaptive Filters

4-24

FIR Adaptive Filters in the Frequency Domain (FD)

For more information about an adapting algorithm, refer to the reference page
for the algorithm.

Lattice Based (L) FIR Adaptive Filters

For more information about an adapting algorithm, refer to the reference page
for the algorithm.

Presenting a detailed derivation of the Wiener-Hopf equation and determining
solutions to it is beyond the scope of this User’s Guide. Full descriptions of the

Adaptive Filter
Method

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.fdaf Frequency domain adaptation algorithm

adaptfilt.pbfdaf Partition block version of the FDAF algorithm

adaptfilt.pbufdaf Partition block unconstrained version of the
FDAF algorithm

adaptfilt.tdafdct Transform domain adaptation algorithm using
DCT

adaptfilt.tdafdft Transform domain adaptation algorithm using
DFT

adaptfilt.ufdaf Unconstrained FDAF algorithm for adaptation

Adaptive Filter
Method

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.gal Gradient adaptive lattice filter adaptation
algorithm

adaptfilt.lsl Least squares lattice adaptation algorithm

adaptfilt.qrdlsl QR decomposition RLS adaptation algorithm

Adaptive Filters in the Filter Design Toolbox

4-25

theory appear in the adaptive filter references provided in the “Selected
Bibliography” on page 4-52.

Using Adaptive Filter Objects
After you construct an adaptive filter object, how do you apply it to your data
or system? Like quantizer objects, adaptive filter objects have a filter method
that you use to apply the adaptfilt object to data. In the following sections,
various examples of using LMS and RLS adaptive filters show you how filter
works with the objects to apply them to data.

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 4-26

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 4-47

4 Designing Adaptive Filters

4-26

Examples of Adaptive Filters That Use LMS Algorithms
This section provides introductory examples using some of the least mean
squares (LMS) adaptive filter functions in the toolbox.

The toolbox provides many adaptive filter design functions that use the LMS
algorithms to search for the optimal solution to the adaptive filter, including

• adaptfilt.lms—Implement the LMS algorithm to solve the Wiener-Hopf
equation and find the filter coefficients for an adaptive filter.

• adaptfilt.nlms—implement the normalized variation of the LMS
algorithm to solve the Wiener-Hopf equation and determine the filter
coefficients of an adaptive filter.

• adaptfilt.sd—Implement the sign-data variation of the LMS algorithm to
solve the Wiener-Hopf equation and determine the filter coefficients of an
adaptive filter. The correction to the filter weights at each iteration depends
on the sign of the input x(k).

• adaptfilt.se—Implement the sign-error variation of the LMS algorithm to
solve the Wiener-Hopf equation and determine the filter coefficients of an
adaptive filter. The correction applied to the current filter weights for each
successive iteration depends on the sign of the error, e(k).

• adaptfilt.ss—Implement the sign-sign variation of the LMS algorithm to
solve the Wiener-Hopf equation and determine the filter coefficients of an
adaptive filter. The correction applied to the current filter weights for each
successive iteration depends on both the sign of x(k) and the sign of e(k).

To demonstrate the differences and similarities among the various LMS
algorithms supplied in the toolbox, the LMS and NLMS adaptive filter
examples use the same filter for the unknown system. The unknown filter is
the constrained lowpass filter from “firgr and fircband Examples” on page 2-9.

[b,err,res]=firgr(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

From the figure you see that the filter is indeed lowpass and constrained to 0.2
ripple in the stopband. With this as the baseline, the adaptive LMS filter
examples use the adaptive LMS algorithms and their initialization functions to
identify this filter in a system identification role.

Examples of Adaptive Filters That Use LMS Algorithms

4-27

To review the general model for system ID mode, look at “System
Identification” on page 4-17 for the layout.

For the sign variations of the LMS algorithm, the examples use noise
cancellation as the demonstration application, as opposed to the system
identification application used in the LMS examples.

adaptfilt.lms Example—System Identification
To use the adaptive filter functions in the toolbox you need to provide three
things:

• The adaptive LMS function to use. This example uses the LMS adaptive
filter function adaptfilt.lms.

• An unknown system or process to adapt to. In this example, the filter
designed by firgr is the unknown system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de

4 Designing Adaptive Filters

4-28

• Appropriate input data to exercise the adaptation process. In terms of the
generic LMS model, these are the desired signal d(k) and the input signal
x(k).

Start by defining an input signal x.

x = 0.1*randn(1,250);

The input is broadband noise. For the unknown system filter, use firgr to
create a twelfth-order lowpass filter:

[b,err,res] = firgr(22,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

Although you do not need them here, include the err and res output
arguments.

Now filter the signal through the unknown system to get the desired signal.

d = filter(b,1,x);

With the unknown filter designed and the desired signal in place you construct
and apply the adaptive LMS filter object to identify the unknown.

Preparing the adaptive filter object requires that you provide starting values
for estimates of the filter coefficients and the LMS step size. You could start
with estimated coefficients of some set of nonzero values; this example uses
zeros for the 12 initial filter weights.

For the step size, 0.8 is a reasonable value—a good compromise between being
large enough to converge well within the 250 iterations (250 input sample
points) and small enough to create an accurate estimate of the unknown filter.

mu = 0.8;
ha = adaptfilt.lms(13,mu,w0)

Finally, using the adaptfilt object ha, desired signal, d, and the input to the
filter, x, run the adaptive filter to determine the unknown system and plot the
results, comparing the actual coefficients from firgr to the coefficients found
by adaptlms.

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])

Examples of Adaptive Filters That Use LMS Algorithms

4-29

In the stem plot the actual and estimated filter weights are the same. As an
experiment, try changing the step size to 0.2. Repeating the example with
mu = 0.2 results in the following stem plot. The estimated weights fail to
approximate the actual weights closely.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

4 Designing Adaptive Filters

4-30

Since this may be because you did not iterate over the LMS algorithm enough
times, try using 1000 samples. With 1000 samples, the stem plot, shown in the
next figure, looks much better, albeit at the expense of much more
computation. Clearly you should take care to select the step size with both the
computation required and the fidelity of the estimated filter in mind.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

Examples of Adaptive Filters That Use LMS Algorithms

4-31

adaptfilt.nlms Example—System Identification
To improve the convergence performance of the LMS algorithm, the
normalized variant (NLMS) uses an adaptive step size based on the signal
power. As the input signal power changes, the algorithm calculates the input
power and adjusts the step size to maintain an appropriate value. Thus the
step size changes with time.

As a result, the normalized algorithm converges more quickly with fewer
samples in many cases. For input signals that change slowly over time, the
normalized LMS can represent a more efficient LMS approach.

In the adaptlms example, you used firgr to create the filter that you would
identify. So you can compare the results, you use the same filter, and replace

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

4 Designing Adaptive Filters

4-32

adaptlms with adaptnlms, to use the normalized LMS algorithm variation. You
should see better convergence with similar fidelity.

First, generate the input signal and the unknown filter.

x = 0.1*randn(1,500);
[b,err,res] = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});
d = filter(b,1,x);

Again d represents the desired signal d(x) as you defined it earlier and
b contains the filter coefficients for your unknown filter.

mu = 0.8;
ha = adaptfilt.nlms(13,mu);

You use the preceding code to initialize the normalized LMS algorithm. For
more information about the optional input arguments, refer to adaptfilt.nlms
in the reference section of this User’s Guide.

Running the system identification process is a matter of using adaptfilt.nlms
with the desired signal, the input signal, and the initial filter coefficients and
conditions specified in s as input arguments. Then plot the results to compare
the adapted filter to the actual filter.

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])

As shown in the following stem plot (a convenient way to compare the
estimated and actual filter coefficients), the two are nearly identical.

Examples of Adaptive Filters That Use LMS Algorithms

4-33

If you compare the convergence performance of the regular LMS algorithm to
the normalized LMS variant, you see the normalized version adapts in far
fewer iterations to a result almost as good as the nonnormalized version.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Normalized LMS Algorithm

Actual Filter Weights
Estimated Filter Weights

4 Designing Adaptive Filters

4-34

adaptfilt.sd Example—Noise Cancellation
When the amount of computation required to derive an adaptive filter drives
your development process, the sign-data variant of the LMS (SDLMS)
algorithm may be a very good choice as demonstrated in this example.

Fortunately, the current state of digital signal processor (DSP) design has
relaxed the need to minimize the operations count by making DSPs whose
multiply and shift operations are as fast as add operations. Thus some of the
impetus for the sign-data algorithm (and the sign-error and sign-sign
variations) has been lost to DSP technology improvements.

In the standard and normalized variations of the LMS adaptive filter,
coefficients for the adapting filter arise from the mean square error between
the desired signal and the output signal from the unknown system. Using the
sign-data algorithm changes the mean square error calculation by using the

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Comparing the LMS and NLMS Convergence Performance

Sample Number

M
ea

n
S

qu
ar

e
E

rr
or

NLMS Derived Filter Weights
LMS Derived Filter Weights

Examples of Adaptive Filters That Use LMS Algorithms

4-35

sign of the input data to change the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients
plus the error multiplied by the step size μ. If the error is negative, the new
coefficients are again the previous coefficients minus the error multiplied by
μ—note the sign change.

When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-data LMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SDLMS algorithm seeks to
minimize. μ (mu) is the step size.

As you specify mu smaller, the correction to the filter weights gets smaller for
each sample and the SDLMS error falls more slowly. Larger mu changes the
weights more for each step so the error falls more rapidly, but the resulting
error does not approach the ideal solution as closely. To ensure good
convergence rate and stability, select mu within the following practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computing.

Note How you set the initial conditions of the sign-data algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the input signal, the algorithm can become unstable
easily.

A series of large input values, coupled with the quantization process may

w k 1+() w k() μe k()sgn x k()[]+= sgn x k()[]
 1 x k(), 0>

 0 x k(), 0=
1– x k(), 0<⎩

⎪
⎨
⎪
⎧

=

0 μ 1
N InputSignalPower{ }
---< <

4 Designing Adaptive Filters

4-36

result in the error growing beyond all bounds. You restrain the tendency of
the sign-data algorithm to get out of control by choosing a small step size (μ<<
1) and setting the initial conditions for the algorithm to nonzero positive and
negative values.

In this noise cancellation example, adaptfilt.sd requires two input data sets:

• Data containing a signal corrupted by noise. In Figure , this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving the
signal.

• Data containing random noise (x(k) in Figure) that is correlated with the
noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, and then add the
filtered noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs
and mu for the object. As noted earlier in this section, the values you set for
coeffs and mu determine whether the adaptive filter can remove the noise from
the signal path.

In “adaptfilt.lms Example—System Identification” on page 4-27, you
constructed a default filter that sets the filter coefficients to zeros. In most
cases that approach does not work for the sign-data algorithm. The closer you
set your initial filter coefficients to the expected values, the more likely it is

Examples of Adaptive Filters That Use LMS Algorithms

4-37

that the algorithm remains well behaved and converges to a filter solution that
removes the noise effectively.

For this example, start with the coefficients in the filter you used to filter the
noise (nfilt), and modify them slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for adaptfilt.sd prepared, construct the
adaptfilt object, run the adaptation, and view the results.

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptfilt.sd runs, it uses far fewer multiply operations than either of
the LMS algorithms. Also, performing the sign-data adaptation requires only
bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in the next
figure is quite good, the sign-data algorithm is much less stable than the
standard LMS variations. In this noise cancellation example, the signal after
processing is a very good match to the input signal, but the algorithm could
very easily grow without bound rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the
correlated noise can cause noise cancellation to fail and the algorithm to
become useless.

4 Designing Adaptive Filters

4-38

adaptfilt.se Example—Noise Cancellation
In some cases, the sign-error variant of the LMS algorithm (SELMS) may be
a very good choice for an adaptive filter application.

In the standard and normalized variations of the LMS adaptive filter, the
coefficients for the adapting filter arise from calculating the mean square error
between the desired signal and the output signal from the unknown system,
and applying the result to the current filter coefficients. Using the sign-error
algorithm replaces the mean square error calculation by using the sign of the
error to modify the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients
plus the error multiplied by the step size μ. If the error is negative, the new
coefficients are again the previous coefficients minus the error multiplied by

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Noise Cancellation by the Sign−Data Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Result of Noise Cancellation

Examples of Adaptive Filters That Use LMS Algorithms

4-39

μ—note the sign change. When the input is zero, the new coefficients are the
same as the previous set.

In vector form, the sign-error LMS algorithm is

,

with vector w containing the weights applied to the filter coefficients and
vector x containing the input data. e(k) (equal to desired signal - filtered signal)
is the error at time k and is the quantity the SELMS algorithm seeks to
minimize. μ (mu) is the step size. As you specify mu smaller, the correction to the
filter weights gets smaller for each sample and the SELMS error falls more
slowly.

Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

Note How you set the initial conditions of the sign-data algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the error signal, the algorithm can become unstable
easily.

A series of large error values, coupled with the quantization process may
result in the error growing beyond all bounds. You restrain the tendency of
the sign-error algorithm to get out of control by choosing a small step size (μ<<
1) and setting the initial conditions for the algorithm to nonzero positive and
negative values.

In this noise cancellation example, adaptfilt.se requires two input data sets:

w k 1+() w k() μ e k()[]sgn x k()[]+= sgn e k()[]
 1 e k(), 0>

 0 e k(), 0=
1– e k(), 0<⎩

⎪
⎨
⎪
⎧

=

0 μ 1
N InputSignalPower{ }
---< <

4 Designing Adaptive Filters

4-40

• Data containing a signal corrupted by noise. In Figure , this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving the
signal.

• Data containing random noise (x(k) in Figure) that is correlated with the
noise that corrupts the signal data. Without the correlation between the
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, then add the filtered
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter.
fnoise=filter(nfilt,1,noise); % Correlated noise data.
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs
and mu for the object. As noted earlier in this section, the values you set for
coeffs and mu determine whether the adaptive filter can remove the noise from
the signal path. In “adaptfilt.lms Example—System Identification” on
page 4-27, you constructed a default filter that sets the filter coefficients to
zeros.

Setting the coefficients to zero often does not work for the sign-error algorithm.
The closer you set your initial filter coefficients to the expected values, the more
likely it is that the algorithm remains well behaved and converges to a filter
solution that removes the noise effectively.

For this example, you start with the coefficients in the filter you used to filter
the noise (nfilt), and modify them slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm update.

Examples of Adaptive Filters That Use LMS Algorithms

4-41

With the required input arguments for adaptfilt.se prepared, run the
adaptation and view the results.

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

Notice that you have to set the property PersistentMemory to true when you
manually change the settings of object ha.

If PersistentMemory is left to false, the default, when you try to apply ha with
the method filter, the filtering process starts by resetting the object
properties to their initial conditions at construction. To preserve the
customized coefficients in this example, you set PersistentMemory to true so
the coefficients do not get reset automatically back to zero.

When adaptfilt.se runs, it uses far fewer multiply operations than either of
the LMS algorithms. Also, performing the sign-error adaptation requires only
bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in the next
figure is quite good, the sign-data algorithm is much less stable than the
standard LMS variations. In this noise cancellation example, the signal after
processing is a very good match to the input signal, but the algorithm could
very easily become unstable rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the
correlated noise can cause noise cancellation to fail and the algorithm to
become useless.

4 Designing Adaptive Filters

4-42

adaptfilt.ss Example—Noise Cancellation
One more example of a variation of the LMS algorithm in the toolbox is the
sign-sign variant (SSLMS). The rationale for this version matches those for the
sign-data and sign-error algorithms presented in preceding sections. For more
details, refer to “adaptfilt.sd Example—Noise Cancellation” on page 4-34.

The sign-sign algorithm (SSLMS) replaces the mean square error calculation
with using the sign of the input data to change the filter coefficients. When the
error is positive, the new coefficients are the previous coefficients plus the error
multiplied by the step size μ.

If the error is negative, the new coefficients are again the previous coefficients
minus the error multiplied by μ—note the sign change. When the input is zero,
the new coefficients are the same as the previous set.

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Noise Cancellation Performance by the Sign−Error LMS Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Error After Noise Reduction

Examples of Adaptive Filters That Use LMS Algorithms

4-43

In essence, the algorithm quantizes both the error and the input by applying
the sign operator to them.

In vector form, the sign-sign LMS algorithm is

,

where

Vector w contains the weights applied to the filter coefficients and vector
x contains the input data. e(k) (= desired signal - filtered signal) is the error at
time k and is the quantity the SSLMS algorithm seeks to minimize. μ (mu) is
the step size. As you specify mu smaller, the correction to the filter weights gets
smaller for each sample and the SSLMS error falls more slowly.

Larger mu changes the weights more for each step so the error falls more
rapidly, but the resulting error does not approach the ideal solution as closely.
To ensure good convergence rate and stability, select mu within the following
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of
two for efficient computation.

Note How you set the initial conditions of the sign-sign algorithm profoundly
influences the effectiveness of the adaptation. Because the algorithm
essentially quantizes the input signal and the error signal, the algorithm can
become unstable easily.

A series of large error values, coupled with the quantization process may

w k 1+() w k() μ e k()[]sgn x k()[]sgn+= sgn z k()[]
 1 z k(), 0>

 0 z k(), 0=
1– z k(), 0<⎩

⎪
⎨
⎪
⎧

=

z k() e k()[] x k()[]sgn=

0 μ 1
N InputSignalPower{ }
---< <

4 Designing Adaptive Filters

4-44

result in the error growing beyond all bounds. You restrain the tendency of
the sign-sign algorithm to get out of control by choosing a small step size
(μ<< 1) and setting the initial conditions for the algorithm to nonzero positive
and negative values.

In this noise cancellation example, adaptfilt.ss requires two input data sets:

• Data containing a signal corrupted by noise. In Figure , this is d(k), the
desired signal. The noise cancellation process removes the noise, leaving the
cleaned signal as the content of the error signal.

• Data containing random noise (x(k) in Figure) that is correlated with the
noise that corrupts the signal data, called. Without the correlation between
the noise data, the adapting algorithm cannot remove the noise from the
signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is
correlated, pass the noise through a lowpass FIR filter, then add the filtered
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data
algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs
and mu for the object. As noted earlier in this section, the values you set for
coeffs and mu determine whether the adaptive filter can remove the noise from
the signal path. In “adaptfilt.lms Example—System Identification” on
page 4-27, you constructed a default filter that sets the filter coefficients to
zeros. Usually that approach does not work for the sign-sign algorithm.

The closer you set your initial filter coefficients to the expected values, the more
likely it is that the algorithm remains well behaved and converges to a filter

Examples of Adaptive Filters That Use LMS Algorithms

4-45

solution that removes the noise effectively. For this example, you start with the
coefficients in the filter you used to filter the noise (nfilt), and modify them
slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for adaptfilt.ss prepared, run the
adaptation and view the results.

ha = adaptfilt.ss(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

Notice that you have to set the property PersistentMemory to true when you
manually change the settings of object ha.

If PersistentMemory is left to false, when you try to apply ha with the method
filter the filtering process starts by resetting the object properties to their
initial conditions at construction. To preserve the customized coefficients in
this example, you set PersistentMemory to true so the coefficients do not get
reset automatically back to zero.

When adaptfilt.ss runs, it uses far fewer multiply operations than either of
the LMS algorithms. Also, performing the sign-sign adaptation requires only
bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-sign algorithm as shown in the next
figure is quite good, the sign-sign algorithm is much less stable than the
standard LMS variations. In this noise cancellation example, the signal after
processing is a very good match to the input signal, but the algorithm could
very easily become unstable rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the
correlated noise can cause noise cancellation to fail and the algorithm to
become useless.

4 Designing Adaptive Filters

4-46

As an aside, the sign-sign LMS algorithm is part of the international CCITT
standard for 32 Kb/s ADPCM telephony.

0 20 40 60 80 100 120 140 160 180 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Noise Cancellation Performance of the Sign−Sign LMS Algorithm

Sample Number

E
rr

or
 V

al
ue

Actual Signal
Error After Noise Reduction

Example of Adaptive Filter That Uses RLS Algorithm

4-47

Example of Adaptive Filter That Uses RLS Algorithm
This section provides an introductory example that uses the RLS adaptive
filter function adaptfilt.rls.

If LMS algorithms represent the simplest and most easily applied adaptive
algorithms, the recursive least squares (RLS) algorithms represents increased
complexity, computational cost, and fidelity. In performance, RLS approaches
the Kalman filter in adaptive filtering applications, at somewhat reduced
required throughput in the signal processor.

Compared to the LMS algorithm, the RLS approach offers faster convergence
and smaller error with respect to the unknown system, at the expense of
requiring more computations.

In contrast to the least mean squares algorithm, from which it can be derived,
the RLS adaptive algorithm minimizes the total squared error between the
desired signal and the output from the unknown system.

Referring to Figure , you see the signal flow graph (or model) for the RLS
adaptive filter system. Note that the signal paths and identifications are the
same whether the filter uses RLS or LMS. The difference lies in the adapting
portion.

Within limits, you can use any of the adaptive filter algorithms to solve an
adaptive filter problem by replacing the adaptive portion of the application
with a new algorithm.

Examples of the sign variants of the LMS algorithms demonstrated this
feature to demonstrate the differences between the sign-data, sign-error, and
sign-sign variations of the LMS algorithm.

One interesting input option that applies to RLS algorithms is not present in
the LMS processes—a forgetting factor, λ, that determines how the algorithm
treats past data input to the algorithm.

When the LMS algorithm looks at the error to minimize, it considers only the
current error value. In the RLS method, the error considered is the total error
from the beginning to the current data point.

Said another way, the RLS algorithm has infinite memory—all error data is
given the same consideration in the total error. In cases where the error value
might come from a spurious input data point or points, the forgetting factor lets

4 Designing Adaptive Filters

4-48

the RLS algorithm reduce the value of older error data by multiplying the old
data by the forgetting factor.

Since 0 ≤ λ < 1, applying the factor is equivalent to weighting the older error.
When λ = 1, all previous error is considered of equal weight in the total error.

As λ approaches zero, the past errors play a smaller role in the total. For
example, when λ = 0.9, the RLS algorithm multiplies an error value from 50
samples in the past by an attenuation factor of 0.950 = 5.15 x 10-3, considerably
deemphasizing the influence of the past error on the current total error.

adaptfilt.rls Example—Inverse System Identification
Rather than use a system identification application to demonstrate the RLS
adaptive algorithm, or a noise cancellation model, this example use the inverse
system identification model shown in here.

Cascading the adaptive filter with the unknown filter causes the adaptive filter
to converge to a solution that is the inverse of the unknown system.

If the transfer function of the unknown is H(z) and the adaptive filter transfer
function is G(z), the error measured between the desired signal and the signal
from the cascaded system reaches its minimum when the product of H(z) and
G(z) is 1, G(z)*H(z) = 1. For this relation to be true, G(z) must equal -H(z), the
inverse of the transfer function of the unknown system.

To demonstrate that this is true, create a signal to input to the cascaded filter
pair.

x = randn(1,3000);

text

Unknown System

Adaptive Filter SUM
x(k)

d(k)

y(k) e(k)
_

+

Example of Adaptive Filter That Uses RLS Algorithm

4-49

In the cascaded filters case, the unknown filter results in a delay in the signal
arriving at the summation point after both filters. To prevent the adaptive
filter from trying to adapt to a signal it has not yet seen (equivalent to
predicting the future), delay the desired signal by 32 samples, the order of the
unknown system.

Generally, you do not know the order of the system you are trying to identify.
In that case, delay the desired signal by the number of samples equal to half
the order of the adaptive filter. Delaying the input requires prepending 12
zero-values samples to x.

delay = zeros(1,12);
d = [delay x(1:2988)]; % Concatenate the delay and the signal.

You have to keep the desired signal vector d the same length as x, hence adjust
the signal element count to allow for the delay samples.

Although not generally true, for this example you know the order of the
unknown filter, so you add a delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

ufilt = fir1(12,0.55,'low');

Filtering x provides the input data signal for the adaptive algorithm function.

xdata = filter(ufilt,1,x);

To set the input argument values for the adaptfilt.rls object, use the
constructor adaptfilt.rls, providing the needed arguments l, lambda, and
invcov.

For more information about the input conditions to prepare the RLS algorithm
object, refer to adaptfilt.rls in the reference section of this user’s guide.

p0 = 2*eye(13);
lambda = 0.99;
ha = adaptfilt.rls(13,lambda,p0);

Most of the process to this point is the same as the preceding examples.
However, since this example seeks to develop an inverse solution, you need to
be careful about which signal carries the data and which is the desired signal.

Earlier examples of adaptive filters use the filtered noise as the desired signal.
In this case, the filtered noise (xdata) carries the unknown system information.

4 Designing Adaptive Filters

4-50

With Gaussian distribution and variance of 1, the unfiltered noise d is the
desired signal. The code to run this adaptive filter example is

[y,e] = filter(ha,xdata,d);

where y returns the coefficients of the adapted filter and e contains the error
signal as the filter adapts to find the inverse of the unknown system. You can
review the returned elements of the adapted filter in the properties of ha.

The next figure presents the results of the adaptation. In the figure, the
magnitude response curves for the unknown and adapted filters show. As a
reminder, the unknown filter was a lowpass filter with cutoff at 0.55, on the
normalized frequency scale from 0 to 1.

Viewed alone (refer to the following figure), the inverse system looks like a fair
compensator for the unknown lowpass filter—a high pass filter with linear
phase.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Comparing the Inverse Filter to the Unknown System

Inverse Filter
Unknown System

Example of Adaptive Filter That Uses RLS Algorithm

4-51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1200

−1000

−800

−600

−400

−200

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

0

10

20

30

40

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Inverse Filter Resulting from RLS Adaptation

4 Designing Adaptive Filters

4-52

Selected Bibliography
[1] Hayes, Monson H., Statistical Digital Signal Processing and Modeling,
John Wiley & Sons, 1996, 493–552.

[2] Haykin, Simon, Adaptive Filter Theory, Prentice-Hall, Inc., 1996

-53

User’s Guide

Digital Frequency Transformations
(p. 5-1)

Provides tutorial information about performing
transformations of discrete-time filters

Using FDATool with the Filter Design
Toolbox (p. 6-1)

Presents a detailed reference covering the fixed-point,
multirate, and scaling pages of the Filter Design and
Analysis Tool

Reference for the Properties of Filter
Objects (p. 7-1)

Provides:

• A summary of the filter objects properties

• A detailed filter property reference, including
descriptions of the filter structures and properties for
adaptfilt, dfilt, and mfilt objects

Functions — By Category (p. 8-2)
(online only)

Provides:

• Tables that include short descriptions of the functions
in this toolbox

• A detailed alphabetical function reference

Bibliography (p. A-1) Lists references for filtering texts and papers

-54

5
Digital Frequency
Transformations

Introduction (p. 5-2) Provides background about digital frequency
transformations for filters

Definition of the Problem (p. 5-3) Presents and defines the problem of using digital
frequency transformation

Frequency Transformations for Real
Filters (p. 5-11)

Discusses the functions for transforming real filters to
other real filters

Frequency Transformations for
Complex Filters (p. 5-26)

Describes the functions for transforming complex filters
to other complex filters, or real filters to complex filters

5 Digital Frequency Transformations

5-2

Introduction
Converting existing FIR or IIR filter designs to a modified IIR form is often
done using allpass frequency transformations. Although the resulting designs
can be considerably more expensive in terms of dimensionality than the
prototype (original) filter, their ease of use in fixed or variable applications is a
big advantage.

The general idea of the frequency transformation is to take an existing
prototype filter and produce another filter from it that retains some of the
characteristics of the prototype, in the frequency domain. Transformation
functions achieve this by replacing each delaying element of the prototype filter
with an allpass filter carefully designed to have a prescribed phase
characteristic for achieving the modifications requested by the designer.

This tutorial gives an overview and interpretation of the frequency
transformations, and describes the range of transformations available to the
toolbox user. To aid this purpose the tutorial has been arranged into three
sections:

• “Definition of the Problem” on page 5-3 introduces the frequency
transformation concept and provides its mathematical and intuitive
interpretations.

• “Frequency Transformations for Real Filters” on page 5-11 describes the real
frequency transformations available in the toolbox. Such transformations
start from a real prototype filter and return a real target filter.

• “Frequency Transformations for Complex Filters” on page 5-26 describes
complex frequency transformations available in the toolbox. Such
transformations start from the any real or complex prototype filter and
return a complex target filter.

Definition of the Problem

5-3

Definition of the Problem
The basic form of mapping in common use is

The HA(z) is an Nth-order allpass mapping filter given by

where

Ho(z)— Transfer function of the prototype filter

HA(z)— Transfer function of the allpass mapping filter

HT(z)— Transfer function of the target filter

Let’s look at a simple example of the transformation given by

The target filter has its poles and zeroes flipped across the origin of the real and
imaginary axes. For the real filter prototype, it gives a mirror effect against 0.5,
which means that lowpass Ho(z) gives rise to a real highpass HT(z). This is
shown in the following figure for the prototype filter designed as a third-order
halfband elliptic filter.

HT z() Ho HA z()[]=

HA z() S

αiz
i–

i 0=

N

∑

αiz
N– i+

i 0=

N

∑

NA z()
DA z()
----------------= =

α0 1=

HT z() Ho z–()=

5 Digital Frequency Transformations

5-4

Figure 5-1: Example of a Simple Mirror Transformation

The choice of an allpass filter to provide the frequency mapping is necessary to
provide the frequency translation of the prototype filter frequency response to
the target filter by changing the frequency position of the features from the
prototype filter without affecting the overall shape of the filter response.

The phase response of the mapping filter normalized to π can be interpreted as
a translation function:

The graphical interpretation of the frequency transformation is shown in the
figure below. The complex multiband transformation takes a real lowpass filter
and converts it into a number of passbands around the unit circle.

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)
0 0.2 0.4 0.6 0.8 1

−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

Prototype filter Pole−Zero plot Target filter Pole−Zero plot

H wnew() ωold=

Definition of the Problem

5-5

Figure 5-2: Graphical Interpretation of the Mapping Process

Most of the frequency transformations are based on the second-order allpass
mapping filter:

The two degrees of freedom provided by α1 and α2 choices are not fully used by
the usual restrictive set of “flat-top” classical mappings like lowpass to
bandpass. Instead, any two transfer function features can be migrated to
(almost) any two other frequency locations if α1 and α2 are chosen so as to keep
the poles of HA(z) strictly outside the unit circle (since HA(z) is substituted for
z in the prototype transfer function). Moreover, as first pointed out by
Constantinides, the selection of the outside sign influences whether the
original feature at zero can be moved (the minus sign, a condition known as

HA z()
1 α1z 1– α2z 2–+ +

α2 α1z 1– z 2–+ +
--±=

5 Digital Frequency Transformations

5-6

“DC mobility”) or whether the Nyquist frequency can be migrated (the “Nyquist
mobility” case arising when the leading sign is positive).

All the transformations forming the package are explained in the next sections
of the tutorial. They are separated into those operating on real filters and those
generating or working with complex filters. The choice of transformation
ranges from standard Constantinides first and second-order ones [19][20] up to
the real multiband filter by Mullis and Franchitti [21], and the complex
multiband filter and real/complex multipoint ones by Krukowski, Cain and
Kale [22].

Selecting Features Subject to Transformation
Choosing the appropriate frequency transformation for achieving the required
effect and the correct features of the prototype filter is very important and
needs careful consideration. It is not advisable to use a first-order
transformation for controlling more than one feature. The mapping filter will
not give enough flexibility. It is also not good to use higher order
transformation just to change the cutoff frequency of the lowpass filter. The
increase of the filter order would be too big, without considering the additional
replica of the prototype filter that may be created in undesired places.

Figure 5-3: Feature Selection for Real Lowpass to Bandpass Transformation

To illustrate the idea, the second-order real multipoint transformation was
applied three times to the same elliptic halfband filter in order to make it into
a bandpass filter. In each of the three cases, two different features of the

Definition of the Problem

5-7

prototype filter were selected in order to obtain a bandpass filter with passband
ranging from 0.25 to 0.75. The position of the DC feature was not important,
but it would be advantageous if it were in the middle between the edges of the
passband in the target filter. In the first case the selected features were the left
and the right band edges of the lowpass filter passband, in the second case they
were the left band edge and the DC, in the third case they were DC and the
right band edge.

Figure 5-4: Result of choosing different features

The results of all three approaches are completely different. For each of them
only the selected features were positioned precisely where they were required.
In the first case the DC is moved toward the left passband edge just like all the
other features close to the left edge being squeezed there. In the second case the
right passband edge was pushed way out of the expected target as the precise
position of DC was required. In the third case the left passband edge was pulled
toward the DC in order to position it at the correct frequency. The conclusion
is that if only the DC can be anywhere in the passband, the edges of the
passband should have been selected for the transformation. For most of the
cases requiring the positioning of passbands and stopbands, designers should

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

Left & right band−edges (solid)

Left band−edge and DC (dashed)

DC and right band−edges (dotted)

Magniture responses |H(ω)| in dB

Normalized Frequency (×π rad/sample)

5 Digital Frequency Transformations

5-8

always choose the position of the edges of the prototype filter in order to make
sure that they get the edges of the target filter in the correct places. Frequency
responses for the three cases considered are shown in the figure. The prototype
filter was a third-order elliptic lowpass filter with cutoff frequency at 0.5.

The MATLAB code used to generate the figure is given here.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

In the example the requirements are set to create a real bandpass filter with
passband edges at 0.1 and 0.3 out of the real lowpass filter having the cutoff
frequency at 0.5. This is attempted in three different ways. In the first
approach both edges of the passband are selected, in the second approach the
left edge of the passband and the DC are chosen, while in the third approach
the DC and the right edge of the passband are taken:

[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [0.0, 0.5], [0.2, 0.3]);

Mapping from Prototype Filter to Target Filter
In general the frequency mapping converts the prototype filter, Ho(z), to the
target filter, HT(z), using the NAth-order allpass filter, HA(z). The general form
of the allpass mapping filter is given in Equation . The frequency mapping is a
mathematical operation that replaces each delayer of the prototype filter with
an allpass filter. There are two ways of performing such mapping. The choice
of the approach is dependent on how prototype and target filters are
represented.

When the Nth-order prototype filter is given with pole-zero form

the mapping will replace each pole, pi, and each zero, zi, with a number of poles
and zeros equal to the order of the allpass mapping filter:

Ho z()

z zi–()

i 1=

N

∑

z pi–()

i 1=

N

∑

-----------------------------=

Definition of the Problem

5-9

The root finding needs to be used on the bracketed expressions in order to find
the poles and zeros of the target filter.

When the prototype filter is described in the numerator-denominator form:

Then the mapping process will require a number of convolutions in order to
calculate the numerator and denominator of the target filter:

For each coefficient αi and βi of the prototype filter the NAth-order polynomials
must be convolved N times. Such approach may cause rounding errors for large
prototype filters and/or high order mapping filters. In such a case the user
should consider the alternative of doing the mapping using via poles and zeros.

Summary of Frequency Transformations

Advantages

• Most frequency transformations are described by closed-form solutions or
can be calculated from the set of linear equations.

• They give predictable and familiar results.

• Ripple heights from the prototype filter are preserved in the target filter.

• They are architecturally appealing for variable and adaptive filters.

Ho z()

S αkzk

k 0=

N 1–

∑ zi αkzN k–

k 0=

N 1–

∑⋅–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

i 1=

N

∑

S αkzk

k 0=

N 1–

∑ pi αkzN k–

k 0=

N 1–

∑⋅–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

i 1=

N

∑

--=

HT z()
β0zN β1zN 1– … βN+ + +

α0zN α1zN 1– … αN+ + +
--

z HA z()=

=

HT z()
β1NA z()N β2NA z()N 1– DA z() … βNDA z()N+ + +

β1NA z()N β2NA z()N 1– DA z() … βNDA z()N+ + +
---=

5 Digital Frequency Transformations

5-10

Disadvantages

• There are cases when using optimization methods to design the required
filter gives better results.

• High-order transformations increase the dimensionality of the target filter,
which may give expensive final results.

• Starting from fresh designs helps avoid locked-in compromises.

Frequency Transformations for Real Filters

5-11

Frequency Transformations for Real Filters
This section discusses real frequency transformations that take the real
lowpass prototype filter and convert it into a different real target filter. The
target filter has its frequency response modified in respect to the frequency
response of the prototype filter according to the characteristic of the applied
frequency transformation:

• “Real Frequency Shift” on page 5-12

• “Real Lowpass to Real Lowpass” on page 5-13

• “Real Lowpass to Real Highpass” on page 5-15

• “Real Lowpass to Real Bandpass” on page 5-17

• “Real Lowpass to Real Bandstop” on page 5-19

• “Real Lowpass to Real Multiband” on page 5-21

• “Real Lowpass to Real Multipoint” on page 5-23

5 Digital Frequency Transformations

5-12

Real Frequency Shift
Real frequency shift transformation uses a second-order allpass mapping filter.
It performs an exact mapping of one selected feature of the frequency response
into its new location, additionally moving both the Nyquist and DC features.
This effectively moves the whole response of the lowpass filter by the distance
specified by the selection of the feature from the prototype filter and the target
filter. As a real transformation, it works in a similar way for positive and
negative frequencies.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

The example below shows how this transformation can be used to move the
response of the prototype lowpass filter in either direction. Please note that
because the target filter must also be real, the response of the target filter will
inherently be disturbed at frequencies close to Nyquist and close to DC. Here
is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

HA z() z 1– 1 αz 1––

α z 1––
---------------------⋅=

α

π
2
--- ωold 2ωnew–()cos

π
2
---ωoldcos

--- for π
2
--- ωold 2ωnew–()cos 1<

π
2
--- ωold 2ωnew–()sin

π
2
---ωoldsin

--- otherwise

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

=

Frequency Transformations for Real Filters

5-13

Figure 5-5: Example of Real Frequency Shift Mapping

Real Lowpass to Real Lowpass
Real lowpass filter to real lowpass filter transformation uses a first-order
allpass mapping filter. It performs an exact mapping of one feature of the
frequency response into the new location keeping DC and Nyquist features
fixed. As a real transformation, it works in a similar way for positive and
negative frequencies. It is important to mention that using first-order mapping
ensures that the order of the filter after the transformation is the same as it
was originally.

with α given by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

HA z() 1 αz 1––

α z 1––

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

5 Digital Frequency Transformations

5-14

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to modify the cutoff frequency of the prototype
filter. The MATLAB code for this example is shown in the figure below.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The cutoff frequency moves from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

α

π
2
--- wold wnew–()sin

π
2
--- wold wnew+()sin

---=

Frequency Transformations for Real Filters

5-15

Figure 5-6: Example of Real Lowpass to Real Lowpass Mapping

Real Lowpass to Real Highpass
Real lowpass filter to real highpass filter transformation uses a first-order
allpass mapping filter. It performs an exact mapping of one feature of the
frequency response into the new location additionally swapping DC and
Nyquist features. As a real transformation, it works in a similar way for
positive and negative frequencies. Just like in the previous transformation
because of using a first-order mapping, the order of the filter before and after
the transformation is the same.

with α given by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

HA z() 1 αz 1–+

α z 1–+

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

5 Digital Frequency Transformations

5-16

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to convert the lowpass filter into a highpass
filter with arbitrarily chosen cutoff frequency. In the MATLAB code below, the
lowpass filter is converted into a highpass with cutoff frequency shifted from0.5
to 0.75. Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example moves the cutoff frequency from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

α

π
2
--- wold wnew+()cos

π
2
--- wold wnew–()cos

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=

Frequency Transformations for Real Filters

5-17

Figure 5-7: Example of Real Lowpass to Real Highpass Mapping

Real Lowpass to Real Bandpass
Real lowpass filter to real bandpass filter transformation uses a second-order
allpass mapping filter. It performs an exact mapping of two features of the
frequency response into their new location additionally moving a DC feature
and keeping the Nyquist feature fixed. As a real transformation, it works in a
similar way for positive and negative frequencies.

with α and β given by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

HA z() 1 β 1 α+()z 1–– αz 2––

α β 1 α+()z 1–– z 2–+
--
⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

5 Digital Frequency Transformations

5-18

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how to move the response of the prototype lowpass
filter in either direction. Please note that because the target filter must also be
real, the response of the target filter will inherently be disturbed at frequencies
close to Nyquist and close to DC. Here is the MATLAB code for generating the
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates the passband between 0.5 and 0.75:

[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2,– wnew 1,+()sin

π
4
--- 2wold wnew 2, wnew 1,–+()sin

---=

β π
2
--- wnew 1, wnew 2,+()cos=

Frequency Transformations for Real Filters

5-19

Figure 5-8: Example of Real Lowpass to Real Bandpass Mapping

Real Lowpass to Real Bandstop
Real lowpass filter to real bandstop filter transformation uses a second-order
allpass mapping filter. It performs an exact mapping of two features of the
frequency response into their new location additionally moving a Nyquist
feature and keeping the DC feature fixed. This effectively creates a stopband
between the selected frequency locations in the target filter. As a real
transformation, it works in a similar way for positive and negative frequencies.

with α and β given by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

HA z() 1 β 1 α+()z 1–– αz 2–+

α β 1 α+()z 1–– z 2–+
--=

5 Digital Frequency Transformations

5-20

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how this transformation can be used to convert the
prototype lowpass filter with cutoff frequency at 0.5 into a real bandstop filter
with the same passband and stopband ripple structure and stopband
positioned between 0.5 and 0.75. Here is the MATLAB code for generating the
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2, wnew 1,–+()cos

π
4
--- 2wold wnew 2, wnew 1,+–()cos

---=

β π
2
--- wnew 1, wnew 2,+()cos=

Frequency Transformations for Real Filters

5-21

Figure 5-9: Example of Real Lowpass to Real Bandstop Mapping

Real Lowpass to Real Multiband
This high-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into a number of new
locations in the target filter. Its most common use is to convert a real lowpass
with predefined passband and stopband ripples into a real multiband filter
with N arbitrary band edges, where N is the order of the allpass mapping filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

5 Digital Frequency Transformations

5-22

The coefficients α are given by

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility or either DC or Nyquist feature:

The example below shows how this transformation can be used to convert the
prototype lowpass filter with cutoff frequency at 0.5 into a filter having a
number of bands positioned at arbitrary edge frequencies 1/5, 2/5, 3/5 and 4/5.
Parameter S was such that there is a passband at DC. Here is the MATLAB
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates three passbands, from DC to 0.2, from 0.4
to 0.6 and from 0.8 to Nyquist:

[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], `pass');

HA z() S

αiz
i–

i 0=

N

∑

αiz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

α0 1= k 1 … N, ,=

αk S

π
2
--- Nωnew 1–()kωold+()sin

π
2
--- N 2k–()ωnew 1–()kωold+()sin

--–=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

S
1 Nyquist
1– DC⎩

⎨
⎧

=

Frequency Transformations for Real Filters

5-23

Figure 5-10: Example of Real Lowpass to Real Multiband Mapping

Real Lowpass to Real Multipoint
This high-order frequency transformation performs an exact mapping of a
number of selected features of the prototype filter frequency response to their
new locations in the target filter. The mapping filter is given by the general IIR
polynomial form of the transfer function as given below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

5 Digital Frequency Transformations

5-24

For the Nth-order multipoint frequency transformation the coefficients α are

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility of either DC or Nyquist feature:

The example below shows how this transformation can be used to move
features of the prototype lowpass filter originally at -0.5 and 0.5 to their new
locations at 0.5 and 0.75, effectively changing a position of the filter passband.
Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.5 to 0.75:

HA z() S

αiz
i–

i 0=

N

∑

αiz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

αN i– zold k, znew k,
i S znew k,

N i–⋅–⋅

i 1=

N

∑ zold k, S znew k,⋅––=

zold k, e
jπωold k,=

znew k, e
jπωnew k,=

k 1 … N, ,=⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

S
1 Nyquist
1– DC⎩

⎨
⎧

=

Frequency Transformations for Real Filters

5-25

[num,den] = iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], `pass');

Figure 5-11: Example of Real Lowpass to Real Multipoint Mapping

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

5 Digital Frequency Transformations

5-26

Frequency Transformations for Complex Filters
This section discusses complex frequency transformation that take the complex
prototype filter and convert it into a different complex target filter. The target
filter has its frequency response modified in respect to the frequency response
of the prototype filter according to the characteristic of the applied frequency
transformation from:

• “Complex Frequency Shift” on page 5-26

• “Real Lowpass to Complex Bandpass” on page 5-28

• “Real Lowpass to Complex Bandstop” on page 5-29

• “Real Lowpass to Complex Multiband” on page 5-31

• “Real Lowpass to Complex Multipoint” on page 5-33

• “Complex Bandpass to Complex Bandpass” on page 5-35

Complex Frequency Shift
Complex frequency shift transformation is the simplest first-order
transformation that performs an exact mapping of one selected feature of the
frequency response into its new location. At the same time it rotates the whole
response of the prototype lowpass filter by the distance specified by the
selection of the feature from the prototype filter and the target filter.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

A special case of the complex frequency shift is a, so called, Hilbert
Transformer. It can be designed by setting the parameter to |α|=1, that is

HA z() αz 1–=

α e
j2π νnew νold–()

=

α
1 forward
1– inverse⎩

⎨
⎧

=

Frequency Transformations for Complex Filters

5-27

The example below shows how to apply this transformation to rotate the
response of the prototype lowpass filter in either direction. Please note that
because the transformation can be achieved by a simple phase shift operator,
all features of the prototype filter will be moved by the same amount. Here is
the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

Figure 5-12: Example of Complex Frequency Shift Mapping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt

5 Digital Frequency Transformations

5-28

Real Lowpass to Complex Bandpass
This first-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into two new locations in the
target filter creating a passband between them. Both Nyquist and DC features
can be moved with the rest of the frequency response.

with α and β are given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real
halfband lowpass filter into a complex bandpass filter with band edges at 0.5
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a half band elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);

HA z() β αz 1––

z 1– αβ–
---------------------=

α

π
4
--- 2wold wnew 2, wnew 1,+–()sin

π 2wold wnew 2, wnew 1,–+()sin
---=

β e
j– π wnew wold–()

=

Frequency Transformations for Complex Filters

5-29

Figure 5-13: Example of Real Lowpass to Complex Bandpass Mapping

Real Lowpass to Complex Bandstop
This first-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into two new locations in the
target filter creating a stopband between them. Both Nyquist and DC features
can be moved with the rest of the frequency response.

with α and β are given by

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1

ωt2

HA z() β αz 1––

αβ z 1––
---------------------=

α
π 2wold νnew 2, νnew 1,–+()cos

π 2wold νnew 2, νnew 1,+–()cos
--=

5 Digital Frequency Transformations

5-30

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real
halfband lowpass filter into a complex bandstop filter with band edges at 0.5
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);

β e
j– π wnew wold–()

=

Frequency Transformations for Complex Filters

5-31

Figure 5-14: Example of Real Lowpass to Complex Bandstop Mapping

Real Lowpass to Complex Multiband
This high-order transformation performs an exact mapping of one selected
feature of the prototype filter frequency response into a number of new
locations in the target filter. Its most common use is to convert a real lowpass
with predefined passband and stopband ripples into a multiband filter with
arbitrary band edges. The order of the mapping filter must be even, which
corresponds to an even number of band edges in the target filter. The Nth-order
complex allpass mapping filter is given by the general transfer function form
as shown below.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

5 Digital Frequency Transformations

5-32

The coefficients α are calculated from the system of linear equations:

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,i — Position of features originally at ±ωold in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC,
giving the additional flexibility of achieving the required mapping:

The example shows the use of such a transformation for converting a prototype
real lowpass filter with the cutoff frequency at 0.5 into a multiband complex
filter with band edges at 0.2, 0.4, 0.6 and 0.8, creating two passbands around
the unit circle. Here is the MATLAB code for generating the figure.

HA z() S

αiz
i–

i 0=

N

∑

αi∗z N– i+

i 0=

N

∑

------------------------------------=

α0 1=

ℜ αi() β1 k, β2 k,cos–cos[] ℑ αi() β1 k, β2 k,sin+sin[]⋅+⋅

i 1=

N

∑ β3 k,cos=

ℜ αi() β1 k,sin β2 k,sin–[] ℑ αi() β1 k, β2 k,cos+cos[]⋅–⋅

i 1=

N

∑ β3 k,sin=

β1 k, π νold 1–()k⋅ νnew k, N k–()+[]–=

β2 k, π ΔC νnew k, k+[]–=

β3 k, π νold 1–()k⋅ νnew k, N+[]–=

k 1…N=⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

S e jπΔC–=

Frequency Transformations for Complex Filters

5-33

Figure 5-15: Example of Real Lowpass to Complex Multiband Mapping

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two complex passbands:

[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);

Real Lowpass to Complex Multipoint
This high-order transformation performs an exact mapping of a number of
selected features of the prototype filter frequency response to their new
locations in the target filter. The Nth-order complex allpass mapping filter is
given by the general transfer function form as shown below.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

5 Digital Frequency Transformations

5-34

The coefficients α can be calculated from the system of linear equations:

where

ωold,k — Frequency location of the first feature in the prototype filter

ωnew,k — Position of the feature originally at ωold,k in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC,
giving the additional flexibility of achieving the required mapping:

The example below shows how this transformation can be used to move one
selected feature of the prototype lowpass filter originally at -0.5 to two new
frequencies -0.5 and 0.1, and the second feature of the prototype filter from 0.5

HA z() S

αiz
i–

i 0=

N

∑

αi∗z N– i+

i 0=

N

∑

------------------------------------=

α0 1=

ℜ αi() β1 k, β2 k,cos–cos[] ℑ αi() β1 k, β2 k,sin+sin[]⋅+⋅

i 1=

N

∑ β3 k,cos=

ℜ αi() β1 k,sin β2 k,sin–[] ℑ αi() β1 k, β2 k,cos+cos[]⋅–⋅

i 1=

N

∑ β3 k,sin=

β1 k,
π
2
--- wold k, wnew k, N k–()+[]–=

β2 k,
π
2
--- 2ΔC wnew k, k+[]–=

β3 k,
π
2
--- wold k, wnew k, N+[]–=

k 1…N=⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

S e jπΔC–=

Frequency Transformations for Complex Filters

5-35

to new locations at -0.25 and 0.3. This creates two nonsymmetric passbands
around the unit circle, creating a complex filter. Here is the MATLAB code for
generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two nonsymmetric passbands:

[num,den] = iirlp2xc(b,a,0.5*[-1,1,-1,1], [-0.5,-0.25,0.1,0.3]);

Figure 5-16: Example of Real Lowpass to Complex Multipoint Mapping

Complex Bandpass to Complex Bandpass
This first-order transformation performs an exact mapping of two selected
features of the prototype filter frequency response into two new locations in the

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo1 ωo2

ωo3 ωo4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2 ωt3 ωt4

5 Digital Frequency Transformations

5-36

target filter. Its most common use is to adjust the edges of the complex
bandpass filter.

with α and β are given by

where

ωold,1 — Frequency location of the first feature in the prototype filter

ωold,2 — Frequency location of the second feature in the prototype filter

ωnew,1 — Position of the feature originally at ωold,1 in the target filter

ωnew,2 — Position of the feature originally at ωold,2 in the target filter

The example below shows how this transformation can be used to modify the
position of the passband of the prototype filter, either real or complex. In the
example below the prototype filter passband spanned from 0.5 to 0.75. It was
converted to having a passband between -0.5 and 0.1. Here is the MATLAB
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.25 to 0.75:

[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);

HA z() α γ βz 1––()

z 1– β– γ
-----------------------------=

α

π
4
--- wold 2, wold 1,–() wnew 2, wnew 1,–()–()sin

π
4
--- wold 2, wold 1,–() wnew 2, wnew 1,–()+()sin

--=

α e
j– π wold 2, wold 1,–()

=

γ e
j– π wnew 2, wnew 1,–()

=

Frequency Transformations for Complex Filters

5-37

Figure 5-17: Example of Complex Bandpass to Complex Bandpass Mapping

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency (×π rad/sample)

ωo1 ωo2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency (×π rad/sample)

ωt1 ωt2

5 Digital Frequency Transformations

5-38

6
Using FDATool with the
Filter Design Toolbox

Designing Advanced Filters in
FDATool (p. 6-5)

Using FDATool to design more advanced filters. This
sections assumes you are familiar with FDATool from the
Signal Processing Toolbox.

Switching FDATool to Quantization
Mode (p. 6-8)

After you open FDATool, this section explain how to
access the quantization features in the tool.

Quantizing Filters in the Filter Design
and Analysis Tool (p. 6-12)

Explains how you quantize a filter in FDATool.

Analyzing Filters with a Noise-Based
Method (p. 6-23)

FDATool provides a variety of analysis methods for
quantized filters; this section explains how to use two of
them.

Scaling Second-Order Section Filters
(p. 6-30)

You can adjust the way FDATool scales SOS filters. To
learn how, read this section.

Reordering the Sections of
Second-Order Section Filters (p. 6-38)

Shows you how to change the order of the sections in an
SOS filter.

Viewing SOS Filter Sections (p. 6-46) Shows you how to use the SOS View feature in FDATool
to analyze the sections of SOS filters.

Importing and Exporting Quantized
Filters (p. 6-53)

Shows you how to import and export filters to and from
your MATLAB workspace, as well as to other
destinations.

Importing XILINX Coefficient (.COE)
Files (p. 6-58)

Import the coefficients from a XILINX .coe file to create
a quantized filter in FDATool.

Transforming Filters (p. 6-59) Describes how you use the filter transformation
capability in FDATool to change the magnitude response
of your FIR or IIR filters in the tool.

6 Using FDATool with the Filter Design Toolbox

6-2

Designing Multirate Filters in
FDATool (p. 6-70)

Explains how to use FDATool to design multirate filters.
This section assumes you are familiar with FDATool from
the Signal Processing Toolbox and you are familiar with
mfilt objects.

Quantizing Multirate Filters (p. 6-81) Explains how to use FDATool to quantize multirate
filters.

Realizing Filters as Simulink
Subsystem Blocks (p. 6-84)

Using the Realize Model feature to create a Simulink
model of your quantized filter as a subsystem block.

Getting Help for FDATool (p. 6-89) Shows you how to get help about the features in FDATool,
such as using Help or using the What’s This option.

6-3

The Filter Design Toolbox adds new dialogs and operating modes, and new
menu selections, to the Filter Design and Analysis Tool (FDATool) provided by
the Signal Processing Toolbox. From the new dialogs, one titled Set
Quantization Parameters and one titled Frequency Transformations, you
can:

• Design advanced filters that Signal Processing Toolbox does not provide the
design tools to develop.

• View Simulink models of the filter structures available in the toolbox.

• Quantize double-precision filters you design in this GUI using the design
mode.

• Quantize double-precision filters you import into this GUI using the import
mode.

• Analyze quantized filters.

• Scale second-order section filters.

• Select the quantization settings for the properties of the quantized filter
displayed by the tool:

- Coefficients—select the quantization options applied to the filter
coefficients

- Input/output—control how the filter processes input and output data

- Filter Internals—specify how the arithmetic for the filter behaves

• Design multirate filters.

• Transform both FIR and IIR filters from one response to another.

After you import a filter in to FDATool, the options on the quantization dialog
let you quantize the filter and investigate the effects of various quantization
settings.

Options in the frequency transformations dialog let you change the frequency
response of your filter, keeping various important features while changing the
response shape.

This section presents the following information and procedures for using
FDATool:

• “Designing Advanced Filters in FDATool” on page 6-5

• “Switching FDATool to Quantization Mode” on page 6-8

• “Quantizing Filters in the Filter Design and Analysis Tool” on page 6-12

6 Using FDATool with the Filter Design Toolbox

6-4

• “Analyzing Filters with a Noise-Based Method” on page 6-23

• “Choosing Quantized Filter Structures” on page 6-28

• “Reordering the Sections of Second-Order Section Filters” on page 6-38

• “Viewing SOS Filter Sections” on page 6-46

• “Importing XILINX Coefficient (.COE) Files” on page 6-58

• “Transforming Filters” on page 6-59

• “Designing Multirate Filters in FDATool” on page 6-70

• “Realizing Filters as Simulink Subsystem Blocks” on page 6-84

Designing Advanced Filters in FDATool

6-5

Designing Advanced Filters in FDATool
Adding the Filter Design Toolbox to your tool suite adds a number of filter
design techniques to FDATool. Use the new filter responses to develop filters
that meet more complex requirements than those you can design in the Signal
Processing Toolbox. While the designs in FDATool are available as command
line functions, the graphical user interface of FDATool makes the design
process more clear and easier to accomplish.

As you select a response type, the options in the panels to the right in FDATool
change to let you set the values that define your filter. You also see that the
analysis area includes a diagram (called a design mask)that describes the
options for the filter response you choose.

By reviewing the mask you can see how the options are defined and how to use
them. While this is usually straightforward for lowpass or highpass filter
responses, setting the options for the arbitrary response types or the
peaking/notching filters is more complicated. Having the masks leads you to
your result more easily.

Changing the filter design method changes the available response type options.
Similarly, the response type you select may change the filter design methods
you can choose.

Example—Design a Notch Filter
Notch filters aim to remove one or a few frequencies from a broader
spectrum.You must specify the frequencies to remove by setting the filter
design options in FDATool appropriately:

• Response Type

• Design Method

• Frequency Specifications

• Magnitude Specifications

Here is how you design a notch filter that removes concert A (440 Hz) from an
input musical signal spectrum.

1 Select Notching from the Differentiator list in Response Type.

2 Select IIR in Filter Design Method and choose Single Notch from the list.

6 Using FDATool with the Filter Design Toolbox

6-6

3 For the Frequency Specifications, set Units to Hz and Fs, the full scale
frequency, to 10000.

4 Set the location of the center of the notch, in either normalized frequency
or Hz. For the notch center at 440 Hz, enter 440.

5 To shape the notch, enter the bandwidth, bw, to be 40.

6 Leave the Magnitude Specification in dB (the default) and leave Apass
as 1.

7 Click Design Filter.

FDATool computes the filter coefficients and plots the filter magnitude
response in the analysis area for you to review.

When you design a single notch filter, you do not have the option of setting the
filter order—the Filter Order options are disabled.

Your filter should look about like this:

For more information about a design method, refer to the online Help system.
For instance, to get further information about the Q setting for the notch filter
in FDATool, enter

Designing Advanced Filters in FDATool

6-7

doc iirnotch

at the prompt. This opens the Help browser and displays the reference page for
function iirnotch.

Designing other filters follows a similar procedure, adjusting for different
design specification options as each design requires.

Any one of the designs may be quantized in FDATool and analyzed with the
available analyses on the Analysis menu. For more general information about
FDATool, such as the user interface and areas, refer to the FDATool
documentation in the Signal Processing Toolbox documentation. One way to do
this is to enter

doc signal/fdatool

at the prompt. The signal qualifier is necessary to open the reference page in
the Signal Processing Toolbox documentation, rather than the page in the
Filter Design Toolbox documentation. You might also look at the general
section on FDATool in the Signal Processing Toolbox User’s Guide.

6 Using FDATool with the Filter Design Toolbox

6-8

Switching FDATool to Quantization Mode
You use the quantization mode in FDATool to quantize filters. Quantization
represents the fourth operating mode for FDATool, along with the filter design,
filter transformation, and import modes. To switch to quantization mode, open
FDATool from the MATLAB command prompt by entering

fdatool

You see FDATool in this configuration.

Switching FDATool to Quantization Mode

6-9

When FDATool opens, click the Set Quantization Parameters button on the
side bar. FDATool switches to quantization mode and you see the following
panel at the bottom of FDATool, with the default double-precision option
shown for Filter arithmetic.

The Filter arithmetic option lets you quantize filters and investigate the
effects of changing quantization settings. To enable the quantization settings
in FDATool, select Fixed-point from the Filter Arithmetic.

The quantization options appear in the lower panel of FDATool. You see tabs
that access various sets of options for quantizing your filter.

6 Using FDATool with the Filter Design Toolbox

6-10

You use the following tabs in the dialog to perform tasks related to quantizing
filters in FDATool:

• Coefficients provides access the settings for defining the coefficient
quantization. This is the default active panel when you switch FDATool to
quantization mode without a quantized filter in the tool. When you import a
fixed-point filter into FDATool, this is the active pane when you switch to
quantization mode.

• Input/Output switches FDATool to the options for quantizing the inputs and
outputs for your filter.

• Filter Internals lets you set a variety of options for the arithmetic your filter
performs, such as how the filter handles the results of multiplication
operations or how the filter uses the accumulator.

Switching FDATool to Quantization Mode

6-11

• Apply—applies changes you make to the quantization parameters for your
filter.

6 Using FDATool with the Filter Design Toolbox

6-12

Quantizing Filters in the Filter Design and Analysis Tool
Quantized filters have properties that define how they quantize data you filter.
Use the Set Quantization Parameters dialog in FDATool to set the properties.
Using options in the Set Quantization Parameters dialog, FDATool lets you
perform a number of tasks:

• Create a quantized filter from a double-precision filter after either importing
the filter from your workspace, or using FDATool to design the prototype
filter.

• Create a quantized filter that has the default structure (Direct form II
transposed) or any structure you choose, and other property values you
select.

• Change the quantization property values for a quantized filter after you
design the filter or import it from your workspace.

When you click Set Quantization Parameters, and then change Filter
Arithmetic to Fixed-point, the quantized filter panel opens in FDATool, with
the coefficient quantization options set to default values. In this image, you see
the options for an SOS filter. Some of the options shown apply only to SOS
filters. Other filter structures present a subset of the options you see here.

Quantizing Filters in the Filter Design and Analysis Tool

6-13

Coefficients Options
To let you set the properties for the filter coefficients that make up your
quantized filter, FDATool lists options for numerator word length (and
denominator word length if you have an IIR filter). The following table lists
each coefficients option and a short description of what the option setting does
in the filter.

Option Name When Used Description

Numerator Word Length FIR filters only Sets the word length used to represent
numerator coefficients in FIR filters.

Numerator Frac. Length FIR/IIR Sets the fraction length used to
interpret numerator coefficients in FIR
filters.

Numerator Range (+/-) FIR/IIR Lets you set the range the numerators
represent. You use this instead of the
Numerator Frac. Length option to set
the precision. When you enter a value x,
the resulting range is -x to x. Range
must be a positive integer.

Coefficient Word Length IIR filters only Sets the word length used to represent
both numerator and denominator
coefficients in IIR filters. You cannot set
different word lengths for the numerator
and denominator coefficients.

Denominator Frac. Length IIR filters Sets the fraction length used to
interpret denominator coefficients in IIR
filters.

Denominator Range (+/-) IIR filters Lets you set the range the denominator
coefficients represent. You use this
instead of the Denominator Frac.
Length option to set the precision.
When you enter a value x, the resulting
range is -x to x. Range must be a
positive integer.

6 Using FDATool with the Filter Design Toolbox

6-14

Input/Output Options
The options that specify how the quantized filter uses input and output values
are listed in the table below. In the following picture you see the options for an
SOS filter.

Best-precision fraction
lengths

All filters Directs FDATool to select the fraction
lengths for numerator (and denominator
where available) values to maximize the
filter performance. Selecting this option
disables all of the fraction length options
for the filter.

Scale Values frac. length SOS IIR filters Sets the fraction length used to
interpret the scale values in SOS filters.

Scale Values range (+/-) SOS IIR filters Lets you set the range the SOS scale
values represent. You use this with SOS
filters to adjust the scaling used
between filter sections. Setting this
value disables the Scale Values frac.
length option. When you enter a value
x, the resulting range is -x to x. Range
must be a positive integer.

Use unsigned
representation

All filters Tells FDATool to interpret the
coefficients as unsigned values.

Scale the numerator
coefficients to fully utilize
the entire dynamic range

All filters Directs FDATool to scale the numerator
coefficients to effectively use the
dynamic range defined by the
numerator word length and fraction
length format.

Option Name When Used Description

Quantizing Filters in the Filter Design and Analysis Tool

6-15

Option Name When Used Description

Input Word Length All filters Sets the word length used to represent
the input to a filter.

Input fraction length All filters Sets the fraction length used to interpret
input values to filter.

Input range (+/-) All filters Lets you set the range the inputs
represent. You use this instead of the
Input fraction length option to set the
precision. When you enter a value x, the
resulting range is -x to x. Range must be
a positive integer.

Output word length All filters Sets the word length used to represent
the output from a filter.

6 Using FDATool with the Filter Design Toolbox

6-16

Avoid overflow All filters Directs the filter to set the fraction
length for the input to prevent the
output values from exceeding the
available range as defined by the word
length. Clearing this option lets you set
Output fraction length.

Output fraction length All filters Sets the fraction length used to
represent output values from a filter.

Output range (+/-) All filters Lets you set the range the outputs
represent. You use this instead of the
Output fraction length option to set the
precision. When you enter a value x, the
resulting range is -x to x. Range must be
a positive integer.

Stage input word length SOS filters only Sets the word length used to represent
the input to an SOS filter section.

Avoid overflow SOS filters only Directs the filter to use a fraction length
for stage inputs that prevents overflows
in the values. When you clear this
option, you can set Stage input fraction
length.

Stage input fraction length SOS filters only Sets the fraction length used to
represent input to a section of an SOS
filter.

Stage output word length SOS filters only Sets the word length used to represent
the output from an SOS filter section.

Option Name When Used Description

Quantizing Filters in the Filter Design and Analysis Tool

6-17

Filter Internals Options
The options that specify how the quantized filter performs arithmetic
operations are listed in the table after the figure. In the following picture you
see the options for an SOS filter.

Avoid overflow SOS filters only Directs the filter to use a fraction length
for stage outputs that prevents overflows
in the values. When you clear this
option, you can set Stage output
fraction length.

Stage output fraction
length

SOS filters only Sets the fraction length used to
represent the output from a section of an
SOS filter.

Option Name When Used Description

6 Using FDATool with the Filter Design Toolbox

6-18

Option Equivalent Filter Property
(using wildcard *)

Description

Round towards RoundMode Sets the mode the filter uses to
quantize numeric values when the
values lie between representable
values for the data format (word and
fraction lengths). Choose from one of:

- Ceiling—round up to the nearest
allowable quantized value.

- Floor—round down to the next
allowable quantized value.

- Nearest—round to the nearest
allowable quantized value.
Numbers that are halfway
between the two nearest
allowable quantized values are
rounded up.

- Nearest(convergent)—round to
the next allowable quantized
value. For numbers that lie
halfway between the two nearest
allowable values, round up to the
nearest value only when the least
significant bit after rounding
would be a 1.

- Zero—round negative numbers
and positive numbers towards
zero to the next allowable
quantized value

Quantizing Filters in the Filter Design and Analysis Tool

6-19

Overflow Mode OverflowMode Sets the mode used to respond to
overflow conditions in fixed-point
arithmetic. Choose from either
saturate (limit the output to the
largest positive or negative
representable value) or wrap (set
overflowing values to the nearest
representable value using modular
arithmetic.

Filter Product (Multiply)
Options

Product Mode ProductMode Determines how the filter handles the
output of product operations. Choose
from full precision (FullPrecision),
or whether to keep the most
significant bit (KeepMSB) or least
significant bit (KeepLSB) in the result
when you need to shorten the word
length. Specify all lets you set the
fraction length applied to the results
of product operations.

Product word length *ProdWordLength Sets the word length applied to
interpret the results of multiply
operations.

Num. fraction length NumProdFracLength Sets the fraction length used to
interpret the results of product
operations that involve numerator
coefficients.

Den. fraction length DenProdFracLength Sets the fraction length used to
interpret the results of product
operations that involve denominator
coefficients.

Option Equivalent Filter Property
(using wildcard *)

Description

6 Using FDATool with the Filter Design Toolbox

6-20

Filter Sum Options

Accum. mode AccumMode Determines how the accumulator
outputs stored values. Choose from
full precision (FullPrecision), or
whether to keep the most significant
bits (KeepMSB) or least significant bits
(KeepLSB) when output results need
shorter word length than the
accumulator supports. To let you set
the word length and the precision
(the fraction length) used by the
output from the accumulator, set this
to Specify all.

Accum. word length *AccumWordLength Sets the word length used to store
data in the accumulator/buffer.

Num. fraction length NumAccumFracLength Sets the fraction length used to
interpret the numerator coefficients.

Den. fraction length DenAccumFracLength Sets the fraction length the filter uses
to interpret denominator coefficients.

Cast signals before sum CastBeforeSum Specifies whether to cast numeric
data to the appropriate accumulator
format (as shown in the signal flow
diagrams for each filter structure)
before performing sum operations.

Filter State Options

State word length *StateWordLength Sets the word length used to
represent the filter states. Applied to
both numerator- and
denominator-related states

Option Equivalent Filter Property
(using wildcard *)

Description

Quantizing Filters in the Filter Design and Analysis Tool

6-21

Filter Internals Options for CIC Filters
CIC filters use slightly different options for specifying the fixed-point
arithmetic in the filter. The next table shows and describes the options.

Example—Quantize Double-Precision Filters
When you are quantizing a double-precision filter by switching to fixed-point
or single-precision floating point arithmetic, follow these steps.

1 Click Set Quantization Parameters to display the Set Quantization
Parameters pane in FDATool.

2 Select Single-precision floating point or Fixed-point from Filter
arithmetic.

When you select one of the optional arithmetic settings, FDATool quantizes
the current filter according to the settings of the options in the Set
Quantization Parameter panes, and changes the information displayed in
the analysis area to show quantized filter data.

3 In the quantization panes, set the options for your filter. Set options for
Coefficients, Input/Output, and Filter Internals.

4 Click Apply.

FDATool quantizes your filter using your new settings.

Avoid overflow None Prevent overflows in arithmetic
calculations by setting the fraction
length appropriately.

State fraction length *StateFracLength Lets you set the fraction length
applied to interpret the filter states.
Applied to both numerator- and
denominator-related states

Option Equivalent Filter Property
(using wildcard *)

Description

6 Using FDATool with the Filter Design Toolbox

6-22

5 Use the analysis features in FDATool to determine whether your new
quantized filter meets your requirements.

Example—Change the Quantization Properties of Quantized Filters
When you are changing the settings for the quantization of a quantized filter,
or after you import a quantized filter from your MATLAB workspace, follow
these steps to set the property values for the filter:

1 Verify that the current filter is quantized.

2 Click Set Quantization Parameters to display the Set Quantization
Parameters panel.

3 Review and select property settings for the filter quantization: Coefficients,
Input/Output, and Filter Internals. Settings for options on these panes
determine how your filter quantizes data during filtering operations.

4 Click Apply to update your current quantized filter to use the new
quantization property settings from Step 3.

5 Use the analysis features in FDATool to determine whether your new
quantized filter meets your requirements.

Analyzing Filters with a Noise-Based Method

6-23

Analyzing Filters with a Noise-Based Method
One technique for estimating the frequency response for quantized filters is the
magnitude response estimate. FDATool offers this noise-based method as a
filter analysis tool accessible from the toolbar.

Using the Magnitude Response Estimate Method
After you design and quantize your filter, the Magnitude Response Estimate
option on the Analysis menu lets you apply the noise loading method to your
filter. When you select Analysis -> Magnitude Response Estimate from the
menubar, FDATool immediately starts the Monte Carlo trials that form the
basis for the method and runs the analysis, ending by displaying the results in
the analysis area in FDATool.

With the noise-based method, you estimate the complex frequency response for
your filter as determined by applying a noise- like signal to the filter input.
Magnitude Response Estimate uses the Monte Carlo trials to generate a
noise signal that contains complete frequency content across the range 0 to Fs.
The first time you run the analysis, magnitude response estimate uses default
settings for the various conditions that define the process, such as the number
of test points and the number of trials.

Analysis Parameter Default Setting Description

Number of Points 512 Number of equally spaced points
around the upper half of the
unit circle.

Frequency Range 0 to Fs/2 Frequency range of the plot
x-axis.

Frequency Units Hz Units for specifying the
frequency range.

Sampling
Frequency

48000 Inverse of the sampling period.

6 Using FDATool with the Filter Design Toolbox

6-24

After your first analysis run ends, open the Analysis Parameters dialog and
adjust your settings appropriately, such as changing the number of trials or
number of points.

To open the Analysis Parameters dialog, use either of the next procedures
when you have a quantized filter in FDATool:

• Select Analysis -> Analysis Parameters from the menu bar

• Right-click in the filter analysis area and select Analysis Parameters from
the context menu

Whichever option you choose opens the dialog as shown in the figure. Notice
that the settings for the options reflect the defaults.

Frequency Scale dB Units used for the y-axis display
of the output.

Normalized
Frequency

Off Use normalized frequency for
the display.

Analysis Parameter Default Setting Description

Analyzing Filters with a Noise-Based Method

6-25

Example—Noise Method Applied to a Filter
To demonstrate the magnitude response estimate method, start by creating a
quantized filter. For this example, use FDATool to design a sixth-order
Butterworth IIR filter.

To Use Noise-Based Analysis in FDATool

1 Enter fdatool at the MATLAB prompt to launch FDATool.

2 Under Response Type, select Highpass.

3 Select IIR in Design Method. Then select Butterworth.

4 To set the filter order to 6, select Specify order under Filter Order. Enter
6 in the text box.

5 Click Design Filter.

In FDATool, the analysis area changes to display the magnitude response
for your filter.

6 To generate the quantized version of your filter, using default quantizer
settings, click on the side bar.

FDATool switches to quantization mode and displays the quantization
panel.

7 From Filter arithmetic, select fixed-point.

Now the analysis areas shows the magnitude response for both filters—your
original filter and the fixed-point arithmetic version.

8 Finally, to use noise-based estimation on your quantized filter, select
Analysis -> Magnitude Response Estimate from the menubar.

FDATool runs the trial, calculates the estimated magnitude response for the
filter, and displays the result in the analysis area as shown in this figure.

6 Using FDATool with the Filter Design Toolbox

6-26

In the figure you see the magnitude response as estimated by the analysis
method.

To View the Noise Power Spectrum
When you use the noise method to estimate the magnitude response of a filter,
FDATool simulates and applies a spectrum of noise values to test your filter
response. While the simulated noise is essentially white, you might want to see
the actual spectrum that FDATool used to test your filter.

From the Analysis menu bar option, select Round-off Noise Power
Spectrum. In the analysis area in FDATool, you see the spectrum of the noise
used to estimate the filter response. The details of the noise spectrum, such as
the range and number of data points, appear in the Analysis Parameters
dialog.

To Change Your Noise Analysis Parameters
In “Example—Noise Method Applied to a Filter”, you used synthetic white
noise to estimate the magnitude response for a fixed-point highpass
Butterworth filter. Since you ran the estimate only once in FDATool, your noise
analysis used the default analysis parameters settings shown in “Using the
Magnitude Response Estimate Method”.

Analyzing Filters with a Noise-Based Method

6-27

To change the settings, follow these steps after the first time you use the noise
estimate on your quantized filter.

1 With the results from running the noise estimating method displayed in the
FDATool analysis area, select Analysis->Analysis Parameters from the
menubar.

To give you access to the analysis parameters, the Analysis Parameters
dialog opens as shown here (with default settings).

2 To use more points in the spectrum to estimate the magnitude response,
change Number of Points to 1024 and click OK to run the analysis.

FDATool closes the Analysis Parameters dialog and reruns the noise
estimate, returning the results in the analysis area.

To rerun the test without closing the dialog, press Enter after you type your
new value into a setting, then click Apply. Now FDATool runs the test
without closing the dailog. When you want to try many different settings for
the noise-based analysis, this is a useful shortcut.

6 Using FDATool with the Filter Design Toolbox

6-28

Comparing the Estimated and Theoretical
Magnitude Responses
An important measure of the effectiveness of the noise method for estimating
the magnitude response of a quantized filter is to compare the estimated
response to the theoretical response.

One way to do this comparison is to overlay the theoretical response on the
estimated response. While you have the Magnitude Response Estimate
displaying in FDATool, select Analysis->Overlay Analysis from the menu bar.
Then select Magnitude Response to show both response curves plotted
together in the analysis area.

Choosing Quantized Filter Structures
FDATool lets you change the structure of any quantized filter. Use the Convert
structure option to change the structure of your filter to one that meets your
needs.

To learn about changing the structure of a filter in FDATool, refer to
“Converting to a New Structure” in your Signal Processing Toolbox
documentation.

Converting the Structure of a Quantized Filter
You use the Convert structure option to change the structure of filter. When
the Source is Designed(Quantized) or Imported(Quantized), Convert
structure lets you recast the filter to one of the following structures:

• “Direct Form II Transposed Filter Structure” on page 7-52

• “Direct Form I Transposed Filter Structure” on page 7-48

• “Direct Form II Filter Structure” on page 7-49

• “Direct Form I Filter Structure” on page 7-47

• “Direct Form Finite Impulse Response (FIR) Filter Structure” on page 7-57

• “Direct Form FIR Transposed Filter Structure” on page 7-58

• “Lattice Autoregressive Moving Average (ARMA) Filter Structure” on
page 7-64

• “dfilt.calattice” on page 8-305

• “dfilt.calatticepc” on page 8-308

Analyzing Filters with a Noise-Based Method

6-29

• “Direct Form Symmetric FIR Filter Structure (Any Order)” on page 7-66

Starting from any quantized filter, you can convert to one of the following
representation:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Lattice ARMA

Additionally, FDATool lets you do the following conversions:

• Minimum phase FIR filter to Lattice MA minimum phase

• Maximum phase FIR filter to Lattice MA maximum phase

• Allpass filters to Lattice allpass

Refer to “FilterStructure” on page 7-43 for details about each of these
structures.

Converting Filters to Second-Order Sections Form
To learn about using FDATool to convert your quantized filter to use
second-order sections, refer to “Converting to Second-Order Sections” in your
Signal Processing Toolbox documentation. You might notice that filters you
design in FDATool, rather than filters you imported, are implemented in SOS
form.

To View Filter Structures in FDATool
To open the demonstration, click Help -> Show filter structures. After the
Help browser opens, you see the reference page for the current filter. You find
the filter structure signal flow diagram on this reference page, or you can
navigate to reference pages for other filter.

6 Using FDATool with the Filter Design Toolbox

6-30

Scaling Second-Order Section Filters
FDATool provides the ability to scale SOS filters after you create them. Using
options on the Reordering and Scaling Second-Order Sections dialog, FDATool
scales either or both the filter numerators and filter scale values according to
your choices for the scaling options.

Scaling Second-Order Section Filters

6-31

Parameter Description and Valid Value

Scale Apply any scaling options to the filter.
Select this when you are reordering your
SOS filter and you want to scale it at the
same time. Or when you are scaling your
filter, with or without reordering. Scaling
is disabled by default.

No Overflow—High SNR
slider

Lets you set whether scaling favors
reducing arithmetic overflow in the filter
or maximizing the signal-to-noise ratio
(SNR)) at the filter output. Moving the
slider to the right increases the
emphasis on SNR at the expense of
possible overflows.

The markings indicate the P-norm
applied to achieve the desired result in
SNR or overflow protection. For more
information about the P-norm settings,
refer to norm for details.

Maximum Numerator Maximum allowed value for numerator
coefficients after scaling.

Numerator Constraint Specifies whether and how to constrain
numerator coefficient values. Options
are none, normalize, power of 2, and
unit. Choosing none lets the scaling use
any scale value for the numerators by
removing any constraints on the
numerators. Normalize. The power of 2
option forces scaling to use numerator
values that are powers of 2, such as 2 or
0.5.

6 Using FDATool with the Filter Design Toolbox

6-32

Various combinations of settings let you scale filter numerators without
changing the scale values, or adjust the filter scale values without changing the
numerators. There is no scaling control for denominators.

Overflow Mode Sets the way the filter handles
arithmetic overflow situations during
scaling. Choose from either saturate
(limit the output to the largest positive
or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular
arithmetic.

Scale Value Constraint Specify whether to constrain the filter
scale values, and how to constrain them.
Valid options are none, power of 2, and
unit. Choosing unit for the constraint
disables the Max. Scale Value setting
and limits scale values to one.
Power of 2 constrains the scale values
to be powers of 2, such as 2 or 0.5, while
none removes any constraint on the scale
values.

Max. Scale Value Sets the maximum allowed scale values.
SOS filter scaling applies the Max. Scale
Value limit only when you set Scale
Value Constraint to a value other than
unit (the default setting). Note that
setting a maximum scale value removes
any other limits on the scale values.

Revert to Original Filter Returns your filter to the original
scaling. Being able to revert to your
original filter makes it easier to assess
the results of scaling your filter.

Parameter Description and Valid Value

Scaling Second-Order Section Filters

6-33

Example—Scale An SOS Filter
Start the process by designing a lowpass elliptical filter in FDATool.

1 Launch FDATool.

2 In Response Type, select Lowpass.

3 In Design Method, select IIR and Elliptic from the IIR design methods list.

4 Select Minimum Order for the filter.

5 Switch the frequency units by choosing Normalized(0 to 1) from the Units
list.

6 To set the passband specifications, enter 0.45 for wpass and 0.55 for wstop.
Finally, in Magnitude Specifications, set Astop to 60.

7 Click Design Filter to design the filter.

After FDATool finishes designing the filter, you see the following plot and
settings in the tool.

6 Using FDATool with the Filter Design Toolbox

6-34

You kept the Options setting for Match exactly as both, meaning the filter
design matches the specification for the passband and the stopband.

8 To switch to scaling the filter, select Edit—>Reorder and Scale
Second-Order Sections from the menu bar.

Your selection opens the Reordering and Scaling Second-Order Sections
dialog shown here.

Scaling Second-Order Section Filters

6-35

9 To see the filter coefficients, return to FDATool and select Filter
Coefficients from the Analysis menu. FDATool displays the coefficients
and scale values in FDATool.

6 Using FDATool with the Filter Design Toolbox

6-36

With the coefficients displayed you can see the effects of scaling your filter
directly in the scale values and filter coefficients.

Now try scaling the filter in a few different ways. First scale the filter to
maximize the SNR.

1 Return to the Reordering and Scaling Second-Order Sections dialog and
select None for Reordering in the left pane. This prevents FDATool from
reordering the filter sections when you rescale the filter.

2 Move the No Overflow—High SNR slider from No Overflow to High SNR.

3 Click Apply to scale the filter and leave the dialog open.

After a few moments, FDATool updates the coefficients displayed so you see
the new scaling, as shown here.

Scaling Second-Order Section Filters

6-37

All of the scale factors are now 1, and the SOS matrix of coefficients shows
that none of the numerator coefficients are 1 and the first denominator
coefficient of each section is 1.

4 Click Revert to Original Filter to restore the filter to the original settings
for scaling and coefficients.

6 Using FDATool with the Filter Design Toolbox

6-38

Reordering the Sections of Second-Order Section Filters
FDATool design most discrete-time filters in second-order sections. Generally,
SOS filters resist the effects of quantization changes when you create
fixed-point filters. After you have a second-order section filter in FDATool,
either one you designed in the tool, or one you imported, FDATool provides the
capability to change the order of the sections that compose the filter.

Any SOS filter in FDATool allows reordering of the sections.

Switching FDATool to Reorder Filters
To reorder the sections of a filter, you access the Reorder and Scaling of
Second-Order Sections dialog in FDATool.

With your SOS filter in FDATool, select
Edit—>Reorder and Scale Second-Order Sections from the menu bar.
FDATool returns the reordering dialog shown here with the default settings.

Reordering the Sections of Second-Order Section Filters

6-39

Controls on the Reordering and Scaling of
Second-Order Sections Dialog
In this dialog, the left-hand side contains options for reordering SOS filters. On
the right you see the scaling options. These are independent—reordering your
filter does not require scaling (note the Scale option) and scaling does not
require that you reorder your filter (note the None option under Reordering).
For more about scaling SOS filters, refer to “Scaling Second-Order Section
Filters” on page 6-30 and to scale in the reference section.

6 Using FDATool with the Filter Design Toolbox

6-40

Reordering SOS filters involves using the options in the Reordering and
Scaling of Second-Order Sections dialog. The following table lists each
reorder option and provides a description of what the option does.

Control Option Description

Auto Reorders the filter sections to minimize the
output noise power of the filter. Note that
different ordering applies to each specification
type, such as lowpass or highpass. Automatic
ordering adapts to the specification type of your
filter.

None Does no reordering on your filter. Selecting
None lets you scale your filter without
applying reordering at the same time. When
you access this dialog with a current filter, this
is the default setting—no reordering is applied.

Least selective section
to most selective
section

Rearranges the filter sections so the least
restrictive (lowest Q) section is the first section
and the most restrictive (highest Q) section is
the last section.

Most selective section
to least selective
section

Rearranges the filter sections so the most
restrictive (highest Q) section is the first
section and the least restrictive (lowest Q)
section is the last section.

Custom reordering Lets you specify the section ordering to use by
enabling the Numerator Order and
Denominator Order options

Numerator Order Specify new ordering for the sections of your
SOS filter. Enter a vector of the indices of the
sections in the order in which to rearrange
them. For example, a filter with five sections
has indices 1, 2, 3, 4, and 5. To switch the
second and fourth sections, the vector would be
[1,4,3,2,5].

Reordering the Sections of Second-Order Section Filters

6-41

Example—Reorder an SOS Filter
With FDATool open and a second-order filter as the current filter, you use the
following process to access the reordering capability and reorder you filter.
Start by launching FDATool from the command prompt.

1 Enter fdatool at the command prompt to launch FDATool.

2 Design a lowpass Butterworth filter with order 10 and the default frequency
specifications by entering the following settings:

- Under Response Type select Lowpass.

Use Numerator Order Rearranges the denominators in the order
assigned to the numerators.

Specify Lets you specify the order of the denominators,
rather than using the numerator order. Enter
a vector of the indices of the sections to specify
the order of the denominators to use. For
example, a filter with five sections has indices
1, 2, 3, 4, and 5. To switch the second and
fourth sections, the vector would be [1,4,3,2,5].

Use Numerator Order Reorders the scale values according to the
order of the numerators.

Specify Lets you specify the order of the scale values,
rather than using the numerator order. Enter
a vector of the indices of the sections to specify
the order of the denominators to use. For
example, a filter with five sections has indices
1, 2, 3, 4, and 5. To switch the second and
fourth sections, the vector would be [1,4,3,2,5].

Revert to Original
Filter

Returns your filter to the original section
ordering. Being able to revert to your original
filter makes comparing the results of changing
the order of the sections easier to assess.

Control Option Description

6 Using FDATool with the Filter Design Toolbox

6-42

- Under Design Method, select IIR and Butterworth from the list.

- Specify the order equal to 10 in Specify order under Filter Order.

- Keep the default Fs and Fc values in Frequency Specifications.

3 Click Design Filter.

FDATool design the Butterworth filter and returns your filter as a
Direct-Form II filter implemented with second-order sections. You see the
specifications in the Current Filter Information area.

With the second-order filter in FDATool, reordering the filter uses the
Reordering and Scaling of Second-Order Sections feature in FDATool
(also available in Filter Visualization Tool, fvtool).

4 To reorder your filter, select Edit—>Reorder and Scale Second-Order
Sections from the FDATool menus. FDATool opens the following dialog that
controls reordering of the sections of your filter.

Reordering the Sections of Second-Order Section Filters

6-43

Now you are ready to reorder the sections of your filter. Note that FDATool
performs the reordering on the current filter in the session.

Use Least Selective to Most Selective Section Reordering
To let FDATool reorder your filter so the least selective section is first and the
most selective section is last, perform the following steps in the Reordering
and Scaling of Second-Order Sections dialog.

1 In Reordering, select Least selective section to most selective section.

2 To prevent filter scaling at the same time, clear Scale in Scaling.

3 In FDATool, select View—>SOS View from the menu bar so you see the
sections of your filter displayed in FDATool.

6 Using FDATool with the Filter Design Toolbox

6-44

4 In the SOS View dialog, select Individual sections. Making this choice
configures FDATool to show the magnitude response curves for each section
of your filter in the analysis area.

5 Back in the Reordering and Scaling of Second-Order Sections dialog,
click Apply to reorder your filter according to the Qs of the filter sections,
and keep the dialog open. In response, FDATool presents the responses for
each filter section (there should be five sections) in the analysis area.

In the next two figures you can compare the ordering of the sections of your
filter. In the first figure, your original filter sections appear. In the second
figure, the sections have been rearranged from least selective to most
selective.

Reordering the Sections of Second-Order Section Filters

6-45

You see what reordering does, although the result is a bit subtle. Now try
custom reordering the sections of your filter or using the most selective to least
selective reordering option.

6 Using FDATool with the Filter Design Toolbox

6-46

Viewing SOS Filter Sections
Since you can design and reorder the sections of SOS filters, FDATool provides
the ability to view the filter sections in the analysis area—SOS View. Once you
have a second-order section filter as your current filter in FDATool, you turn
on the SOS View option to see the filter sections individually, or cumulatively,
or even only some of the sections. Enabling SOS View puts FDATool in a mode
where all second-order section filters display sections until you disable the SOS
View option. SOS View mode applies to any analysis you display in the analysis
area. For example, if you configure FDATool to show the phase responses for
filters, enabling SOS View means FDATool displays the phase response for
each section of SOS filters.

Controls on the SOS View Dialog
SOS View uses a few options to control how FDATool displays the sections, or
which sections to display. When you select View—>SOS View from the
FDATool menu bar, you see this dialog containing options to configure SOS
View operation.

Viewing SOS Filter Sections

6-47

By default, SOS View shows the overall response of SOS filters. Options in the
SOS View dialog let you change the display. This table lists all the options and
describes the effects of each.

Option Description

Overall Filter This is the familiar display in FDATool.
For a second-order section filter you see
only the overall response rather than the
responses for the individual sections. This
is the default configuration.

Individual sections When you select this option, FDATool
displays the response for each section as a
curve. If your filter has five sections you
see five response curves, one for each
section, and they are independent.
Compare to Cumulative sections.

Cumulative sections When you select this option, FDATool
displays the response for each section as
the accumulated response of all prior
sections in the filter. If your filter has five
sections you see five response curves:

• The first curve plots the response for the
first filter section.

• The second curve plots the response for
the combined first and second sections.

• The third curve plots the response for
the first, second, and third sections
combined.

And so on until all filter sections appear in
the display. The final curve represents the
overall filter response. Compare to
Cumulative sections and Overall Filter.

6 Using FDATool with the Filter Design Toolbox

6-48

Example—View the Sections of SOS Filters
After you design or import an SOS filter in to FDATool, the SOS view option
lets you see the per section performance of your filter. Enabling SOS View from

User defined Here you define which sections to display,
and in which order. Selecting this option
enables the text box where you enter a cell
array of the indices of the filter sections.

Each index represents one section.
Entering one index plots one response.
Entering something like {1:2} plots the
combined response of sections 1 and 2. If
you have a filter with four sections, the
entry {1:4} plots the combined response for
all four sections, whereas {1,2,3,4} plots
the response for each section.

Note that after you enter the cell array,
you need to click OK or Apply to update
the FDATool analysis area to the new SOS
View configuration.

Use secondary-scaling
points

This directs FDATool to use the secondary
scaling points in the sections to determine
where to split the sections. This option
applies only when the filter is a df2sos or
df1tsos filter. For these structures, the
secondary scaling points refer to the
scaling locations between the recursive
and the nonrecursive parts of the section
(the "middle" of the section). By default,
secondary -scaling points is not enabled.

You use this with the Cumulative
sections option only.

Option Description

Viewing SOS Filter Sections

6-49

the View menu in FDATool configures the tool to display the sections of SOS
filters whenever the current filter is an SOS filter.

These next steps demonstrate using SOS View to see your filter sections
displayed in FDATool.

1 Launch FDATool.

2 Create a lowpass SOS filter using the Butterworth design method. Specify
the filter order to be 6. Using a low order filter makes seeing the sections
more clear.

3 Design your new filter by clicking Design Filter.

FDATool design your filter and show you the magnitude response in the
analysis area. In Current Filter Information you see the specifications for
your filter. You should have a sixth-order Direct-Form II, Second-Order
Sections filter with three sections.

4 To enable SOS View, select View—>SOS View from the menu bar.

Now you see the SOS View dialog in FDATool. Options here let you specify
how to display the filter sections.

6 Using FDATool with the Filter Design Toolbox

6-50

By default the analysis area in FDATool shows the overall filter response,
not the individual filter section responses. This dialog lets you change the
display configuration to see the sections.

5 To see the magnitude responses for each filter section, select Individual
sections.

6 Click Apply to update FDATool to display the responses for each filter
section. The analysis area changes to show you something like the following
figure.

Viewing SOS Filter Sections

6-51

If you switch FDATool to display filter phase responses, you see the phase
response for each filter section in the analysis area.

6 Using FDATool with the Filter Design Toolbox

6-52

7 To define your own display of the sections, you use the User defined option
and enter a vector of section indices to display. Now we display the first
section response, and the cumulative first, second. and third sections
response:

- Select User defined to enable the text entry box in the dialog.

- Enter the cell array {1,1:3} to specify that FDATool should display the
response of the first section and the cumulative response of the first three
sections of the filter.

8 To apply your new SOS View selection, click Apply or OK (which closes the
SOS View dialog).

In the FDATool analysis area you see two curves—one for the response of
the first filter section and one for the combined response of sections 1, 2, and
3.

Importing and Exporting Quantized Filters

6-53

Importing and Exporting Quantized Filters
When you import a quantized filter into FDATool, or export a quantized filter
from FDATool to your workspace, the import and export functions use objects
and you specify the filter as a variable. This contrasts with importing and
exporting nonquantized filters, where you select the filter structure and enter
the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB workspace,
exporting them to text files, or exporting them to MAT-files.

This section includes:

• “Example—Import Quantized Filters”

• “To Export Quantized Filters”

For general information about importing and exporting filters in FDATool,
refer to “Filter Design and Analysis Tool” section in your Signal Processing
Toolbox User’s Guide.

FDATool imports quantized filters having the following structures:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Direct form symmetric FIR

• Direct form antisymmetric FIR

• Lattice allpass

• Lattice AR

• Lattice MA minimum phase

• Lattice MA maximum phase

• Lattice ARMA

• Lattice coupled-allpass

• Lattice coupled-allpass power complementary

6 Using FDATool with the Filter Design Toolbox

6-54

Example—Import Quantized Filters
After you design or open a quantized filter in your MATLAB workspace,
FDATool lets you import the filter for analysis. Follow these steps to import
your filter in to FDATool:

1 Open FDATool.

2 Select Filter->Import Filter from the menu bar.

In the lower region of FDATool, the Design Filter pane becomes Import
Filter, and options appear for importing quantized filters, as shown.

3 From the Filter Structure list, select Filter object.

The options for importing filters change to include:

- Discrete filter—Enter the variable name for the discrete-time, fixed-point
filter in your workspace.

- Frequency units—Select the frequency units from the Units list under
Sampling Frequency, and specify the sampling frequency value in Fs if
needed. Your sampling frequency must correspond to the units you select.
For example, when you select Normalized (0 to 1), Fs defaults to one.
But if you choose one of the frequency options, enter the sampling

Importing and Exporting Quantized Filters

6-55

frequency in your selected units. If you have the sampling frequency
defined in your workspace as a variable, enter the variable name for the
sampling frequency.

4 Click Import to import the filter.

FDATool checks your workspace for the specified filter. It imports the filter
if it finds it, displaying the magnitude response for the filter in the analysis
area. If it cannot find the filter it returns an FDATool Error dialog.

Note If, during any FDATool session, you switch to quantization mode and
create a fixed-point filter, FDATool remains in quantization mode. If you
import a double-precision filter, FDATool automatically quantizes your
imported filter applying the most recent quantization parameters.

When you check the current filter information for your imported filter, it will
indicate that the filter is Source: imported (quantized) even though you did
not import a quantized filter.

To Export Quantized Filters
To save your filter design, FDATool lets you export the quantized filter to your
MATLAB workspace (or you can save the current session in FDATool). When
you choose to save the quantized filter by exporting it, you select one of these
options:

• Export to your MATLAB workspace

• Export to a text file

• Export to a MAT-file

Example—Export Coefficients or Objects to the Workspace
You can save the filter as filter coefficients variables or as a dfilt filter object
variable. To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog appears.

2 Select Workspace from the Export To list.

6 Using FDATool with the Filter Design Toolbox

6-56

3 Select Coefficients from the Export As list to save the filter coefficients or
select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator and
Denominator options under Variable Names. For objects, assign the
variable name in the Discrete or Quantized filter option. If you have
variables with the same names in your workspace and you want to overwrite
them, select the Overwrite Variables box.

5 Click the OK button

If you try to export the filter to a variable name that exists in your
workspace, and you did not select Overwrite existing variables, FDATool
stops the export operation and returns a warning that the variable you
specified as the quantized filter name already exists in the workspace. To
continue to export the filter to the existing variable, click OK to dismiss the
warning dialog, select the Overwrite existing variables check box and click
OK or Apply.

Getting Filter Coefficients after Exporting
To extract the filter coefficients from your quantized filter after you export the
filter to MATLAB, use the celldisp function in MATLAB. For example, create
a quantized filter in FDATool and export the filter as Hq. To extract the filter
coefficients for Hq, use

celldisp(Hq.referencecoefficients)

which returns the cell array containing the filter reference coefficients, or

celldisp(Hq.quantizedcoefficients)

to return the quantized coefficients.

Example—Exporting as a Text File
To save your quantized filter as a text file, follow these steps:

1 Select Export from the File menu.

2 Select Text-file under Export to.

Importing and Exporting Quantized Filters

6-57

3 Click OK to export the filter and close the dialog. Click Apply to export the
filter without closing the Export dialog. Clicking Apply lets you export your
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to Text-file dialog appears. This is the
standard Microsoft Windows save file dialog.

4 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a text file with the name you
provided, and the MATLAB editor opens, displaying the file for editing.

Example—Exporting as a MAT-File
To save your quantized filter as a MAT-file, follow these steps:

1 Select Export from the File menu.

2 Select MAT-file under Export to.

3 Assign a variable name for the filter.

4 Click OK to export the filter and close the dialog. Click Apply to export the
filter without closing the Export dialog. Clicking Apply lets you export your
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to MAT-file dialog appears. This is the
standard Microsoft Windows save file dialog.

5 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a MAT-file with the specified
name.

6 Using FDATool with the Filter Design Toolbox

6-58

Importing XILINX Coefficient (.COE) Files
You can import XILINX coefficients (.coe) files into FDATool to create
quantized filters directly using the imported filter coefficients.

Example—Import XILINX .COE Files
To use the new import file feature:

1 Select File->Import Filter From XILINX Coefficient (.COE) File in
FDATool.

2 In the Import Filter From XILINX Coefficient (.COE) File dialog, find and
select the .coe file to import.

3 Click Open to dismiss the dialog and start the import process.

FDATool imports the coefficient file and creates a quantized, single-section,
direct-form FIR filter.

Transforming Filters

6-59

Transforming Filters
The toolbox provides functions for transforming filters between various forms.
When you use FDATool with the Toolbox installed, a side bar button and
a menu bar option enable you to use the Transform Filter panel to transform
filters as well as using the command line functions.

From the selection on the FDATool menu bar—Transformations—you can
transform lowpass FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:

• Lowpass to lowpass.

• Lowpass to highpass.

For IIR filters, you can convert from:

• Lowpass to lowpass.

• Lowpass to highpass.

• Lowpass to bandpass.

• Lowpass to bandstop.

When you click the Transform Filter button, , on the side bar, the
Transform Filter panel opens in FDATool, as shown here.

6 Using FDATool with the Filter Design Toolbox

6-60

Your options for Original filter type refer to the type of your current filter to
transform. If you select lowpass, you can transform your lowpass filter to
another lowpass filter or to a highpass filter, or to numerous other filter
formats, real and complex.

Note When your original filter is an FIR filter, both the FIR and IIR
transformed filter type options appear on the Transformed filter type list.
Both options remain active because you can apply the IIR transforms to an
FIR filter. If your source is as IIR filter, only the IIR transformed filter options
show on the list.

Original Filter Type
Select the magnitude response of the filter you are transforming from the list.
Your selection changes the types of filters you can transform to. For example:

• When you select Lowpass with an IIR filter, your transformed filter type can
be

- Lowpass
- Highpass
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

• When you select Lowpass with an FIR filter, your transformed filter type
can be

- Lowpass
- Lowpass (FIR)
- Highpass
- Highpass (FIR) narrowband
- Highpass (FIR) wideband
- Bandpass
- Bandstop

Transforming Filters

6-61

- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

In the following table you see each available original filter type and all the
types of filter to which you can transform your original.

Original Filter Available Transformed Filter Types

Lowpass FIR • Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Lowpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

6 Using FDATool with the Filter Design Toolbox

6-62

Highpass FIR • Lowpass

• Lowpass (FIR) narrowband

• Lowpass (FIR) wideband

• Highpass (FIR)

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Highpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Bandpass FIR • Bandpass

• Bandpass (FIR)

Bandpass IIR Bandpass

Bandstop FIR • Bandstop

• Bandstop (FIR)

Bandstop IIR Bandstop

Original Filter Available Transformed Filter Types

Transforming Filters

6-63

Note also that the transform options change depending on whether your
original filter is FIR or IIR. Starting from an IIR filter, you can transform to
IIR or FIR forms. With an IIR original filter, you are limited to IIR target
filters.

After selecting your response type, use Frequency point to transform to
specify the magnitude response point in your original filter to transfer to your
target filter. Your target filter inherits the performance features of your
original filter, such as passband ripple, while changing to the new response
form.

For more information about transforming filters, refer to “Frequency
Transformations for Real Filters” on page 5-11 and “Frequency
Transformations for Complex Filters” on page 5-26.

Frequency Point to Transform
The frequency point you enter in this field identifies a magnitude response
value (in dB) on the magnitude response curve.

When you enter frequency values in the Specify desired frequency location
option, the frequency transformation tries to set the magnitude response of the
transformed filter to the value identified by the frequency point you enter in
this field.

While you can enter any location, generally you should specify a filter passband
or stopband edge, or a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the values
you enter in Specify desired frequency location. Specify a value that lies at
either the edge of the stopband or the edge of the passband.

If, for example, you are creating a bandpass filter from a highpass filter, the
transformation algorithm sets the magnitude response of the transformed
filter at the Specify desired frequency location to be the same as the
response at the Frequency point to transform value. Thus you get a bandpass
filter whose response at the low and high frequency locations is the same.
Notice that the passband between them is undefined. In the next two figures
you see the original highpass filter and the transformed bandpass filter.

For more information about transforming filters, refer to “Digital Frequency
Transformations” on page 5-1.

6 Using FDATool with the Filter Design Toolbox

6-64

Transformed Filter Type
Select the magnitude response for the target filter from the list. The complete
list of transformed filter types is:

• Lowpass
• Lowpass (FIR)
• Highpass
• Highpass (FIR) narrowband
• Highpass (FIR) wideband
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

Not all types of transformed filters are available for all filter types on the
Original filter types list. You can transform bandpass filters only to bandpass
filters. Or bandstop filters to bandstop filters. Or IIR filters to IIR filters.

For more information about transforming filters, refer to “Frequency
Transformations for Real Filters” on page 5-11 and “Frequency
Transformations for Complex Filters” on page 5-26.

Specify Desired Frequency Location
The frequency point you enter in Frequency point to transform matched
a magnitude response value. At each frequency you enter here, the
transformation tries to make the magnitude response the same as the response
identified by your Frequency point to transform value.

While you can enter any location, generally you should specify a filter passband
or stopband edge, or a value in the passband or stopband.

For more information about transforming filters, refer to “Digital Frequency
Transformations” on page 5-1.

Example—Transform Filters
To transform the magnitude response of your filter, use the Transform Filter
option on the side bar.

Transforming Filters

6-65

1 Design or import your filter into FDATool.

2 Click Transform Filter, , on the side bar.

FDATool opens the Transform Filter panel in FDATool.

3 From the Original filter type list, select the response form of the filter you
are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or
bandstop, FDATool recognizes whether your filter form is FIR or IIR. Using
both your filter type selection and the filter form, FDATool adjusts the
entries on the Transformed filter type list to show only those that apply to
your original filter.

4 Enter the frequency point to transform value in Frequency point to
transform. Notice that the value you enter must be in KHz; for example,
enter 0.1 for 100 Hz or 1.5 for 1500 Hz.

5 From the Transformed filter type list, select the type of filter you want to
transform to.

Your filter type selection changes the options here.

- When you pick a lowpass or highpass filter type, you enter one value in
Specify desired frequency location.

6 Using FDATool with the Filter Design Toolbox

6-66

- When you pick a bandpass or bandstop filter type, you enter two values—
one in Specify desired low frequency location and one in
Specify desired high frequency location. Your values define the edges
of the passband or stopband.

- When you pick a multiband filter type, you enter values as elements in a
vector in Specify a vector or desired frequency locations— one element for
each desired location. Your values define the edges of the passbands and
stopbands.

After you click Transform Filter, FDATool transforms your filter,
displays the magnitude response of your new filter, and updates the
Current Filter Information to show you that your filter has been
transformed. In the filter information, the Source is Transformed.

For example, the figure shown here includes the magnitude response
curves for two filter. The original filter is a lowpass filter with rolloff
between 0.2 and 0.25. The transformed filter is a lowpass filter with rolloff
region between 0.8 and 0.85.

Transforming Filters

6-67

- To transform your lowpass filter to a highpass filter, select Lowpass to
Highpass.

When you select Lowpass to Highpass, FDATool returns the dialog shown
here. More information about the Select Transform... dialog follows the
figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

Filter #1: Original Lowpass filter response
Filter #2: Transformed Lowpass Filter Response

6 Using FDATool with the Filter Design Toolbox

6-68

To demonstrate the effects of selecting Narrowband Highpass or Wideband
Highpass, the next figure presents the magnitude response curves for a source
lowpass filter after it is transformed to both narrow- and wideband highpass
filters. For comparison, the response of the original filter appears as well.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

Filter #1:Original Lowpass Filter Response
Filter #2:Narrowband Highpass Filter Response
Filter #3: Wideband Highpass Filter Response

Transforming Filters

6-69

For the narrowband case, the transformation algorithm essentially reverses
the magnitude response, like reflecting the curve around the y-axis, then
translating the curve to the right until the origin lies at 1 on the x-axis. After
reflecting and translating, the passband at high frequencies is the reverse of
the passband of the original filter at low frequencies with the same rolloff and
ripple characteristics.

6 Using FDATool with the Filter Design Toolbox

6-70

Designing Multirate Filters in FDATool
Not only can you design multirate filters from the MATLAB command prompt,
FDATool provides the same design capability in a graphical user interface tool.
By starting FDATool and switching to the multirate filter design mode you
have access to all of the multirate design capabilities in the toolbox—
decimators, interpolators, and fractional rate changing filters, among others.

Switching FDATool to Multirate Filter Design Mode
The multirate filter design mode in FDATool lets you specify and design a wide
range of multirate filters, including decimators and interpolators.

With FDATool open, click Create a Multirate Filter, , on the side bar. You
see FDATool switch to the design mode showing the multirate filter design
options. Shown in the figure below is the default multirate design configuration
that designs an interpolating filter with an interpolation factor of 2. The design
uses the current FIR filter in FDATool.

Designing Multirate Filters in FDATool

6-71

When the current filter in FDATool is not an FIR filter, the multirate filter
design panel removes the Use current FIR filter option and selects the Use
default Nyquist FIR filter option instead as the default setting.

Controls on the Multirate Design Panel
You see the options that allow you to design a variety of multirate filters. The
Type option is your starting point. From this list you select the multirate filter
to design. Based on your selection, other options change to provide the controls
you need to specify your filter.

6 Using FDATool with the Filter Design Toolbox

6-72

Notice the separate sections of the design panel. On the left is the filter type
area where you choose the type of multirate filter to design and set the filter
performance specifications.

In the center section FDATool provides choices that let you pick the filter
design method to use.

The rightmost section offers options that control filter configuration when you
select Cascaded-Integrator Comb (CIC) as the design method in the center
section. Both the Decimator type and Interpolator type filters let you use the
Cascaded-Integrator Comb (CIC) option to design multirate filters.

Designing Multirate Filters in FDATool

6-73

Here are all the options available when you switch to multirate filter design
mode. Each option listed includes a brief description of what the option does
when you use it.

Option for Selecting and
Configuring Your Filter

Description

Type Specifies the type of multirate filter to design. Choose from
Decimator, Interpolator, or Fractional-rate convertor.

• When you choose Decimator, set Decimation Factor to specify
the decimation to apply.

• When you choose Interpolator, set Interpolation Factor to
specify the interpolation amount applied.

• When you choose Fractional-rate convertor, set both
Interpolation Factor and Decimation Factor. FDATool uses
both to determine the fractional rate change by dividing
Interpolation Factor by Decimation Factor to determine the
fractional rate change in the signal.

You should select values for interpolation and decimation that are
relatively prime. When your interpolation factor and decimation
factor are not relatively prime, FDATool reduces the
interpolation/decimation fractional rate to the lowest common
denominator and issues a message in the status bar in FDATool.

For example, if the interpolation factor is 6 and the decimation
factor is 3, FDATool reduces 6/3 to 2/1 when you design the rate
changer. But if the interpolation factor is 8 and the decimation
factor is 3, FDATool designs the filter without change.

Interpolation Factor Use the up-down control arrows to specify the amount of
interpolation to apply to the signal. Factors range upwards from 2.

Decimation Factor Use the up-down control arrows to specify the amount of decimation
to apply to the signal. Factors range upwards from 2.

Sampling Frequency No settings here. Just Units and Fs below.

6 Using FDATool with the Filter Design Toolbox

6-74

To see the difference between hold interpolation and linear interpolation, the
following figure presents a sine wave signal s1 in three forms:

Units Specify whether Fs is specified in Hz, kHz, MHz, GHz, or Normalized
(0 to 1) units.

Fs Set the full scale sampling frequency in the frequency units you
specified in Units. When you select Normalized for Units, you do
not enter a value for Fs.

Options for Designing Your Filter Description

Use current FIR filter Directs FDATool to use the current FIR filter to design the
multirate filter. If the current filter is an IIR form, you
cannot select this option. You cannot design multirate
filters with IIR structures.

Use a default Nyquist Filter Tells FDATool to use the default Nyquist design method
when the current filter in FDATool is not an FIR filter.

Cascaded Integrator-Comb (CIC) Design CIC filters using the options provided in the
right-hand area of the multirate design panel.

Hold Interpolator (Zero-order) When you design an interpolator, you can specify how the
filter sets interpolated values between signal values.
When you select this option, the interpolator applies the
most recent signal value for each interpolated value until
it processes the next signal value. This is similar to
sample-and-hold techniques. Compare to the Linear
Interpolator option.

Linear Interpolator (First-order) When you design an interpolator, you can specify how the
filter sets interpolated values between signal values.
When you select this option, the interpolator applies
linear interpolation between signal value to set the
interpolated value until it processes the next signal value.
Compare to the Linear Interpolator option.

Option for Selecting and
Configuring Your Filter

Description

Designing Multirate Filters in FDATool

6-75

• The top subplot in the figure presents s1 without interpolation.

• The middle subplot shows signal s1 interpolated by a linear interpolator with
an interpolation factor of 5.

• The bottom subplot shows signal s1 interpolated by a hold interpolator with
an interpolation factor of 5.

You see in the bottom figure the sample and hold nature of hold interpolation,
and the first-order linear interpolation applied by the linear interpolator.

We used FDATool to create interpolators similar to the following code for the
figure:

• Linear interpolator—hm=mfilt.linearinterp(5)

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1
Uninterpolated Signal s1

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1
First−Order Linear Interpolation By 5 of Signal s1

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

Samples

Zero−Order Hold Interpolation By 5 of Signal s1

6 Using FDATool with the Filter Design Toolbox

6-76

• Hold interpolator—hm=mfilt.holdinterp(5)

Example—Design a Fractional Rate Convertor
To introduce the process you use to design a multirate filter in FDATool, this
example uses the options to design a fractional rate convertor which uses 7/3
as the fractional rate. Begin the design by creating a default lowpass FIR filter
in FDATool. You do not have to begin with this FIR filter, but the default filter
works fine.

1 Launch FDATool.

2 Select the settings for a minimum-order lowpass FIR filter, using the
Equiripple design method.

3 When FDATool displays the magnitude response for the filter, click in
the side bar. FDATool switches to multirate filter design mode, showing the
multirate design panel, shown here.

Options for Designing
CIC Filters

Description

Differential Delay Sets the differential delay for the CIC filter. Usually a value of one or
two is appropriate.

Number of Sections Specifies the number of sections in a CIC decimator. The default
number of sections is 2 and the range is any positive integer.

Designing Multirate Filters in FDATool

6-77

4 To design a fractional rate filter, select Fractional-rate convertor from
the Type list. The Interpolation Factor and Decimation Factor options
become available.

5 In Interpolation Factor, use the up arrow to set the interpolation factor
to 7.

6 Using the up arrow in Decimation Factor, set 3 as the decimation factor.

6 Using FDATool with the Filter Design Toolbox

6-78

7 Select Use a default Nyquist FIR filter. You could design the rate
convertor with the current FIR filter as well.

8 Enter 24000 to set Fs.

9 Click Create Multirate Filter.

After designing the filter, FDATool returns with the specifications for your
new filter displayed in Current Filter Information, and shows the
magnitude response of the filter.

Designing Multirate Filters in FDATool

6-79

You can test the filter by exporting it to your workspace and using it to filter
a signal. For information about exporting filters, refer to “Importing and
Exporting Quantized Filters” on page 6-53.

Example—Design a CIC Decimator for 8 Bit Input/Output Data
Another kind of filter you can design in FDATool is Cascaded-Integrator Comb
(CIC) filters. FDATool provides the options needed to configure your CIC to
meet your needs.

1 Launch FDATool and design the default FIR lowpass filter. Designing
a filter at this time is an optional step.

2 Switch FDATool to multirate design mode by clicking on the side bar.

3 For Type, select Decimator, and set Decimation Factor to 3.

4 To design the decimator using a CIC implementation, select
Cascaded-Integrator Comb (CIC). This enables the CIC-related options on
the right of the panel.

5 Set Differential Delay to 2. Generally, 1 or 2 are good values to use.

6 Enter 2 for the Number of Sections. Settings in the multirate design panel
should look like this.

6 Using FDATool with the Filter Design Toolbox

6-80

7 Click Create Multirate Filter.

FDATool designs the filter, shows the magnitude response in the analysis
area, and updates the current filter information to show that you designed
a tenth-order cascaded-integrator comb decimator with two sections. Notice
the source is Multirate Design, indicating you used the multirate design
mode in FDATool to make the filter. FDATool should look like this now.

Designing other multirate filters follows the same pattern.

To design other multirate filters, do one of the following depending on the filter
to design:

Designing Multirate Filters in FDATool

6-81

• To design an interpolator, select one of these options.
- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)
- Hold Interpolator (Zero-order)
- Linear Interpolator (First-order)

• To design a decimator, select from these options.

- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)

• To design a fractional-rate convertor, select Use a default Nyquist FIR
filter.

Quantizing Multirate Filters
After you design a multirate filter in FDATool, the quantization features
enable you to convert your floating-point multirate filter to fixed-point
arithemetic.

Note CIC filters are always fixed-point.

With your multirate filter as the current filter in FDATool, you can quantize
your filter and use the quantization options to specify the fixed-point
arithmetic the filter uses.

To Quantize and Configure Multirate Filters
Follow these steps to convert your multirate filter to fixed-point arithmetic and
set the fixed-point options.

1 Design or import your multirate filter and make sure it is the current filter
in FDATool.

2 Click the Set Quantization Parameters button on the side bar.

3 From the Filter Arithmetic list on the Filter Arithmetic pane, select
Fixed-point. If your filter is a CIC filter, the Fixed-point option is enabled
by default and you do not set this option.

6 Using FDATool with the Filter Design Toolbox

6-82

4 In the quantization panes, set the options for your filter. Set options for
Coefficients, Input/Output, and Filter Internals.

5 Click Apply.

When you current filter is a CIC filter, the options on the Input/Output and
Filter Internals panes change to provide specific features for CIC filters.

Input/Output
The options that specify how your CIC filter uses input and output values are
listed in the table below.

Option Name Description

Input Word Length Sets the word length used to represent the
input to a filter.

Input fraction length Sets the fraction length used to interpret
input values to filter.

Input range (+/-) Lets you set the range the inputs
represent. You use this instead of the
Input fraction length option to set the
precision. When you enter a value x, the
resulting range is -x to x. Range must be
a positive integer.

Output word length Sets the word length used to represent the
output from a filter.

Avoid overflow Directs the filter to set the fraction length
for the input to prevent the output values
from exceeding the available range as
defined by the word length. Clearing this
option lets you set Output fraction
length.

Designing Multirate Filters in FDATool

6-83

The available options change when you change the Filter precision setting.
Moving from Full to Specify all adds increasing control by enabling more
input and output word options.

Filter Internals
With a CIC filter as your current filter, the Filter precision option on the
Filter Internals pane includes modes for controlling the filter word and
fraction lengths.

There are four usage modes for this (the same mode you select for the
FilterInternals property in CIC filters at the MATLAB prompt).

• Full—All word and fraction lengths set to Bmax + 1, called Baccum by harris
in [14]. Full Precision is the default setting.

• Minimum section word lengths—Set the section word lengths to minimum
values that meet roundoff noise and output requirements as defined by
Hogenauer in “Hogenauer, E. B., “An Economical Class of Digital Filters for
Decimation and Interpolation,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.” on
page A-3.

• Specify word lengths—Enables the Section word length option for you to
enter word lengths for each section. Enter either a scalar to use the same
value for every section, or a vector of values, one for each section.

• Specify all—Enables the Section fraction length option in addition to
Section word length. Now you can provide both the word and fraction
lengths for each section, again using either a scalar or a vector of values.

Output fraction length Sets the fraction length used to represent
output values from a filter.

Output range (+/-) Lets you set the range the outputs
represent. You use this instead of the
Output fraction length option to set the
precision. When you enter a value x, the
resulting range is -x to x. Range must be
a positive integer.

Option Name Description

6 Using FDATool with the Filter Design Toolbox

6-84

Realizing Filters as Simulink Subsystem Blocks
After you design or import a filter in FDATool, the realize model feature lets
you create a Simulink subsystem block that implements your filter. The
generated filter subsystem block uses the delay, gain, and sum blocks in fixed-
point mode from Simulink. If you do not own Simulink Fixed Point, FDATool
still realizes your model using blocks in fixed-point mode from Simulink, but
you cannot run any model that includes your filter subsystem block in
Simulink.

The block you realize from FDATool accepts only individual sample-based
input, not vectors or frames as input. If you have input data in frames, consider
unbuffering the input or converting the frames to sample-by-sample input in
some other way.

About the Realize Model Panel in FDATool

Switching FDATool to realize model mode, by clicking on the sidebar,
gives you access to the Realize Model panel and the options for realizing your
quantized filter as a Simulink subsystem block.

On the panel, as shown here, are the options provided for configuring how
FDATool realizes your model.

Model Options
Under Model, you set options that direct FDATool where to put your new
subsystem block and what to name the block.

Realizing Filters as Simulink Subsystem Blocks

6-85

Destination. Tells FDATool whether to put the new block in your current
Simulink model or open a new Simulink model and add the block to that
window. Select Current model to add the block to your current model, or select
New model to create a new model for the block.

Block name. Provides FDATool with a name to assign to your block. When you
realize your filter as a subsystem, the resulting block shows the name you enter
here as the block name, positioned just below the block.

Overwrite block. Directs FDATool whether to overwrite an existing block with
this block in the destination model. The result is that the new filter realization
subsystem block replaces the existing filter subsystem block. Selecting this
option replaces your existing filter realization subsystem block with the one
you create when you click Realize Model. Clearing Overwrite block causes
FDATool to create a new block in the destination model, rather than replacing
the existing block.

Block Type Option
To realize your quantized filter as a subsystem block, the most appropriate
choice is to select Fixed-point blocks from the list. When you are licensed to
use the fixed-point blocks in Signal Processing Blockset, you have the option of
realizing your model as either fixed- or floating-point blocks. Since your filter
is designed to use quantized coefficients, the fixed-point blocks option usually
matches your needs most closely.

You can elect to realize your filter using floating-point blocks, with the
understanding that while the coefficients and gains of your filter retain their
fixed-point values (the filter uses the fixed-point values for both gain and
coefficients, in floating-point format), the math performed during filtering uses
floating-point arithmetic and does not truly match the output of your filter
running in fixed-point mode. Although realizing your quantized filter with
floating-point blocks is not recommended, selecting Floating-point blocks
from the list creates your filter from blocks in Simulink and the Signal
Processing Blockset.

If you do not own a license for Simulink Fixed Point, realizing your
quantized filter as a subsystem generates a subsystem block that uses
fixed-point blocks, but you cannot run or edit the block. If you use the filter
subsystem in a Simulink model, you cannot run the model.

6 Using FDATool with the Filter Design Toolbox

6-86

Optimization Options
Four options enable you to tailor the way the realized model optimizes various
filter features such as delays and gains. When you open the Realize Model
panel, these options are selected by default.

Optimize for zero gains. Specify whether to remove zero-gain blocks from the
realized filter.

Optimize for unity gains. Specify whether to replace unity-gain blocks with direct
connections in the filter subsystem.

Optimize for -1 gains. Specify whether to replace negative unity-gain blocks with
a sign change at the nearest sum block in the filter.

Optimize delay chains. Specify whether to replace cascaded chains of delay blocks
with a single integer delay block to provide an equivalent delay.

Each of these options can optimize the way your filter performs in simulation
and in code you might generate from your model.

Example—Realize a Filter Using FDATool
After your quantized filter in FDATool is performing the way you want, with
your desired phase and magnitude response, and with the right coefficients
and form, follow these steps to realize your filter as a subsystem that you can
use in a Simulink model.

1 Click Realize Model on the sidebar to change FDATool to realize model
mode.

2 From the Destination list under Model, select either:

- Current model—to add the realized filter subsystem to your current model

- New model—to open a new Simulink model window and add your filter
subsystem to the new window

3 Provide a name for your new filter subsystem in the Name field.

4 Decide whether to overwrite an existing block with this new one, and select
or clear Overwrite block to direct FDATool which way to go—overwrite or
not.

Realizing Filters as Simulink Subsystem Blocks

6-87

5 Select Fixed-point blocks from the list in Block Type.

6 Select or clear the optimizations to apply.

- Optimize for zero gains—removes zero gain blocks from the model
realization

- Optimize for unity gains—replaces unity gain blocks with direct
connections to adjacent blocks

- Optimize for -1 gains—replaces negative gain blocks by a change of sign
at the nearest sum block

- Optimize delay chains—replaces cascaded delay blocks with a single
delay block that produces the equivalent gain

7 Click Realize Model to realize your quantized filter as a subsystem block
according to the settings you selected.

If you double-click the filter block subsystem created by FDATool, you see the
filter implementation in Simulink model form. Depending on the options you
chose when you realized your filter, and the filter you started with, you might
see one or more sections, or different architectures based on the form of your
quantized filter. From this point on, the subsystem filter block acts like any
other block that you use in Simulink models.

Supported Filter Structures
FDATool lets you realize discrete-time and multirate filters from the following
forms:

Structure Description

firdecim Decimators based on FIR filters

firtdecim Decimators based on transposed FIR
filters

linearinterp Linear interpolators

firinterp Interpolators based on FIR filters

multirate polyphase Multirate filters

6 Using FDATool with the Filter Design Toolbox

6-88

holdinterp Interpolators that use the hold
interpolation algorithm

dfilt.allpass Discrete-time filters with allpass
structure

dfilt.cascadeallpass

dfilt.cascadewdfallpass

mfilt.iirdecim Decimators based on IIR filters

mfilt.iirwdfdecim

mfilt.iirinterp Interpolators based on IIR filters

mfilt.iirwdfinterp

dfilt.wdfallpass

Structure Description

Getting Help for FDATool

6-89

Getting Help for FDATool
To find out more about the buttons or options in the FDATool dialogs, use the
What’s This? button to access context-sensitive help.

The What’s This? Option
To find information on a particular option or region of the dialog:

1 Click the What’s This? button .

Your cursor changes to .

2 Click the region or option of interest.

For example, click Turn quantization on to find out what this option does.

You can also select What’s this? from the Help menu to launch
context-sensitive help.

Additional Help for FDATool
For help about importing filters into FDATool, or for details about using
FDATool to create and analyze double-precision filters, refer to the “Filter
Design and Analysis Tool Overview” in your Signal Processing Toolbox
documentation.

6 Using FDATool with the Filter Design Toolbox

6-90

7
Reference for the
Properties of Filter Objects

Fixed-Point Filter Properties (p. 7-3) Provides an overview and details of the properties of
fixed-point filters

Adaptive Filter Properties (p. 7-103) Summarizes and details the properties of adaptive filters

Multirate Filter Properties (p. 7-117) Provides a summary and the details of the properties of
multirate filters

7 Reference for the Properties of Filter Objects

7-2

Overview
This chapter presents all of the properties for adaptive filters (adaptfilt
objects), discrete-time filters (both floating-point and fixed-point dfilt
objects), and multirate filters (mfilt objects).

• “Fixed-Point Filter Properties” on page 7-3

• “Adaptive Filter Properties” on page 7-103

• “Multirate Filter Properties” on page 7-117

Fixed-Point Filter Properties

7-3

Fixed-Point Filter Properties
There is a distinction between fixed-point filters and quantized filters—
quantized filters represent a superset that includes fixed-point filters.

When dfilt objects have their Arithmetic property set to single or fixed,
they are quantized filters. However, after you set the Arithmetic property to
fixed, the resulting filter is both quantized and fixed-point. Fixed-point filters
perform arithmetic operations without allowing the binary point to move in
response to the calculation—hence the name fixed-point. You can find out more
about fixed-point arithmetic in your Fixed-Point Toolbox documentation or
from the Help system.

With the Arithmetic property set to single, meaning the filter uses
single-precision floating-point arithmetic, the filter allows the binary point to
move during mathematical operations, such as sums or products. Therefore
these filters cannot be considered fixed-point filters. But they are quantized
filters.

This section presents the properties for fixed-point filters, which includes all
the properties for double-precision and single-precision floating-point filters as
well.

Fixed-Point Objects and Filters
Fixed-point filters depend in part on fixed-point objects from the Fixed-Point
Toolbox. You can see this when you display a fixed-point filter at the command
prompt.

hd=dfilt.df2t

hd =

 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [0x1 double]

set(hd,'arithmetic','fixed')
hd

7 Reference for the Properties of Filter Objects

7-4

hd =

 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputFracLength: 15

 StateWordLength: 16
 StateAutoScale: true

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

Look at the States property, shown here

States: [1x1 embedded.fi]
The notation embedded.fi indicates that the states are being represented by
fixed-point objects, usually called fi objects. If you take a closer look at the
property States, you see how the properties of the fi object represent the values
for the filter states.

hd.states

Fixed-Point Filter Properties

7-5

ans =

[]

 DataType: Fixed
 Scaling: BinaryPoint
 Signed: true
 WordLength: 16
 FractionLength: 15

 RoundMode: round
 OverflowMode: saturate
 ProductMode: FullPrecision
 MaxProductWordLength: 128
 SumMode: FullPrecision
 MaxSumWordLength: 128
 CastBeforeSum: true

To learn more about fi objects (fixed-point objects) in general, refer to your
Fixed-Point Toolbox documentation. Commands like the following can help you
get the information you are looking for:

docsearch(fixed-point object)

or

docsearch(fi)

Either command opens the Help system and searches for information about
fixed-point objects in the Fixed Point Toolbox.

As inputs (data to be filtered), fixed-point filters accept both regular
double-precision values and fi objects. Which you use depends on your needs.
How your filter responds to the input data is determined by the settings of the
filter properties, discussed in the next few sections.

Summary—Fixed-Point Filter Properties
Discrete-time filters in this toolbox use objects that perform the filtering and
configuration of the filter. As objects, they include properties and methods
(that we often call functions—not strictly the same as MATLAB functions but
mostly so) to provide filtering capability. In discrete-time filters, or dfilt

7 Reference for the Properties of Filter Objects

7-6

objects, many of the properties are dynamic, meaning they become available
depending on the settings of other properties in the dfilt object or filter.

Dynamic Properties
When you use a dfilt.structure function to create a filter, MATLAB displays
the filter properties in the command window in return (unless you end the
command with a semicolon which suppresses the output display). Generally
you see six or seven properties, ranging from the property FilterStructure to
PersistentMemory. These first properties are always present in the filter. One
of the most important properties is Arithmetic. The Arithmetic property
controls all of the dynamic properties for a filter.

Dynamic properties become available when you change another property in the
filter. For example, when you change the Arithmetic property value to fixed,
the display now shows many more properties for the filter, all of them
considered dynamic. Here is an example that uses a direct form II filter. First
create the default filter:

hd=dfilt.df2

hd =

 FilterStructure: 'Direct-Form II'
 Arithmetic: 'double'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [0x1 double]

With the filter hd in the workspace, convert the arithmetic to fixed-point. Do
this by setting the property Arithmetic to fixed. Notice the display. Instead of
a few properties, the filter now has many more, each one related to a particular
part of the filter and its operation. Each of the now-visible properties is
dynamic.

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form II'
 Arithmetic: 'fixed'

Fixed-Point Filter Properties

7-7

 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

Even this list of properties is not yet complete. Changing the value of other
properties such as the ProductMode or CoeffAutoScale properties may reveal
even more properties that control how the filter works. Remember this feature
about dfilt objects and dynamic properties as you review the rest of this
section about properties of fixed-point filters.

An important distinction is you cannot change the value of a property unless
you see the property listed in the default display for the filter. Entering the
filter name at the MATLAB prompt generates the default property display for
the named filter. Using get(filtername) does not generate the default
display—it lists all of the filter properties, both those that you can change and
those that are not available yet.

7 Reference for the Properties of Filter Objects

7-8

The following table summarizes the properties, static and dynamic, of
fixed-point filters and provides a brief description of each. Full descriptions of
each property, in alphabetical order, follow the table.

Property Name Valid Values
[default value]

Brief Description

AccumFracLength Any positive or
negative integer
number of bits [29]

Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and lattice
filters. IIR filters have two similar
properties—DenAccumFracLength and
NumAccumFracLength—that let you set the
precision for numerator and denominator
operations separately.

AccumWordLength Any positive
integer number of
bits [40]

Sets the word length used to store data in
the accumulator/buffer.

Arithmetic [Double], single,
fixed

Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the
operating mode for your filter.

CastBeforeSum [True] or false Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale [True] or false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

Fixed-Point Filter Properties

7-9

CoeffFracLength Any positive or
negative integer
number of bits [14]

Set the fraction length the filter uses to
interpret coefficients. CoeffFracLength is
not available until you set CoeffAutoScale
to false. Scalar filters include this
property.

CoeffWordLength Any positive
integer number of
bits [16]

Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Any positive or
negative integer
number of bits [29]

Specifies how the filter algorithm
interprets the results of addition operations
involving denominator coefficients.

DenFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Any filter
coefficient value
[1]

Holds the denominator coefficients for IIR
filters.

DenProdFracLength Any positive or
negative integer
number of bits [29]

Specifies how the filter algorithm
interprets the results of product operations
involving denominator coefficients. You can
change this property value after you set
ProductMode to SpecifyPrecision.

DenStateFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length used to
interpret the states associated with
denominator coefficients in the filter.

DenStateWordLength Any positive
integer number of
bits [16]

Specifies the word length used to represent
the states associated with denominator
coefficients in the filter.

Property Name (Continued) Valid Values
[default value]

Brief Description

7 Reference for the Properties of Filter Objects

7-10

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter sets the output
word and fraction lengths, and the
accumulator word and fraction lengths
automatically to maintain the best
precision results during filtering. The
default value, FullPrecision, sets
automatic word and fraction length
determination by the filter.
SpecifyPrecision exposes the output and
accumulator related properties so you can
set your own word and fraction lengths for
them.

FilterStructure Not applicable. Describes the signal flow for the filter
object, including all of the active elements
that perform operations during filtering—
gains, delays, sums, products, and
input/output.

InputFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length the filter uses
to interpret data to be processed by the
filter.

InputWordLength Any positive
integer number of
bits [16]

Specifies the word length applied to
represent input data.

Ladder Any ladder
coefficients in
double-precision
data type [1]

latticearma filters include this property to
store the ladder coefficients.

LadderAccumFracLength Any positive or
negative integer
number of bits [29]

latticearma filters use this to define the
fraction length applied to values output by
the accumulator that stores the results of
ladder computations.

Property Name (Continued) Valid Values
[default value]

Brief Description

Fixed-Point Filter Properties

7-11

LadderFracLength Any positive or
negative integer
number of bits [14]

latticearma filters use ladder coefficients
in the signal flow. This property determines
the fraction length used to interpret the
coefficients.

Lattice Any lattice
structure
coefficients. No
default value.

Stores the lattice coefficients for
lattice-based filters.

LatticeAccumFracLength Any positive or
negative integer
number of bits [29]

Specifies how the accumulator outputs the
results of operations on the lattice
coefficients.

LatticeFracLength Any positive or
negative integer
number of bits [15]

Specifies the fraction length applied to the
lattice coefficients.

MultiplicandFracLength Any positive or
negative integer
number of bits [15]

Sets the fraction length for values used in
product operations in the filter. Direct-form
I transposed (df1t) filter structures include
this property.

MultiplicandWordLength Any positive
integer number of
bits [16]

Sets the word length applied to the values
input to a multiply operation (the
multiplicands). The filter structure df1t
includes this property.

NumAccumFracLength Any positive or
negative integer
number of bits [29]

Specifies how the filter algorithm
interprets the results of addition operations
involving numerator coefficients.

Numerator Any
double-precision
filter coefficients
[1]

Holds the numerator coefficient values for
the filter.

Property Name (Continued) Valid Values
[default value]

Brief Description

7 Reference for the Properties of Filter Objects

7-12

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret
the numerator coefficients.

NumProdFracLength Any positive or
negative integer
number of bits [29]

Specifies how the filter algorithm
interprets the results of product operations
involving numerator coefficients. You can
change the property value after you set
ProductMode to SpecifyPrecision.

NumStateFracLength Any positive or
negative integer
number of bits [15]

For IIR filters, this defines the fraction
length applied to the numerator states of
the filter. Specifies the fraction length used
to interpret the states associated with
numerator coefficients in the filter.

NumStateWordLength Any positive
integer number of
bits [16]

For IIR filters, this defines the word length
applied to the numerator states of the filter.
Specifies the word length used to interpret
the states associated with numerator
coefficients in the filter.

OutputFracLength Any positive or
negative integer
number of bits—
[15] or [12] bits
depending on the
filter structure

Determines how the filter interprets the
filtered data. You can change the value of
OutputFracLength after you set
OutputMode to SpecifyPrecision.

Property Name (Continued) Valid Values
[default value]

Brief Description

Fixed-Point Filter Properties

7-13

OutputMode [AvoidOverflow],
BestPrecision,
SpecifyPrecision

Sets the mode the filter uses to scale the
filtered input data. You have the following
choices:

- AvoidOverflow—directs the filter to set
the output data fraction length to avoid
causing the data to overflow.

- BestPrecision—directs the filter to set
the output data fraction length to
maximize the precision in the output
data.

- SpecifyPrecision—lets you set the
fraction length used by the filtered
data.

OutputWordLength Any positive
integer number of
bits [16]

Determines the word length used for the
filtered data.

OverflowMode Saturate or [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to
the largest positive or negative
representable value) or wrap (set
overflowing values to the nearest
representable value using modular
arithmetic. The choice you make affects
only the accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates. Finally,
products never overflow—they maintain
full precision.

Property Name (Continued) Valid Values
[default value]

Brief Description

7 Reference for the Properties of Filter Objects

7-14

ProductFracLength Any positive or
negative integer
number of bits [29]

For the output from a product operation,
this sets the fraction length used to
interpret the numeric data. This property
becomes writable (you can change the
value) after you set ProductMode to
SpecifyPrecision.

ProductMode [FullPrecision],
KeepLSB,
KeepMSB,
SpecifyPrecision

Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether
to keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Any positive
number of bits.
Default is 16 or 32
depending on the
filter structure

Specifies the word length to use for the
results of multiplication operations. This
property becomes writable (you can change
the value) after you set ProductMode to
SpecifyPrecision.

PersistentMemory True or [false] Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. True is
the default setting.

Property Name (Continued) Valid Values
[default value]

Brief Description

Fixed-Point Filter Properties

7-15

RoundMode [Convergent], ceil,
fix, floor, round

Sets the mode the filter uses to quantize
numeric values when the values lie
between representable values for the data
format (word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are
exactly halfway between the two nearest
allowable quantized values are rounded
up only if the least significant bit (after
rounding) would be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest
allowable quantized values are rounded
up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Property Name (Continued) Valid Values
[default value]

Brief Description

7 Reference for the Properties of Filter Objects

7-16

ScaleValueFracLength Any positive or
negative integer
number of bits [29]

Scale values work with SOS filters. Setting
this property controls how your filter
interprets the scale values by setting the
fraction length. Available only when you
disable CoeffAutoScale by setting it to
false.

ScaleValues [2 x 1 double]
array with values
of 1

Stores the scaling values for sections in
SOS filters.

Signed [True] or false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

sosMatrix [1 0 0 1 0 0] Holds the filter coefficients as property
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a
filter with 6 coefficients per section and 15
sections, using data type double to
represent the coefficients.

SectionInputAutoScale [True] or false Specifies whether the filter automatically
chooses the proper fraction length to
prevent overflow by data entering a section
of an SOS filter. Setting this property to
false enables you to change the
SectionInputFracLength property to
specify the precision used. Available only
for SOS filters.

Property Name (Continued) Valid Values
[default value]

Brief Description

Fixed-Point Filter Properties

7-17

SectionInputFracLength Any positive or
negative integer
number of bits [29]

Section values work with SOS filters.
Setting this property controls how your
filter interprets the section values between
sections of the filter by setting the fraction
length. This applies to data entering a
section. Compare to
SectionOutputFracLength. Available only
when you disable SectionInputAutoScale
by setting it to false.

SectionInputWordLength Any positive or
negative integer
number of bits [29]

Sets the word length used to represent the
data moving into a section of an SOS filter.

SectionOutputAutoScale [True] or false Specifies whether the filter automatically
chooses the proper fraction length to
prevent overflow by data leaving a section
of an SOS filter. Setting this property to
false enables you to change the
SectionOutputFracLength property to
specify the precision used.

SectionOutputFracLength Any positive or
negative integer
number of bits [29]

Section values work with SOS filters.
Setting this property controls how your
filter interprets the section values between
sections of the filter by setting the fraction
length. This applies to data leaving a
section. Compare to
SectionInputFracLength. Available after
you disable SectionOutputAutoScale by
setting it to false.

SectionOutputWordLength Any positive or
negative integer
number of bits [32]

Sets the word length used to represent the
data moving out of one section of an SOS
filter.

Property Name (Continued) Valid Values
[default value]

Brief Description

7 Reference for the Properties of Filter Objects

7-18

StateFracLength Any positive or
negative integer
number of bits [15]

Lets you set the fraction length applied to
interpret the filter states.

States [1x1 embedded fi] Contains the filter states before, during,
and after filter operations. States act as
filter memory between filtering runs or
sessions. Notice that the states use fi
objects, with the associated properties from
those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Any positive
integer number of
bits [16]

Sets the word length used to represent the
filter states.

TapSumFracLength Any positive or
negative integer
number of bits [15]

Sets the fraction length used to represent
the filter tap values in addition operations.
This is available after you set TapSumMode
to false. Symmetric and antisymmetric
FIR filters include this property.

Property Name (Continued) Valid Values
[default value]

Brief Description

Fixed-Point Filter Properties

7-19

Property Details for Fixed-Point Filters
When you create a fixed-point filter, you are creating a filter object (a dfilt
object). In this manual, we use filter, dfilt object, and filter object
interchangeably. To filter data, you apply the filter object to your data set. The
output of the operation is the data filtered by the filter and the filter property
values.

Filter objects have properties to which you assign property values. You use
these property values to assign various characteristics to the filters you create,
including

• The type of arithmetic to use in filtering operations

• The structure of the filter used to implement the filter (not a property you
can set or change—you select it by the dfilt.structure function you choose)

• The locations of quantizations and cast operations in the filter

• The data formats used in quantizing, casting, and filtering operations

TapSumMode FullPrecision,
KeepLSB,
[KeepMSB],
SpecifyPrecision

Determines how the accumulator outputs
stored that involve filter tap weights.
Choose from full precision (FullPrecision)
to prevent overflows, or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when outputting
results from the accumulator. To let you set
the precision (the fraction length) used by
the output from the accumulator, set
FilterInternals to SpecifyPrecision.

Symmetric and antisymmetric FIR filters
include this property.

TapSumWordLength Any positive
number of bits [17]

Sets the word length used to represent the
filter tap weights during addition.
Symmetric and antisymmetric FIR filters
include this property.

Property Name (Continued) Valid Values
[default value]

Brief Description

7 Reference for the Properties of Filter Objects

7-20

Details of the properties associated with fixed-point filters are described in
alphabetical order on the following pages.

AccumFracLength
Except for state-space filters, all dfilt objects that use fixed arithmetic have
this property that defines the fraction length applied to data in the
accumulator. Combined with AccumWordLength, AccumFracLength helps fully
specify how the accumulator outputs data after processing addition operations.
As with all fraction length properties, AccumFracLength can be any integer,
including integers larger than AccumWordLength, and positive or negative
integers.

AccumWordLength
You use AccumWordLength to define the data word length used in the
accumulator. Set this property to a value that matches your intended
hardware. For example, many digital signal processors use 40-bit
accumulators, so set AccumWordLength to 40 in your fixed-point filter:

set(hq,'arithmetic','fixed');
set(hq,'AccumWordLength',40);

Note that AccumWordLength only applies to filters whose Arithmetic property
value is fixed.

Arithmetic
Perhaps the most important property when you are working with dfilt
objects, Arithmetic determines the type of arithmetic the filter uses, and the
properties or quantizers that compose the fixed-point or quantized filter. You
use strings to set the Arithmetic property value.

The next table shows the valid strings for the Arithmetic property. Following
the table, each property string appears with more detailed information about

Fixed-Point Filter Properties

7-21

what happens when you select the string as the value for Arithmetic in your
dfilt.

double
When you use one of the dfilt.structure methods to create a filter, the
Arithmetic property value is double by default. Your filter is identical to the
same filter without the Arithmetic property, as you would create if you used
the Signal Processing Toolbox.

Double means that the filter uses double-precision floating-point arithmetic in
all operations while filtering:

Arithmetic Property String Brief Description of Effect on the Filter

double All filtering operations and coefficients
use double-precision floating-point
representations and math. When you
use dfilt.structure to create a filter
object, double is the default value for
the Arithmetic property.

single All filtering operations and coefficients
use single-precision floating-point
representations and math.

fixed This string applies selected default
values for the properties in the
fixed-point filter object, including such
properties as coefficient word lengths,
fraction lengths, and various operating
modes. Generally, the default values
match those you use on many digital
signal processors. Allows signed fixed
data types only. Fixed-point arithmetic
filters are available only when you
install the Fixed-Point Toolbox with this
toolbox.

7 Reference for the Properties of Filter Objects

7-22

• All input to the filter must be double data type. Any other data type returns
an error.

• The states and output are doubles as well.

• All internal calculations are done in double math.

When you use double data type filter coefficients, the reference and quantized
(fixed-point) filter coefficients are identical. The filter stores the reference
coefficients as double data type.

single
When your filter should use single-precision floating-point arithmetic, set the
Arithmetic property to single so all arithmetic in the filter processing gets
restricted to single-precision data type.

• Input data must be single data type. Other data types return errors.

• The filter states and filter output use single data type.

When you choose single, you can provide the filter coefficients in either of two
ways:

• Double data type coefficients. With Arithmetic set to single, the filter casts
the double data type coefficients to single data type representation.

• Single data type. These remain unchanged by the filter.

Depending on whether you specified single or double data type coefficients, the
reference coefficients for the filter are stored in the data type you provided. If
you provide coefficients in double data type, the reference coefficients are
double as well. Providing single data type coefficients generates single data
type reference coefficients. Note that the arithmetic used by the reference filter
is always double.

When you use reffilter to create a reference filter from the reference
coefficients, the resulting filter uses double-precision versions of the reference
filter coefficients.

To set the Arithmetic property value, create your filter, then use set to change
the Arithmetic setting, as shown in this example using a direct form FIR filter.

b=fir1(7,0.45);

hd=dfilt.dffir(b)

Fixed-Point Filter Properties

7-23

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x8 double]

PersistentMemory: false
 States: [7x1 double]

set(hd,'arithmetic','single')
hd

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'single'
 Numerator: [1x8 double]

PersistentMemory: false
 States: [7x1 single]

fixed
Converting your dfilt object to use fixed arithmetic results in a filter structure
that uses properties and property values to match how the filter would behave
on digital signal processing hardware.

Note The fixed option for the property Arithmetic is available only when
you install the Fixed-Point Toolbox as well as the Filter Design Toolbox.

After you set Arithmetic to fixed, you are free to change any property value
from the default value to a value that more closely matches your needs. You
cannot, however, mix floating-point and fixed-point arithmetic in your filter
when you select fixed as the Arithmetic property value. Choosing fixed
restricts you to using either fixed-point or floating point throughout the filter
(the data type must be homogenous). Also, all data types must be signed. fixed
does not support unsigned data types except for unsigned coefficients when you
set the property Signed to false. Mixing word and fraction lengths within the
fixed object is acceptable. In short, using fixed arithmetic assumes

7 Reference for the Properties of Filter Objects

7-24

• fixed word length.

• fixed size and dedicated accumulator and product registers.

• the ability to do either saturation or wrap arithmetic.

• that multiple rounding modes are available.

Making these assumptions simplifies your job of creating fixed-point filters by
reducing repetition in the filter construction process, such as only requiring
you to enter the accumulator word size once, rather than for each step that uses
the accumulator.

Default property values are a starting point in tailoring your filter to common
hardware, such as choosing 40-bit word length for the accumulator, or 16-bit
words for data and coefficients.

In this dfilt object example, get returns the default values for dfilt.df1t
structures.

[b,a]=butter(6,0.45);
hd=dfilt.df1(b,a)

hd =

 FilterStructure: 'Direct-Form I'
 Arithmetic: 'double'
 Numerator: [1x7 double]
 Denominator: [1x7 double]

PersistentMemory: false
 States: Numerator: [6x1 double]
 Denominator:[6x1 double]

set(hd,'arithmetic','fixed')
get(hd)

PersistentMemory: false
 FilterStructure: 'Direct-Form I'
 States: [1x1 filtstates.dfiir]
 Numerator: [1x7 double]
 Denominator: [1x7 double]
 Arithmetic: 'fixed'
 CoeffWordLength: 16
 CoeffAutoScale: 1

Fixed-Point Filter Properties

7-25

 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
 InputFracLength: 15
 ProductMode: 'FullPrecision'
 OutputWordLength: 16
 OutputFracLength: 15
 NumFracLength: 16
 DenFracLength: 14
 ProductWordLength: 32
 NumProdFracLength: 31
 DenProdFracLength: 29
 AccumWordLength: 40
 NumAccumFracLength: 31
 DenAccumFracLength: 29
 CastBeforeSum: 1

Here is the default display for hd.

hd

hd =

 FilterStructure: 'Direct-Form I'
 Arithmetic: 'fixed'
 Numerator: [1x7 double]
 Denominator: [1x7 double]

PersistentMemory: false
 States: Numerator: [6x1 fi]
 Denominator:[6x1 fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16

7 Reference for the Properties of Filter Objects

7-26

 OutputFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

This second example shows the default property values for
dfilt.latticemamax filter objects, using the coefficients from an fir1 filter.

b=fir1(7,0.45)

hdlat=dfilt.latticemamax(b)

hdlat =

 FilterStructure: [1x45 char]
 Arithmetic: 'double'
 Lattice: [1x8 double]

PersistentMemory: false
 States: [8x1 double]

hdlat.arithmetic='fixed'

hdlat =

 FilterStructure: [1x45 char]
 Arithmetic: 'fixed'
 Lattice: [1x8 double]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16

Fixed-Point Filter Properties

7-27

 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

Unlike the single or double options for Arithmetic, fixed uses properties to
define the word and fraction lengths for each portion of your filter. By changing
the property value of any of the properties, you control your filter performance.
Every word length and fraction length property is independent—set the one
you need and the others remain unchanged, such as setting the input word
length with InputWordLength, while leaving the fraction length the same.

d=fdesign.lowpass('n,fc',6,0.45)

d =

 Response: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 6
 Fcutoff: 0.4500

designmethods(d)

Design Methods for class fdesign.lowpass:

7 Reference for the Properties of Filter Objects

7-28

butter

hd=butter(d)

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [3x6 double]
 ScaleValues: [4x1 double]

PersistentMemory: false
 States: [2x3 double]

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'fixed'
 sosMatrix: [3x6 double]
 ScaleValues: [4x1 double]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

SectionInputWordLength: 16
SectionInputAutoScale: true

SectionOutputWordLength: 16
 Section OutputAutoScale: true

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

Fixed-Point Filter Properties

7-29

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

hd.inputWordLength=12

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'fixed'
 sosMatrix: [3x6 double]
 ScaleValues: [4x1 double]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 12
 InputFracLength: 15

SectionInputWordLength: 16

 SectionInputAutoScale: true

SectionOutputWordLength: 16
SectionOutputAutoScale: true

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16

7 Reference for the Properties of Filter Objects

7-30

 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

Notice that the properties for the lattice filter hdlat and direct-form II filter hd
are different, as befits their differing filter structures. Also, some properties
are common to both objects, such as RoundMode and PersistentMemory and
behave the same way in both objects.

Notes About Fraction Length, Word Length, and Precision
Word length and fraction length combine to make the format for a fixed-point
number, where word length is the number of bits used to represent the value
and fraction length specifies, in bits, the location of the binary point in the
fixed-point representation. Therein lies a problem—fraction length, which you
specify in bits, can be larger than the word length, or a negative number of bits.
This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to
be used in this User’s Guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the
binary point) is true only when the fraction length is positive and less than or
equal to the word length. In MATLAB format notation we use
[word length fraction length]. For example, for the format [16 16], the second
16 (the fraction length) is the number of fractional bits or bits to the right of the
binary point. In this example, all 16 bits are to the right of the binary point.

But it is also possible to have fixed-point formats of [16 18] or [16 -45]. In these
cases the fraction length can no longer be the number of bits to the right of the
binary point since the format says the word length is 16—there cannot be 18
fraction length bits on the right. And how can there be a negative number of
bits for the fraction length, such as [16 -45]?

A better way to think about fixed-point format [word length fraction length]
and what it means is that the representation of a fixed-point number is a

Fixed-Point Filter Properties

7-31

weighted sum of powers of two driven by the fraction length, or the two’s
complement representation of the fixed-point number.

Consider the format [B L], where the fraction length L can be positive,
negative, 0, greater than B (the word length) or less than B. (B and L are
always integers and B is always positive.)

Given a binary string b(1) b(2) b(3) ... b(B), to determine the two’s-complement
value of the string in the format described by [B L], use the value of the
individual bits in the binary string in the following formula, where b(1) is the
first binary bit (and most significant bit, MSB), b(2) is the second, and on up to
b(B).

The decimal numeric value that those bits represent is given by

value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+...+ b(B)*2^(-L)

L, the fraction length, represents the negative of the weight of the last, or least
significant bit (LSB). L is also the step size or the precision provided by a given
fraction length.

Precision
Here is how precision works.

When all of the bits of a binary string are zero except for the LSB (which is
therefore equal to one), the value represented by the bit string is given by 2(-L).
If L is negative, for example L=-16, the value is 216. The smallest step between
numbers that can be represented in a format where L=-16 is given by 1 x 216
(the rightmost term in the formula above), which is 65536. Note the precision
does not depend on the word length.

Take a look at another example. When the word length set to 8 bits, the decimal
value 12 is represented in binary by 00001100. That 12 is the decimal
equivalent of 00001100 tells us we are using [8 0] data format representation—
the word length is 8 bits and fraction length 0 bits, and the step size or
precision (the smallest difference between two adjacent values in the format
[8,0], is 20=1.

Suppose you plan to keep only the upper 5 bits and discard the other three. The
resulting precision after removing the right-most three bits comes from the
weight of the lowest remaining bit, the fifth bit from the left, which is 23=8, so
the format would be [5,-3].

7 Reference for the Properties of Filter Objects

7-32

Note that in this format the step size is 8, I cannot represent numbers that are
between multiples of 8.

In MATLAB, with the Fixed-Point Toolbox installed:

x=8;
q=quantizer([8,0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq

binxq =

00001000

binxq1

binxq1 =

00001

But notice that in [5,-3] format, 00001 is the two’s complement representation
for 8, not for 1; q = quantizer([8 0]) and q1 = quantizer([5 -3]) are not
the same. They cover the about the same range—range(q)>range(q1)—but
their quantization step is different—eps(q)= 8, and eps(q1)=1.

Look at one more example. When you construct a quantizer q

q = quantizer([a,b])

the first element in [a,b] is a, the word length used for quantization. The
second element in the expression, b, is related to the quantization step—the
numerical difference between the two closest values that the quantizer can
represent. This is also related to the weight given to the LSB. Note that
2^(-b) = eps(q).

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let
q2 use the format [16, -16].

q1 = quantizer([32,0])

Fixed-Point Filter Properties

7-33

q2 = quantizer([16,-16])

Quantizers q1 and q2 cover the same range, but q2 has less precision. It covers
the range in steps of 216, while q covers the range in steps of 1.

This lost precision is due to (or can be used to model) throwing out 16
least-significant bits.

An important point to understand is that in dfilt objects and filtering you
control which bits are carried from the sum and product operations in the filter
to the filter output by setting the format for the output from the sum or product
operation.

For instance, if you use [16 0] as the output format for a 32-bit result from
a sum operation when the original format is [32 0], you take the lower 16 bits
from the result. If you use [16 -16], you take the higher 16 bits of the original
32 bits. You could even take 16 bits somewhere in between the 32 bits by
choosing something like [16 -8], but you probably do not want to do that.

Filter scaling is directly implicated in the format and precision for a filter.
When you know the filter input and output formats, as well as the filter
internal formats, you can scale the inputs or outputs to stay within the format
ranges. For more information about scaling filters, refer to “Working with
Fixed-Point Direct-Form FIR Filters” on page 2-14.

Notice that overflows or saturation might occur at the filter input, filter output,
or within the filter itself, such as during add or multiply or accumulate
operations. Improper scaling at any point in the filter can result in numerical
errors that dramatically change the performance of your fixed-point filter
implementation.

CastBeforeSum
Setting the CastBeforeSum property determines how the filter handles the
input values to sum operations in the filter. After you set your filter
Arithmetic property value to fixed, you have the option of using
CastBeforeSum to control the data type of some inputs (addends) to
summations in your filter. To determine which addends reflect the
CastBeforeSum property setting, refer to the reference page for the signal flow
diagram for the filter structure.

CastBeforeSum specifies whether to cast selected addends to summations in
the filter to the output format from the addition operation before performing

7 Reference for the Properties of Filter Objects

7-34

the addition. When you specify true for the property value, the results of the
affected sum operations match most closely the results found on most digital
signal processors. Performing the cast operation before the summation adds
one or two additional quantization operations that can add error sources to
your filter results.

Specifying CastBeforeSum to be false prevents the addends from being cast to
the output format before the addition operation. Choose this setting to get the
most accurate results from summations without considering the hardware
your filter might use.

Notice that the output format for every sum operation reflects the value of the
output property specified in the filter structure diagram. Which input property
is referenced by CastBeforeSum depends on the structure.

Another point—with CastBeforeSum set to false, the filter realization process
inserts an intermediate data type format to hold temporarily the full precision
sum of the inputs. A separate Convert block performs the process of casting the
addition result to the accumulator format. This intermediate data format
occurs because the Sum block in Simulink always casts input (addends) to the
output data type.

Diagrams of CastBeforeSum Settings
When CastBeforeSum is false, sum elements in filter signal flow diagrams
look like this:

Property Value Description

false Configures filter summation operations to retain
the addends in the format carried from the
previous operation.

true Configures filter summation operations to convert
the input format of the addends to match the
summation output format before performing the
summation operation. Usually this generates
results from the summation that more closely
match those found from digital signal processors

Fixed-Point Filter Properties

7-35

showing that the input data to the sum operations (the addends) retain their
format word length and fraction length from previous operations. The addition
process uses the existing input formats and then casts the output to the format
defined by AccumFormat. Thus the output data has the word length and fraction
length defined by AccumWordLength and AccumFracLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look
like this:

showing that the input data gets recast to the accumulator format word length
and fraction length (AccumFormat) before the sum operation occurs. The data
output by the addition operation has the word length and fraction length
defined by AccumWordLength and AccumFracLength.

+
AccumFormat

+
AccumFormat

Cast

Cast
AccumFormat

AccumFormat

7 Reference for the Properties of Filter Objects

7-36

CoeffAutoScale
How the filter represents the filter coefficients depends on the property value
of CoeffAutoScale. When you create a dfilt object, you use coefficients in
double-precision format. Converting the dfilt object to fixed-point arithmetic
forces the coefficients into a fixed-point representation. The representation the
filter uses depends on whether the value of CoeffAutoScale is true or false.

• CoeffAutoScale = true means the filter chooses the fraction length to
maintain the value of the coefficients as close to the double-precision values
as possible. When you change the word length applied to the coefficients, the
filter object changes the fraction length to try to accommodate the change.
true is the default setting.

• CoeffAutoScale = false removes the automatic scaling of the fraction
length for the coefficients and exposes the property that controls the
coefficient fraction length so you can change it. For example, if the filter is
a direct form FIR filter, setting CoeffAutoScale = false exposes the
NumFracLength property that specifies the fraction length applied to
numerator coefficients. If the filter is an IIR filter, setting
CoeffAutoScale = false exposes both the NumFracLength and
DenFracLength properties.

Here is an example of using CoeffAutoScale with a direct form filter.

hd2=dfilt.dffir([0.3 0.6 0.3])

hd2 =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]

PersistentMemory: false
 States: [2x1 double]

hd2.arithmetic='fixed'

hd2 =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.3000 0.6000 0.3000]

Fixed-Point Filter Properties

7-37

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

To this point, the filter coefficients retain the original values from when you
created the filter as shown in the Numerator property. Now change the
CoeffAutoScale property value from true to false.

hd2.coeffautoScale=false

hd2 =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.3000 0.6000 0.3000]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: false
 NumFracLength: 15
 Signed: true

 InputWordLength: 16

7 Reference for the Properties of Filter Objects

7-38

 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

With the NumFracLength property now available, change the word length to
5 bits.

Notice the coefficient values. Setting CoeffAutoScale to false removes the
automatic fraction length adjustment and the filter coefficients cannot be
represented by the current format of [5 15]—a word length of 5 bits, fraction
length of 15 bits.

hd2.coeffwordlength=5

hd2 =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [4.5776e-004 4.5776e-004 4.5776e-004]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 5
 CoeffAutoScale: false
 NumFracLength: 15
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

Fixed-Point Filter Properties

7-39

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

Restoring CoeffAutoScale to true goes some way to fixing the coefficient
values. Automatically scaling the coefficient fraction length results in setting
the fraction length to 4 bits. You can check this with get(hd2) as shown below.

hd2.coeffautoScale=true

hd2 =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.3125 0.6250 0.3125]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 5
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

7 Reference for the Properties of Filter Objects

7-40

get(hd2)
PersistentMemory: false

FilterStructure: 'Direct-Form FIR'
 States: [1x1 embedded.fi]
 Numerator: [0.3125 0.6250 0.3125]
 Arithmetic: 'fixed'
 CoeffWordLength: 5
 CoeffAutoScale: 1
 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 ProductMode: 'FullPrecision'
 NumFracLength: 4
 OutputFracLength: 12
 ProductWordLength: 21
 ProductFracLength: 19
 AccumWordLength: 40
 AccumFracLength: 19
 CastBeforeSum: 1

Clearly five bits is not enough to represent the coefficients accurately.

CoeffFracLength
Fixed-point scalar filters that you create using dfilt.scalar use this property
to define the fraction length applied to the scalar filter coefficients. Like the
coefficient-fraction-length-related properties for the FIR, lattice, and IIR
filters, CoeffFracLength is not displayed for scalar filters until you set
CoeffAutoScale to false. Once you change the automatic scaling you can set
the fraction length for the coefficients to any value you require.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 14 bits, with the
CoeffWordlength of 16 bits.

Fixed-Point Filter Properties

7-41

CoeffWordLength
One primary consideration in developing filters for hardware is the length of
a data word. CoeffWordLength defines the word length for these data storage
and arithmetic locations:

• Numerator and denominator filter coefficients

• Tap sum in dfilt.dfsymfir and dfilt.dfasymfir filter objects

• Section input, multiplicand, and state values in direct-form SOS filter
objects such as dfilt.df1t and dfilt.df2

• Scale values in second-order filters

• Lattice and ladder coefficients in lattice filter objects, such as
dfilt.latticearma and dfilt.latticemamax

• Gain in dfilt.scalar

Setting this property value controls the word length for the data listed. In most
cases, the data words in this list have separate fraction length properties to
define the associated fraction lengths.

Any positive, integer word length works here, limited by the machine you use
to develop your filter and the hardware you use to deploy your filter.

DenAccumFracLength
Filter structures df1, df1t, df2, and df2t that use fixed arithmetic have this
property that defines the fraction length applied to denominator coefficients in
the accumulator. In combination with AccumWordLength, the properties fully
specify how the accumulator outputs data stored there.

As with all fraction length properties, DenAccumFracLength can be any integer,
including integers larger than AccumWordLength, and positive or negative
integers. To be able to change the property value for this property, you set
FilterInternals to SpecifyPrecision.

DenFracLength
Property DenFracLength contains the value that specifies the fraction length
for the denominator coefficients for your filter. DenFracLength specifies the
fraction length used to interpret the data stored in C. Used in combination with
CoeffWordLength, these two properties define the interpretation of the
coefficients stored in the vector that contains the denominator coefficients.

7 Reference for the Properties of Filter Objects

7-42

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 15 bits, with the
CoeffWordLength of 16 bits.

Denominator
The denominator coefficients for your IIR filter, taken from the prototype you
start with, are stored in this property. Generally this is a 1-by-N array of data
in double format, where N is the length of the filter.

All IIR filter objects include Denominator, except the lattice-based filters which
store their coefficients in the Lattice property, and second-order section
filters, such as dfilt.df1tsos, which use the SosMatrix property to hold the
coefficients for the sections.

DenProdFracLength
A property of all of the direct form IIR dfilt objects, except the ones that
implement second-order sections, DenProdFracLength specifies the fraction
length applied to data output from product operations that the filter performs
on denominator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you
see that denominators and numerators are handled separately. When you set
ProductMode to SpecifyPrecision, you can change the DenProdFracLength
setting manually. Otherwise, for multiplication operations that use the
denominator coefficients, the filter sets the fraction length as defined by the
ProductMode setting.

DenStateFracLength
When you look at the flow diagram for the dfilt.df1sos filter object, the states
associated with denominator coefficient operations take the fraction length
from this property. In combination with the DenStateWordLength property,
these properties fully specify how the filter interprets the states.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 15 bits, with the
DenStateWordLength of 16 bits.

Fixed-Point Filter Properties

7-43

DenStateWordLength
When you look at the flow diagram for the dfilt.df1sos filter object, the states
associated with the denominator coefficient operations take the data format
from this property and the DenStateFracLength property. In combination,
these properties fully specify how the filter interprets the state it uses.

By default, the value is 16 bits, with the DenStateFracLength of 15 bits.

FilterInternals
Similar to the FilterInternals pane in FDATool, this property controls whether
the filter sets the output word and fraction lengths automatically, and the
accumulator word and fraction lengths automatically as well, to maintain the
best precision results during filtering. The default value, FullPrecision, sets
automatic word and fraction length determination by the filter. Setting
FilterInternals to SpecifyPrecision exposes the output and accumulator
related properties so you can set your own word and fraction lengths for them.
Note that

FilterStructure
Every dfilt object has a FilterStructure property. This is a read-only
property containing a string that declares the structure of the filter object you
created.

When you construct filter objects, the FilterStructure property value is
returned containing one of the strings shown in the following table. Property
FilterStructure indicates the filter architecture and comes from the
constructor you use to create the filter.

After you create a filter object, you cannot change the FilterStructure
property value. To make filters that use different structures, you construct new
filters using the appropriate methods, or use convert to switch to a new
structure.

Default value: Since this depends on the constructor you use and the
constructor includes the filter structure definition, there is no default value.

7 Reference for the Properties of Filter Objects

7-44

When you try to create a filter without specifying a structure, MATLAB
returns an error.

Filter Structures with Quantizations Shown in Place
To help you understand how and where the quantizations occur in filter
structures in this toolbox, Figure 7-1 presents the structure for a Direct Form 2
filter, including the quantizations (fixed-point formats) that compose part of

Filter Constructor Name FilterStructure Property String and Filter Type

'dfilt.df1' Direct form I

'dfilt.df1sos' Direct form I filter implemented using
second-order sections

'dfilt.df1t' Direct form I transposed

'dfilt.df2' Direct form II

'dfilt.df2sos' Direct form II filter implemented using second
order sections

'dfilt.df2t' Direct form II transposed

'dfilt.dfasymfir' Antisymmetric finite impulse response (FIR).
Even and odd forms.

'dfilt.dffir' Direct form FIR

'dfilt.dffirt' Direct form FIR transposed

'dfilt.latticeallpass' Lattice allpass

'dfilt.latticear' Lattice autoregressive (AR)

'dfilt.latticemamin' Lattice moving average (MA) minimum phase

'dfilt.latticemamax' Lattice moving average (MA) maximum phase

'dfilt.latticearma' Lattice ARMA

'dfilt.dfsymfir' Symmetric FIR. Even and odd forms

'dfilt.scalar' Scalar

Fixed-Point Filter Properties

7-45

the fixed-point filter. You see that one or more quantization processes, specified
by the *format label, accompany each filter element, such as a delay, product,
or summation element. The input to or output from each element reflects the
result of applying the associated quantization as defined by the word length
and fraction length format. Wherever a particular filter element appears in a
filter structure, recall the quantization process that accompanies the element
as it appears in this figure. Each filter reference page, such as the dfilt.df2
reference page, includes the signal flow diagram showing the formatting
elements that define the quantizations that occur throughout the filter flow.

For example, a product quantization, either numerator or denominator, follows
every product (gain) element and a sum quantization, also either numerator or
denominator, follows each sum element. In this figure, we set the Arithmetic
property value to fixed.

Figure 7-1: df2 IIR Filter Structure Including The Formatting Objects, With
Arithmetic Property Value fixed

When your df2 filter uses the Arithmetic property set to fixed, the filter
structure contains the formatting features shown in the diagram. The formats
included in the structure are fixed-point objects that include properties to set
various word and fraction length formats. For example, the NumFormat or
DenFormat in the fixed-point arithmetic filter set the properties for quantizing
numerator or denominator coefficients according to word and fraction length
settings.

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

DenAccumFormat

NumProdFormat

NumAccumFormatDenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1

z
−1

1
input

7 Reference for the Properties of Filter Objects

7-46

When the leading denominator coefficient a(1) in your filter is not 1, choose it
to be a power of two so that a shift replaces the multiply that would otherwise
be used.

Fixed-Point Arithmetic Filter Structures
You choose among several filter structures when you create fixed-point filters.
You can also specify filters with single or multiple cascaded sections of the
same type. Because quantization is a nonlinear process, different fixed-point
filter structures produce different results.

To specify the filter structure, you select the appropriate dfilt.structure
method to construct your filter. Refer to the function reference information for
dfilt and set for details on setting property values for quantized filters.

The figures in the following subsections of this section serve as aids to help you
determine how to enter your filter coefficients for each filter structure. Each
subsection contains an example for constructing a filter of the given structure.

Scale factors for the input and output for the filters do not appear in the block
diagrams. The default filter structures do not include, nor assume, the scale
factors. For filter scaling information, refer to scale in the Help system.

About the Filter Structure Diagrams
In the diagrams that accompany the following filter structure descriptions, you
see the active operators that define the filter, such as sums and gains, and the
formatting features that control the processing in the filter. Notice also that the
coefficients are labeled in the figure. This tells you the order in which the filter
processes the coefficients.

While the meaning of the block elements is straightforward, the labels for the
formats that form part of the filter are less clear. Each figure includes text in
the form labelFormat that represents the existence of a formatting feature at
that point in the structure. The Format stands for formatting object and the
label specifies the data that the formatting object affects.

For example, in the dfilt.df2 filter shown on page 7-45, the entries
InputFormat and OutputFormat are the formats applied, that is the word
length and fraction length, to the filter input and output data. For example,
filter properties like OutputWordLength and InputWordLength specify values
that control filter operations at the input and output points in the structure

Fixed-Point Filter Properties

7-47

and are represented by the formatting objects InputFormat and OutputFormat
shown in the filter structure diagrams.

Direct Form I Filter Structure
The following figure depicts the direct form I filter structure that directly
realizes a transfer function with a second-order numerator and denominator.
The numerator coefficients are numbered b(i), i=1, 2, 3; the denominator
coefficients are numbered a(i), i = 1, 2, 3; and the states (used for initial and
final state values in filtering) are labeled z(i). In the figure, the Arithmetic
property is set to fixed.

Example—Specifying a Direct Form I Filter. You can specify a second-order direct
form I structure for a quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1(b,a);

To create the fixed-point filter, set the Arithmetic property to fixed as shown
here.

InputFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

NumFormat

NumFormat

DenProdFormat

DenFormat

NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenAccumFormatDenAccumFormatNumAccumFormat DenAccumFormatNumAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1z

−1

z
−1

z
−1

1
input

7 Reference for the Properties of Filter Objects

7-48

set(hq,'arithmetic','fixed');

Direct Form I Filter Structure With Second-Order Sections
The following figure depicts a direct form I filter structure that directly realizes
a transfer function with a second-order numerator and denominator and
second-order sections. The numerator coefficients are numbered b(i), i=1, 2, 3;
the denominator coefficients are numbered a(i), i = 1, 2, 3; and the states (used
for initial and final state values in filtering) are labeled z(i). In the figure, the
Arithmetic property is set to fixed to place the filter in fixed-point mode.

Example—Specifying a Direct Form I Filter with Second-Order Sections. You can specify
an eighth-order direct form I structure for a quantized filter hq with the
following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1sos(b,a);

To create the fixed-point filter, set the Arithmetic property to fixed, as shown
here.

set(hq,'arithmetic','fixed');

Direct Form I Transposed Filter Structure
The next signal flow diagram depicts a direct form I transposed filter structure
that directly realizes a transfer function with a second-order numerator and
denominator. The numerator coefficients are b(i), i = 1, 2, 3; the denominator

InputFormat

DenFormat

ScaleValueFormat

NumProdFormat

DenProdFormat

DenFormat

NumFormat

NumStateFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

DenAccumFormat DenAccumFormat DenStateFormat

DenProdFormat

OutputFormatInputFormat

ScaleValueFormat

NumStateFormat DenStateFormat

NumAccumFormat DenAccumFormat

NumStateFormat

ScaleValueFormat ScaleValueFormat
ScaleValueFormat

NumStateFormatDenStateFormat DenStateFormat

NumAccumFormat

1

Output2

1
output

b3

−K−−K− −K−

−K−

−K−

b2

b1

a3

a2

Section n

Cast

Section 1

Cast

Cast

Cast

Section 2

[Sect1] [Sect1]

z
−1

z
−1

z
−1

z
−1

2
input

1
input1

Fixed-Point Filter Properties

7-49

coefficients are a(i), i = 1, 2, 3; and the states (used for initial and final state
values in filtering) are labeled z(i). With the Arithmetic property value set to
fixed, the figure shows the filter with the properties indicated.

Example—Specifying a Direct Form I Transposed Filter. You can specify a second-order
direct form I transposed filter structure for a quantized filter hq with the
following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1t(b,a);
set(hq,'arithmetic','fixed');

Direct Form II Filter Structure
The following graphic depicts a direct form II filter structure that directly
realizes a transfer function with a second-order numerator and denominator.
In the figure, the Arithmetic property value is fixed. Numerator coefficients

OutputFormatMultiplicandFormat

DenAccFormat

DenStateFormat

DenStateFormat

DenProdFormat

DenProdFormat

DenFormat

DenFormat

NumFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

NumStateFormat

NumStateFormat

NumAccFormat

NumAccumFormatDenAccumFormatInputFormat

1
output

b3

b2

b1

a3

a2

Cast

CastCast

CastCast

Cast

z
−1

z
−1

z
−1

z
−1

1
input

7 Reference for the Properties of Filter Objects

7-50

are named b(i); denominator coefficients are named a(i), i = 1, 2, 3; and the
states (used for initial and final state values in filtering) are named z(i).

Use the method dfilt.df2 to construct a quantized filter whose
FilterStructure property is Direct-Form II.

Example—Specifying a Direct Form II Filter. You can specify a second-order direct
form II filter structure for a quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2({b,a});
hq.arithmetic = 'fixed'

To convert your initial double-precision filter hq to a quantized or fixed-point
filter, set the Arithmetic property to fixed, as shown.

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

DenAccumFormat

NumProdFormat

NumAccumFormatDenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1

z
−1

1
input

Fixed-Point Filter Properties

7-51

Direct Form II Filter Structure With Second-Order Sections

The following figure depicts direct form II filter structure using second-order
sections that directly realizes a transfer function with a second-order
numerator and denominator sections. In the figure, the Arithmetic property
value is fixed. Numerator coefficients are labeled b(i); denominator
coefficients are labeled a(i), i = 1, 2, 3; and the states (used for initial and final
state values in filtering) are labeled z(i).

Use the method dfilt.df2sos to construct a quantized filter whose
FilterStructure property is Direct-Form II.

Example—Specifying a Direct Form II Filter with Second-Order Sections. You can specify
a tenth-order direct form II filter structure that uses second-order sections for
a quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2sos({b,a});
hq.arithmetic = 'fixed'

To convert your prototype double-precision filter hq to a fixed-point filter, set
the Arithmetic property to fixed, as shown.

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

DenAccumFormat

NumProdFormat

NumAccumFormatDenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1

z
−1

1
input

7 Reference for the Properties of Filter Objects

7-52

Direct Form II Transposed Filter Structure
The following figure depicts the direct form II transposed filter structure that
directly realizes transfer functions with a second-order numerator and
denominator. The numerator coefficients are labeled b(i), the denominator
coefficients are labeled a(i), i = 1, 2, 3, and the states (used for initial and final
state values in filtering) are labeled z(i). In the first figure, the Arithmetic
property value is fixed.

NumAccumFormat

StateFormat

StateFormat

InputFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

DenFormat

DenFormat

DenProdFormat

DenProdFormat

DenAccumFormat

NumFormat

OutputFormat

NumAccumFormat

DenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast

Cast

Cast

z
−1

z
−1

1
input

Fixed-Point Filter Properties

7-53

Use the constructor dfilt.df2t to specify the value of the FilterStructure
property for a filter with this structure that you can convert to fixed-point
filtering.

Example—Specifying a Direct Form II Transposed Filter. Specifying or constructing
a second-order direct form II transposed filter for a fixed-point filter hq starts
with the following code to define the coefficients and construct the filter.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t({b,a});

Now create the fixed-point filtering version of the filter from hd, which is
floating point.

hq = set(hd,'arithmetic','fixed');

7 Reference for the Properties of Filter Objects

7-54

Direct Form Antisymmetric FIR Filter Structure (Any Order)
The following figure depicts a direct form antisymmetric FIR filter structure
that directly realizes a second-order antisymmetric FIR filter. The filter
coefficients are labeled b(i), and the initial and final state values in filtering are
labeled z(i). This structure reflects the Arithmetic property set to fixed.

Use the method dfilt.dfasymfir to construct the filter, and then set the
Arithmetic property to fixed to convert to a fixed-point filter with this
structure.

Example—Specifying an Odd-Order Direct Form Antisymmetric FIR Filter. Specify a
fifth-order direct form antisymmetric FIR filter structure for a fixed-point filter
hq with the following code.

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hq = dfilt.dfasymfir(b);
set(hq,'arithmetic','fixed')

InputFormat InputFormat

TapSumFormat

TapSumFormat

TapSumFormat

NumFormat

NumFormat

NumFormat

ProductFormat

ProductFormat

ProductFormat

AccumFormat AccumFormat OutputFormat
1

Output

b3

b2

b1

Cast

Cast

z
−1

z
−1

z
−1

z
−1

z
−1

1

Input

Fixed-Point Filter Properties

7-55

hq

hq =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]

PersistentMemory: false
 States: [1x1 fi object]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 TapSumMode: 'KeepMSB'
 TapSumWordLength: 17

 ProductMode: 'FullPrecision'

 AccumWordLength: 40

 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'

 InheritSettings: false

Example—Specifying an Even-Order Direct Form Antisymmetric FIR Filter. You can specify
a fourth-order direct form antisymmetric FIR filter structure for a fixed-point
filter hq with the following code.

b = [-0.01 0.1 0.0 -0.1 0.01];
hq = dfilt.dfasymfir(b);
hq.arithmetic='fixed'

7 Reference for the Properties of Filter Objects

7-56

hq =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]

PersistentMemory: false
 States: [1x1 fi object]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 TapSumMode: 'KeepMSB'
 TapSumWordLength: 17

 ProductMode: 'FullPrecision'

 AccumWordLength: 40

 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'

 InheritSettings: false

Fixed-Point Filter Properties

7-57

Direct Form Finite Impulse Response (FIR) Filter Structure
In the next figure, you see the signal flow graph for a direct form finite impulse
response (FIR) filter structure that directly realizes a second-order FIR filter.
The filter coefficients are b(i), i = 1, 2, 3, and the states (used for initial and final
state values in filtering) are z(i). To generate the figure, set the Arithmetic
property to fixed after you create your prototype filter in double-precision
arithmetic.

Use the dfilt.dffir method to generate a filter that uses this structure.

Example—Specifying a Direct Form FIR Filter. You can specify a second-order direct
form FIR filter structure for a fixed-point filter hq with the following code.

b = [0.05 0.9 0.05];
hd = dfilt.dffir({b});
hq = set(hd,'arithmetic','fixed');

input output

InputFormat

NumFormat

ProductFormat OutputFormat

ProductFormat

AccumFormat

NumFormat

NumFormat

ProductFormat

AccumFormat
1CastCast

b3

b2

b1

z
−1

z
−1

1

7 Reference for the Properties of Filter Objects

7-58

Direct Form FIR Transposed Filter Structure
This figure uses the filter coefficients labeled b(i), i = 1, 2, 3, and states (used
for initial and final state values in filtering) are labeled z(i). These depict
a direct form finite impulse response (FIR) transposed filter structure that
directly realizes a second-order FIR filter.

With the Arithmetic property set to fixed, your filter matches the figure.
Using the method dfilt.dffirt returns a double-precision filter that you
convert to a fixed-point filter.

InputFormat

NumFormat

ProductFormat

NumFormat

NumFormat

ProductFormat

ProductFormat

StateFormat

StateFormat

AccumFormat OutputFormat

AccumFormat

NumFormat

ProductFormat

StateFormat

AccumFormat

1

Output

b4

b3

b2

b1Cast Cast

Cast

Cast

Cast

z
−1

z
−1

z
−1

1

Input

Fixed-Point Filter Properties

7-59

Example—Specifying a Direct Form FIR Transposed Filter. You can specify
a second-order direct form FIR transposed filter structure for a fixed-point
filter hq with the following code.

b = [0.05 0.9 0.05];
hd=dfilt.dffirt({b});
hq = copy(hd);
hq.arithmetic = 'fixed';

7 Reference for the Properties of Filter Objects

7-60

Lattice Allpass Filter Structure
The following figure depicts the lattice allpass filter structure. The pictured
structure directly realizes third-order lattice allpass filters using fixed-point
arithmetic. The filter reflection coefficients are labeled k1(i), i = 1, 2, 3. The
states (used for initial and final state values in filtering) are labeled z(i).

To create a quantized filter that uses the lattice allpass structure shown in the
figure, use the dfilt.latticeallpass method and set the Arithmetic
property to fixed.

Example—Specifying a Lattice Allpass Filter. You can create a third-order lattice
allpass filter structure for a quantized filter hq with the following code.

k = [.66 .7 .44];
hd=dfilt.latticeallpass({k});
hq = copy(hd)
set(hq,'arithmetic','fixed');

LatticeFormat

InputFormat

OutputFormat

AccumFormat

StateFormat

LatticeFormat LatticeFormat

LatticeFormat

ProductFormat

ProductFormat

AccumFormat

ProductFormat

ProductFormat

StateFormat

StateFormat

StateFormat

StateFormat

AccumFormat AccumFormat

StateFormat

1

Output

Cast

CastCast

Cast

Cast

Cast

k2 K1

−K− −K−

z
−1

z
−1

1

Input

Fixed-Point Filter Properties

7-61

Lattice Moving Average Maximum Phase Filter Structure
In the next figure you see a lattice moving average maximum phase filter
structure. This signal flow diagram directly realizes a third-order lattice
moving average (MA) filter with the following phase form depending on the
initial transfer function:

• When you start with a minimum phase transfer function, the upper branch
of the resulting lattice structure returns a minimum phase filter. The lower
branch returns a maximum phase filter.

• When your transfer function is neither minimum phase nor maximum
phase, the lattice moving average maximum phase structure will not be
maximum phase.

• When you start with a maximum phase filter, the resulting lattice filter is
maximum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for
initial and final state values in filtering) are labeled z(i). In the figure, we set
the Arithmetic property to fixed to reveal the fixed-point arithmetic format
features that control such options as word length and fraction length.

Example—Constructing a Lattice Moving Average Maximum Phase Filter. Constructing
a fourth-order lattice MA maximum phase filter structure for a quantized filter
hq begins with the following code.

k = [.66 .7 .44 .33];
hd=dfilt.latticemamax({k});

InputFormat

StateFormat

LatticeFormat

LatticeFormat

ProductFormat

ProductFormat

AccumFormat StateFormat

StateFormat
LatticeFormat

LatticeFormat

ProductFormat

ProductFormat

AccumFormat StateFormat

LatticeFormat
StateFormat

ProductFormat

OutputFormat
AccumFormat

AccumFormat AccumFormat

1

Output

Cast

Cast

Cast

Cast

Cast

Cast

Cast

k2k3

conj(k)conj(k)conj(k)

z
−1

z
−1

z
−1

1

Input

7 Reference for the Properties of Filter Objects

7-62

Lattice Autoregressive (AR) Filter Structure
The method dfilt.latticear directly realizes lattice autoregressive filters in
the toolbox. The following figure depicts the third-order lattice autoregressive
(AR) filter structure—with the Arithmetic property equal to fixed. The filter
reflection coefficients are labeled k(i), i = 1, 2, 3, and the states (used for initial
and final state values in filtering) are labeled z(i).

Example—Specifying a Lattice AR Filter. You can specify a third-order lattice AR
filter structure for a quantized filter hq with the following code.

k = [.66 .7 .44];
hd=dfilt.latticear({k});
hq = copy(hd);
hq.arithmetic = 'custom';

InputFormat AccumFormat

ProductFormat

StateFormat AccumFormat

AccumFormat

ProductFormat

ProductFormat

LatticeFormat LatticeFormat

LatticeFormat

StateFormat

StateFormat

StateFormat

OutputFormat
1

Output

Cast

CastCast

Cast

Cast

k2 k1

−K−

z
−1

z
−1

1

Input

Fixed-Point Filter Properties

7-63

Lattice Moving Average (MA) Filter Structure for Minimum Phase
The following figures depict lattice moving average (MA) filter structures that
directly realize third-order lattice MA filters for minimum phase. The filter
reflection coefficients are labeled k(i), i = 1, 2, 3, and the states (used for initial
and final state values in filtering) are labeled z(i). Setting the Arithmetic
property of the filter to fixed results in a fixed-point filter that matches the
figure.

This signal flow diagram directly realizes a third-order lattice moving average
(MA) filter with the following phase form depending on the initial transfer
function:

• When you start with a minimum phase transfer function, the upper branch
of the resulting lattice structure returns a minimum phase filter. The lower
branch returns a minimum phase filter.

• When your transfer function is neither minimum phase nor maximum
phase, the lattice moving average minimum phase structure will not be
minimum phase.

• When you start with a minimum phase filter, the resulting lattice filter is
minimum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for
initial and final state values in filtering) are labeled z(i). In the figure, we set
the Arithmetic property to fixed to reveal the fixed-point arithmetic format
features that control such options as word length and fraction length.

InputFormat

StateFormat
LatticeFormat LatticeFormat LatticeFormat

LatticeFormat LatticeFormat

AccumFormat AccumFormat

StateFormat

StateFormatAccumFormat

ProductFormat

ProductFormat ProductFormat

AccumFormat StateFormat

ProductFormat ProductFormat

AccumFormat OutputFormat

1

Output

Cast

Cast Cast

Cast

Cast

Cast

k1k2k3

−K−−K−

z
−1

z
−1

z
−1

1

Input

7 Reference for the Properties of Filter Objects

7-64

Example—Specifying a Minimum Phase Lattice MA Filter. You can specify a third-order
lattice MA filter structure for minimum phase applications using variations of
the following code.

k = [.66 .7 .44];
hd=dfilt.latticemamin({k});
hq = copy(hd);
set(hq,'arithmetic','fixed');

Lattice Autoregressive Moving Average (ARMA) Filter Structure
The figure below depicts a lattice autoregressive moving average (ARMA) filter
structure that directly realizes a fourth-order lattice ARMA filter. The filter
reflection coefficients are labeled k(i), i = 1, ..., 4; the ladder coefficients are
labeled v(i), i = 1, 2, 3; and the states (used for initial and final state values in
filtering) are labeled z(i).

Example—Specifying an Lattice ARMA Filter. The following code specifies
a fourth-order lattice ARMA filter structure for a quantized filter hq, starting
from hd, a floating-point version of the filter.

LadderAccumFormat

LadderFormat

InputFormat LatticeAccumFormat

LatticeProdFormat

LatticeAccumFormat

StateFormat

LatticeFormat

LatticeFormatLatticeFormat

LatticeProdFormat

LatticeProdFormat

LatticeAccumFormat

LadderFormat

LadderProdFormat LadderProdFormat

OutputFormat

StateFormat

1

Output

v2 v1

Cast

Cast

Cast

Cast

k2 k1

conj(k)

z
−1

z
−1

1

Input

Fixed-Point Filter Properties

7-65

k = [.66 .7 .44 .66];
v = [1 0 0];
hd=dfilt.latticearma({k,v});
hq = copy(hd);
hq.arithmetic = 'fixed';

7 Reference for the Properties of Filter Objects

7-66

Direct Form Symmetric FIR Filter Structure (Any Order)
Shown in the next figure, you see signal flow that depicts a direct form
symmetric FIR filter structure that directly realizes a fifth-order direct form
symmetric FIR filter. Filter coefficients are labeled b(i), i = 1, ..., n, and states
(used for initial and final state values in filtering) are labeled z(i). Showing the
filter structure used when you select fixed for the Arithmetic property value,
the first figure details the properties in the filter object.

Example—Specifying an Odd-Order Direct Form Symmetric FIR Filter. By using the
following code in MATLAB, you can specify a fifth-order direct form symmetric
FIR filter for a fixed-point filter hq:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd=dfilt.dfsymfir({b});

InputFormat InputFormat

TapSumFormat

TapSumFormat

TapSumFormat

NumFormat

NumFormat

NumFormat

ProductFormat

ProductFormat

ProductFormat

AccumFormat AccumFormat OutputFormat
1

Output

b3

b2

b1

Cast

Cast

z
−1

z
−1

z
−1

z
−1

z
−1

1

Input

Fixed-Point Filter Properties

7-67

hq = copy(hd);
set(hq,'arithmetic','fixed');

Assigning Filter Coefficients
The syntax you use to assign filter coefficients for your floating-point or
fixed-point filter depends on the structure you select for your filter.

Converting Filters Between Representations
Filter conversion functions in this toolbox and in the Signal Processing Toolbox
let you convert filter transfer functions to other filter forms, and from other
filter forms to transfer function form. Relevant conversion functions include
the following functions.

Conversion Function Description

ca2tf Converts from a coupled allpass filter to a
transfer function.

cl2tf Converts from a lattice coupled allpass filter to
a transfer function.

convert Convert a discrete-time filter from one filter
structure to another.

sos Converts quantized filters to create
second-order sections. We recommend this
method for converting quantized filters to
second-order sections.

tf2ca Converts from a transfer function to a coupled
allpass filter.

tf2cl Converts from a transfer function to a lattice
coupled allpass filter.

tf2latc Converts from a transfer function to a lattice
filter.

tf2sos Converts from a transfer function to a
second-order section form.

7 Reference for the Properties of Filter Objects

7-68

Note that these conversion routines do not apply to dfilt objects.

Function convert is a special case—when you use convert to change the filter
structure of a fixed-point filter, you lose all of the filter states and settings.
Your new filter has default values for all properties, and it in not fixed-point.

To demonstrate the changes that occur, convert a fixed-point direct form I
transposed filter to direct form II structure.

hd=dfilt.df1t

hd =

 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'double'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: Numerator: [0x0 double]
 Denominator:[0x0 double]

hd.arithmetic='fixed'
hd =

tf2ss Converts from a transfer function to
state-space form.

tf2zp Converts from a rational transfer function to
its factored (single section) form
(zero-pole-gain form).

zp2sos Converts a zero-pole-gain form to a
second-order section form.

zp2ss Conversion of zero-pole-gain form to a
state-space form.

zp2tf Conversion of zero-pole-gain form to transfer
functions of multiple order sections.

Conversion Function Description

Fixed-Point Filter Properties

7-69

 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: Numerator: [0x0 fi]
 Denominator:[0x0 fi]

convert(hd,'df2')

Warning: Using reference filter for structure conversion.
Fixed-point attributes will not be converted.

ans =

 FilterStructure: 'Direct-Form II'
 Arithmetic: 'double'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [0x1 double]

You can specify a filter with L sections of arbitrary order by

1 Factoring your entire transfer function with tf2zp. This converts your
transfer function to zero-pole-gain form.

2 Using zp2tf to compose the transfer function for each section from the
selected first-order factors obtained in step 1.

Note You are not required to normalize the leading coefficients of each
section’s denominator polynomial when you specify second-order sections,
though tf2sos does.

7 Reference for the Properties of Filter Objects

7-70

Gain
dfilt.scalar filters have a gain value stored in the gain property. By default
the gain value is one—the filter acts as a wire.

InputFracLength
InputFracLength defines the fraction length assigned to the input data for
your filter. Used in tandem with InputWordLength, the pair defines the data
format for input data you provide for filtering.

As with all fraction length properties in dfilt objects, the value you enter here
can be any negative or positive integer, or zero. Fraction length can be larger
than the associated word length, in this case InputWordLength, as well.

InputWordLength
Specifies the number of bits your filter uses to represent your input data. Your
word length option is limited by the arithmetic you choose—up to 32 bits for
double, float, and fixed. Setting Arithmetic to single (single-precision
floating-point) limits word length to 16 bits. The default value is 16 bits.

Ladder
Included as a property in dfilt.latticearma filter objects, Ladder contains
the denominator coefficients that form an IIR lattice filter object. For instance,
the following code creates a high pass filter object that uses the lattice ARMA
structure.

[b,a]=cheby1(5,.5,.5,'high')

b =

 0.0282 -0.1409 0.2817 -0.2817 0.1409 -0.0282

a =

 1.0000 0.9437 1.4400 0.9629 0.5301 0.1620

hd=dfilt.latticearma(b,a)

hd =

Fixed-Point Filter Properties

7-71

 FilterStructure: [1x44 char]
 Arithmetic: 'double'
 Lattice: [1x6 double]
 Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]

PersistentMemory: false
 States: [6x1 double]

hd.arithmetic='fixed'

hd =

 FilterStructure: [1x44 char]
 Arithmetic: 'fixed'
 Lattice: [1x6 double]
 Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

LadderAccumFracLength
Autoregressive, moving average lattice filter objects (lattticearma) use ladder
coefficients to define the filter. In combination with LadderFracLength and
CoeffWordLength, these three properties specify or reflect how the
accumulator outputs data stored there. As with all fraction length properties,
LadderAccumFracLength can be any integer, including integers larger than

7 Reference for the Properties of Filter Objects

7-72

AccumWordLength, and positive or negative integers. The default value is 29
bits.

LadderFracLength
To let you control the way your latticearma filter interprets the denominator
coefficients, LadderFracLength sets the fraction length applied to the ladder
coefficients for your filter. The default value is 14 bits.

As with all fraction length properties, LadderFracLength can be any integer,
including integers larger than AccumWordLength, and positive or negative
integers.

Lattice
When you create a lattice-based IIR filter, your numerator coefficients (from
your IIR prototype filter or the default dfilt lattice filter function) get stored
in the Lattice property of the dfilt object. The properties CoeffWordLength
and LatticeFracLength define the data format the object uses to represent the
lattice coefficients. By default, lattice coefficients are in double-precision
format.

LatticeAccumFracLength
Lattice filter objects (latticeallpass, latticearma, latticemamax, and
latticemamin) use lattice coefficients to define the filter. In combination with
LatticeFracLength and CoeffWordLength, these three properties specify how
the accumulator outputs lattice coefficient-related data stored there. As with
all fraction length properties, LatticeAccumFracLength can be any integer,
including integers larger than AccumWordLength, and positive or negative
integers. By default, the property is set to 31 bits.

LatticeFracLength
To let you control the way your filter interprets the denominator coefficients,
LatticeFracLength sets the fraction length applied to the lattice coefficients
for your lattice filter. When you create the default lattice filter,
LatticeFracLength is 16 bits.

As with all fraction length properties, LatticeFracLength can be any integer,
including integers larger than CoeffWordLength, and positive or negative
integers.

Fixed-Point Filter Properties

7-73

MultiplicandFracLength
Each input data element for a multiply operation has both word length and
fraction length to define its representation. MultiplicandFracLength sets the
fraction length to use when the filter object performs any multiply operation
during filtering. For default filters, this is set to 15 bits.

As with all word and fraction length properties, MultiplicandFracLength can
be any integer, including integers larger than CoeffWordLength, and positive
or negative integers.

MultiplicandWordLength
Each input data element for a multiply operation has both word length and
fraction length to define its representation. MultiplicandWordLength sets the
word length to use when the filter performs any multiply operation during
filtering. For default filters, this is set to 16 bits. Only the df1t and df1tsos
filter objects include the MultiplicandFracLength property.

Only the df1t and df1tsos filter objects include the MultiplicandWordLength
property.

NumAccumFracLength
Filter structures df1, df1t, df2, and df2t that use fixed arithmetic have this
property that defines the fraction length applied to numerator coefficients in
output from the accumulator. In combination with AccumWordLength, the
NumAccumFracLength property fully specifies how the accumulator outputs
numerator-related data stored there.

As with all fraction length properties, NumAccumFracLength can be any integer,
including integers larger than AccumWordLength, and positive or negative
integers. 30 bits is the default value when you create the filter object. To be able
to change the value for this property, set FilterInternals for the filter to
SpecifyPrecision.

Numerator
The numerator coefficients for your filter, taken from the prototype you start
with or from the default filter, are stored in this property. Generally this is
a 1-by-N array of data in double format, where N is the length of the filter.

7 Reference for the Properties of Filter Objects

7-74

All of the filter objects include Numerator, except the lattice-based and
second-order section filters, such as dfilt.latticema and dfilt.df1tsos.

NumFracLength
Property NumFracLength contains the value that specifies the fraction length
for the numerator coefficients for your filter. NumFracLength specifies the
fraction length used to interpret the numerator coefficients. Used in
combination with CoeffWordLength, these two properties define the
interpretation of the coefficients stored in the vector that contains the
numerator coefficients.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 15 bits, with the
CoeffWordLength of 16 bits.

NumProdFracLength
A property of all of the direct form IIR dfilt objects, except the ones that
implement second-order sections, NumProdFracLength specifies the fraction
length applied to data output from product operations the filter performs on
numerator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you
see that denominators and numerators are handled separately. When you set
ProductMode to SpecifyPrecision, you can change the NumProdFracLength
setting manually. Otherwise, for multiplication operations that use the
numerator coefficients, the filter sets the word length as defined by the
ProductMode setting.

NumStateFracLength
All the variants of the direct form I structure include the property
NumStateFracLength to store the fraction length applied to the numerator
states for your filter object. By default, this property has the value 15 bits, with
the CoeffWordLength of 16 bits, which you can change after you create the
filter object.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well.

Fixed-Point Filter Properties

7-75

NumStateWordLength
When you look at the flow diagram for the df1sos filter object, the states
associated with the numerator coefficient operations take the data format from
this property and the NumStateFracLength property. In combination, these
properties fully specify how the filter interprets the state it uses.

As with all fraction length properties, the value you enter here can be any
negative or positive integer, or zero. Fraction length can be larger than the
associated word length, as well. By default, the value is 16 bits, with the
NumStateFracLength of 11 bits.

OutputFracLength
To define the output from your filter object, you need both the word and
fraction lengths. OutputFracLength determines the fraction length applied to
interpret the output data. Combining this with OutputWordLength fully
specifies the format of the output.

Your fraction length can be any negative or positive integer, or zero. In
addition, the fraction length you specify can be larger than the associated word
length. Generally, the default value is 11 bits.

OutputMode
Sets the mode the filter uses to scale the filtered (output) data. You have the
following choices:

• AvoidOverflow—directs the filter to set the property that controls the output
data fraction length to avoid causing the data to overflow. In a df2 filter, this
would be the OutputFracLength property.

• BestPrecision—directs the filter to set the property that controls the output
data fraction length to maximize the precision in the output data. For df1t
filters, this is the OutputFracLength property. When you change the word
length (OutputWordLength), the filter adjusts the fraction length to maintain
the best precision for the new word size.

• SpecifyPrecision—lets you set the fraction length used by the filtered data.
When you select this choice, you can set the output fraction length using the
OutputFracLength property to define the output precision.

7 Reference for the Properties of Filter Objects

7-76

All filters include this property except the direct form I filter which takes the
output format from the filter states.

Here is an example that changes the mode setting to bestprecision, and then
adjusts the word length for the output.

hd=dfilt.df2

hd =

 FilterStructure: 'Direct-Form II'
 Arithmetic: 'double'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [0x1 double]

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form II'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

Fixed-Point Filter Properties

7-77

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

get(hd)
PersistentMemory: false

FilterStructure: 'Direct-Form II'
 States: [1x1 embedded.fi]
 Numerator: 1
 Denominator: 1
 Arithmetic: 'fixed'
 CoeffWordLength: 16
 CoeffAutoScale: 1
 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 ProductMode: 'FullPrecision'
 StateWordLength: 16
 StateFracLength: 15
 NumFracLength: 14
 DenFracLength: 14
 OutputFracLength: 13
 ProductWordLength: 32
 NumProdFracLength: 29
 DenProdFracLength: 29
 AccumWordLength: 40
 NumAccumFracLength: 29
 DenAccumFracLength: 29
 CastBeforeSum: 1

hd.outputMode='bestprecision'

7 Reference for the Properties of Filter Objects

7-78

hd =

 FilterStructure: 'Direct-Form II'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'BestPrecision'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

hd.outputWordLength=8;

get(hd)
PersistentMemory: false
FilterStructure: 'Direct-Form II'

 States: [1x1 embedded.fi]
 Numerator: 1
 Denominator: 1
 Arithmetic: 'fixed'
 CoeffWordLength: 16

Fixed-Point Filter Properties

7-79

 CoeffAutoScale: 1
 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 8
 OutputMode: 'BestPrecision'
 ProductMode: 'FullPrecision'
 StateWordLength: 16
 StateFracLength: 15
 NumFracLength: 14
 DenFracLength: 14
 OutputFracLength: 5
 ProductWordLength: 32
 NumProdFracLength: 29
 DenProdFracLength: 29
 AccumWordLength: 40
 NumAccumFracLength: 29
 DenAccumFracLength: 29
 CastBeforeSum: 1

Changing the OutputWordLength to 8 bits caused the filter to change the
OutputFracLength to 5 bits to keep the best precision for the output data.

OutputWordLength
Use the property OutputWordLength to set the word length used by the output
from your filter. Set this property to a value that matches your intended
hardware. For example, some digital signal processors use 32-bit output so you
would set OutputWordLength to 32.

[b,a] = butter(6,.5);
hd=dfilt.df1t(b,a);

set(hd,'arithmetic','fixed')

hd

hd =

 FilterStructure: 'Direct-Form I Transposed'

7 Reference for the Properties of Filter Objects

7-80

 Arithmetic: 'fixed'
 Numerator: [1x7 double]
 Denominator: [1 0 0.7777 0 0.1142 0 0.0018]

PersistentMemory: false
 States: Numerator: [6x1 fi]
 Denominator:[6x1 fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 MultiplicandWordLength: 16
 MultiplicandFracLength: 15

 StateWordLength: 16
 StateAutoScale: true

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

hd.outputwordLength=32

hd =

 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'fixed'
 Numerator: [1x7 double]
 Denominator: [1 0 0.7777 0 0.1142 0 0.0018]

PersistentMemory: false
 States: Numerator: [6x1 fi]
 Denominator:[6x1 fi]

Fixed-Point Filter Properties

7-81

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 32
 OutputMode: 'AvoidOverflow'

 MultiplicandWordLength: 16
 MultiplicandFracLength: 15

 StateWordLength: 16
 StateAutoScale: true

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

When you create a filter object, this property starts with the value 16.

OverflowMode
The OverflowMode property is specified as one of the following two strings
indicating how to respond to overflows in fixed-point arithmetic:

• 'saturate'—saturate overflows.

When the values of data to be quantized lie outside of the range of the largest
and smallest representable numbers (as specified by the applicable word
length and fraction length properties), these values are quantized to the
value of either the largest or smallest representable value, depending on
which is closest.

• 'wrap'—wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest
and smallest representable numbers (as specified by the data format

7 Reference for the Properties of Filter Objects

7-82

properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number. You can learn
more about modular arithmetic in the Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.

• Applies to the accumulator and output data only.

• Does not apply to coefficients or input data. These always saturate the
results.

• Does not apply to products. Products maintain full precision at all times.
Your filters do not lose precision in the products.

Default value: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic
range overflow to ±inf.

ProductFracLength
After you set ProductMode for a fixed-point filter to SpecifyPrecision, this
property becomes available for you to change. ProductFracLength sets the
fraction length the filter uses for the results of multiplication operations. Only
the FIR filters such as asymmetric FIRs or lattice autoregressive filters include
this dynamic property.

Your fraction length can be any negative or positive integer, or zero. In
addition, the fraction length you specify can be larger than the associated word
length. Generally, the default value is 11 bits.

ProductMode
This property, available when your filter is in fixed-point arithmetic mode,
specifies how the filter outputs the results of multiplication operations. All
dfilt objects include this property when they use fixed-point arithmetic.

When available, you select from one of the following values for ProductMode:

• FullPrecision—means the filter automatically chooses the word length and
fraction length it uses to represent the results of multiplication operations.

Fixed-Point Filter Properties

7-83

The setting allow the product to retain the precision provided by the inputs
(multiplicands) to the operation.

• KeepMSB—means you specify the word length for representing product
operation results. The filter sets the fraction length to discard the LSBs, keep
the higher order bits in the data, and maintain the precision.

• KeepLSB—means you specify the word length for representing the product
operation results. The filter sets the fraction length to discard the MSBs,
keep the lower order bits, and maintain the precision. Compare to the
KeepMSB option.

• SpecifyPrecision—means you specify the word length and the fraction
length to apply to data output from product operations.

When you switch to fixed-point filtering from floating-point, you are most likely
going to throw away some data bits after product operations in your filter,
perhaps because you have limited resources. When you have to discard some
bits, you might choose to discard the least significant bits (LSB) from a result
since the resulting quantization error would be small as the LSBs carry less
weight. Or you might choose to keep the LSBs because the results have MSBs
that are mostly zero, such as when your values are small relative to the range
of the format in which they are represented. So the options for ProductMode let
you choose how to maintain the information you need from the accumulator.

For more information about data formats, word length, and fraction length in
fixed-point arithmetic, refer to “Notes About Fraction Length, Word Length,
and Precision” on page 7-30.

ProductWordLength
You use ProductWordLength to define the data word length used by the output
from multiplication operations. Set this property to a value that matches your
intended application. For example, the default value is 32 bits, but you can set
any word length.

set(hq,'arithmetic','fixed');
set(hq,'ProductWordLength',64);

Note that ProductWordLength applies only to filters whose Arithmetic
property value is fixed.

7 Reference for the Properties of Filter Objects

7-84

PersistentMemory
Determine whether the filter states get restored to their starting values for
each filtering operation. The starting values are the values in place when you
create the filter object. PersistentMemory returns to zero any state that the
filter changes during processing. States that the filter does not change are not
affected. Defaults to false—the filter does not retain memory about filtering
operations from one to the next. Maintaining memory (setting
PersistentMemory to true) lets you filter large data sets as collections of
smaller subsets and get the same result.

In this example, filter hd first filters data xtot in one pass. Then we use hd to
filter x as two separate data sets. The results ytot and ysec are the same in
both cases.

xtot=[x,x];
ytot=filter(hd,xtot)
ytot =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hd,x) filter(hd,x)]

ysec =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the
entire signal filtered at once).

Fixed-Point Filter Properties

7-85

RoundMode
The RoundMode property value specifies the rounding method used for
quantizing numerical values. Specify the RoundMode property values as one of
the following five strings.

Default value: 'convergent'

The choice you make affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always round. Finally, products never
overflow—they maintain full precision.

ScaleValueFracLength
Filter structures df1sos, df1tsos, df2sos, and df2tsos that use fixed
arithmetic have this property that defines the fraction length applied to the

RoundMode String Description of Rounding Algorithm

'ceil' Round up to the next representable quantized
value.

'convergent' Round to the nearest representable quantized
value. Numbers that are exactly halfway
between the two nearest representable
quantized values are rounded up when the least
significant bit would be set to 1 after rounding.
Otherwise, the number is rounded down. Filter
objects use convergent rounding by default.

'fix' Round negative numbers up and positive
numbers down to the next representable
quantized value.

'floor' Round down to the next representable quantized
value.

'round' Round to the nearest representable quantized
value. Numbers that are halfway between the
two nearest representable quantized values are
rounded up.

7 Reference for the Properties of Filter Objects

7-86

scale values the filter uses between sections. In combination with
CoeffWordLength, these two properties fully specify how the filter interprets
and uses the scale values stored in the property ScaleValues. As with fraction
length properties, ScaleValueFracLength can be any integer, including
integers larger than CoeffWordLength, and positive or negative integers. 15
bits is the default value when you create the filter.

ScaleValues
The ScaleValues property values are specified as a scalar (or vector) that
introduces scaling for inputs (and the outputs from cascaded sections in the
vector case) during filtering:

• When you only have a single section in your filter:

- Specify the ScaleValues property value as a scalar if you only want to
scale the input to your filter.

- Specify the ScaleValues property as a vector of length 2 if you want to
specify scaling to the input (scaled with the first entry in the vector) and
the output (scaled with the last entry in the vector).

• When you have L cascaded sections in your filter:

- Specify the ScaleValues property value as a scalar if you only want to
scale the input to your filter.

- Specify the value for the ScaleValues property as a vector of length L+1 if
you want to scale the inputs to every section in your filter, along with the
output:

-The first entry of your vector specifies the input scaling

- Each successive entry specifies the scaling at the output of the next section

- The final entry specifies the scaling for the filter output.

The interpretation of this property is described below with diagrams in
“Interpreting the ScaleValues Property”.

Default value: 0

Remarks: The value of the ScaleValues property is not quantized. Data
affected by the presence of a scaling factor in the filter is quantized according
to the appropriate data format.

Fixed-Point Filter Properties

7-87

When you apply normalize to a fixed-point filter, the value for the
ScaleValues property is changed accordingly.

It is good practice to choose values for this property that are either positive or
negative powers of two.

Interpreting the ScaleValues Property
When you specify the values of the ScaleValues property of a quantized filter,
the values are entered as a vector, the length of which is determined by the
number of cascaded sections in your filter:

• When you have only one section, the value of the Scalevalues property can
be a a scalar or a two-element vector.

• When you have L cascaded sections in your filter, the value of the
Scalevalues property can be a scalar or an L+1-element vector.

The following diagram shows how the ScaleValues property values are applied
to a quantized filter with only one section.

Application of ScaleValues
to a Single Section

1
Output

−K−

ScaleValues(2)

−K−

ScaleValues(1)

Input Output

Filter

1
Input

7 Reference for the Properties of Filter Objects

7-88

The following diagram shows how the ScaleValues property values are applied
to a quantized filter with two sections.

Signed
When you create a dfilt object for fixed-point filtering (you set the property
Arithmetic to fixed, the property Signed specifies whether the filter
interprets coefficients as signed or unsigned. This setting applies only to the
coefficients. While the default setting is true, meaning that all coefficients are
assumed to be signed, you can change the setting to false after you create the
fixed-point filter.

For example, create a fixed-point direct-form II transposed filter with both
negative and positive coefficients, and then change the property value for
Signed from true to false to see what happens to the negative coefficient
values.

hd=dfilt.df2t(-5:5)

hd =

 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: [-5 -4 -3 -2 -1 0 1 2 3 4 5]
 Denominator: 1

PersistentMemory: false
 States: [10x1 double]

set(hd,'arithmetic','fixed')
hd.numerator

Application of ScaleValues
to Multiple Sections

1
Output

−K−

ScaleValues(3)

−K−

ScaleValues(2)

−K−

ScaleValues(1)

Input Output

Filter2

Input Output

Filter1

1
Input

Fixed-Point Filter Properties

7-89

ans =

 -5 -4 -3 -2 -1 0 1 2 3 4 5

set(hd,'signed',false)
hd.numerator

ans =

 0 0 0 0 0 0 1 2 3 4 5

Using unsigned coefficients limits you to using only positive coefficients in your
filter. Signed is a dynamic property—you cannot set or change it until you
switch the setting for the Arithmetic property to fixed.

SosMatrix
When you convert a dfilt object to second-order section form, or create
a second-order section filter, sosMatrix holds the filter coefficients as property
values. Using the double data type by default, the matrix is in
[sections coefficients per section] form, displayed as [15-x-6] for filters with
6 coefficients per section and 15 sections, [15 6].

To demonstrate, the following code creates an order 30 filter using
second-order sections in the direct-form II transposed configuration. Notice the
sosMatrix property contains the coefficients for all the sections.

d = fdesign.lowpass('n,fc',30,0.5);
hd = butter(d);

hd =

FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]

PersistentMemory: false
 States: [2x15 double]

hd.arithmetic='fixed'

7 Reference for the Properties of Filter Objects

7-90

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

SectionInputWordLength: 16
SectionInputAutoScale: true

SectionOutputWordLength: 16
SectionOutputAutoScale: true

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

hd.sosMatrix

ans =

Fixed-Point Filter Properties

7-91

 1.0000 2.0000 1.0000 1.0000 0 0.9005
 1.0000 2.0000 1.0000 1.0000 0 0.7294
 1.0000 2.0000 1.0000 1.0000 0 0.5888
 1.0000 2.0000 1.0000 1.0000 0 0.4724
 1.0000 2.0000 1.0000 1.0000 0 0.3755
 1.0000 2.0000 1.0000 1.0000 0 0.2948
 1.0000 2.0000 1.0000 1.0000 0 0.2275
 1.0000 2.0000 1.0000 1.0000 0 0.1716
 1.0000 2.0000 1.0000 1.0000 0 0.1254
 1.0000 2.0000 1.0000 1.0000 0 0.0878
 1.0000 2.0000 1.0000 1.0000 0 0.0576
 1.0000 2.0000 1.0000 1.0000 0 0.0344
 1.0000 2.0000 1.0000 1.0000 0 0.0173
 1.0000 2.0000 1.0000 1.0000 0 0.0062
 1.0000 2.0000 1.0000 1.0000 0 0.0007

The SOS matrix is an M-by-6 matrix, where M is the number of sections in the
second-order section filter. Filter hd has M equal to 15 as shown above (15
rows). Each row of the SOS matrix contains the numerator and denominator
coefficients (b’s and a’s) and the scale factors of the corresponding section in the
filter.

SectionInputAutoScale
Second-order section filters include this property that determines who the
filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends
on the property value of SectionInputAutoScale. The representation the filter
uses between the filter sections depends on whether the value of
SectionInputAutoScale is true or false.

• SectionInputAutoScale = true means the filter chooses the fraction length
to maintain the value of the data between sections as close to the output
values from the previous section as possible. true is the default setting.

• SectionInputAutoScale = false removes the automatic scaling of the
fraction length for the intersection data and exposes the property that
controls the coefficient fraction length (SectionInputFracLength) so you can
change it. For example, if the filter is a second-order, direct form FIR filter,
setting SectionInputAutoScale = false exposes the

7 Reference for the Properties of Filter Objects

7-92

SectionInputFracLength property that specifies the fraction length applied
to data between the sections.

SectionInputFracLength
Second-order section filters use quantizers at the input to each section of the
filter. The quantizers apply to the input data entering each filter section. Note
that the quantizers for each section are the same. To set the fraction length for
interpreting the input values, use the property value in
SectionInputFracLength.

In combination with CoeffWordLength, SectionInputFracLength fully
determines how the filter interprets and uses the state values stored in the
property States. As with all word and fraction length properties,
SectionInputFracLength can be any integer, including integers larger than
CoeffWordLength, and positive or negative integers. 15 bits is the default value
when you create the filter object.

SectionInputWordLength
SOS filters are composed of sections, each one a second-order filter. Filtering
data input to the filter involves passing the data through each filter section.
SectionInputWordLength specifies the word length applied to data as it enters
one filter section from the previous section. Only second-order
implementations of direct-form I transposed and direct-form II transposed
filters include this property.

By looking at one of the SOS transposed filter structures, such as this one for
the transposed direct-form I filter implemented using second-order sections,
you see the filter sections at the bottom of the figure.

Fixed-Point Filter Properties

7-93

SectionInputWordLength defaults to 16 bits.

SectionOutputAutoScale
Second-order section filters include this property that determines who the
filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends
on the property value of SectionOutputAutoScale. The representation the
filter uses between the filter sections depends on whether the value of
SectionOutputAutoScale is true or false.

• SectionOutputAutoScale = true means the filter chooses the fraction
length to maintain the value of the data between sections as close to the
output values from the previous section as possible. true is the default
setting.

NumAccumFormat

StateFormat

StateFormat

InputFormat

ScaleValueFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

DenFormat

DenFormat

DenProdFormat

DenProdFormat

DenAccFormat

NumAccumFormat

NumFormat

NumAccumFormat

StageOutputFormatStageInputFormat

OutputFormatInputFormat

ScaleValueFormat ScaleValueFormat ScaleValueFormat ScaleValueFormat

StageInputFormat StageOutputFormat StageInputFormat

StageOutputFormat

StageInputFormat

StageOutputFormat

StageInputFormat

2
output2

1
output

b3

−K−−K− −K−

−K−

−K−

b2

b1

a3

a2

Cast

Section 1

Cast

Cast

CastSection n

Cast

Section 2

[Sect1] [Sect1]

z
−1

z
−1

2
input1

1
input

7 Reference for the Properties of Filter Objects

7-94

• SectionOutputAutoScale = false removes the automatic scaling of the
fraction length for the intersection data and exposes the property that
controls the coefficient fraction length (SectionOutputFracLength) so you
can change it. For example, if the filter is a second-order, direct form FIR
filter, setting SectionOutputAutoScale = false exposes the
SectionOutputFracLength property that specifies the fraction length
applied to data between the sections.

SectionOutputFracLength
Second-order section filters use quantizers at the output from each section of
the filter. The quantizers apply to the output data leaving each filter section.
Note that the quantizers for each section are the same. To set the fraction
length for interpreting the output values, use the property value in
SectionOutputFracLength.

In combination with CoeffWordLength, SectionOutputFracLength determines
how the filter interprets and uses the state values stored in the property
States. As with all fraction length properties, SectionOutputFracLength can
be any integer, including integers larger than CoeffWordLength, and positive
or negative integers. 15 bits is the default value when you create the filter
object.

SectionOutputWordLength
SOS filters are composed of sections, each one a second-order filter. Filtering
data input to the filter involves passing the data through each filter section.
SectionOutputWordLength specifies the word length applied to data as it
leaves one filter section to go to the next. Only second-order implementations
direct-form I transposed and direct-form II transposed filters include this
property.

By looking at one of the SOS transposed filter structures, such as this one for
the transposed direct-form I filter implemented using second-order sections,
you see the filter sections at the bottom of the figure.

Fixed-Point Filter Properties

7-95

SectionOutputWordLength defaults to 16 bits.

StateAutoScale
Although all filters use states, some do not allow you to choose whether the
filter automatically scales the state values to prevent overruns or bad
arithmetic errors. You select either of the following settings:

• StateAutoScale = true means the filter chooses the fraction length to
maintain the value of the states as close to the double-precision values as
possible. When you change the word length applied to the states (where
allowed by the filter structure), the filter object changes the fraction length
to try to accommodate the change. true is the default setting.

• StateAutoScale = false removes the automatic scaling of the fraction
length for the states and exposes the property that controls the coefficient
fraction length so you can change it. For example, in a direct form I

NumAccumFormat

StateFormat

StateFormat

InputFormat

ScaleValueFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

DenFormat

DenFormat

DenProdFormat

DenProdFormat

DenAccFormat

NumAccumFormat

NumFormat

NumAccumFormat

StageOutputFormatStageInputFormat

OutputFormatInputFormat

ScaleValueFormat ScaleValueFormat ScaleValueFormat ScaleValueFormat

StageInputFormat StageOutputFormat StageInputFormat

StageOutputFormat

StageInputFormat

StageOutputFormat

StageInputFormat

2
output2

1
output

b3

−K−−K− −K−

−K−

−K−

b2

b1

a3

a2

Cast

Section 1

Cast

Cast

CastSection n

Cast

Section 2

[Sect1] [Sect1]

z
−1

z
−1

2
input1

1
input

7 Reference for the Properties of Filter Objects

7-96

transposed SOS FIR filter, setting StateAutoScale = false exposes the
NumStateFracLength and DenStateFracLength properties that specify the
fraction length applied to states.

Each of the following filter structures provides the StateAutoScale property:

• df1t

• df1tsos
• df2t
• df2tsos
• dffirt

Other filter structures do not include this property.

StateFracLength
Filter states stored in the property States have both word length and fraction
length. To set the fraction length for interpreting the stored filter object state
values, use the property value in StateFracLength.

In combination with CoeffWordLength, StateFracLength fully determines how
the filter interprets and uses the state values stored in the property States.

As with all fraction length properties, StateFracLength can be any integer,
including integers larger than CoeffWordLength, and positive or negative
integers. 15 bits is the default value when you create the filter object.

States
Digital filters are dynamic systems. The behavior of dynamic systems (their
response) depends on the input (stimulus) to the system and the current or
previous state of the system. You can say the system has memory or inertia. All
fixed- or floating-point digital filters (as well as analog filters) have states.

Filters use the states to compute the filter output for each input sample, as well
using them while filtering in loops to maintain the filter state between loop
iterations. In the toolbox we assume zero-valued initial conditions (the
dynamic system is at rest) by default when we filter the first input sample.
Assuming the states are zero initially does not mean the states are not used;
they are, but arithmetically they do not have any effect.

Fixed-Point Filter Properties

7-97

Filter objects store the state values in the property States. The number of
stored states depends on the filter implementation, since the states represent
the delays in the filter implementation.

When you review the display for a filter object with fixed arithmetic, notice that
the states return an embedded fi object, as you see here.

b = ellip(6,3,50,300/500);
hd=dfilt.dffir(b)

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]

PersistentMemory: false
 States: [6x1 double]

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: 'on'
 Signed: 'on'

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 ProductMode: 'FullPrecision'

 AccumWordLength: 40
 CastBeforeSum: 'on'

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

 InheritSettings: 'off'

fi objects provide fixed-point support for the filters. To learn more about the
details about fi objects, refer to your Fixed-Point Toolbox documentation.

The property States lets you use a fi object to define how the filter interprets
the filter states. For example, you can create a fi object in MATLAB, then
assign the object to States, as follows:

7 Reference for the Properties of Filter Objects

7-98

statefi=fi([],16,12)

statefi =

[]
 DataTypeMode = Fixed-point: binary point scaling
 Signed = true
 Wordlength = 16
 Fractionlength = 12

This fi object does not have a value associated (notice the [] input argument
to fi for the value), and it has word length of 16 bits and fraction length of 12
bit. Now you can apply statefi to the States property of the filter hd.

set(hd,'States',statefi);
Warning: The 'States' property will be reset to the value
specified at construction before filtering.
Set the 'PersistentMemory' flag to 'True' to avoid changing this
property value.
hd

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858

0.2938 0.0773]
PersistentMemory: false

 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: 'on'
 Signed: 'on'

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 ProductMode: 'FullPrecision'

Fixed-Point Filter Properties

7-99

 AccumWordLength: 40
 CastBeforeSum: 'on'

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

StateWordLength
While all filters use states, some do not allow you to directly change the state
representation—the word length and fraction lengths—independently. For the
others, StateWordLength specifies the word length, in bits, the filter uses to
represent the states. Filters that do not provide direct state word length control
include:

• df1
• dfasymfir
• dffir
• dfsymfir

For these structures, the filter derives the state format from the input format
you choose for the filter—except for the df1 IIR filter. In this case, the
numerator state format comes from the input format and the denominator
state format comes from the output format. All other filter structures provide
control of the state format directly.

TapSumFracLength
Direct-form FIR filter objects, both symmetric and antisymmetric, use this
property. To set the fraction length for output from the sum operations that
involve the filter tap weights, use the property value in TapSumFracLength. To
enable this property, set the TapSumMode to SpecifyPrecision in your filter.

As you can see in this code example that creates a fixed-point asymmetric FIR
filter, the TapSumFracLength property becomes available after you change the
TapSumMode property value.

hd=dfilt.dfasymfir

hd =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'

7 Reference for the Properties of Filter Objects

7-100

 Numerator: 1
PersistentMemory: false

 States: [0x1 double]

set(hd,'arithmetic','fixed');
hd

hd =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: 1

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 TapSumMode: 'KeepMSB'
 TapSumWordLength: 17

 ProductMode: 'FullPrecision'

 AccumWordLength: 40

 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'

With the filter now in fixed-point mode, you can change the TapSumMode
property value to SpecifyPrecision, which gives you access to the
TapSumFracLength property.

set(hd,'TapSumMode','SpecifyPrecision');

Fixed-Point Filter Properties

7-101

hd

hd =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: 1

PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 TapSumMode: 'SpecifyPrecision'
 TapSumWordLength: 17
 TapSumFracLength: 15

 ProductMode: 'FullPrecision'

 AccumWordLength: 40

 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'

In combination with TapSumWordLength, TapSumFracLength fully determines
how the filter interprets and uses the state values stored in the property
States.

As with all fraction length properties, TapSumFracLength can be any integer,
including integers larger than TapSumWordLength, and positive or negative
integers. 15 bits is the default value when you create the filter object.

7 Reference for the Properties of Filter Objects

7-102

TapSumMode
This property, available only after your filter is in fixed-point mode, specifies
how the filter outputs the results of summation operations that involve the
filter tap weights. Only symmetric (dfilt.dfsymfir) and antisymmetric
(dfilt.dfasymfir) FIR filters use this property.

When available, you select from one of the following values:

• FullPrecision—means the filter automatically chooses the word length and
fraction length to represent the results of the sum operation so they retain
all of the precision provided by the inputs (addends).

• KeepMSB—means you specify the word length for representing tap sum
summation results to keep the higher order bits in the data. The filter sets
the fraction length to discard the LSBs from the sum operation. This is the
default property value.

• KeepLSB—means you specify the word length for representing tap sum
summation results to keep the lower order bits in the data. The filter sets the
fraction length to discard the MSBs from the sum operation. Compare to the
KeepMSB option.

• SpecifyPrecision—means you specify the word and fraction lengths to
apply to data output from the tap sum operations.

TapSumWordLength
Specifies the word length the filter uses to represent the output from tap sum
operations. The default value is 17 bits. Only dfasymfir and dfsymfir filters
include this property.

Adaptive Filter Properties

7-103

Adaptive Filter Properties
The following table summarizes the adaptive filter properties and provides
a brief description of each. Full descriptions of each property, in alphabetical
order, follow the table.

Property Description

Algorithm Reports the algorithm the object
uses for adaptation. When you
construct your adaptive filter object,
this property is set automatically by
the constructor, such as
adaptfilt.nlms creating an
adaptive filter that uses the
normalized LMS algorithm. You
cannot change the value—it is read
only.

AvgFactor Averaging factor used to compute
the exponentially-windowed
estimates of the powers in the
transformed signal bins for the
coefficient updates. AvgFactor
should lie between zero and one. For
default filter objects, AvgFactor
equals (1 - step). lambda is the input
argument that represents AvgFactor

BkwdPredErrorPower Returns the minimum
mean-squared prediction error. Refer
to [12] in the bibliography for details
about linear prediction.

BkwdPrediction Returns the predicted samples
generated during adaptation.Refer
to [12] in the bibliography for details
about linear prediction.

7 Reference for the Properties of Filter Objects

7-104

Blocklength Block length for the coefficient
updates. This must be a positive
integer such that (l/blocklength) is
also an integer. For faster execution,
blocklength should be a power of
two. blocklength defaults to two.

Coefficients Vector containing the initial filter
coefficients. It must be a length l
vector where l is the number of filter
coefficients. coeffs defaults to
length l vector of zeros when you do
not provide the argument for input.

ConversionFactor Conversion factor defaults to the
matrix [1 -1] that specifies
soft-constrained initialization. This
is the gamma input argument for
some of the fast transversal
algorithms.

Delay Update delay given in time samples.
This scalar should be a positive
integer—negative delays do not
work. delay defaults to 1 for most
algorithms.

DesiredSignalStates Desired signal states of the adaptive
filter. dstates defaults to a zero
vector with length equal to
(blocklen - 1) or (swblocklen - 1)
depending on the algorithm.

EpsilonStates Vector of the epsilon values of the
adaptive filter. EpsilonStates
defaults to a vector of zeros with
(projectord - 1) elements.

Property (Continued) Description

Adaptive Filter Properties

7-105

ErrorStates Vector of the adaptive filter error
states. ErrorStates defaults to a
zero vector with length equal to
(projectord - 1).

FFTCoefficients Stores the discrete Fourier
transform of the filter coefficients in
coeffs.

FFTStates Stores the states of the FFT of the
filter coefficients during adaptation.

FilteredInputStates Vector of filtered input states with
length equal to l - 1.

FilterLength Contains the length of the filter.
Note that this is not the filter order.
Filter length is 1 greater than filter
order. Thus a filter with length equal
to 10 has filter order equal to 9.

ForgettingFactor Determines how the RLS adaptive
filter uses past data in each
iteration. You use the forgetting
factor to specify whether old data
carries the same weight in the
algorithm as more recent data.

FwdPredErrorPower Returns the minimum
mean-squared prediction error in the
forward direction. Refer to [12] in
the bibliography for details about
linear prediction.

FwdPrediction Contains the predicted values for
samples during adaptation.
Compare these to the actual samples
to get the error and power.

Property (Continued) Description

7 Reference for the Properties of Filter Objects

7-106

InitFactor Soft-constrained initialization factor.
This scalar should be positive and
sufficiently large to prevent an
excessive number of Kalman gain
rescues. Called delta as an input
argument, this defaults to one.

InvCov Upper-triangular Cholesky (square
root) factor of the input covariance
matrix. Initialize this matrix with a
positive definite upper triangular
matrix. Dimensions are l-by-l,
where l is the filter length.

KalmanGain Empty when you construct the
object, this gets populated after you
run the filter.

KalmanGainStates Contains the states of the Kalman
gain updates during adaptation.

Leakage Contains the setting for leakage in
the adaptive filter algorithm. Using
a leakage factor that is not 1 forces
the weights to adapt even when they
have found the minimum error
solution. Forcing the adaptation can
improve the numerical performance
of the LMS algorithm.

OffsetCov Contains the offset covariance
matrix.

Property (Continued) Description

Adaptive Filter Properties

7-107

Offset Specifies an optional offset for the
denominator of the step size
normalization term. You must
specify offset to be a scalar greater
than or equal to zero. Nonzero
offsets can help avoid a
divide-by-near-zero condition that
causes errors.

Power A vector of 2*l elements, each
initialized with the value delta from
the input arguments. As you filter
data, Power gets updated by the
filter process.

ProjectionOrder Projection order of the affine
projection algorithm. projectord
defines the size of the input signal
covariance matrix and defaults to
two.

ReflectionCoeffs Coefficients determined for the
reflection portion of the filter during
adaptation.

ReflectionCoeffsStep Size of the steps used to determine
the reflection coefficients.

PersistentMemory Specifies whether to reset the filter
states and memory before each
filtering operation. Lets you decide
whether your filter retains states
and coefficients from previous
filtering runs.

Property (Continued) Description

7 Reference for the Properties of Filter Objects

7-108

SecondaryPathCoeffs A vector that contains the coefficient
values of your secondary path from
the output actuator to the error
sensor.

SecondaryPathEstimate An estimate of the secondary path
filter model.

SecondaryPathStates The states of the secondary path
filter, the unknown system.

SqrtCov Upper-triangular Cholesky (square
root) factor of the input covariance
matrix. Initialize this matrix with a
positive definite upper triangular
matrix.

SqrtlnvCov Square root of the inverse of the
sliding window input signal
covariance matrix. This square
matrix should be full-ranked.

States Vector of the adaptive filter states.
states defaults to a vector of zeros
whose length depends on the chosen
algorithm. Usually the length is a
function of the filter length l and
another input argument to the filter
object, such as projectord.

Property (Continued) Description

Adaptive Filter Properties

7-109

StepSize Reports the size of the step taken
between iterations of the adaptive
filter process. Each adaptfilt object
has a default value that best meets
the needs of the algorithm.

SwBlockLength Block length of the sliding window.
This integer must be at least as
large as the filter length.
swblocklen defaults to 16.

Property (Continued) Description

7 Reference for the Properties of Filter Objects

7-110

Like dfilt objects, adaptfilt objects have properties that govern their
behavior and store some of the results of filtering operations. The following
pages list, in alphabetical order, the name of every property associated with
adaptfilt objects. Note that not all adaptfilt objects have all of these
properties. To view the properties of a particular adaptive filter, such as an
adaptfilt.bap filter, use get with the object handle, like this:

ha = adaptfilt.bap(32,0.5,4,1.0);
get(ha)

PersistentMemory: false
Algorithm: 'Block Affine Projection FIR Adaptive Filter'

FilterLength: 32
Coefficients: [1x32 double]

States: [35x1 double]
StepSize: 0.5000

ProjectionOrder: 4
OffsetCov: [4x4 double]

get shows you the properties for ha and the values for the properties. Entering
the object handle returns the same values and properties without the
formatting of the list and the more familiar property names.

Algorithm
Reports the algorithm the object uses for adaptation. When you construct you
adaptive filter object, this property is set automatically. You cannot change the
value—it is read only.

AvgFactor
Averaging factor used to compute the exponentially-windowed estimates of the
powers in the transformed signal bins for the coefficient updates. AvgFactor
should lie between zero and one. For default filter objects, AvgFactor equals (1
- step). lambda is the input argument that represent AvgFactor

BkwdPredErrorPower

BkwdPrediction
When you use an adaptive filter that does backward prediction, such as
adaptfilt.ftf, one property of the filter contains the backward prediction
coefficients for the adapted filter. With these coefficient, the forward
coefficients, and the system under test, you have the full set of knowledge of

Adaptive Filter Properties

7-111

how the adaptation occurred. Two values stored in properties compose the
BkwdPrediction property:

• Coefficients, which contains the coefficients of the system under test, as
determined using backward predictions process.

• Error, which is the difference between the filter coefficients determined by
backward prediction and the actual coefficients of the sample filter. In this
example, adaptfilt.ftf identifies the coefficients of an unknown FIR
system.
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
N = 31; % Adaptive filter order
lam = 0.99; % RLS forgetting factor
del = 0.1; % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);

ha

ha =

 Algorithm: 'Fast Transversal Least-Squares Adaptive Filter'
 FilterLength: 32
 Coefficients: [1x32 double]
 States: [31x1 double]
 ForgettingFactor: 0.9900
 InitFactor: 0.1000
 FwdPrediction: [1x1 struct]
 BkwdPrediction: [1x1 struct]
 KalmanGain: [32x1 double]
 ConversionFactor: 0.7338
 KalmanGainStates: [32x1 double]

PersistentMemory: false

ha.coefficients

ans =

 Columns 1 through 8

 -0.0055 0.0048 0.0045 0.0146 -0.0009 0.0002 -0.0019 0.0008

 Columns 9 through 16

 -0.0142 -0.0226 0.0234 0.0421 -0.0571 -0.0807 0.1434 0.4620

 Columns 17 through 24

 0.4564 0.1532 -0.0879 -0.0501 0.0331 0.0361 -0.0266 -0.0220

 Columns 25 through 32

7 Reference for the Properties of Filter Objects

7-112

 0.0231 0.0026 -0.0063 -0.0079 0.0032 0.0082 0.0033 0.0065

ha.bkwdprediction

ans =

 Coeffs: [1x32 double]
 Error: 82.3394

>> ha.bkwdprediction.coeffs

ans =

 Columns 1 through 8

 0.0067 0.0186 0.1114 -0.0150 -0.0239 -0.0610 -0.1120 -0.1026

 Columns 9 through 16

 0.0093 -0.0399 -0.0045 0.0622 0.0997 0.0778 0.0646 -0.0564

 Columns 17 through 24

 0.0775 0.0814 0.0057 0.0078 0.1271 -0.0576 0.0037 -0.0200

 Columns 25 through 32

 -0.0246 0.0180 -0.0033 0.1222 0.0302 -0.0197 -0.1162 0.0285

Blocklength
Block length for the coefficient updates. This must be a positive integer such
that (l/blocklen) is also an integer. For faster execution, blocklen should be
a power of two. blocklen defaults to two.

Coefficients
Vector containing the initial filter coefficients. It must be a length l vector
where l is the number of filter coefficients. coeffs defaults to length l vector
of zeros when you do not provide the argument for input.

ConversionFactor
Conversion factor defaults to the matrix [1 -1] that specifies soft-constrained
initialization. This is the gamma input argument for some of the fast transversal
algorithms.

Delay
Update delay given in time samples. This scalar should be a positive integer—
negative delays do not work. delay defaults to 1 for most algorithms.

Adaptive Filter Properties

7-113

DesiredSignalStates
Desired signal states of the adaptive filter. dstates defaults to a zero vector
with length equal to (blocklen - 1) or (swblocklen - 1) depending on the
algorithm.

EpsilonStates
Vector of the epsilon values of the adaptive filter. EpsilonStates defaults to a
vector of zeros with (projectord - 1) elements.

ErrorStates
Vector of the adaptive filter error states. ErrorStates defaults to a zero vector
with length equal to (projectord - 1).

FFTCoefficients
Stores the discrete Fourier transform of the filter coefficients in coeffs.

FFTStates
Stores the states of the FFT of the filter coefficients during adaptation.

FilteredInputStates
Vector of filtered input states with length equal to l - 1.

FilterLength
Contains the length of the filter. Note that this is not the filter order. Filter
length is 1 greater than filter order. Thus a filter with length equal to 10 has
filter order equal to 9.

ForgettingFactor
Determines how the RLS adaptive filter uses past data in each iteration. You
use the forgetting factor to specify whether old data carries the same weight in
the algorithm as more recent data.

This is a scalar and should lie in the range (0, 1]. It defaults to 1. Setting
forgetting factor = 1 denotes infinite memory while adapting to find the
new filter. Note that this is the lambda input argument.

7 Reference for the Properties of Filter Objects

7-114

FwdPredErrorPower
Returns the minimum mean-squared prediction error in the forward direction.
Refer to [12] in the bibliography for details about linear prediction.

FwdPrediction
Contains the predicted values for samples during adaptation. Compare these
to the actual samples to get the error and power.

InitFactor
Returns the soft-constrained initialization factor. This scalar should be positive
and sufficiently large to prevent an excessive number of Kalman gain rescues.
delta defaults to one.

InvCov
Upper-triangular Cholesky (square root) factor of the input covariance matrix.
Initialize this matrix with a positive definite upper triangular matrix.
Dimensions are l-by-l, where l is the filter length.

KalmanGain
Empty when you construct the object, this gets populated after you run the
filter.

KalmanGainStates
Contains the states of the Kalman gain updates during adaptation.

Leakage
Contains the setting for leakage in the adaptive filter algorithm. Using
a leakage factor that is not 1 forces the weights to adapt even when they have
found the minimum error solution. Forcing the adaptation can improve the
numerical performance of the LMS algorithm.

OffsetCov
Contains the offset covariance matrix.

Offset
Specifies an optional offset for the denominator of the step size normalization
term. You must specify offset to be a scalar greater than or equal to zero.

Adaptive Filter Properties

7-115

Nonzero offsets can help avoid a divide-by-near-zero condition that causes
errors.

Use this to avoid dividing by zero or by very small numbers when input signal
amplitude becomes very small, or dividing by very small numbers when any of
the FFT input signal powers become very small. offset defaults to one.

Power
A vector of 2*l elements, each initialized with the value delta from the input
arguments. As you filter data, Power gets updated by the filter process.

ProjectionOrder
Projection order of the affine projection algorithm. projectord defines the size
of the input signal covariance matrix and defaults to two.

ReflectionCoeffs
For adaptive filters that use reflection coefficients, this property stores them.

ReflectionCoeffsStep
As the adaptive filter changes coefficient values during adaptation, the step
size used between runs is stored here.

PersistentMemory
Determines whether the filter states and coefficients get restored to their
starting values for each filtering operation. The starting values are the values
in place when you create the filter.

PersistentMemory returns to zero any property value that the filter changes
during processing. Property values that the filter does not change are not
affected. Defaults to false.

SecondaryPathCoeffs
A vector that contains the coefficient values of your secondary path from the
output actuator to the error sensor.

SecondaryPathEstimate
An estimate of the secondary path filter model.

7 Reference for the Properties of Filter Objects

7-116

SecondaryPathStates
The states of the secondary path filter, the unknown system.

SqrtCov
Upper-triangular Cholesky (square root) factor of the input covariance matrix.
Initialize this matrix with a positive definite upper triangular matrix.

SqrtInvCov
Square root of the inverse of the sliding window input signal covariance matrix.
This square matrix should be full-ranked.

States
Vector of the adaptive filter states. states defaults to a vector of zeros whose
length depends on the chosen algorithm. Usually the length is a function of the
filter length l and another input argument to the filter object, such as
projectord.

StepSize
Reports the size of the step taken between iterations of the adaptive filter
process. Each adaptfilt object has a default value that best meets the needs
of the algorithm.

SwBlockLength
Block length of the sliding window. This integer must be at least as large as the
filter length. swblocklength defaults to 16.

Multirate Filter Properties

7-117

Multirate Filter Properties
The following table summarizes the multirate filter properties and provides
a brief description of each. Full descriptions of each property follow in the next
section.

Name Values Default Description

BlockLength Positive integers 100 Length of each block of data
input to the FFT used in the
filtering. fftfirinterp
multirate filters include this
property.

DecimationFactor Any positive
integer

2 Amount to reduce the input
sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay for the
filter. Usually a value of one or
two is appropriate.

FilterInternals FullPrecision,
MinWordlengths,
SpecifyWordLengths
SpecifyPrecision

FullPrecision Controls whether the filter sets
the output word and fraction
lengths, and the accumulator
word and fraction lengths
automatically to maintain the
best precision results during
filtering. The default value,
FullPrecision, sets automatic
word and fraction length
determination by the filter.
SpecifyPrecision exposes the
output and accumulator related
properties so you can set your
own word and fraction lengths
for them.

7 Reference for the Properties of Filter Objects

7-118

FilterStructure mfilt structure
string

None Describes the signal flow for the
filter object, including all of the
active elements that perform
operations during filtering—
gains, delays, sums, products,
and input/output. You cannot set
this property—it is always read
only and results from your
choice of mfilt object.

InputOffset Integers 0 Contains the number of input
data samples processed without
generating an output sample.

InterpolationFactor Positive integers 2 Interpolation factor for the filter.
l specifies the amount to
increase the input sampling
rate.

NumberOfSections Any positive
integer

2 Number of sections used in the
decimator, or in the comb and
integrator portions of CIC filters.

Numerator Array of double
values

No default
values

Vector containing the
coefficients of the FIR lowpass
filter used for interpolation.

Name Values Default Description

Multirate Filter Properties

7-119

OverflowMode saturate,
[wrap]

wrap Sets the mode used to respond to
overflow conditions in
fixed-point arithmetic. Choose
from either saturate (limit the
output to the largest positive or
negative representable value) or
wrap (set overflowing values to
the nearest representable value
using modular arithmetic. The
choice you make affects only the
accumulator and output
arithmetic. Coefficient and input
arithmetic always saturates.
Finally, products never
overflow—they maintain full
precision.

PolyphaseAccum Values depend
on filter type.
Either double,
single, or
fixed-point
object

0 Stores the value remaining in
the accumulator after the filter
processes the last input sample.
The stored value for
PolyphaseAccum affects the next
output when PersistentMemory
is true and InputOffset is not
equal to 0. Always provides full
precision values. Compare the
AccumWordLength and
AccumFracLength.

Name Values Default Description

7 Reference for the Properties of Filter Objects

7-120

PersistentMemory false or true false Determines whether the filter
states get restored to their
starting values for each filtering
operation. The starting values
are the values in place when you
create the filter if you have not
changed the filter since you
constructed it.

PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.

RateChangeFactors [l,m] [2,3] or [3,2] Reports the decimation (m) and
interpolation (l) factors for the
filter object. Combining these
factors results in the final rate
change for the signal. The
default changes depending on
whether the filter decimates or
interpolates.

States Any m+1-by-n
matrix of double
values

2-by-2
matrix,
int32

Stored conditions for the filter,
including values for the
integrator and comb sections. n
is the number of filter sections
and m is the differential delay.
Stored in a filtstates object.

Name Values Default Description

Multirate Filter Properties

7-121

SectionWordLengthMode MinWordLengths or
SpecifyWordLengths

MinWordLength Determines whether the filter
object sets the section word
lengths or you provide the word
lengths explicitly. By default, the
filter uses the input and output
word lengths in the command to
determine the proper word
lengths for each section,
according to the information in
[1]. When you choose
SpecifyWordLengths, you
provide the word length for each
section. In addition, choosing
SpecifyWordLengths exposes
the SectionWordLengths
property for you to modify as
needed.

SpecifyWordLengths Vector of
integers

[16 16 16
16] bits

WordLengthPerSection Any integer or a
vector of length
2*n

16 Defines the word length used in
each section while accumulating
the data in the integrator
sections or while subtracting the
data during the comb sections
(using 'wrap' arithmetic). Enter
WordLengthPerSection as a
scalar or vector of length 2*n,
where n is the number of
sections. When
WordLengthPerSection is
a scalar, the scalar value is
applied to each filter section.
The default is 16 for each section
in the decimator.

Name Values Default Description

7 Reference for the Properties of Filter Objects

7-122

The following sections provide details about the properties that govern the way
multirate filter work. Creating any multirate filter object puts in place
a number of these properties. On the next pages, we list the mfilt object
properties in alphabetical order.

BitsPerSection
Any integer or a vector of length 2*n.

Defines the bits per section used while accumulating the data in the integrator
sections or while subtracting the data during the comb sections (using wrap
arithmetic). Enter bps as a scalar or vector of length 2*n, where n is the number
of sections. When bps is a scalar, the scalar value is applied to each filter
section. The default is 16 for each section in the decimator.

BlockLength
Length of each block of input data used in the filtering.

mfilt.fftfirinterp objects process data in blocks whose length is determined
by the value you set for the BlockLength property. By default the property
value is 100. When you set the BlockLength value, try choosing a value so that
[BlockLength + length(filter order)] is a power of two.

Larger block lengths generally reduce the computation time.

DecimationFactor
Decimation factor for the filter. m specifies the amount to reduce the sampling
rate of the input signal. It must be an integer. You can enter any integer value.
The default value is 2.

DifferentialDelay
Sets the differential delay for the filter. Usually a value of one or two is
appropriate. While you can set any value, the default is one and the maximum
is usually two.

FilterInternals
Similar to the FilterInternals pane in FDATool, this property controls whether
the filter sets the output word and fraction lengths automatically, and the

Multirate Filter Properties

7-123

accumulator word and fraction lengths automatically as well, to maintain the
best precision results during filtering. The default value, FullPrecision, sets
automatic word and fraction length determination by the filter. Setting
FilterInternals to SpecifyPrecision exposes the output and accumulator
related properties so you can set your own word and fraction lengths for them.

About FilterInternals Modes
There are four modes of usage for this which are set using the
FilterInternals property in multirate filters.

• FullPrecision—All word and fraction lengths set to Bmax + 1, called Baccum
by fred harris in [14]. Full Precision is the default setting.

• MinWordLengths—Minimum Word Lengths

• SpecifyWordLengths—Specify Word Lengths

• SpecifyPrecision—Specify Precision

Full Precision
In full precision mode, the word lengths of all sections and the output are set
to Baccum as defined by

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the
input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

Baccum ceil N ssec Log2 D M×()() InputWordLength+()=

7 Reference for the Properties of Filter Objects

7-124

Minimum Word Lengths
In minimum word length mode, you control the output word length explicitly.
When the output word length is less than Baccum, roundoff noise is introduced
at the output of the filter. Hogenauer's bit pruning theory (refer to [15]) states
that one valid design criterion is to make the word lengths of the different
sections of the filter smaller than Baccum as well, so that the roundoff noise
introduced by all sections does not exceed the roundoff noise introduced at the
output.

In this mode, the design calculates the word lengths of each section to meet the
Hogenauer criterion. The algorithm subtracts the number of bits computed
using eq. 21 in Hogenauer's paper from Baccum to determine the word length
each section.

To compute the fraction lengths of the different sections, the algorithm notes
that the bits thrown out for this word length criterion are least significant bits
(LSB), therefore each bit thrown out at a particular section decrements the
fraction length of that section by one bit compared to the input fraction length.
Setting the output word length for the filter automatically sets the output
fraction length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify word lengths
In this mode, the design algorithm discards the LSBs, adjusting the fraction
length so that unrecoverable overflow does not occur, always producing
a reasonable output.

Multirate Filter Properties

7-125

You can specify the word lengths for all sections and the output, but you cannot
control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
2*(NumberOfSections), where each vector element represents the word length
for a section. If you specify a scalar, such as Baccum, the full-precision output
word length, the algorithm expands that scalar to a vector of the appropriate
size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are
monotonically decreasing. There are some cases where the word lengths are
not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease monotonically
across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify precision
In this mode, you have full control over the word length and fraction lengths of
all sections and the filter output.

7 Reference for the Properties of Filter Objects

7-126

When you elect the SpecifyPrecision mode, you must enter a vector of length
2*(NumberOfSections) with elements that represent the word length for each
section. When you enter a scalar such as Baccum, the CIC algorithm expands
that scalar to a vector of the appropriate size and applies the scalar value to
each section and the output. The design does not check that this vector is
monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements
that represent the fraction length for each section as well. When you enter
a scalar such as Baccum, the design applies scalar expansion as done for the
word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

FilterStructure
Reports the type of filter object, such as a decimator or fractional integrator.
You cannot set this property—it is always read only and results from your
choice of mfilt object. Because of the length of the names of multirate filters,
FilterStructure often returns a vector specification for the string. For
example, when you use mfilt.firfracinterp to design a filter,
FilterStructure returns as [1x49 char].

Multirate Filter Properties

7-127

hm=mfilt.firfracinterp

hm =

 FilterStructure: [1x49 char]
 Numerator: [1x72 double]
 RateChangeFactors: [3 2]

PersistentMemory: false
 States: [24x1 double]

InputOffset
When you decimate signals whose length is not a multiple of the decimation
factor M, the last samples—(nM +1) to [(n+1)(M) -1], where n is an integer—
are processed and used to track where the filter stopped processing input data
and when to expect the next output sample. If you think of the filtering process
as generating an output for a block of input data, InputOffset contains a count
of the number of samples in the last incomplete block of input data.

Note InputOffset applies only when you set PersistentMemory to true.
Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:

1 The input signal is a multiple of the filter decimation factor. In this case, the
filter processes the input samples and generates output samples for all
inputs as determined by the decimation factor. For example, processing 99
input samples with a filter that decimates by three returns 33 output
samples.

2 The input signal is not a multiple of the decimation factor. When this occurs,
the filter processes all of the input samples, generates output samples as
determined by the decimation factor, and has one or more input samples
that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has
decimation factor of 3, you get 33 output samples, and 1 sample that did not

7 Reference for the Properties of Filter Objects

7-128

generate an output. In this case, InputOffset stores the value 1 after the
filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into
blocks of data with length equal to your filter decimation factor, the filter
processed one sample from a new (incomplete) block of data. Subsequent
inputs to the filter are concatenated with this single sample to form the next
block of length m.

One way to define the value stored in InputOffset is

InputOffset = mod(length(nx),m)

where nx is the number of input samples in the data set and m is the decimation
factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any
point and start over from there, provided that the PersistentMemory property
is set to true. Being able to resume filtering after stopping a signal lets you
break large data sets in to smaller pieces for filtering. With PersistentMemory
set to true and the InputOffset property in the filter, breaking a signal into
sections of arbitrary length and filtering the sections is equivalent to filtering
the entire signal at once.

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the
entire signal filtered at once).

Multirate Filter Properties

7-129

InterpolationFactor
Amount to increase the sampling rate. Interpolation factor for the filter. It
specifies the amount to increase the input sampling rate. It must be an integer.
Two is the default value. You may use any positive value.

NumberOfSections
Number of sections used in the multirate filter. By default multirate filters use
two sections, but any positive integer works.

OverflowMode
The OverflowMode property is specified as one of the following two strings
indicating how to respond to overflows in fixed-point arithmetic:

• 'saturate'—saturate overflows.

When the values of data to be quantized lie outside of the range of the largest
and smallest representable numbers (as specified by the applicable word
length and fraction length properties), these values are quantized to the
value of either the largest or smallest representable value, depending on
which is closest.

• 'wrap'—wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest
and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular
arithmetic relative to the smallest representable number. You can learn
more about modular arithmetic in the Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.

• Applies to the accumulator and output data only.

• Does not apply to coefficients or input data. These always saturate the
results.

• Does not apply to products. Products maintain full precision at all times.
Your filters do not lose precision in the products.

Default value: 'saturate'

7 Reference for the Properties of Filter Objects

7-130

Note Numbers in floating-point filters that extend beyond the dynamic
range overflow to ±inf.

PolyphaseAccum
The idea behind PolyphaseAccum and AccumWordLength/AccumFracLength is to
distinguish between the adders that always work in full precision
(PolyphaseAccum) from the others [the adders that are controlled by the user
(through AccumWordLength and AccumFracLength) and that may introduce
quantization effects when you set property FilterInternals to
SpecifyPrecision].

Given a product format determined by the input word and fraction lengths, and
the coefficients word and fraction lengths, doing full precision accumulation
means allowing enough guard bits to avoid overflows and underflows.

Property PolyphaseAccum stores the value that was in the accumulator the last
time your filter ran out of input samples to process. The default value for
PolyphaseAccum affects the next output only if PersistentMemory is true and
InputOffset is not equal to 0.

PolyphaseAccum stores data in the format for the filter arithmetic.
Double-precision filters store doubles in PolyphaseAccum. Single-precision
filter store singles in PolyphaseAccum. Fixed-point filters store fi objects in
PolyphaseAccum.

PersistentMemory
Determine whether the filter states get restored to their starting values for
each filtering operation. The starting values are the values in place when you
create the filter if you have not changed the filter since you constructed it.
PersistentMemory returns to zero any state that the filter changes during
processing. States that the filter does not change are not affected.

Determine whether the filter states get restored to their starting values for
each filtering operation. The starting values are the values in place when you
create the filter object. PersistentMemory returns to zero any state that the
filter changes during processing. States that the filter does not change are not
affected. Defaults to true—the filter retains memory about filtering operations

Multirate Filter Properties

7-131

from one to the next. Maintaining memory lets you filter large data sets as
collections of smaller subsets and get the same result.

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

 0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the
entire signal filtered at once).

RateChangeFactors
Reports the decimation (m) and interpolation (l) factors for the filter object
when you create fractional integrators and decimators, although m and l are
used as arguments to both decimators and integrators, applying the same
meaning. Combining these factors as input arguments to the fractional
decimator or integrator results in the final rate change for the signal.

For decimating filters, the default is [2,3]. For integrators, [3,2].

States
Stored conditions for the filter, including values for the integrator and comb
sections. m is the differential delay and n is the number of sections in the filter.

About the States of Multirate Filters
In the states property you find the states for both the integrator and comb
portions of the filter, stored in a filtstates object. states is a matrix of
dimensions m+1-by-n, with the states in CIC filters apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the
state matrix.

7 Reference for the Properties of Filter Objects

7-132

• States for the comb portion fill the remaining rows in the state matrix.

In the state matrix, state values are specified and stored in double format.

States stores conditions for the delays between each interpolator phase, the
filter states, and the states at the output of each phase in the filter, including
values for the interpolator and comb states.

The number of states is (lh-1)*m+(l-1)*(lo+mo) where lh is the length of each
subfilter, and l and m are the interpolation and decimation factors. lo and mo,
the input and output delays between each interpolation phase, are integers
from Euclid's theorem such that lo*l-mo*m = -1 (refer to the reference for more
details). Use euclidfactors to get lo and mo for an mfilt.firfracdecim
object.

States defaults to a vector of zeros that has length equal to nstates(hm)

8

Function Reference

Functions — By Category (p. 8-2) Lists the functions in the toolbox, by category, such as
object constructors or analysis functions

Adaptive Filter Constructors (p. 8-3) Lists all for the functions for designing adaptive filters

Discrete-Time Filter Constructors
(p. 8-6)

Lists all of the functions for designing discrete-time
filters

Multirate Filter Constructors (p. 8-10) Lists the multirate filter design functions

Filter Analysis Methods (p. 8-12) Lists the analysis functions provided for working with
adaptive, discrete-time, and multirate filters

8 Function Reference

8-2

Functions — By Category

Adaptive Filter Constructors
(p. 8-3)

Functions for designing adaptive filters

Discrete-Time Filter
Constructors (p. 8-6)

Functions for designing FIR and IIR
discrete-time filter objects

Filter Specification Objects —
Response Types (p. 8-8)

Methods for creating objects that specify
filter responses, such as lowpass or
bandstop

Filter Specification Objects —
Design Methods (p. 8-9)

Methods for designing filter objects from
specification objects

Multirate Filter Constructors
(p. 8-10)

Functions for designing many types of
multirate filter objects

Filter Analysis Methods (p. 8-12) Methods for analyzing filters and filter
objects

Fixed-Point Filter Construction
and Property Functions (p. 8-17)

Methods and functions for creating
fixed-point filters

Quantized Filter Analysis
Functions (p. 8-17)

Functions for analyzing fixed-point filters

SOS Conversion Functions
(p. 8-19)

Functions for working with second-order
section filters

Filter Design Functions (p. 8-19) Functions for designing filters (not
object-based)

Filter Conversion Functions
(p. 8-20)

Functions that let you transform filters to
other forms, or use features in a filter to
develop another filter

Functions — By Category

8-3

Adaptive Filter Constructors

Least Mean Squares (LMS) Based FIR Adaptive Filters

Least Mean Squares (LMS) Based FIR
Adaptive Filters (p. 8-3)

Lists the filter functions that rely
on the LMS technique

Recursive Least Squares (RLS) Based
FIR Adaptive Filters (p. 8-4)

Lists the filter functions that rely
on the RLS technique

Affine Projection (AP) FIR Adaptive
Filters (p. 8-4)

Lists the filter functions that affine
projection

FIR Adaptive Filters in the Frequency
Domain (FD) (p. 8-4)

Lists the filter functions that work
in the frequency domain

Lattice Based (L) FIR Adaptive Filters
(p. 8-6)

Lists the filter functions that rely
on lattice filters

adaptfilt.adjlms Adjoint least mean square (LMS) FIR adaptive
filter that adapts using adjoint LMS algorithm

adaptfilt.blms Construct Block LMS (BLMS) FIR adaptive filter

adaptfilt.blmsfft Construct FFT-based block LMS FIR adaptive filter

adaptfilt.dlms Create delayed LMS FIR adaptive filter object

adaptfilt.filtxlms Create filtered-x LMS FIR adaptive filter

adaptfilt.lms Construct least-mean-square (LMS) FIR adaptive
filter object

adaptfilt.nlms Construct normalized least mean squares (LMS)
FIR adaptive filter object

adaptfilt.sd Construct FIR adaptive filter object that uses
sign-data algorithm

adaptfilt.se Construct sign-error algorithm FIR adaptive filter
object

adaptfilt.ss Construct adaptive FIR filter object that uses
sign-sign algorithm

8 Function Reference

8-4

Recursive Least Squares (RLS) Based FIR Adaptive Filters

Affine Projection (AP) FIR Adaptive Filters

FIR Adaptive Filters in the Frequency Domain (FD)

adaptfilt.ftf Construct fast transversal least squares adaptive
filter object

adaptfilt.hrls Construct a householder recursive least squares
(RLS) FIR adaptive filter object

adaptfilt.hswrls Construct householder sliding window recursive
least squares (RLS) FIR adaptive filter

adaptfilt.qrdrls Create QR-decomposition-based recursive least
squares (RLS) FIR adaptive filter object

adaptfilt.rls Construct direct form recursive least squares (RLS)
FIR adaptive filter object

adaptfilt.swftf Construct sliding window fast transversal least
squares adaptive filter object

adaptfilt.swrls Construct sliding window recursive least squares
(RLS) FIR adaptive filter

adaptfilt.ap Construct affine projection FIR adaptive filter
object that uses direct matrix inversion

adaptfilt.apru Affine projection FIR adaptive filter object that
uses recursive matrix updating

adaptfilt.bap Block affine projection FIR adaptive filter object

adaptfilt.fdaf Construct frequency-domain FIR adaptive filter
with bin step size normalization

adaptfilt.pbfdaf Construct partitioned block frequency-domain
(PBFDAF) FIR adaptive filter with bin step size
normalization

Functions — By Category

8-5

adaptfilt.pbufdaf Construct partitioned block unconstrained
frequency-domain (PBUFDAF) FIR adaptive filter
with bin step size normalization

adaptfilt.tdafdct Construct transform-domain (TDAFDCT) adaptive
filter object that uses discrete cosine transform

adaptfilt.tdafdft Create transform-domain (TDAFDFT) adaptive
filter object that uses discrete Fourier transform

adaptfilt.ufdaf Construct unconstrained frequency-domain
(UFDAF) FIR adaptive filter with quantized step
size normalization

8 Function Reference

8-6

Lattice Based (L) FIR Adaptive Filters

Discrete-Time Filter Constructors

adaptfilt.gal Construct gradient adaptive lattice FIR filter

adaptfilt.lsl Construct least squares lattice (LSL) adaptive filter

adaptfilt.qrdlsl QR-decomposition-based least squares lattice (LSL)
adaptive filter object

dfilt.allpass Construct allpass filter object

dfilt.calattice Construct discrete-time, coupled-allpass,
lattice filter object

dfilt.calatticepc Construct discrete-time, coupled-allpass,
power-complementary lattice filter object

dfilt.cascade Construct cascade of discrete-time filter
objects

dfilt.cascadeallpass Construct cascade of allpass discrete-time
filter objects

dfilt.cascadewdfallpass Construct allpass wave digital filter (WDF)
object by cascading allpass WDF filter objects

dfilt.df1 Construct discrete-time, direct-form I filter
object

dfilt.df1sos Construct discrete-time, direct-form I filter
object that uses second-order sections

dfilt.df1t Construct discrete-time, direct-form I
transposed filter object

dfilt.df1tsos Construct discrete-time, second-order section,
direct-form I transposed filter object

dfilt.df2 Construct discrete-time, direct-form II filter
object

dfilt.df2sos Construct discrete-time, second-order section,
direct-form II filter object

Functions — By Category

8-7

dfilt.df2t Construct discrete-time, direct-form II
transposed filter object

dfilt.df2tsos Construct discrete-time, second-order section
direct-form II transposed filter object

dfilt.dfasymfir Construct discrete-time, direct-form
antisymmetric FIR filter object

dfilt.dffir Construct discrete-time direct-form FIR filter
object

dfilt.dffirt Construct discrete-time, direct-form FIR
transposed filter object

dfilt.dfsymfir Construct discrete-time, direct-form
symmetric FIR filter object

dfilt.latticeallpass Construct discrete-time, lattice allpass filter
object

dfilt.latticear Construct discrete-time, lattice,
autoregressive filter object

dfilt.latticearma Construct discrete-time, lattice,
autoregressive, moving-average filter object

dfilt.latticemamax Construct discrete-time, lattice,
moving-average filter object with maximum
phase

dfilt.latticemamin Construct discrete-time, lattice,
moving-average filter object with minimum
phase

dfilt.parallel Construct discrete-time, parallel structure
filter object

dfilt.scalar Construct discrete-time, scalar filter object

dfilt.wdfallpass Construct wave digital allpass filter object

8 Function Reference

8-8

Filter Specification Objects — Response Types
fdesign.arbmag Construct filter specification object for

designing arbitrary response magnitude
filters

fdesign.arbmagnphase Design discrete-time filter specification object
for arbitrary magnitude and phase response

fdesign.bandpass Construct bandpass filter specification object

fdesign.bandstop Construct bandstop filter specification object

fdesign.ciccomp Construct filter cascaded-integrator comb
(CIC) compensator filter specification object

fdesign.decimator Construct decimator filter specification object

fdesign.differentiator Construct differentiator filter specification
object

fdesign.halfband Construct halfband filter specification object

fdesign.highpass Construct highpass filter specification object

fdesign.hilbert Construct Hilbert filter specification object

fdesign.interpolator Construct interpolator filter specification
object

fdesign.isinclp Construct inverse-sinc filter specification
object

fdesign.lowpass Construct lowpass filter specification object

fdesign.nyquist Construct Nyquist filter specification object

fdesign.rsrc Construct rational-factor sample-rate
converter specifications object

Functions — By Category

8-9

Filter Specification Objects — Design Methods
butter Design Butterworth IIR digital filter using

the specifications in filter specification object

cheby1 Design Chebyshev Type I digital filter using
filter specification object

cheby2 Design Chebyshev Type II digital filter using
filter specification object

designmethods Design methods available for designing filter
from filter specification object

designopts Input arguments and default values
applicable to filter specification object and
method

ellip Design elliptical or Cauer digital filter using
filter specification object

equiripple Design equiripple single-rate or multirate
FIR filter from filter specification object

firls Design filter from filter specification object
and least-square minimization technique

ifir Use interpolated FIR method to design FIR
filter from specification object

iirlinphase Design quasi-linear phase IIR filter from
halfband filter specification object

kaiserwin Use Kaiser window to design filter from filter
specification object

multistage Design multistage filter from filter
specification object

window Use window design method to construct filter
from specification object

8 Function Reference

8-10

Multirate Filter Constructors
mfilt.cascade Cascade dfilt and mfilt object(s)

into filter

mfilt.cicdecim Construct fixed-point cascaded
integrator-comb (CIC) decimator
filter object

mfilt.cicinterp Construct fixed-point cascaded
integrator-comb (CIC) interpolator
filter object

mfilt.fftfirinterp Construct overlap-add FIR
polyphase interpolator filter object

mfilt.firdecim Construct direct-form FIR
polyphase decimator filter

mfilt.firfracdecim Construct direct-form FIR
polyphase fractional decimator filter
object

mfilt.firfracinterp Construct direct-form FIR
polyphase fractional interpolator
filter object

mfilt.firinterp Construct FIR filter-based
interpolator

mfilt.firsrc Construct direct-form FIR
polyphase sample rate converters

mfilt.firtdecim Construct direct-form transposed
FIR filter

mfilt.holdinterp Construct FIR hold interpolator

mfilt.iirdecim Construct IIR decimator filter object

mfilt.iirinterp Construct IIR interpolator filter
object

mfilt.iirwdfdecim Construct IIR wave digital filter
decimator object

Functions — By Category

8-11

mfilt.iirwdfinterp Construct IIR wave digital
interpolator filter

mfilt.linearinterp Construct linear interpolator filter

8 Function Reference

8-12

Filter Analysis Methods
block Multirate (some) Generate a Signal Processing

Blockset block from
floating-point or fixed-point
multirate (mfilt) filter objects.
Works only when Signal
Processing Blockset is installed.

coefficients Multirate Filter coefficients for adaptive.
discrete-time, and multirate
filter.

cumsec Discrete-time filters Vector of filters for cumulative
sections

denormalize Discrete-time filters Reverse filter coefficient and
gain changes caused by function
normalize

disp All filters Filter object with properties and
values

double Fixed-point filters Cast fixed-point filter to filter
that uses double-precision
arithmetic

euclidfactors Multirate Use Euclid’s theorem to return
integer factors for multirate
filter

filter All filters Apply filter objects to data and
access states and filtering
information

filtmsb Multirate filters Bmax, most significant bit, of
cascaded integrator-comb (CIC)
filter

filtstates.cic CIC filters Object for storing states of
cascaded-integrator comb (CIC)
filters

Functions — By Category

8-13

firtype Multirate filters Determine type of linear phase
FIR filter, either discrete-time
or multirate

freqsamp Discrete-time filters Design real or complex
frequency-sampled FIR filter
from filter specification object

freqz All filters Compute frequency response of
discrete-time filters, adaptive
filters, or multirate filters

fftcoeffs Single-rate and
multirate filters

Frequency-domain coefficients
used when filtering with
discrete-time and adaptive filter
object

grpdelay All filters Group delay for filter

help All filters Help text for design algorithm
in Command Window

impz All filters Compute impulse response for
filter

isfir All filters Determine whether filter is FIR
filter

islinphase All filters Determine whether filter is
linear phase

ismaxphase All filters Determine whether filter is
maximum phase

isminphase All filters Determine whether filter is
minimum phase

isreal All filters Determine whether filter is real

isstable All filters Determine whether filter is
stable

limitcycle Discrete-time filters Explore steady-state response of
single rate, fixed-point IIR filter
to zero-valued input

8 Function Reference

8-14

maxstep Adaptive filter Maximum step size that allows
adaptive filter to converge

measure Adaptive and
discrete-time filter
objects

Magnitude response
measurement for discrete-time
or multirate filter created from
filter specification object

msepred Adaptive filter Calculate predicted
mean-squared error for selected
adaptive filter

msesim Adaptive filter Calculate measured
mean-squared error for
adaptive filter

noisepsd Single-rate filter objects Compute power spectral
density (PSD) of filter output
caused by roundoff noise during
quantization

noisepsdopts Single-rate objects Create object containing options
for running output noise power
spectral density (PSD)
computation noisepsd on filter

norm All filter objects P-norm of adaptfilt, dfilt, and
mfilt objects

normalize Discrete-time filters Normalize filter numerator or
feed-forward coefficients to
between -1 and 1

normalizefreq Single-rate and
multirate filter
specification objects

Normalize filter numerator or
feed-forward coefficients to
values between -1 and 1

nstates Single-rate and
multirate filter objects

Number of filter states in
discrete-time or multirate filter

order Fixed-point filters Order of quantized filter

phasedelay Single-rate and
multirate filters

Phase delay of discrete-time or
multirate filter

Functions — By Category

8-15

phasez All filters Unwrapped phase response for
filter

polyphase Multirate filter Polyphase decomposition of
multirate filter

qreport All fixed-point filters Results of most recent
fixed-point filtering operation

realizemdl Fixed-point filters Realize Simulink subsystem
block for quantized filter

reffilter Discrete-time filters Double-precision floating-point
reference filter that corresponds
to fixed-point or
single-precision floating-point
filter

reorder SOS discrete-time
filters

Rearrange sections in
second-order sections (SOS)
filter

reset Adaptive and Multirate
filters

Reset filter properties to initial
conditions

scale SOS discrete-time
filters

Scale the sections of an SOS
filter

scalecheck SOS discrete-time
filters

Check the scaling of an SOS
filter

set2int Single-rate and
multirate filters

Configure single-rate and
multirate filters for integer
filtering

setspecs fdesign objects Set specifications for filter
specification object

specifyall Discrete-time filters Access fixed-point scaling
modes and features in
direct-form FIR filter object

stepz Adaptive and Multirate
filters

Step response for filter

8 Function Reference

8-16

To see the full listing of analysis methods that apply to the adaptfilt, dfilt,
or mfilt objects, enter help adaptfilt, help dfilt, or help mfilt at the
MATLAB prompt.

zerophase All filters Return the zerophase response
for a filter

zplane All filters Return the pole-zero plot for a
filter

Functions — By Category

8-17

Fixed-Point Filter Construction and Property
Functions

Quantized Filter Analysis Functions

cell2sos Convert a cell array to a second-order sections matrix

get Get properties of a quantized filter

isreal Test if filter coefficients are real

reset Reset the properties of a quantized filter to their initial
values

scale Scale the sections of second-order section filters

scalecheck Check the scaling of a second-order sections filter

scaleopts Create an object that contains scaling options for
second-order section scaling

set Set properties of a quantized filter

sos Convert a quantized filter to second-order sections form,
order, and scale

sos2cell Convert a second-order sections matrix to a cell array

freqz Compute the frequency response for a quantized filter

impz Compute the impulse response for a quantized filter

isallpass Test quantized filters to determine if they are allpass
structures

isfir Test quantized filters to see if they are FIR filters

islinphase Test quantized filters to see if they are linear phase

ismaxphase Test quantized filters to see if they are maximum phase
filters

isminphase Test quantized filters to see if they are minimum phase
filters

isreal Test quantized filters for purely real coefficients

8 Function Reference

8-18

issos Test whether quantized filters are composed of
second-order sections

isstable Test for stability of quantized filters

noisepsd Compute the power spectral density (PSD) of filter output
caused by round-off noise during the quantization process

noisepsdopts Create an object that contains options for running the
output noise PSD computation noisepsd on a filter

zplane Compute a pole-zero plot for a quantized filter

Functions — By Category

8-19

SOS Conversion Functions

Filter Design Functions

cell2sos Convert a cell array to a second-order sections matrix

sos Convert a quantized filter to second-order sections form,
order, and scale

sos2cell Convert a second-order sections matrix to a cell array

farrow Implement Farrow filter

fircband Perform constrained-band equiripple FIR filter design

fireqint Design equiripple FIR interpolators

firceqrip Design constrained, equiripple FIR filter

firgr Use Parks-McClellan technique to design digital FIR filter

firhalfband Design halfband FIR filter

firlpnorm Least P-norm optimal FIR filter design

firminphase Compute minimum-phase FIR spectral factor

firnyquist Design lowpass Nyquist (Lth-band) FIR filter

ifir Design interpolated FIR filters

iircomb Design comb IIR filters with periodic frequency response

iirgrpdelay Design least-pth norm IIR filters with given group delay

iirlpnorm Design least-pth norm IIR filters

iirlpnormc Design constrained least-pth norm IIR filters

iirnotch Design notch IIR filters to attenuate a fixed frequency

iirpeak Design peaking IIR filters for boosting or cutting specific
frequencies

8 Function Reference

8-20

Filter Conversion Functions
ca2tf Convert coupled allpass filters to transfer function form

cl2tf Convert lattice coupled allpass filters to transfer function
form

convert Convert dfilt objects from one structure to another

firlp2lp Transform lowpass FIR filters to lowpass filters with
different passband specifications

firlp2hp Transform lowpass FIR filters to highpass FIR filters

iirlp2bp Transform lowpass IIR filters to bandpass filters

iirlp2bs Transform lowpass IIR filters to bandstop filters

iirlp2hp Transform lowpass IIR filters to highpass filters

iirlp2lp Transform lowpass IIR filters to lowpass filters

iirpowcomp Compute the power complementary IIR filter

set2int Scale the real filter coefficients to integer values for
discrete-time and multirate filter objects

tf2ca Convert transfer function form to coupled allpass form

tf2cl Convert transfer function form to lattice coupled allpass
form

Functions — Alphabetical List

8-21

Functions — Alphabetical List 8

This following pages provide the reference information for each function in the
toolbox, in alphabetical order by the name of the function.

adaptfilt

8-22

8adaptfiltPurpose Construct adaptive filter object

Syntax ha = adaptfilt.algorithm(input1,input2,)

Description ha = adaptfilt.algorithm('input1',input2,) returns the adaptive filter
object ha that uses the adaptive filtering technique specified by algorithm.
When you construct an adaptive filter object, include an algorithm specifier to
implement a specific adaptive filter. Note that you do not enclose the algorithm
option in single quotation marks as you do for most strings. To construct an
adaptive filter object you must supply an algorithm string—there is no default
algorithm, although every constructor creates a default adaptive filter when
you do not provide input arguments such as input1 or input2 in the calling
syntax.

Algorithms
For adaptive filter (adaptfilt) objects, the algorithm string determines which
adaptive filter algorithm your adaptfilt object implements. Each available
algorithm entry appears in one of the tables along with a brief description of
the algorithm. Click on the algorithm in the first column to get more
information about the associated adaptive filter technique.

• LMS based adaptive filters

• RLS based adaptive filters

• Affine projection adaptive filters

• Adaptive filters in the frequency domain

• Lattice based adaptive filters

adaptfilt

8-23

Least Mean Squares (LMS) Based FIR Adaptive Filters

For further information about an adapting algorithm, refer to the reference
page for the algorithm.

adaptfilt.algorithm
String

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.adjlms Use the Adjoint LMS FIR adaptive filter
algorithm

adaptfilt.blms Use the Block LMS FIR adaptive filter algorithm

adaptfilt.blmsfft Use the FFT-based Block LMS FIR adaptive filter
algorithm

adaptfilt.dlms Use the delayed LMS FIR adaptive filter
algorithm

adaptfilt.filtxlms Use the filtered-x LMS FIR adaptive filter
algorithm

adaptfilt.lms Use the LMS FIR adaptive filter algorithm

adaptfilt.nlms Use the normalized LMS FIR adaptive filter
algorithm

adaptfilt.sd Use the sign-data LMS FIR adaptive filter
algorithm

adaptfilt.se Use the sign-error LMS FIR adaptive filter
algorithm

adaptfilt.ss Use the sign-sign LMS FIR adaptive filter
algorithm

adaptfilt

8-24

Recursive Least Squares (RLS) Based FIR Adaptive Filters

For more complete information about an adapting algorithm, refer to the
reference page for the algorithm.

adaptfilt.algorithm
String

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.ftf Use the fast transversal least squares adaptation
algorithm

adaptfilt.qrdrls Use the QR-decomposition RLS adaptation
algorithm

adaptfilt.hrls Use the householder RLS adaptation algorithm

adaptfilt.hswrls Use the householder SWRLS adaptation
algorithm

adaptfilt.rls Use the recursive-least squares (RLS) adaptation
algorithm

adaptfilt.swrls Use the sliding window (SW) RLS adaptation
algorithm

adaptfilt.swftf Use the sliding window FTF adaptation
algorithm

adaptfilt

8-25

Affine Projection (AP) FIR Adaptive Filters

To find more information about an adapting algorithm, refer to the reference
page for the algorithm.

adaptfilt.algorithm
String

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.ap Use the affine projection algorithm that uses
direct matrix inversion

adaptfilt.apru Use the affine projection algorithm that uses
recursive matrix updating

adaptfilt.bap Use the block affine projection adaptation
algorithm

adaptfilt

8-26

FIR Adaptive Filters in the Frequency Domain (FD)

For more information about an adapting algorithm, refer to the reference page
for the algorithm.

adaptfilt.algorithm
String

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.fdaf Use the frequency domain adaptation algorithm

adaptfilt.pbfdaf Use the partition block version of the FDAF
algorithm

adaptfilt.pbufdaf Use the partition block unconstrained version of
the FDAF algorithm

adaptfilt.tdafdct Use the transform domain adaptation algorithm
using DCT

adaptfilt.tdafdft Use the transform domain adaptation algorithm
using DFT

adaptfilt.ufdaf Use the unconstrained FDAF algorithm for
adaptation

adaptfilt

8-27

Lattice Based (L) FIR Adaptive Filters

For more information about an adapting algorithm, refer to the reference page
for the algorithm.

Properties for all Adaptive Filter Objects
Each reference page for an algorithm and adaptfilt.algorithm object
specifies which properties apply to the adapting algorithm and how to use
them.

Methods for Adaptive Filter Objects
As is true with all objects, methods enable you to perform various operations
on adaptfilt objects. To use the methods, you apply them to the object handle
that you assigned when you constructed the adaptfilt object.

Most of the analysis methods that apply to dfilt objects also work with
adaptfilt objects. Methods like freqz rely on the filter coefficients in the
adaptfilt object. Since the coefficients change each time the filter adapts to
data, you should view the results of using a method as an analysis of the filter
at a moment in time for the object. Use caution when you apply an analysis
method to your adaptive filter objects—always check that your result
approached your expectation.

In particular, the Filter Visualization Tool (FVTool) supports all of the
adaptfilt objects. Analyzing and viewing your adaptfilt objects is
straightforward—use the fvtool method with the name of your object

fvtool(objectname)

adaptfilt.algorithm
String

Description of the Adapting Algorithm Used to
Generate Filter Coefficients During Adaptation

adaptfilt.gal Use the gradient adaptive lattice filter
adaptation algorithm

adaptfilt.lsl Use the least squares lattice adaptation
algorithm

adaptfilt.qrdlsl Use the QR decomposition least squares lattice
adaptation algorithm

adaptfilt

8-28

to launch FVTool and work with your object.

Some methods share their names with functions in the Signal Processing
Toolbox, or even functions in this toolbox. Functions that share names with
methods behave in a similar way. Using the same name for more than one
function or method is called overloading and is common is many toolboxes.

Method Description

adaptfilt/coefficients Return the instantaneous adaptive filter
coefficients

adaptfilt/filter Apply an adaptfilt object to your signal

adaptfilt/freqz Plot the instantaneous adaptive filter
frequency response

adaptfilt/grpdelay Plot the instantaneous adaptive filter group
delay

adaptfilt/impz Plot the instantaneous adaptive filter
impulse response.

adaptfilt/info Return the adaptive filter information.

adaptfilt/isfir Test whether an adaptive filter is an finite
impulse response (FIR) filters.

adaptfilt/islinphase Test whether an adaptive filter is linear
phase

adaptfilt/ismaxphase Test whether an adaptive filter is maximum
phase

adaptfilt/isminphase Test whether an adaptive filter is minimum
phase

adaptfilt/isreal True whether an adaptive filter has real
coefficients

adaptfilt/isstable Test whether an adaptive filter is stable

adaptfilt

8-29

Working with Adaptive Filter Objects
The next sections cover viewing and changing the properties of adaptfilt
objects. Generally, modifying the properties is the same for adaptfilt, dfilt,
and mfilt objects and most of the same methods apply to all.

Viewing Object Properties
As with any object, you can use get to view a adaptfilt object’s properties. To
see a specific property, use

 get(ha,'property')

adaptfilt/maxstep Return the maximum step size for an
adaptive filter

adaptfilt/msepred Return the predicted mean square error

adaptfilt/msesim Return the measured mean square error via
simulation.

adaptfilt/phasez Plot the instantaneous adaptive filter phase
response

adaptfilt/reset Reset an adaptive filter to initial conditions

adaptfilt/stepz Plot the instantaneous adaptive filter step
response

adaptfilt/tf Return the instantaneous adaptive filter
transfer function

adaptfilt/zerophase Plot the instantaneous adaptive filter
zerophase response

adaptfilt/zpk Return a matrix containing the
instantaneous adaptive filter zero, pole, and
gain values

adaptfilt/zplane Plot the instantaneous adaptive filter in the
Z-plane

Method Description

adaptfilt

8-30

To see all properties for an object, use

get(ha)

Changing Object Properties
To set specific properties, use

set(ha,'property1',value1,'property2',value2,...)

You must use single quotation marks around the property name so MATLAB
treats them as strings.

Copying an Object
To create a copy of an object, use copy.

ha2 = copy(ha)

Note Using the syntax ha2 = ha copies only the object handle and does not
create a new object—ha and ha2 are not independent. When you change the
characteristics of ha2, those of ha change as well.

Using Filter States
Two properties control your adaptive filter states.

• States—stores the current states of the filter. Before the filter is applied, the
states correspond to the initial conditions and after the filter is applied, the
states correspond to the final conditions.

• PersistentMemory—resets the filter before filtering. The default value is
false which causes the properties that are modified by the filter, such as
coefficients and states, to be reset to the value you specified when you
constructed the object, before you use the object to filter data. Setting
PersistentMemory to true allows the object to retain its current properties
between filtering operations, rather than resetting the filter to its property
values at construction.

Examples Construct an LMS adaptive filter object and use it to identify an unknown
system. For this example, use 500 iteration of the adapting process to

adaptfilt

8-31

determine the unknown filter coefficients. Using the LMS algorithm
represents one of the most straightforward technique for adaptive filters.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Glancing at the figure shows you the coefficients after adapting closely match
the desired unknown FIR filter.

adaptfilt

8-32

See Also dfilt, filter, mfilt

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired
Output
Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual
Estimated

adaptfilt.adjlms

8-33

8adaptfilt.adjlmsPurpose Adjoint least mean square (LMS) FIR adaptive filter that adapts using adjoint
LMS algorithm

Syntax ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states)

Description ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states) constructs object ha, an FIR adjoint
LMS adaptive filter. l is the adaptive filter length (the number of coefficients
or taps) and must be a positive integer. l defaults to 10 when you omit the
argument. step is the adjoint LMS step size. It must be a nonnegative scalar.
When you omit the step argument, step defaults to 0.1.

leakage is the adjoint LMS leakage factor. It must be a scalar between 0 and 1.
When leakage is less than one, you implement a leaky version of the adjlms
algorithm to determine the filter coefficients. leakage defaults to 1 specifying
no leakage in the algorithm.

pathcoeffs is the secondary path filter model. This vector should contain the
coefficient values of the secondary path from the output actuator to the error
sensor.

pathest is the estimate of the secondary path filter model. pathest defaults to
the values in pathcoeffs.

errstates is a vector of error states of the adaptive filter. It must have a length
equal to the filter order of the secondary path model estimate. errstates
defaults to a vector of zeros of appropriate length. pstates contains the
secondary path FIR filter states. It must be a vector of length equal to the filter
order of the secondary path model. pstates defaults to a vector of zeros of
appropriate length. The initial filter coefficients for the secondary path filter
compose vector coeffs. It must be a length l vector. coeffs defaults to a length
l vector of zeros. states is a vector containing the initial filter states. It must
be a vector of length l+ne-1, where ne is the length of errstates. When you
omit states, it defaults to an appropriate length vector of zeros.

adaptfilt.adjlms

8-34

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the adjoint
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Specifies the adaptive
filter algorithm the
object uses during
adaptation

Coefficients Length l vector
with zeros for all
elements

Adjoint LMS FIR filter
coefficients. Should be
initialized with the
initial coefficients for
the FIR filter prior to
adapting. You need
l entries in
coefficients. Updated
filter coefficients are
returned in
coefficients when
you use s as an output
argument.

ErrorStates [0,…,0] A vector of the error
states for your adaptive
filter, with length equal
to the order of your
secondary path filter

FilterLength 10 The number of
coefficients in your
adaptive filter

adaptfilt.adjlms

8-35

Leakage 1 Specifies the leakage
parameter. Allows you
to implement a leaky
algorithm. Including a
leakage factor can
improve the results of
the algorithm by forcing
the algorithm to
continue to adapt even
after it reaches a
minimum value.
Ranges between 0
and 1.

SecondaryPathCoeffs No default A vector that contains
the coefficient values of
your secondary path
from the output
actuator to the error
sensor

SecondaryPathEstimate pathcoeffs values An estimate of the
secondary path filter
model

SecondaryPathStates Length of the
secondary path
filter. All elements
are zeros.

The states of the
secondary path filter,
the unknown system

Property Default Value Description

adaptfilt.adjlms

8-36

States l+ne+1, where ne is
length(errstates)

Contains the initial
conditions for your
adaptive filter and
returns the states of the
FIR filter after
adaptation.If omitted, it
defaults to a zero vector
of length equal to
l+ne+1. When you use
adaptfilt.adjlms in
a loop structure, use
this element to specify
the initial filter states
for the adapting FIR
filter.

Property Default Value Description

adaptfilt.adjlms

8-37

 Example Demonstrate active noise control of a random noise signal that runs for 1000
samples.

x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be canceled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; % Adjoint LMS step size

Stepsize 0.1 Sets the adjoint LMS
algorithm step size
used for each iteration
of the adapting
algorithm. Determines
both how quickly and
how closely the
adaptive filter
converges to the filter
solution.

PersistentMemory false or true Determine whether the
filter states get restored
to their starting values
for each filtering
operation. The starting
values are the values in
place when you create
the filter.
PersistentMemory
returns to zero any
state that the filter
changes during
processing. States that
the filter does not
change are not affected.
Defaults to false.

Property Default Value Description

adaptfilt.adjlms

8-38

ha = adaptfilt.adjlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;

Reviewing the figure shows that the adaptive filter attenuates the original
noise signal as you expect.

See Also adaptfilt.dlms, adaptfilt.filtxlms

References Wan, Eric., "Adjoint LMS: An Alternative to Filtered-X LMS and Multiple
Error LMS," Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pp. 1841-1845, 1997

0 100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Active Noise Control of a Random Noise Signal

Time Index

S
ig

na
l V

al
ue

Original
Attenuated

adaptfilt.ap

8-39

8adaptfilt.apPurpose Construct affine projection FIR adaptive filter object that uses direct matrix
inversion

Syntax ha = adaptfilt.ap(l,step,projectord,offset,coeffs,states,
errstates,epsstates)

Description ha = adaptfilt.ap(l,step,projectord,offset,coeffs,states,
errstates,epsstates) constructs an affine projection FIR adaptive filter ha
using direct matrix inversion.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.ap.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a
positive integer. l defaults to 10.

step Affine projection step size. This is a scalar
that should be a value between zero and
one. Setting step equal to one provides the
fastest convergence during adaptation. step
defaults to 1.

projectord Projection order of the affine projection
algorithm. projectord defines the size of
the input signal covariance matrix and
defaults to two.

offset Offset for the input signal covariance
matrix. You should initialize the covariance
matrix to a diagonal matrix whose diagonal
entries are equal to the offset you specify.
offset should be positive. offset defaults
to one.

adaptfilt.ap

8-40

Properties Since your adaptfilt.ap filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.ap objects. To show you the properties that
apply, this table lists and describes each property for the affine projection filter
object.

coeffs Vector containing the initial filter
coefficients. It must be a length l vector, the
number of filter coefficients. coeffs
defaults to length l vector of zeros when you
do not provide the argument for input.

states Vector of the adaptive filter states. states
defaults to a vector of zeros which has
length equal to (l + projectord - 2).

errstates Vector of the adaptive filter error states.
errstates defaults to a zero vector with
length equal to (projectord - 1).

epsstates Vector of the epsilon values of the adaptive
filter. epsstates defaults to a vector of zeros
with (projectord - 1) elements.

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

adaptfilt.ap

8-41

ProjectionOrder 1 to as large
as needed.

Projection order of the affine
projection algorithm.
ProjectionOrder defines the
size of the input signal
covariance matrix and defaults
to two.

OffsetCov Matrix of
values

Contains the offset covariance
matrix

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector, the number of
filter coefficients. coeffs
defaults to length l vector of
zeros when you do not provide
the argument for input.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l +
projectord - 2).

ErrorStates Vector of
elements

Vector of the adaptive filter
error states. errstates
defaults to a zero vector with
length equal to
(projectord - 1).

EpsilonStates Vector of
elements

Vector of the epsilon values of
the adaptive filter. epsstates
defaults to a vector of zeros
with (projectord - 1)
elements.

Name Range Description

adaptfilt.ap

8-42

Example Quadrature phase shift keying (QPSK) adaptive equalization using a
32-coefficient FIR filter. Run the adaptation for 1000 iterations.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
mu = 0.1; % Step size
po = 4; % Projection order
offset = 0.05; % Offset for covariance matrix
ha = adaptfilt.ap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');

StepSize Any scalar
from zero to
one, inclusive

Specifies the step size taken
between filter coefficient
updates

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to true.

Name Range Description

adaptfilt.ap

8-43

legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

The four plots shown reveal the QPSK process at work.

0 200 400 600 800 1000
−2

−1

0

1

2
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.ap

8-44

See also msesim

References [1] K. Ozeki and Umeda, T., “An Adaptive Filtering Algorithm Using an
Orthogonal Projection to an Affine Subspace and Its Properties,” Electronics
and Communications in Japan, vol.67-A, no. 5, pp. 19-27, May 1984

[2] Y. Maruyama, “A Fast Method of Projection Algorithm,” Proc. 1990 IEICE
Spring Conf., B-744

adaptfilt.apru

8-45

8adaptfilt.apruPurpose Affine projection FIR adaptive filter object that uses recursive matrix updating

Syntax ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states,
errstates,epsstates)

Description ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states,
errstates,epsstates) constructs an affine projection FIR adaptive filter ha
using recursive matrix updating.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.apru.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps). It must be a positive
integer. l defaults to 10.

step Affine projection step size. This is a scalar
that should be a value between zero and
one. Setting step equal to one provides the
fastest convergence during adaptation. step
defaults to 1.

projectord Projection order of the affine projection
algorithm. projectord defines the size of
the input signal covariance matrix and
defaults to two.

offset Offset for the input signal covariance
matrix. You should initialize the covariance
matrix to a diagonal matrix whose diagonal
entries are equal to the offset you specify.
offset should be positive. offset defaults
to one.

adaptfilt.apru

8-46

Properties Since your adaptfilt.apru filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.apru objects. To show you the properties
that apply, this table lists and describes each property for the affine projection
filter object.

coeffs Vector containing the initial filter
coefficients. It must be a length l vector, the
number of filter coefficients. coeffs
defaults to length l vector of zeros when you
do not provide the argument for input.

states Vector of the adaptive filter states. states
defaults to a vector of zeros which has
length equal to (l + projectord - 2).

errstates Vector of the adaptive filter error states.
errstates defaults to a zero vector with
length equal to (projectord - 1).

epsstates Vector of the epsilon values of the adaptive
filter. epsstates defaults to a vector of zeros
with (projectord - 1) elements.

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

adaptfilt.apru

8-47

ProjectionOrder 1 to as large
as needed.

Projection order of the affine
projection algorithm.
ProjectionOrder defines the
size of the input signal
covariance matrix and defaults
to two.

OffsetCov Matrix of
values

Contains the offset covariance
matrix

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector, the number of
filter coefficients. coeffs
defaults to length l vector of
zeros when you do not provide
the argument for input.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l +
projectord - 2).

ErrorStates Vector of
elements

Vector of the adaptive filter
error states. errstates
defaults to a zero vector with
length equal to (projectord -
1).

EpsilonStates Vector of
elements

Vector of the epsilon values of
the adaptive filter. epsstates
defaults to a vector of zeros
with (projectord - 1)
elements.

Name Range Description

adaptfilt.apru

8-48

Example Demonstrate quadrature phase shift keying (QPSK) adaptive equalization
using a 32-coefficient FIR filter. In this example we run the adaptation for 1000
iterations.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK sig
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
mu = 0.1; % Step size
po = 4; % Projection order
del = 0.05; % Offset
ha = adaptfilt.apru(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));

StepSize Any scalar
from zero to
one, inclusive

Specifies the step size taken
between filter coefficient
updates

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to true.

Name Range Description

adaptfilt.apru

8-49

title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

In the component and scatter plots below, you see the results of QPSK
equalization.

adaptfilt.apru

8-50

See Also adaptfilt, adaptfilt.ap, adaptfilt.bap

References [1] K. Ozeki, Omeda, T, “An Adaptive Filtering Algorithm Using an Orthogonal
Projection to an Affine Subspace and Its Properties,”, Electronics and
Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984

[2] Y. Maruyama, “A Fast Method of Projection Algorithm,” Proceedings 1990
IEICE Spring Conference, B-744

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.bap

8-51

8adaptfilt.bapPurpose Block affine projection FIR adaptive filter object

Syntax ha = adaptfilt.bap(l,step,projectord,offset,coeffs,states)

Description ha = adaptfilt.bap(l,step,projectord,offset,coeffs,states)
constructs a block affine projection FIR adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.bap.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a
positive integer. l defaults to 10.

step Affine projection step size. This is a scalar
that should be a value between zero and
one. Setting step equal to one provides the
fastest convergence during adaptation. step
defaults to 1.

projectord Projection order of the affine projection
algorithm. projectord defines the size of
the input signal covariance matrix and
defaults to two.

offset Offset for the input signal covariance
matrix. You should initialize the covariance
matrix to a diagonal matrix whose diagonal
entries are equal to the offset you specify.
offset should be positive. offset defaults
to one.

adaptfilt.bap

8-52

Properties Since your adaptfilt.bap filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.bap objects. To show you the properties that
apply, this table lists and describes each property for the affine projection filter
object.

coeffs Vector containing the initial filter
coefficients. It must be a length l vector, the
number of filter coefficients. coeffs
defaults to length l vector of zeros when you
do not provide the argument for input.

states Vector of the adaptive filter states. states
defaults to a vector of zeros which has
length equal to (l + projectord - 2).

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

ProjectionOrder 1 to as large
as needed.

Projection order of the affine
projection algorithm.
ProjectionOrder defines the
size of the input signal
covariance matrix and defaults
to two.

OffsetCov Matrix of
values

Contains the offset covariance
matrix

adaptfilt.bap

8-53

Example Show an example of quadrature phase shift keying (QPSK) adaptive
equalization using a 32-coefficient FIR filter.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of

% channel

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector, the number of
filter coefficients. coeffs
defaults to length l vector of
zeros when you do not provide
the argument for input.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l +
projectord - 2).

StepSize Any scalar
from zero to
one, inclusive

Specifies the step size taken
between filter coefficient
updates

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to true.

Name Range Description

adaptfilt.bap

8-54

a = [1 -0.7]; % Denominator coefficients
% of channel

ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed

% QPSK signal)
mu = 0.5; % Step size
po = 4; % Projection order
offset = 1.0; % Offset for covariance matrix
ha = adaptfilt.bap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

adaptfilt.bap

8-55

Using the block affine projection object in QPSK results in the plots shown
here.

See Also adaptfilt, adaptfilt.ap, adaptfilt.apru

References [1] K. Ozeki, Omeda, T, “An Adaptive Filtering Algorithm Using an Orthogonal
Projection to an Affine Subspace and Its Properties,” Electronics and
Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984

[2] M. Montazeri, M, Duhamel, P, “A Set of Algorithms Linking NLMS and
Block RLS Algorithms,” IEEE Transactions Signal Processing, vol. 43, no. 2,
pp, 444-453, February 1995

0 200 400 600 800 1000
−4

−2

0

2

4
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.blms

8-56

8adaptfilt.blmsPurpose Construct Block LMS (BLMS) FIR adaptive filter

Syntax ha = adaptfilt.blms(l,step,leakage,blocklen,coeffs,states)

Description ha = adaptfilt.blms(l,step,leakage,blocklen,coeffs,states)
constructs an FIR block LMS adaptive filter ha, where l is the adaptive filter
length (the number of coefficients or taps) and must be a positive integer.
l defaults to 10.

step is the block LMS step size. You must set step to a nonnegative scalar. You
can use function maxstep to determine a reasonable range of step size values
for the signals being processed. When unspecified, step defaults to 0.

leakage is the block LMS leakage factor. It must be a scalar between 0 and 1.
If you set leakage to be less than one, you implement the leaky block LMS
algorithm. leakage defaults to 1 specifying no leakage in the adapting
algorithm.

blocklen is the block length used. It must be a positive integer and the signal
vectors d and x should be divisible by blocklen. Larger block lengths result in
faster per-sample execution times but with poor adaptation characteristics.
When you choose blocklen such that blocklen + length(coeffs) is a power
of 2, use adaptfilt.blmsfft. blocklen defaults to l.

coeffs is a vector of initial filter coefficients. it must be a length l vector.
coeffs defaults to length l vector of zeros.

states contains a vector of your initial filter states. It must be a length l vector
and defaults to a length l vector of zeros when you do not include it in your
calling function.

adaptfilt.blms

8-57

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the adjoint
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Defines the adaptive
filter algorithm the
object uses during
adaptation

FilterLength Any positive integer Reports the length of
the filter, the number of
coefficients or taps

Coefficients Vector of elements Vector containing the
initial filter coefficients.
It must be a length l
vector where l is the
number of filter
coefficients. coeffs
defaults to length l
vector of zeros when
you do not provide the
argument for input.

States Vector of elements Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length
equal to l

adaptfilt.blms

8-58

Leakage Specifies the leakage
parameter. Allows you
to implement a leaky
algorithm. Including a
leakage factor can
improve the results of
the algorithm by
forcing the algorithm to
continue to adapt even
after it reaches a
minimum value.
Ranges between 0
and 1.

BlockLength Vector of length l Size of the blocks of
data processed in each
iteration

Property Default Value Description

adaptfilt.blms

8-59

 Example Use an adaptive filter to identify an unknown 32nd-order FIR filter. In this
example we input 500 samples to result in 500 iterations of the adaptation
process. You see in the plot that follows the example code that the adaptive
filter has determined the coefficients of the unknown system under test.

x = randn(1,500); % Input to the filter

StepSize 0.1 Sets the block LMS
algorithm step size
used for each iteration
of the adapting
algorithm. Determines
both how quickly and
how closely the
adaptive filter
converges to the filter
solution. Use maxstep
to determine the
maximum usable step
size.

PersistentMemory false or true Determine whether the
filter states get
restored to their
starting values for each
filtering operation. The
starting values are the
values in place when
you create the filter.
PersistentMemory
returns to zero any
state that the filter
changes during
processing. States that
the filter does not
change are not affected.
Defaults to false.

Property Default Value Description

adaptfilt.blms

8-60

b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+no; % Desired signal
mu = 0.008; % Block LMS step size
n = 5; % Block length
ha = adaptfilt.blms(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Based on looking at the figures here, the adaptive filter correctly identified the
unknown system after 500 iterations, or fewer. In the lower plot, you see the
comparison between the actual filter coefficients and those determined by the
adaptation process.

adaptfilt.blms

8-61

See Also adaptfilt.blmsfft, adaptfilt.fdaf, adaptfilt.lms

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

adaptfilt.blmsfft

8-62

8adaptfilt.blmsfftPurpose Construct FFT-based block LMS FIR adaptive filter

Syntax ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,states)

Description ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,states)
constructs an FIR block LMS adaptive filter object ha where l is the adaptive
filter length (the number of coefficients or taps) and must be a positive integer.
l defaults to 10. step is the block LMS step size. It must be a nonnegative
scalar. The function maxstep may be helpful to determine a reasonable range
of step size values for the signals you are processing. step defaults to 0.

leakage is the block LMS leakage factor. It must also be a scalar between
0 and 1. When leakage is less than one, the adaptfilt.blmsfft implements
a leaky block LMS algorithm. leakage defaults to 1 (no leakage). blocklen is
the block length used. It must be a positive integer such that

 blocklen + length(coeffs)

is a power of two; otherwise, an adaptfilt.blms algorithm is used for
adapting. Larger block lengths result in faster execution times, with poor
adaptation characteristics as the cost of the speed gained. blocklen defaults
to l. Enter your initial filter coefficients in coeffs, a vector of length l. When
omitted, coeffs defaults to a length l vector of all zeros. states contains
a vector of initial filter states; it must be a length l vector. states defaults to
a length l vector of all zeros when you omit the states argument in the calling
syntax.

adaptfilt.blmsfft

8-63

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for the block
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Defines the adaptive
filter algorithm the
object uses during
adaptation

FilterLength Any positive integer Reports the length of
the filter, the number of
coefficients or taps

Coefficients Vector of elements Vector containing the
initial filter coefficients.
It must be a length l
vector where l is the
number of filter
coefficients.
coefficients defaults
to length l vector of
zeros when you do not
provide the argument
for input.

States Vector of elements of
length l

Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length
equal to l

adaptfilt.blmsfft

8-64

Leakage 1 Specifies the leakage
parameter. Allows you
to implement a leaky
algorithm. Including a
leakage factor can
improve the results of
the algorithm by
forcing the algorithm to
continue to adapt even
after it reaches a
minimum value.
Ranges between 0
and 1.

BlockLength Vector of length l Size of the blocks of
data processed in each
iteration

Property Default Value Description

adaptfilt.blmsfft

8-65

Example Identify an unknown FIR filter with 32 coefficients using 512 iterations of the
adapting algorithm.

x = randn(1,512); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,512); % Observation noise signal

StepSize 0.1 Sets the block LMS
algorithm step size
used for each iteration
of the adapting
algorithm. Determines
both how quickly and
how closely the
adaptive filter
converges to the filter
solution. Use maxstep
to determine the
maximum usable step
size.

PersistentMemory false or true Determine whether the
filter states get
restored to their
starting values for each
filtering operation. The
starting values are the
values in place when
you create the filter.
PersistentMemory
returns to zero any
state that the filter
changes during
processing. States that
the filter does not
change are not affected.
Defaults to false.

Property Default Value Description

adaptfilt.blmsfft

8-66

d = filter(b,1,x)+no; % Desired signal
mu = 0.008; % Step size
n = 16; % Block length
ha = adaptfilt.blmsfft(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d(1:500);y(1:500);e(1:500)]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('actual','estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

actual

estimated

adaptfilt.blmsfft

8-67

As a result of running the adaptation process, filter object ha now matches the
unknown system FIR filter b, based on comparing the filter coefficients derived
during adaptation.

See Also adaptfilt.blms, adaptfilt.fdaf, adaptfilt.lms, filter

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

adaptfilt.dlms

8-68

8adaptfilt.dlmsPurpose Create delayed LMS FIR adaptive filter object

Syntax ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
states)

Description ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
states) constructs an FIR delayed LMS adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.dlms.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step LMS step size. It must be a nonnegative
scalar. You can use maxstep to determine
a reasonable range of step size values for the
signals being processed. step defaults to 0.

leakage Your LMS leakage factor. It must be a scalar
between 0 and 1. When leakage is less than
one, adaptfilt.lms implements a leaky LMS
algorithm. When you omit the leakage
property in the calling syntax, it defaults to 1
providing no leakage in the adapting
algorithm.

delay Update delay given in time samples. This
scalar should be a positive integer—negative
delays do not work. delay defaults to 1.

adaptfilt.dlms

8-69

errstates Vector of the error states of your adaptive
filter. It must have a length equal to the
update delay (delay) in samples. errstates
defaults to an appropriate length vector of
zeros.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l
vector with elements equal to zero.

states Vector of initial filter states for the adaptive
filter. It must be a length l-1 vector. states
defaults to a length l-1 vector of zeros.

Input Argument Description

adaptfilt.dlms

8-70

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for the block
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of elements Vector containing the
initial filter coefficients. It
must be a length l vector
where l is the number of
filter coefficients. coeffs
defaults to length l vector
of zeros when you do not
provide the argument for
input. LMS FIR filter
coefficients. Should be
initialized with the initial
coefficients for the FIR
filter prior to adapting.
You need l entries in
coeffs.

Delay 1 Specifies the update delay
for the adaptive
algorithm.

ErrorStates Vector of zeros with
the number of
elements equal to
delay

A vector comprising the
error states for the
adaptive filter.

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps.

adaptfilt.dlms

8-71

Leakage 1 Specifies the leakage
parameter. Allows you to
implement a leaky
algorithm. Including a
leakage factor can
improve the results of the
algorithm by forcing the
algorithm to continue to
adapt even after it reaches
a minimum value. Ranges
between 0 and 1.

PersistentMemory false or true Determine whether the
filter states get restored to
their starting values for
each filtering operation.
The starting values are
the values in place when
you create the filter if you
have not changed the
filter since you
constructed it.
PersistentMemory
returns to zero any state
that the filter changes
during processing. States
that the filter does not
change are not affected.
Defaults to false.

Property Default Value Description

adaptfilt.dlms

8-72

Example System identification of a 32-coefficient FIR filter. Refer to the figure that
follows to see the results of the adapting filter process.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
delay = 1; % Update delay
ha = adaptfilt.dlms(32,mu,1,delay);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Using a delayed LMS adaptive filter in the process to identify an unknown
filter appears to work as planned, as shown in this figure.

StepSize 0.1 Sets the LMS algorithm
step size used for each
iteration of the adapting
algorithm. Determines
both how quickly and how
closely the adaptive filter
converges to the filter
solution.

States Vector of elements,
data type double

Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length
equal to (l + projectord -
2).

Property Default Value Description

adaptfilt.dlms

8-73

See Also adaptfilt.adjlms, adaptfilt.filtxlms, adaptfilt.lms

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Desired

Output

Error

Actual

Estimated

adaptfilt.fdaf

8-74

8adaptfilt.fdafPurpose Construct frequency-domain FIR adaptive filter with bin step size
normalization

Syntax ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states)

Description ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,offset,
coeffs,states) constructs a frequency-domain FIR adaptive filter ha with bin
step size normalization. If you omit all the input arguments you create a
default object with l = 10 and step = 1.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.fdaf.

Input Argument Description

l Adaptive filter length (the number of coefficients
or taps). l must be a positive integer; it defaults
to 10 when you omit the argument.

step Step size of the adaptive filter. This is a scalar
and should lie in the range (0,1]. step defaults to
1.

leakage Leakage parameter of the adaptive filter. If this
parameter is set to a value between zero and one,
you implement a leaky FDAF algorithm.
leakage defaults to 1—no leakage provided in
the algorithm.

delta Initial common value of all of the FFT input
signal powers. Its initial value should be
positive. delta defaults to 1.

lambda Specifies the averaging factor used to compute
the exponentially-windowed FFT input signal
powers for the coefficient updates. lambda should
lie in the range (0,1]. lambda defaults to 0.9.

adaptfilt.fdaf

8-75

Properties Since your adaptfilt.fdaf filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.fdaf objects. To show you the properties

blocklen Block length for the coefficient updates. This
must be a positive integer. For faster execution,
(blocklen + l) should be a power of two.
blocklen defaults to l.

offset Offset for the normalization terms in the
coefficient updates. Use this to avoid divide by
zeros or by very small numbers when any of the
FFT input signal powers become very small.
offset defaults to zero.

coeffs Initial time-domain coefficients of the adaptive
filter. coeff should be a length l vector. The
adaptive filter object uses these coefficients to
compute the initial frequency-domain filter
coefficients via an FFT computed after
zero-padding the time-domain vector by the
blocklen.

states The adaptive filter states. states defaults to
a zero vector that has length equal to l.

Input Argument Description

adaptfilt.fdaf

8-76

that apply, this table lists and describes each property for the adaptfilt.fdaf
filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation.

AvgFactor (0, 1] Specifies the averaging factor
used to compute the
exponentially-windowed FFT
input signal powers for the
coefficient updates. Same as
the input argument lambda.

BlockLength Any integer Block length for the coefficient
updates. This must be a
positive integer. For faster
execution, (blocklen + l)
should be a power of two.
blocklen defaults to l.

FFTCoefficients Stores the discrete Fourier
transform of the filter
coefficients in coeffs.

FFTStates States for the FFT operation.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps.

adaptfilt.fdaf

8-77

Leakage Leakage parameter of the
adaptive filter. if this
parameter is set to a value
between zero and one, you
implement a leaky FDAF
algorithm. leakage defaults to
1—no leakage provided in the
algorithm.

Offset Any positive
real value

Offset for the normalization
terms in the coefficient
updates. Use this to avoid
dividing by zero or by very
small numbers when any of the
FFT input signal powers
become very small. offset
defaults to zero.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

Name Range Description

adaptfilt.fdaf

8-78

Examples Quadrature Phase Shift Keying (QPSK) adaptive equalization using 1024
iterations of a 32-coefficient FIR filter. After this example code, a figure
demonstrates the equalization results.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1024; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK

% signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
ha = adaptfilt.fdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');

Power A vector of 2*l elements, each
initialized with the value delta
from the input arguments. As
you filter data, Power gets
updated by the filter process.

StepSize Any scalar
from zero to
one, inclusive

Specifies the step size taken
between filter coefficient
updates

Name Range Description

adaptfilt.fdaf

8-79

subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

See Also adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blms, adaptfilt.blmsfft

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

0 500 1000 1500
−2

−1

0

1

2

3
In−Phase Components

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

0 500 1000 1500
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Quadrature Components

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.filtxlms

8-80

8adaptfilt.filtxlmsPurpose Create filtered-x LMS FIR adaptive filter

Syntax ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states)

Description ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states) constructs an filtered-x LMS adaptive
filter ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.filtxlms.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step Filtered LMS step size. it must be a
nonnegative scalar. step defaults to 0.1.

leakage is the filtered-x LMS leakage factor. it must
be a scalar between 0 and 1. If it is less than
one, a leaky version of adaptfilt.filtxlms is
implemented. leakage defaults to 1 (no
leakage).

pathcoeffs is the secondary path filter model. this vector
should contain the coefficient values of the
secondary path from the output actuator to
the error sensor.

pathest is the estimate of the secondary path filter
model. pathest defaults to the values in
pathcoeffs.

fstates is a vector of filtered input states of the
adaptive filter. fstates defaults to a zero
vector of length equal to (l - 1).

adaptfilt.filtxlms

8-81

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the adjoint
LMS object, their default values, and a brief description of the property.

pstates are the secondary path FIR filter states. it
must be a vector of length equal to the
(length(pathcoeffs) - 1). pstates defaults to
a vector of zeros of appropriate length.

coeffs is a vector of initial filter coefficients. it must
be a length l vector. coeffs defaults to length
l vector of zeros.

states Vector of initial filter states. states defaults
to a zero vector of length equal to the larger of
(length(pathcoeffs) - 1) and
(length(pathest) - 1).

Input Argument Description

Property Default Value Description

Algorithm None Defines the adaptive
filter algorithm the
object uses during
adaptation

Coefficients Vector of elements Vector containing the
initial filter coefficients.
It must be a length l
vector where l is the
number of filter
coefficients. coeffs
defaults to length l
vector of zeros when
you do not provide the
argument for input.

adaptfilt.filtxlms

8-82

FilteredInputStates l-1 Vector of filtered input
states with length
equal to l - 1.

FilterLength Any positive integer Reports the length of
the filter, the number of
coefficients or taps

States Vector of elements Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length
equal to
(l + projectord - 2)

SecondaryPathCoeffs No default A vector that contains
the coefficient values of
your secondary path
from the output
actuator to the error
sensor

SecondaryPathEstimate pathcoeffs values An estimate of the
secondary path filter
model

Property Default Value Description

adaptfilt.filtxlms

8-83

Example Demonstrate active noise control of a random noise signal over 1000 iterations.

As the figure that follows this code demonstrates, the filtered-x LMS filter
successfully controls random noise in this context.

x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be cancelled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; % Filtered-X LMS step size
ha = adaptfilt.filtxlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;

SecondaryPathStates Vector of size
(length(pathcoeffs)-1)
with all elements
equal to zero.

The states of the
secondary path FIR
filter—the unknown
system

StepSize 0.1 Sets the filtered-x
algorithm step size
used for each iteration
of the adapting
algorithm. Determines
both how quickly and
how closely the
adaptive filter
converges to the filter
solution.

Property Default Value Description

adaptfilt.filtxlms

8-84

See also adaptfilt.dlms, adaptfilt.lms

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3
Active Noise Control of a Random Noise Signal

Time Index

S
ig

na
l V

al
ue

Original
Attenuated

adaptfilt.ftf

8-85

8adaptfilt.ftfPurpose Construct fast transversal least squares adaptive filter object

Syntax ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)

Description ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)
constructs a fast transversal least squares adaptive filter object ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.ftf.

Properties Since your adaptfilt.ftf filter is an object, it has properties that define its
operating behavior. Note that many of the properties are also input arguments

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

lambda RLS forgetting factor. This is a scalar that
should lie in the range (1-0.5/l, 1]. lambda
defaults to 1.

delta Soft-constrained initialization factor. This
scalar should be positive and sufficiently large
to prevent an excessive number of Kalman
gain rescues. delta defaults to one.

gamma Conversion factor. gamma defaults to one
specifying soft-constrained initialization.

gstates States of the Kalman gain updates. gstates
defaults to a zero vector of length l.

coeffs Length l vector of initial filter coefficients.
coeffs defaults to a length l vector of zeros.

states Vector of initial filter States. states defaults
to a zero vector of length (l-1).

adaptfilt.ftf

8-86

for creating adaptfilt.ftf objects. To show you the properties that apply, this
table lists and describes each property for the fast transversal least squares
filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

BkwdPrediction Returns the predicted samples
generated during
adaptation.Refer to [12] in the
bibliography for details about
linear prediction.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for
input.

ConversionFactor Conversion factor. Called
gamma when it is an input
argument, it defaults to the
matrix [1 -1] that specifies
soft-constrained initialization.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

ForgettingFactor RLS forgetting factor. This is a
scalar that should lie in the
range (1-0.5/l, 1]. lambda
defaults to 1.

adaptfilt.ftf

8-87

FwdPrediction Contains the predicted values
for samples during adaptation.
Compare these to the actual
samples to get the error and
power.

InitFactor Soft-constrained initialization
factor. This scalar should be
positive and sufficiently large
to prevent an excessive
number of Kalman gain
rescues. delta defaults to one.

KalmanGain Empty when you construct the
object, this gets populated after
you run the filter.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory returns
to zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.
Defaults to false.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l +
projectord - 2).

Name Range Description

adaptfilt.ftf

8-88

Examples System Identification of a 32-coefficient FIR filter by running the identification
process for 500 iterations.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
N = 31; % Adaptive filter order
lam = 0.99; % RLS forgetting factor
del = 0.1; % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('coefficient #'); ylabel('Coefficient Value'); grid on;

For this example of identifying an unknown system, the figure shows that the
adaptation process identifies the filter coefficients for the unknown FIR filter
within the first 150 iterations.

adaptfilt.ftf

8-89

See Also adaptfilt.swftf, adaptfilt.rls, adaptfilt.lsl

Reference D.T.M. Slock and Kailath, T., “Numerically Stable Fast Transversal Filters for
Recursive Least Squares Adaptive Filtering,” IEEE Trans. Signal Processing,
vol. 38, no. 1, pp. 92-114.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR filter

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

adaptfilt.gal

8-90

8adaptfilt.galPurpose Construct gradient adaptive lattice FIR filter

Syntax ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda,
rcoeffs,coeffs,states)

Description ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda,
rcoeffs,coeffs,states) constructs a gradient adaptive lattice FIR filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.gal.

Input Argument Description

l Length of the joint process filter coefficients. It
must be a positive integer and must be equal
to the length of the reflection coefficients plus
one. l defaults to 10.

step Joint process step size of the adaptive filter.
This scalar should be a value between zero
and one. step defaults to 0.

leakage Leakage factor of the adaptive filter. It must
be a scalar between 0 and 1. Setting leakage
less than one implements a leaky algorithm to
estimate both the reflection and the joint
process coefficients. leakage defaults to 1 (no
leakage).

offset Specifies an optional offset for the
denominator of the step size normalization
term. It must be a scalar greater or equal to
zero. A non-zero offset is useful to avoid
divide-by-near-zero conditions when the input
signal amplitude becomes very small. offset
defaults to 1.

adaptfilt.gal

8-91

Properties Since your adaptfilt.gal filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.gal objects. To show you the properties that

rstep Reflection process step size of the adaptive
filter. This scalar should be a value between
zero and one. rstep defaults to step.

delta Initial common value of the forward and
backward prediction error powers. It should be
a positive value. 0.1 is the default value for
delta.

lambda Specifies the averaging factor used to compute
the exponentially windowed forward and
backward prediction error powers for the
coefficient updates. lambda should lie in the
range (0, 1]. lambda defaults to the value
(1 - step).

rcoeffs Vector of initial reflection coefficients. It
should be a length (l-1) vector. rcoeffs
defaults to a zero vector of length (l-1).

coeffs Vector of initial joint process filter coefficients.
It must be a length l vector. coeffs defaults to
a length l vector of zeros.

states Vector of the backward prediction error states
of the adaptive filter. states defaults to a zero
vector of length (l-1).

Input Argument Description

adaptfilt.gal

8-92

apply, this table lists and describes each property for the affine projection filter
object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

AvgFactor Specifies the averaging factor
used to compute the
exponentially-windowed
forward and backward
prediction error powers for the
coefficient updates. Same as
the input argument lambda.

BkwdPredErrorPower Returns the minimum
mean-squared prediction error.
Refer to [12] in the
bibliography for details about
linear prediction

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do not
provide the argument for
input.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

adaptfilt.gal

8-93

FwdPredErrorPower Returns the minimum
mean-squared prediction error
in the forward direction. Refer
to [12] in the bibliography for
details about linear prediction.

Leakage 0 to 1 Leakage parameter of the
adaptive filter. If this
parameter is set to a value
between zero and one, you
implement a leaky GAL
algorithm. leakage defaults to
1—no leakage provided in the
algorithm.

Offset Offset for the normalization
terms in the coefficient
updates. Use this to avoid
dividing by zero or by very
small numbers when input
signal amplitude becomes very
small. offset defaults to one.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory returns
to zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.
Defaults to false.

Name Range Description

adaptfilt.gal

8-94

Examples Perform a Quadrature Phase Shift Keying (QPSK) adaptive equalization using
a 32-coefficient adaptive filter over 1000 iterations.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.007; % Step size
ha = adaptfilt.gal(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');

ReflectionCoeffs Coefficients determined for the
reflection portion of the filter
during adaptation.

ReflectionCoeffsStep Size of the steps used to
determine the reflection
coefficients.

States Vector of
elements

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to
(l + projectord - 2).

StepSize 0 to 1 Specifies the step size taken
between filter coefficient
updates

Name Range Description

adaptfilt.gal

8-95

xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

To see the results, look at this figure.

See Also adaptfilt.qrdlsl, adaptfilt.lsl, adaptfilt.tdafdft

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
In−Phase Components

Time Index

si
gn

al
 v

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.gal

8-96

References L.J. Griffiths, “A Continuously Adaptive Filter Implemented as a Lattice
Structure,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
Hartford, CT, pp. 683-686, 1977

S. Haykin, Adaptive Filter Theory, 3rd Ed., Upper Saddle River, NJ, Prentice
Hall, 1996

adaptfilt.hrls

8-97

8adaptfilt.hrlsPurpose Construct a householder recursive least squares (RLS) FIR adaptive filter
object

Syntax ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states)

Description ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states) constructs an
FIR householder RLS adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.hrls.

Properties Since your adaptfilt.hrls filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.hrls objects. To show you the properties

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

lambda RLS forgetting factor. This is a scalar and
should lie in the range (0, 1]. lambda defaults
to 1 meaning the adaptation process retains
infinite memory.

sqrtinvcov Square-root of the inverse of the sliding
window input signal covariance matrix. This
square matrix should be full-ranked.

coeffs Vector of initial filter coefficients. It must be a
length l vector. coeffs defaults to being
a length l vector of zeros.

states Vector of initial filter states. It must be
a length l-1 vector. states defaults to a length
l-1 vector of zeros.

adaptfilt.hrls

8-98

that apply, this table lists and describes each property for the affine projection
filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be
a length l vector where l is
the number of filter
coefficients. coeffs defaults
to length l vector of zeros
when you do not provide the
argument for input.

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

ForgettingFactor Scalar RLS forgetting factor. This
is a scalar and should lie in
the range (0, 1]. Same as
input argument lambda. It
defaults to 1 meaning the
adaptation process retains
infinite memory.

KalmanGain Vector of size
(l,1)

Empty when you construct
the object, this gets
populated after you run the
filter.

adaptfilt.hrls

8-99

Examples Use 500 iterations of an adaptive filter object to identify a 32-coefficient FIR
filter system. Both the example code and the resulting figure show the
successful filter identification through adaptive filter processing.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
G0 = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.hrls(32,lam,G0);

PersistentMemory false or true Determine whether the
filter states get restored to
their starting values for
each filtering operation. The
starting values are the
values in place when you
create the filter if you have
not changed the filter since
you constructed it.
PersistentMemory returns
to zero any state that the
filter changes during
processing. Defaults to
false.

SqrtInvCov Matrix of
doubles

Square root of the inverse of
the sliding window input
signal covariance matrix.
This square matrix should
be full-ranked.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l - 1).

Name Range Description

adaptfilt.hrls

8-100

[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

adaptfilt.hswrls

8-101

8adaptfilt.hswrlsPurpose Construct householder sliding window recursive least squares (RLS) FIR
adaptive filter

Syntax ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen,
dstates, coeffs, states)

Description ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen, dstates,
coeffs, states) constructs an FIR householder sliding window
recursive-least-square adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.hswrls.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

lambda Recursive least square (RLS) forgetting factor.
This is a scalar and should lie in the range (0,
1]. lambda defaults to 1 meaning the
adaptation process retains infinite memory.

sqrtinvcov Square-root of the inverse of the sliding
window input signal covariance matrix. This
square matrix should be full-ranked.

swblocklen Block length of the sliding window. This
integer must be at least as large as the filter
length. swblocklen defaults to 16.

dstates Desired signal states of the adaptive filter.
dstates defaults to a zero vector with length
equal to (swblocklen - 1).

adaptfilt.hswrls

8-102

Properties Since your adaptfilt.hswrls filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.hswrls objects. To show you the properties
that apply, this table lists and describes each property for the affine projection
filter object.

coeffs Vector of initial filter coefficients. It must be a
length l vector. coeffs defaults to being
a length l vector of zeros.

states Vector of initial filter states. It must be
a length (l + swblocklen -2) vector. states
defaults to a length (l + swblocklen -2)
vector of zeros.

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of
elements

Vector containing the
initial filter coefficients. It
must be a length l vector
where l is the number of
filter coefficients. coeffs
defaults to length l vector
of zeros when you do not
provide the argument for
input.

DesiredSignalStates Vector Desired signal states of the
adaptive filter. dstates
defaults to a zero vector
with length equal to
(swblocklen - 1).

adaptfilt.hswrls

8-103

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

ForgettingFactor Scalar Root-least-square (RLS)
forgetting factor. This is a
scalar and should lie in the
range (0, 1]. Same as input
argument lambda. It
defaults to 1 meaning the
adaptation process retains
infinite memory.

KalmanGain (l,1) vector Empty when you construct
the object, this gets
populated after you run the
filter.

PersistentMemory false or true Determine whether the
filter states get restored to
their starting values for
each filtering operation.
The starting values are the
values in place when you
create the filter if you have
not changed the filter since
you constructed it.
PersistentMemory returns
to zero any state that the
filter changes during
processing. Defaults to
false.

Name Range Description

adaptfilt.hswrls

8-104

 Examples System Identification of a 32-coefficient FIR filter.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
G0 = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
N = 64; % block length
ha = adaptfilt.hswrls(32,lam,G0,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

SqrtInvCov l-by-l Matrix Square-root of the inverse
of the sliding window input
signal covariance matrix.
This square matrix should
be full-ranked.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l +
projectord - 2).

SwBlockLength Integer Block length of the sliding
window. This integer must
be at least as large as the
filter length. swblocklen
defaults to 16.

Name Range Description

adaptfilt.hswrls

8-105

In the pair of plots shown in the figure you see the comparison of the desired
and actual output for the adapting filter and the coefficients of both filters, the
unknown and the adapted.

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hrls

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

adaptfilt.lms

8-106

8adaptfilt.lmsPurpose Construct least-mean-square (LMS) FIR adaptive filter object

Syntax ha = adaptfilt.lms(l,step,leakage,coeffs,states)

Description ha = adaptfilt.lms(l,step,leakage,coeffs,states) constructs an FIR
LMS adaptive filter object ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.lms.

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object created. This table lists the properties for the

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step LMS step size. It must be a nonnegative
scalar. You can use maxstep to determine
a reasonable range of step size values for the
signals being processed. step defaults to 0.1.

leakage Your LMS leakage factor. It must be a scalar
between 0 and 1. When leakage is less than
one, adaptfilt.lms implements a leaky LMS
algorithm. When you omit the leakage
property in the calling syntax, it defaults to 1
providing no leakage in the adapting
algorithm.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l
vector with elements equal to zero.

states Vector of initial filter states for the adaptive
filter. It must be a length l-1 vector. states
defaults to a length l-1 vector of zeros.

adaptfilt.lms

8-107

adaptfilt.lms object, their default values, and a brief description of the
property.

Property Range Property Description

Algorithm None Reports the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be
a length l vector where l is
the number of filter
coefficients. coeffs defaults
to a length l vector of zeros
when you do not provide the
vector as an input argument.

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

Leakage 0 to 1 LMS leakage factor. It must
be a scalar between zero and
one. When it is less than one,
a leaky NLMS algorithm
results. leakage defaults
to 1 (no leakage).

adaptfilt.lms

8-108

 Example Use 500 iterations of an adapting filter system to identify and unknown
32nd-order FIR filter.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting
values for each filtering
operation. The starting
values are the values in
place when you create the
filter. PersistentMemory
returns to zero any property
value that the filter changes
during processing. Property
values that the filter does
not change are not affected.
Defaults to false.

States Vector of
elements, data
type double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l - 1).

StepSize 0 to 1 LMS step size. It must be a
scalar between zero and one.
Setting this step size value
to one provides the fastest
convergence. step defaults to
0.1.

Property Range Property Description

adaptfilt.lms

8-109

subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Using LMS filters in an adaptive filter architecture is a time honored means
for identifying an unknown filter. By running the example code provided you
can demonstrate one process to identify an unknown FIR filter.

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Desired

Output

Error

Actual

Estimated

adaptfilt.lms

8-110

See Also adaptfilt.blms, adaptfilt.blmsfft, adaptfilt.dlms, adaptfilt.nlms,
adaptfilt.tdafdft, adaptfilt.sd, adaptfilt.se, adaptfilt.ss

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

adaptfilt.lsl

8-111

8adaptfilt.lslPurpose Construct least squares lattice (LSL) adaptive filter

Syntax ha = adaptfilt.lsl(l,lambda,delta,coeffs,states)

Description ha = adaptfilt.lsl(l,lambda,delta,coeffs,states) constructs a least
squares lattice adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.lsl.

Properties Since your adaptfilt.lsl filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input

Input Argument Description

l Length of the joint process filter coefficients. It
must be a positive integer and must be equal
to the length of the prediction coefficients plus
one. L defaults to 10.

lambda Forgetting factor of the adaptive filter. This is
a scalar and should lie in the range (0, 1].
lambda defaults to 1. lambda = 1 denotes
infinite memory while adapting to find the
new filter.

delta Soft-constrained initialization factor in the
least squares lattice algorithm. It should be
positive. delta defaults to 1.

coeffs Vector of initial joint process filter coefficients.
It must be a length l vector. coeffs defaults to
a length l vector of all zeros.

states Vector of the backward prediction error states
of the adaptive filter. states defaults to
a length l vector of all zeros, specifying
soft-constrained initialization for the
algorithm.

adaptfilt.lsl

8-112

arguments for creating adaptfilt.lsl objects. To show you the properties that
apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

BkwdPrediction Returns the predicted
samples generated during
adaptation.Refer to [12] in
the bibliography for details
about linear prediction.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

ForgettingFactor Forgetting factor of the
adaptive filter. This is a
scalar and should lie in the
range (0, 1]. It defaults to 1.
Setting forgetting
factor = 1 denotes infinite
memory while adapting to
find the new filter. Note that
this is the lambda input
argument.

adaptfilt.lsl

8-113

Examples Demonstrate Quadrature Phase Shift Keying (QPSK) adaptive equalization
using a 32-coefficient adaptive filter running for 1000 iterations. After you

FwdPrediction Contains the predicted values
for samples during
adaptation. Compare these to
the actual samples to get the
error and power.

InitFactor Soft-constrained
initialization factor. This
scalar should be positive and
sufficiently large to prevent
an excessive number of
Kalman gain rescues. delta
defaults to one.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you
constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.
Defaults to false.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to l

Name Range Description

adaptfilt.lsl

8-114

review the example code, the figure shows the results of running the example
to use QPSK adaptive equalization with a 32nd-order FIR filter. Notice that
the error between the in-phase and quadrature components, as shown by the
errors plotted in the upper plots, falls to near zero. Also, the equalized signal
shows the clear quadrature nature.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK

% signal)
lam = 0.995; % Forgetting factor
del = 1; % Soft-constrained initialization
factor
ha = adaptfilt.lsl(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

adaptfilt.lsl

8-115

See Also adaptfilt.qrdlsl, adaptfilt.gal, adaptfilt.ftf, adaptfilt.rls

References S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991

0 200 400 600 800 1000
−6

−4

−2

0

2

4
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−4

−2

0

2

4
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.nlms

8-116

8adaptfilt.nlmsPurpose Construct normalized least mean squares (LMS) FIR adaptive filter object

Syntax ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states)

Description ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states) constructs
a normalized least-mean squares (NLMS) FIR adaptive filter object named ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.nlms.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step NLMS step size. It must be a scalar between 0
and 2. Setting this step size value to one
provides the fastest convergence. step
defaults to 1.

leakage NLMS leakage factor. It must be a scalar
between zero and one. When it is less than
one, a leaky NLMS algorithm results. leakage
defaults to 1 (no leakage).

offset Specifies an optional offset for the
denominator of the step size normalization
term. You must specify offset to be a scalar
greater than or equal to zero. Nonzero offsets
can help avoid a divide-by-near-zero condition
that causes errors. Use this to avoid dividing
by zero (or by very small numbers) when the
square of the input data norm becomes very
small (when the input signal amplitude
becomes very small). When you omit it, offset
defaults to zero.

adaptfilt.nlms

8-117

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for normalized
LMS objects, their default values, and a brief description of the property.

coeffs Vector composed of your initial filter
coefficients. Enter a length l vector. coeffs
defaults to a vector of zeros with length equal
to the filter order.

states Your initial adaptive filter states appear in the
states vector. It must be a vector of length
l-1. states defaults to a length l-1 vector with
zeros for all of the elements.

Input Argument Description

Property Range Property Description

Algorithm None Reports the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be
a length l vector where l is
the number of filter
coefficients. coeffs defaults
to length l vector of zeros
when you do not provide the
argument for input.

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

adaptfilt.nlms

8-118

Leakage 0 to 1 NLMS leakage factor. It
must be a scalar between
zero and one. When it is less
than one, a leaky NLMS
algorithm results. leakage
defaults to 1 (no leakage).

Offset 0 or greater Specifies an optional offset
for the denominator of the
step size normalization term.
You must specify offset to be
a scalar greater than or
equal to zero. Nonzero
offsets can help avoid a
divide-by-near-zero condition
that causes errors. Use this
to avoid dividing by zero (or
by very small numbers)
when the square of the input
data norm becomes very
small (when the input signal
amplitude becomes very
small). When you omit it,
offset defaults to zero.

Property Range Property Description

adaptfilt.nlms

8-119

 Example To help you compare this algorithm’s performance to other LMS-based
algorithms, such as BLMS or LMS, this example demonstrates the NLMS
adaptive filter in use to identify the coefficients of an unknown FIR filter of
order equal to 32—an example used in other adaptive filter examples.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 1; % NLMS step size

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting
values for each filtering
operation. The starting
values are the values in
place when you create the
filter. PersistentMemory
returns to zero any property
value that the filter changes
during processing. Property
values that the filter does
not change are not affected.
Defaults to false.

States Vector of
elements, data
type double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l - 1).

StepSize 0 to 1 NLMS step size. It must be a
scalar between zero and one.
Setting this step size value
to one provides the fastest
convergence. step defaults to
one.

Property Range Property Description

adaptfilt.nlms

8-120

offset = 50; % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);

As you see from the figure, the nlms variant again closely matches the actual
filter coefficients in the unknown FIR filter.

See Also adaptfilt.ap, adaptfilt.apru, adaptfilt.lms, adaptfilt.rls,
adaptfilt.swrls

0 50 100 150 200 250 300 350 400 450 500
−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

adaptfilt.pbfdaf

8-121

8adaptfilt.pbfdafPurpose Construct partitioned block frequency-domain (PBFDAF) FIR adaptive filter
with bin step size normalization

Syntax ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,offset,
coeffs,states)

Description ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,offset,
coeffs,states) constructs a partitioned block frequency-domain FIR
adaptive filter ha that uses bin step size normalization during adaptation.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.pbfdaf.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. L defaults to 10.

step Step size of the adaptive filter. This is a scalar
and should lie in the range (0,1]. step defaults
to 1.

leakage Leakage parameter of the adaptive filter.
When you set this argument to a value
between zero and one, a leaky version of the
PBFDAF algorithm is implemented. leakage
defaults to 1— no leakage.

delta Initial common value of all of the FFT input
signal powers. Its initial value should be
positive. delta defaults to 1.

lambda Averaging factor used to compute the
exponentially windowed FFT input signal
powers for the coefficient updates. lambda
should lie in the range (0,1]. lambda defaults to
0.9.

adaptfilt.pbfdaf

8-122

Properties Since your adaptfilt.pbfdaf filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also input

blocklen Block length for the coefficient updates. This
must be a positive integer such that
(l/blocklen) is also an integer. For faster
execution, blocklen should be a power of two.
blocklen defaults to two.

offset Offset for the normalization terms in the
coefficient updates. This can be useful to
avoid divide by zeros conditions, or dividing by
very small numbers, if any of the FFT input
signal powers become very small. offset
defaults to zero.

coeffs Initial time-domain coefficients of the
adaptive filter. It should be a vector of
length l. The PBFDAF algorithm uses these
coefficients to compute the initial
frequency-domain filter coefficient matrix via
FFTs.

states Specifies the filter initial conditions. states
defaults to a zero vector of length l.

Input Argument Description

adaptfilt.pbfdaf

8-123

arguments for creating adaptfilt.pbfdaf objects. To show you the properties
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

AvgFactor Averaging factor used to
compute the exponentially
windowed FFT input signal
powers for the coefficient
updates. AvgFactor should lie
in the range (0,1]. AvgFactor
defaults to 0.9. Called lambda
as an input argument.

BlockLength Block length for the coefficient
updates. This must be a
positive integer such that
(l/blocklen) is also an
integer. For faster execution,
blocklen should be a power of
two. blocklen defaults to
two.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

FFTCoefficients Stores the discrete Fourier
transform of the filter
coefficients in coeffs.

FFTStates States for the FFT operation.

adaptfilt.pbfdaf

8-124

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you set
this argument to a value
between zero and one, a leaky
version of the PBFDAF
algorithm is implemented.
leakage defaults to 1— no
leakage.

Offset Offset for the normalization
terms in the coefficient
updates. This can be useful to
avoid divide by zeros
conditions, or dividing by very
small numbers, if any of the
FFT input signal powers
become very small. offset
defaults to zero.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

Name Range Description

adaptfilt.pbfdaf

8-125

Examples An example of Quadrature Phase Shift Keying (QPSK) adaptive equalization
using a 32-coefficient FIR filter.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr = 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
 r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
N = 8; % Block size
ha = adaptfilt.pbfdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');

Power A vector of 2*l elements, each
initialized with the value
delta from the input
arguments. As you filter data,
Power gets updated by the
filter process.

StepSize 0 to 1 Step size of the adaptive filter.
This is a scalar and should lie
in the range (0,1]. step
defaults to 1.

Name Range Description

adaptfilt.pbfdaf

8-126

xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

In the figure shown, the four subplots provide the details of the results of the
QPSK process used in the equalization for this example.

See Also adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blmsfft

0 200 400 600 800 1000
−2

−1

0

1

2
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.pbfdaf

8-127

References J.S. So and K.K. Pang, “Multidelay Block Frequency Domain Adaptive Filter,”
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp.
373-376, February 1990

J.M. Paez Borrallo and M.G. Otero, “On The Implementation of a Partitioned
Block Frequency Domain Adaptive Filter (PBFDAF) For Long Acoustic Echo
Cancellation,” Signal Processing, vol. 27, no. 3, pp. 301-315, June 1992

adaptfilt.pbufdaf

8-128

8adaptfilt.pbufdafPurpose Construct partitioned block unconstrained frequency-domain (PBUFDAF) FIR
adaptive filter with bin step size normalization

Syntax ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states)(

Description ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states) constructs a partitioned block unconstrained
frequency-domain FIR adaptive filter ha with bin step size normalization.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.pbufdaf.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. L defaults to 10.

step Step size of the adaptive filter. This is a scalar
and should lie in the range (0,1]. step defaults
to 1.

leakage Leakage parameter of the adaptive filter.
When you set this argument to a value
between zero and one, a leaky version of the
PBFDAF algorithm is implemented. leakage
defaults to 1— no leakage.

delta Initial common value of all of the FFT input
signal powers. Its initial value should be
positive. delta defaults to 1.

lambda Averaging factor used to compute the
exponentially windowed FFT input signal
powers for the coefficient updates. lambda
should lie in the range (0,1]. lambda defaults
to 0.9.

adaptfilt.pbufdaf

8-129

Properties Since your adaptfilt.pbufdaf filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.pbufdaf objects. To show you the

blocklen Block length for the coefficient updates. This
must be a positive integer such that
(l/blocklen) is also an integer. For faster
execution, blocklen should be a power of two.
blocklen defaults to two.

offset Offset for the normalization terms in the
coefficient updates. This can be useful to
avoid divide by zeros conditions, or dividing by
very small numbers, if any of the FFT input
signal powers become very small. offset
defaults to zero.

coeffs Initial time-domain coefficients of the
adaptive filter. It should be a vector of
length l. The PBFDAF algorithm uses these
coefficients to compute the initial
frequency-domain filter coefficient matrix via
FFTs.

states Specifies the filter initial conditions. states
defaults to a zero vector of length l.

Input Argument Description

adaptfilt.pbufdaf

8-130

properties that apply, this table lists and describes each property for the filter
object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

AvgFactor Averaging factor used to
compute the exponentially
windowed FFT input signal
powers for the coefficient
updates. AvgFactor should lie
in the range (0,1]. AvgFactor
defaults to 0.9. Called lambda
as an input argument.

BlockLength Block length for the coefficient
updates. This must be a
positive integer such that
(l/blocklen) is also an
integer. For faster execution,
blocklen should be a power of
two. blocklen defaults to
two.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

FFTCoefficients Stores the discrete Fourier
transform of the filter
coefficients in coeffs.

FFTStates States for the FFT operation.

adaptfilt.pbufdaf

8-131

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you set
this argument to a value
between zero and one, a leaky
version of the PBFDAF
algorithm is implemented.
leakage defaults to 1— no
leakage.

Offset Offset for the normalization
terms in the coefficient
updates. This can be useful to
avoid divide by zeros
conditions, or dividing by very
small numbers, if any of the
FFT input signal powers
become very small. offset
defaults to zero.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

Name Range Description

adaptfilt.pbufdaf

8-132

Examples Demonstrating Quadrature Phase Shift Keying (QPSK) adaptive equalization
using a 32-coefficient FIR filter. To perform the equalization, this example runs
for 1000 iterations.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband QPSK

% signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
N = 8; % Block size
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');

Power 2*l element
vector

A vector of 2*l elements, each
initialized with the value
delta from the input
arguments. As you filter data,
Power gets updated by the
filter process.

StepSize 0 to 1 Step size of the adaptive filter.
This is a scalar and should lie
in the range (0,1]. step
defaults to 1.

Name Range Description

adaptfilt.pbufdaf

8-133

legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

To allow you to compare this algorithm to another, such as the pbfdaf version,
we use the same example of QPSK adaptation. The figure shows the results.

See Also adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blmsfft

0 200 400 600 800 1000
−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

0 200 400 600 800 1000
−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

Desired

Output

Error

Desired

Output

Error

adaptfilt.pbufdaf

8-134

References J.S. So and K.K. Pang, “Multidelay Block Frequency Domain Adaptive Filter,”
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp.
373-376, February 1990

J.M. Paez Borrallo and M.G. Otero, “On The Implementation of a Partitioned
Block Frequency Domain Adaptive Filter (PBFDAF) for Long Acoustic Echo
Cancellation,” Signal Processing, vol. 27, no. 3, pp. 301-315, June 1992

adaptfilt.qrdlsl

8-135

8adaptfilt.qrdlslPurpose QR-decomposition-based least squares lattice (LSL) adaptive filter object

Syntax ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states)

Description ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states) returns a
QR-decomposition-based least squares lattice adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.qrdlsl.

Properties Since your adaptfilt.qrdlsl filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also input

Input Argument Description

l Length of the joint process filter coefficients. It
must be a positive integer and must be equal
to the length of the prediction coefficients
plus one. L defaults to 10.

lambda Forgetting factor of the adaptive filter. This is
a scalar and should lie in the range (0, 1].
lambda defaults to 1. lambda = 1 denotes
infinite memory while adapting to find the
new filter.

delta Soft-constrained initialization factor in the
least squares lattice algorithm. It should be
positive. delta defaults to 1.

coeffs Vector of initial joint process filter coefficients.
It must be a length l vector. coeffs defaults to
a length l vector of all zeros.

states Vector of the angle normalized backward
prediction error states of the adaptive filter

adaptfilt.qrdlsl

8-136

arguments for creating adaptfilt.qrdlsl objects. To show you the properties
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

BkwdPrediction Returns the predicted samples
generated during
adaptation.Refer to [12] in the
bibliography for details about
linear prediction.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

ForgettingFactor Forgetting factor of the
adaptive filter. This is a
scalar and should lie in the
range (0, 1]. It defaults to 1.
Setting forgetting
factor = 1 denotes infinite
memory while adapting to find
the new filter. Note that this is
the lambda input argument.

adaptfilt.qrdlsl

8-137

Examples Implement Quadrature Phase Shift Keying (QPSK) adaptive equalization
using a 32-coefficient adaptive filter. To see the results of the equalization
process in this example, look at the figure that follows the example code.

FwdPrediction Returns the predicted samples
generated during adaptation
in the forward direction.Refer
to [12] in the bibliography for
details about linear
prediction.

InitFactor Soft-constrained initialization
factor. This scalar should be
positive and sufficiently large
to prevent an excessive
number of Kalman gain
rescues. delta defaults to one.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory returns
to zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.
Defaults to false.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to l -1

Name Range Description

adaptfilt.qrdlsl

8-138

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband
QPSK % signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
lam = 0.995; % Forgetting factor
del = 1; % Soft-constrained initialization
factor
ha = adaptfilt.qrdlsl(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

adaptfilt.qrdlsl

8-139

See Also adaptfilt.qrdrls, adaptfilt.gal, adaptfilt.ftf, adaptfilt.lsl

References S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991

0 200 400 600 800 1000
−6

−4

−2

0

2

4

6
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−6

−4

−2

0

2

4

6
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.qrdrls

8-140

8adaptfilt.qrdrlsPurpose Create QR-decomposition-based recursive least squares (RLS) FIR adaptive
filter object

Syntax ha = adaptfilt.qrdrls(l,lambda,sqrtcov,coeffs,states)

Description ha = adaptfilt.qrdrls(l,lambda,sqrtcov,coeffs,states) constructs an
FIR QR-decomposition-based recursive-least squares (RLS) adaptive filter
object ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.qrdrls.

Properties Since your adaptfilt.qrdrls filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also input

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer.l defaults to 10.

lambda RLS forgetting factor. This is a scalar and
should lie within the range (0, 1]. lambda
defaults to 1.

sqrtcov Upper-triangular Cholesky (square root)
factor of the input covariance matrix.
Initialize this matrix with a positive definite
upper triangular matrix.

coeffs Vector of initial filter coefficients. It must be a
length l vector. coeffs defaults to length l
vector whose elements are zeros.

states Vector of initial filter states. It must be
a length l-1 vector. states defaults to a length
l-1 vector of zeros.

adaptfilt.qrdrls

8-141

arguments for creating adaptfilt.qrdrls objects. To show you the properties
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Vector of
length l

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps

ForgettingFactor Scalar Forgetting factor of the
adaptive filter. This is a
scalar and should lie in the
range (0, 1]. It defaults to 1.
Setting forgetting
factor = 1 denotes infinite
memory while adapting to find
the new filter. Note that this is
the lambda input argument.

adaptfilt.qrdrls

8-142

Examples System Identification of a 32-coefficient FIR filter (500 iterations).

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
G0 = sqrt(.1)*eye(32); % Initial sqrt correlation matrix
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.qrdrls(32,lam,G0);

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory returns
to zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.
Defaults to false.

SqrtCov Square
matrix with
each
dimension
equal to the
filter length l

Upper-triangular Cholesky
(square root) factor of the
input covariance matrix.
Initialize this matrix with a
positive definite upper
triangular matrix.

States Vector of
elements

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to
(l + projectord - 2).

Name Range Description

adaptfilt.qrdrls

8-143

[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Using this variant of the RLS algorithm successfully identifies the unknown
FIR filter, as shown here.

See Also adaptfilt.rls, adaptfilt.hrls, adaptfilt.hswrls, adaptfilt.swrls

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

adaptfilt.rls

8-144

8adaptfilt.rlsPurpose Construct direct form recursive least squares (RLS) FIR adaptive filter object

Syntax ha = adaptfilt.rls(l,lambda,invcov,coeffs,states)

Description ha = adaptfilt.rls(l,lambda,invcov,coeffs,states) constructs an FIR
direct form RLS adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.rls.

Input Argument Description

l Adaptive filter length (the
number of coefficients or taps)
and it must be a positive
integer. l defaults to 10.

lambda RLS forgetting factor. This is
a scalar and should lie in the
range (0, 1]. lambda defaults
to 1.

invcov Inverse of the input signal
covariance matrix. For best
performance, you should
initialize this matrix to be
a positive definite matrix.

coeffs Vector of initial filter
coefficients. it must be a length
l vector. coeffs defaults to
length l vector with elements
equal to zero.

states Vector of initial filter states for
the adaptive filter. It must be a
length l-1 vector. states
defaults to a length l-1 vector
of zeros.

adaptfilt.rls

8-145

Properties Since your adaptfilt.rls filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.rls objects. To show you the properties that
apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation.

Coefficients Vector
containing l
elements

Vector containing the initial
filter coefficients. It must be
a length l vector where l is
the number of filter
coefficients. coeffs defaults to
length l vector of zeros when
you do not provide the
argument for input.

FilterLength Any positive
integer

Reports the length of the filter,
the number of coefficients or
taps. Remember that filter
length is filter order + 1.

ForgettingFactor Scalar Forgetting factor of the
adaptive filter. This is a
scalar and should lie in the
range (0, 1]. It defaults to 1.
Setting forgetting
factor = 1 denotes infinite
memory while adapting to find
the new filter. Note that this is
the lambda input argument.

adaptfilt.rls

8-146

Examples System Identification of a 32-coefficient FIR filter over 500 adaptation
iterations.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
P0 = 10*eye(32); % Initial sqrt correlation matrix inverse

InvCov Matrix of size
l-by-l

Upper-triangular Cholesky
(square root) factor of the
input covariance matrix.
Initialize this matrix with a
positive definite upper
triangular matrix.

KalmanGain Vector of size
(l,1)

Empty when you construct the
object, this gets populated
after you run the filter.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you constructed
it. PersistentMemory returns
to zero any state that the filter
changes during processing.
Defaults to false.

States Double array Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to
(l + projectord - 2).

Name Range Description

adaptfilt.rls

8-147

lam = 0.99; % RLS forgetting factor
ha = adaptfilt.rls(32,lam,P0);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient valUe'); grid on;

In this example of adaptive filtering using the RLS algorithm to update the
filter coefficients for each iteration, the figure shown reveals the fidelity of the
derived filter after adaptation.

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t v

al
U

e

Actual

Estimated

adaptfilt.rls

8-148

See Also adaptfilt.hrls,adaptfilt.hswrls, adaptfilt.qrdrls

adaptfilt.sd

8-149

8adaptfilt.sdPurpose Construct FIR adaptive filter object that uses sign-data algorithm

Syntax ha = adaptfilt.sd(l,step,leakage,coeffs,states)

Description ha = adaptfilt.sd(l,step,leakage,coeffs,states) constructs an FIR
sign-data adaptive filter object ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.sd.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step SD step size. It must be a nonnegative scalar.
step defaults to 0.1

leakage Your SD leakage factor. It must be a scalar
between 0 and 1. When leakage is less than
one, adaptfilt.sd implements a leaky SD
algorithm. When you omit the leakage
property in the calling syntax, it defaults to 1
providing no leakage in the adapting
algorithm.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l
vector with elements equal to zero.

states Vector of initial filter states for the adaptive
filter. It must be a length l-1 vector. states
defaults to a length l-1 vector of zeros.

adaptfilt.sd

8-150

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for sign-data
objects, their default values, and a brief description of the property.

Property Default Value Description

Algorithm Sign-data Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients zeros(1,l) Vector containing the
initial filter coefficients. It
must be a length l vector
where l is the number of
filter coefficients. coeffs
defaults to length l vector
of zeros when you do not
provide the argument for
input. Should be
initialized with the initial
coefficients for the FIR
filter prior to adapting.
You need l entries in
coefficients.

FilterLength 10 Reports the length of the
filter, the number of
coefficients or taps

adaptfilt.sd

8-151

Leakage 0 Specifies the leakage
parameter. Allows you to
implement a leaky
algorithm. Including a
leakage factor can
improve the results of the
algorithm by forcing the
algorithm to continue to
adapt even after it
reaches a minimum value.
Ranges between 0 and 1.
Defaults to 0

PersistentMemory false or true Determine whether the
filter states and
coefficients get restored to
their starting values for
each filtering operation.
The starting values are
the values in place when
you create the filter.
PersistentMemory
returns to zero any
property value that the
filter changes during
processing. Property
values that the filter does
not change are not
affected. Defaults to
false.

Property Default Value Description

adaptfilt.sd

8-152

Example Adaptive line enhancement using a 32-coefficient FIR filter to perform the
enhancement. This example runs for 5000 iterations, as you see in property
iter.

d = 1; % Number of samples of delay
ntr= 5000; % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal
n = randn(1,ntr+d); % Noise signal
x = v(1:ntr)+n(1:ntr); % Input signal (delayed desired

% signal)
d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal
mu = 0.0001; % Sign-data step size.
ha = adaptfilt.sd(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));

States zeros(l-1,1) Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length
equal to (l - 1).

StepSize 0.1 Sets the SD algorithm
step size used for each
iteration of the adapting
algorithm. Determines
both how quickly and how
closely the adaptive filter
converges to the filter
solution.

Property Default Value Description

adaptfilt.sd

8-153

axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

Each of the variants—sign-data, sign-error, and sign-sign—uses the same
example. You can compare the results by viewing the figure shown for each
adaptive filter method—adaptfilt.sd, adaptfilt.se, and adaptfilt.ss.

See Also adaptfilt.lms, adaptfilt.se, adaptfilt.ss

4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000
−3

−2

−1

0

1

2

3
Adaptive Line Enhancement of a Noisy Sinusoidal Signal

Time Index

S
ig

na
l V

al
ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

Normalized Frequency (× π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Observed

Enhanced

Original

Observed

Enhanced

adaptfilt.sd

8-154

References Moschner, J.L., “Adaptive Filter with Clipped Input Data,” Ph.D. thesis,
Stanford Univ., Stanford, CA, June 1970.

Hayes, M., Statistical Digital Signal Processing and Modeling, New York
Wiley, 1996.

adaptfilt.se

8-155

8adaptfilt.sePurpose Construct sign-error algorithm FIR adaptive filter object

Syntax ha = adaptfilt.se(l,step,leakage,coeffs,states)

Description ha = adaptfilt.se(l,step,leakage,coeffs,states) constructs an FIR
sign-error adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.se.

Properties In the syntax for creating the adaptfilt object, the input options are
properties of the object you create. This table lists the properties for the

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step SE step size. It must be a nonnegative scalar.
You can use maxstep to determine
a reasonable range of step size values for the
signals being processed. step defaults to 0.1

leakage Your SE leakage factor. It must be a scalar
between 0 and 1. When leakage is less than
one, adaptfilt.se implements a leaky SE
algorithm. When you omit the leakage
property in the calling syntax, it defaults to 1
providing no leakage in the adapting
algorithm.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l
vector with elements equal to zero.

states Vector of initial filter states for the adaptive
filter. It must be a length l-1 vector. states
defaults to a length l-1 vector of zeros.

adaptfilt.se

8-156

sign-error SD object, their default values, and a brief description of the
property.

Property Default Value Description

Algorithm Sign-error Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients zeros(1,l) Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input. Should be initialized
with the initial coefficients for
the FIR filter prior to
adapting.

FilterLength 10 Reports the length of the
filter, the number of
coefficients or taps

Leakage 1 Specifies the leakage
parameter. Allows you to
implement a leaky algorithm.
Including a leakage factor can
improve the results of the
algorithm by forcing the
algorithm to continue to
adapt even after it reaches a
minimum value. Ranges
between 0 and 1. Defaults to
one if omitted.

adaptfilt.se

8-157

Use inspect(ha) to view or change the object properties graphically using the
MATLAB Property Inspector.

Examples Adaptive line enhancement using a 32-coefficient FIR filter running over 5000
iterations.

d = 1; % Number of samples of delay
ntr= 5000; % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal
n = randn(1,ntr+d); % Noise signal

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting
values for each filtering
operation. The starting values
are the values in place when
you create the filter.
PersistentMemory returns to
zero any property value that
the filter changes during
processing. Property values
that the filter does not change
are not affected. Defaults to
false.

States zeros(l-1,1) Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l -1).

StepSize 0.1 Sets the SE algorithm step
size used for each iteration of
the adapting algorithm.
Determines both how quickly
and how closely the adaptive
filter converges to the filter
solution.

Property Default Value Description

adaptfilt.se

8-158

x = v(1:ntr)+n(1:ntr); % Input signal (delayed desired
% signal)

d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal
mu = 0.0001; % Sign-error step size
ha = adaptfilt.se(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

Compare the figure shown here to the ones for adaptfilt.sd and
adaptfilt.ss to see how the variants perform on the same example.

adaptfilt.se

8-159

See Also adaptfilt.sd, adaptfilt.ss, adaptfilt.lms

References Gersho, A, “Adaptive Filtering With Binary Reinforcement,” IEEE Trans.
Information Theory, vol. IT-30, pp. 191-199, March 1984.

Hayes, M, Statistical Digital Signal Processing and Modeling, New York,
Wiley, 1996.

4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000
−3

−2

−1

0

1

2

3
Adaptive Line Enhancement of a Noisy Sinusoidal Signal

Time Index

S
ig

na
l V

al
ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

Normalized Frequency (× π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Observed

Enhanced

Original

Observed

Enhanced

adaptfilt.ss

8-160

8adaptfilt.ssPurpose Construct adaptive FIR filter object that uses sign-sign algorithm

Syntax ha = adaptfilt.ss(l,step,leakage,coeffs,states)

Description ha = adaptfilt.ss(l,step,leakage,coeffs,states) constructs an FIR
sign-error adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.ss.

adaptfilt.ss can be called for a block of data, when x and d are vectors, or in
“sample by sample mode” using a For-loop with the method filter:

for n = 1:length(x)
ha = adaptfilt.ss(25,0.9);

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step SS step size. It must be a nonnegative scalar.
step defaults to 0.1.

leakage Your SS leakage factor. It must be a scalar
between 0 and 1. When leakage is less than
one, adaptfilt.lms implements a leaky SS
algorithm. When you omit the leakage
property in the calling syntax, it defaults to 1
providing no leakage in the adapting
algorithm.

coeffs Vector of initial filter coefficients. it must be a
length l vector. coeffs defaults to length l
vector with elements equal to zero.

states Vector of initial filter states for the adaptive
filter. It must be a length l-1 vector. states
defaults to a length l-1 vector of zeros.

adaptfilt.ss

8-161

[y(n),e(n)] = filter(ha,(x(n),d(n),s));
% The property values of ha may be modified here.
end

Properties In the syntax for creating the adaptfilt object, most of the input options are
properties of the object you create. This table lists the properties for sign-sign
objects, their default values, and a brief description of the property.

Property Default Value Description

Algorithm Sign-sign Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients zeros(1,l) Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input. Should be initialized
with the initial coefficients for
the FIR filter prior to
adapting.

FilterLength 10 Reports the length of the
filter, the number of
coefficients or taps

adaptfilt.ss

8-162

Leakage 1 Specifies the leakage
parameter. Allows you to
implement a leaky algorithm.
Including a leakage factor can
improve the results of the
algorithm by forcing the
algorithm to continue to
adapt even after it reaches a
minimum value. Ranges
between 0 and 1. 1 is the
default value.

PersistentMemory false or true Determine whether the filter
states and coefficients get
restored to their starting
values for each filtering
operation. The starting values
are the values in place when
you create the filter.
PersistentMemory returns to
zero any property value that
the filter changes during
processing. Property values
that the filter does not change
are not affected. Defaults to
false.

Property Default Value Description

adaptfilt.ss

8-163

Examples Demonstrating adaptive line enhancement using a 32-coefficient FIR filter
provides a good introduction to the sign-sign algorithm.

d = 1; % number of samples of delay
ntr= 5000; % number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % sinusoidal signal
n = randn(1,ntr+d); % noise signal
x = v(1:ntr)+n(1:ntr); % Delayed input signal
d = v(1+d:ntr+d)+n(1+d:ntr+d); % desired signal
mu = 0.0001; % sign-sign step size
ha = adaptfilt.ss(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

States zeros(l-1,1) Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l -1).

StepSize 0.1 Sets the SE algorithm step
size used for each iteration of
the adapting algorithm.
Determines both how quickly
and how closely the adaptive
filter converges to the filter
solution.

Property Default Value Description

adaptfilt.ss

8-164

This example is the same as the ones used for the sign-data and sign-error
examples. Comparing the figures shown for each of the others lets you assess
the performance of each for the same task.

See Also adaptfilt.se, adaptfilt.sd, adaptfilt.lms

References Lucky, R.W, “Techniques For Adaptive Equalization of Digital Communication
Systems,” Bell Systems Technical Journal, vol. 45, pp. 255-286, Feb. 1966

Hayes, M., Statistical Digital Signal Processing and Modeling, New York,
Wiley, 1996.

4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000
−3

−2

−1

0

1

2

3
Adaptive Line Enhancement of a Noisy Sinusoidal Signal

Time Index

S
ig

na
l V

al
ue

Observed

Enhanced

Original

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

Normalized Frequency (× π rad/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Observed

Enhanced

adaptfilt.swftf

8-165

8adaptfilt.swftfPurpose Construct sliding window fast transversal least squares adaptive filter object

Syntax ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates,coeffs
, states)

Description ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates,
coeffs,states) constructs a sliding window fast transversal least squares
adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.swftf.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

delta Soft-constrained initialization factor. This
scalar should be positive and sufficiently large
to maintain stability. delta defaults to 1.

blocklen Block length of the sliding window. This must
be an integer at least as large as the filter
length l, which is the default value.

gamma Conversion factor. gamma defaults to the
matrix [1 -1] that specifies soft-constrained
initialization.

gstates States of the kalman gain updates. gstates
defaults to a zero vector of length
(l + blocklen - 1).

dstates Desired signal states of the adaptive filter.
dstates defaults to a zero vector of length
equal to (blocklen - 1). For a default object,
dstates is (l-1).

adaptfilt.swftf

8-166

Properties Since your adaptfilt.swftf filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.swftf objects. To show you the properties
that apply, this table lists and describes each property for the filter object.

coeffs Vector of initial filter coefficients. It must be
a length l vector. coeffs defaults to length l
vector of all zeros.

states Vector of initial filter states. states defaults
to a zero vector of length equal to
(l + blocklen - 2).

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

BkwdPredictions Returns the predicted
samples generated during
adaptation.Refer to [12]
in the bibliography for
details about linear
prediction.

BlockLength Block length of the sliding
window. This must be an
integer at least as large
as the filter length l,
which is the default
value.

adaptfilt.swftf

8-167

Coefficients Vector of
elements

Vector containing the
initial filter coefficients. It
must be a length l vector
where l is the number of
filter coefficients. coeffs
defaults to length l vector
of zeros when you do not
provide the argument for
input.

ConversionFactor Conversion factor. Called
gamma when it is an input
argument, it defaults to
the matrix [1 -1] that
specifies soft-constrained
initialization.

DesiredSignalStates Desired signal states of
the adaptive filter.
dstates defaults to a zero
vector with length equal
to (blocklen - 1).

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

FwdPrediction Contains the predicted
values for samples during
adaptation. Compare
these to the actual
samples to get the error
and power.

Name Range Description

adaptfilt.swftf

8-168

InitFactor Soft-constrained
initialization factor. This
scalar should be positive
and sufficiently large to
prevent an excessive
number of Kalman gain
rescues. delta defaults to
one.

KalmanGain Empty when you
construct the object, this
gets populated after you
run the filter.

KalmanGainStates Contains the states of the
Kalman gains for the
adaptive algorithm.
Initialized to a vector of
double data type entries.

Name Range Description

adaptfilt.swftf

8-169

Examples Over 500 iterations, perform a system identification of a 32-coefficient FIR
filter.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
L = 32; % Adaptive filter length
del = 0.1; % Soft-constrained initialization factor
N = 64; % block length
ha = adaptfilt.swftf(L,del,N);
[y,e] = filter(ha,x,d);

PersistentMemory false or true Determine whether the
filter states get restored
to their starting values
for each filtering
operation. The starting
values are the values in
place when you create the
filter if you have not
changed the filter since
you constructed it.
PersistentMemory
returns to zero any state
that the filter changes
during processing. States
that the filter does not
change are not affected.
Defaults to false.

States Vector of
elements,
data type
double

Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length
equal to (l + projectord -
2).

Name Range Description

adaptfilt.swftf

8-170

subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Review the figure for the results of the example. When you evaluate the
example you should get the same results, within the differences in the random
noise signal you use.

See Also adaptfilt.ftf, adaptfilt.swrls, adaptfilt.ap, adaptfilt.apru

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Desired

Output

Error

Actual

Estimated

adaptfilt.swftf

8-171

References D.T.M. Slock and Kailath, T., “A Modular Prewindowing Framework for
Covariance FTF RLS Algorithms,” Signal Processing, vol. 28, pp. 47-61, 1992

D.T.M. Slock and Kailath, T., “A Modular Multichannel Multi-Experiment
Fast Transversal Filter RLS Algorithm,” Signal Processing, vol. 28, pp. 25-45,
1992

adaptfilt.swrls

8-172

8adaptfilt.swrlsPurpose Construct sliding window recursive least squares (RLS) FIR adaptive filter

Syntax ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates,
coeffs,states)

Description ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates,
coeffs,states) constructs an FIR sliding window RLS adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.swrls.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps). It must be a positive
integer. l defaults to 10.

lambda RLS forgetting factor. This is a scalar and
should lie within the range (0, 1]. lambda
defaults to 1.

invcov Inverse of the input signal covariance matrix.
You should initialize invcov to a positive
definite matrix.

swblocklen Block length of the sliding window. This
integer must be at least as large as the filter
length. swblocklen defaults to 16.

dstates Desired signal states of the adaptive filter.
dstates defaults to a zero vector with length
equal to (swblocklen - 1).

adaptfilt.swrls

8-173

Properties Since your adaptfilt.swrls filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.swrls objects. To show you the properties
that apply, this table lists and describes each property for the filter object.

coeffs Vector of initial filter coefficients. It must be
a length l vector. coeffs defaults to length l
vector of all zeros.

states Vector of initial filter states. states defaults
to a zero vector of length equal to
(l + swblocklen - 2).

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

Coefficients Any vector of
l elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

DesiredSignalStates Vector Desired signal states of the
adaptive filter. dstates
defaults to a zero vector with
length equal to
(swblocklen - 1).

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

adaptfilt.swrls

8-174

ForgettingFactor Scalar Forgetting factor of the
adaptive filter. This is a
scalar and should lie in the
range (0, 1]. It defaults to 1.
Setting forgetting
factor = 1 denotes infinite
memory while adapting to
find the new filter. Note that
this is the lambda input
argument.

InvCov Matrix Square matrix with each
dimension equal to the filter
length l.

KalmanGain Vector with
dimensions
(l,1)

Empty when you construct
the object, this gets populated
after you run the filter.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter if you have not changed
the filter since you
constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
Defaults to false.

Name Range Description

adaptfilt.swrls

8-175

Examples System Identification of a 32-coefficient FIR filter. Use 500 iterations to adapt
to the unknown filter. After the example code, you see a figure that plots the
results of the running the code.

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
P0 = 10*eye(32); % Initial correlation matrix inverse
lam = 0.99; % RLS forgetting factor
N = 64; % Block length
ha = adaptfilt.swrls(32,lam,P0,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

In the figure you see clearly that the adaptive filter process successfully
identified the coefficients of the unknown FIR filter. But then you knew it had
to or many things we take for granted, such as modems on computers, would
not work.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to
(l + swblocklen - 2)

SwBlockLength Integer Block length of the sliding
window. This integer must be
at least as large as the filter
length. swblocklen defaults
to 16.

Name Range Description

adaptfilt.swrls

8-176

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2
System Identification of an FIR Filter

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 5 10 15 20 25 30 35
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Coefficient #

C
oe

ffi
ci

en
t V

al
ue

Actual

Estimated

adaptfilt.tdafdct

8-177

8adaptfilt.tdafdctPurpose Construct transform-domain (TDAFDCT) adaptive filter object that uses
discrete cosine transform

Syntax ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,coeffs,
states)

Description ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,coeffs,
states) constructs a transform-domain adaptive filter ha object that uses the
discrete cosine transform to perform filter adaptation.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.tdafdct.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step Adaptive filter step size. It must be a
nonnegative scalar. You can use maxstep to
determine a reasonable range of step size
values for the signals being processed. step
defaults to 0.

leakage Leakage parameter of the adaptive filter.
When you set this argument to a value
between zero and one, you are implementing
a leaky version of the TDAFDCT algorithm.
leakage defaults to 1—no leakage.

offset Offset for the normalization terms in the
coefficient updates. You can use this argument
to avoid dividing by zero or by very small
numbers when any of the FFT input signal
powers become very small. offset defaults to
zero.

adaptfilt.tdafdct

8-178

Properties Since your adaptfilt.tdafdct filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.tdafdct objects. To show you the properties

delta Initial common value of all of the transform
domain powers. Its initial value should be
positive. delta defaults to 5.

lambda Averaging factor used to compute the
exponentially-windowed estimates of the
powers in the transformed signal bins for the
coefficient updates. lambda should lie between
zero and one. For default filter objects, lambda
equals (1 - step).

coeffs Initial time domain coefficients of the adaptive
filter. Set it to be a length l vector. coeffs
defaults to a zero vector of length l.

states Initial conditions of the adaptive filter. states
defaults to a zero vector with length equal to
(l - 1).

Input Argument Description

adaptfilt.tdafdct

8-179

that apply, this table lists and describes each property for the transform
domain filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

AvgFactor Averaging factor used to
compute the
exponentially-windowed
estimates of the powers in
the transformed signal
bins for the coefficient
updates. AvgFactor
should lie between zero
and one. For default filter
objects, AvgFactor equals
(1 - step). lambda is the
input argument that
represent AvgFactor.

Coefficients Vector of
elements

Vector containing the
initial filter coefficients. It
must be a length l vector
where l is the number of
filter coefficients. coeffs
defaults to length l vector
of zeros when you do not
provide the argument for
input.

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

adaptfilt.tdafdct

8-180

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you
set this argument to a
value between zero and
one, you are
implementing a leaky
version of the TDAFDFT
algorithm. leakage
defaults to 1—no leakage.

Offset Offset for the
normalization terms in
the coefficient updates.
You can use this
argument to avoid
dividing by zeros or by
very small numbers when
any of the FFT input
signal powers become
very small. offset
defaults to zero.

PersistentMemory false or true Determine whether the
filter states get restored
to their starting values
for each filtering
operation. The starting
values are the values in
place when you create the
filter. PersistentMemory
returns to zero any state
that the filter changes
during processing. States
that the filter does not
change are not affected.
Defaults to false.

Name Range Description

adaptfilt.tdafdct

8-181

For checking the values of properties for an adaptive filter object, use get(ha)
or enter the object name, without a trailing semicolon, at the MATLAB prompt.

Examples Using 1000 iterations, perform a Quadrature Phase Shift Keying (QPSK)
adaptive equalization using a 32-coefficient FIR filter.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal

Power 2*l element
vector

A vector of 2*l elements,
each initialized with the
value delta from the
input arguments. As you
filter data, Power gets
updated by the filter
process.

States Vector of
elements,
data type
double

Vector of the adaptive
filter states. states
defaults to a vector of
zeros which has length
equal to
(l + projectord - 2).

StepSize 0 to 1 Step size. It must be a
nonnegative scalar,
greater than zero and less
than or equal to 1. You
can use maxstep to
determine a reasonable
range of step size values
for the signals being
processed. step defaults
to 0.

Name Range Description

adaptfilt.tdafdct

8-182

n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.01; % Step size
ha = adaptfilt.tdafdct(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

Compare the plots shown in this figure to those in the other time domain filter
variations. The comparison should help you select and understand how the
variants differ.

adaptfilt.tdafdct

8-183

See Also adaptfilt.tdafdft, adaptfilt.fdaf, adaptfilt.blms

References S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996.

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
In−Phase Components

Time Index

S
ig

na
l V

al
ue

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
Quadrature Components

Time Index

S
ig

na
l V

al
ue

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

Desired

Output

Error

Desired

Output

Error

adaptfilt.tdafdft

8-184

8adaptfilt.tdafdftPurpose Create transform-domain (TDAFDFT) adaptive filter object that uses discrete
Fourier transform

Syntax ha = adaptfilt.tdafdft(l,step,leakage,offset,delta,lambda,
coeffs,states)

Description ha = adaptfilt.tdafdft(l,step,leakage,offset,delta,lambda,
coeffs,states) constructs a transform-domain adaptive filter object ha using
a discrete Fourier transform.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.tdafdft.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step Adaptive filter step size. It must be a
nonnegative scalar. You can use maxstep to
determine a reasonable range of step size
values for the signals being processed. step
defaults to 0.

leakage Leakage parameter of the adaptive filter.
When you set this argument to a value
between zero and one, you are implementing
a leaky version of the TDAFDFT algorithm.
leakage defaults to 1—no leakage.

offset Offset for the normalization terms in the
coefficient updates. YOu can use this
argument to avoid dividing by zeros or by very
small numbers when any of the FFT input
signal powers become very small. offset
defaults to zero.

adaptfilt.tdafdft

8-185

Properties Since your adaptfilt.tdafdft filter is an object, it has properties that define
its behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.tdafdft objects. To show you the properties

delta Initial common value of all of the transform
domain powers. Its initial value should be
positive. delta defaults to 5.

lambda Averaging factor used to compute the
exponentially-windowed estimates of the
powers in the transformed signal bins for the
coefficient updates. lambda should lie between
zero and one. For default filter objects,
LAMBDA equals (1 - step).

coeffs Initial time domain coefficients of the
adaptive filter. Set it to be a length l vector.
coeffs defaults to a zero vector of length l.

states Initial conditions of the adaptive filter. states
defaults to a zero vector with length equal to
(l - 1).

Input Argument Description

adaptfilt.tdafdft

8-186

that apply, this table lists and describes each property for the transform
domain filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

AvgFactor Averaging factor used to
compute the
exponentially-windowed
estimates of the powers in
the transformed signal bins
for the coefficient updates.
AvgFactor should lie between
zero and one. For default
filter objects, AvgFactor
equals (1 - step). lambda is
the input argument that
represent AvgFactor.

Coefficients Vector of
elements

Vector containing the initial
filter coefficients. It must be a
length l vector where l is the
number of filter coefficients.
coeffs defaults to length l
vector of zeros when you do
not provide the argument for
input.

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

adaptfilt.tdafdft

8-187

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you set
this argument to a value
between zero and one, you
are implementing a leaky
version of the TDAFDFT
algorithm. leakage defaults
to 1—no leakage.

Offset Offset for the normalization
terms in the coefficient
updates. You can use this
argument to avoid dividing
by zeros or by very small
numbers when any of the
FFT input signal powers
become very small. offset
defaults to zero.

PersistentMemory false or true Determines whether the
filter states get restored to
their starting values for each
filtering operation. The
starting values are the values
in place when you create the
filter. PersistentMemory
returns to zero any state that
the filter changes during
processing. States that the
filter does not change are not
affected. Defaults to false.

Name Range Description

adaptfilt.tdafdft

8-188

Examples Quadrature Phase Shift Keying (QPSK) adaptive equalization using
a 32-coefficient FIR filter (1000 iterations).

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.01; % Step size
ha = adaptfilt.tdafdft(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');

Power 2*l element
vector

A vector of 2*l elements,
each initialized with the
value delta from the input
arguments. As you filter
data, Power gets updated by
the filter process.

States Vector of
elements,
data type
double

Vector of the adaptive filter
states. states defaults to a
vector of zeros which has
length equal to (l +
projectord - 2).

StepSize 0 to 1 Step size. It must be a
nonnegative scalar, greater
than zero and less than or
equal to 1. step defaults to 0.

Name Range Description

adaptfilt.tdafdft

8-189

xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

All of the time domain adaptive filter reference pages use this QPSK example.
By comparing the results for each variation you get an idea of the differences
in the way each one performs.

This figure demonstrates the results of running the example code shown.

adaptfilt.tdafdft

8-190

See Also adaptfilt.tdafdct, adaptfilt.fdaf, adaptfilt.blms

References S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

Desired

Output

Error

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

adaptfilt.ufdaf

8-191

8adaptfilt.ufdafPurpose Construct unconstrained frequency-domain (UFDAF) FIR adaptive filter with
quantized step size normalization

Syntax ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,offset,c
oeffs,states)

Description ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,offset,c
oeffs,states) constructs an unconstrained frequency-domain FIR adaptive
filter ha with quantized step size normalization.

Input Arguments
Entries in the following table describe the input arguments for
adaptfilt.ufdaf.

Input Argument Description

l Adaptive filter length (the number of
coefficients or taps) and it must be a positive
integer. l defaults to 10.

step Adaptive filter step size. It must be a
nonnegative scalar. step defaults to 0.

leakage Leakage parameter of the adaptive filter.
When you set this argument to a value
between zero and one, you are implementing
a leaky version of the UFDAF algorithm.
leakage defaults to 1—no leakage.

delta Initial common value of all of the FFT input
signal powers. the initial value of delta should
should be positive, and it defaults to 1.

lambda Specifies the averaging factor used to compute
the exponentially-windowed FFT input signal
powers for the coefficient updates. lambda
should lie in the range (0,1]. For default
UFDAF filter objects, lambda defaults to 0.9.

adaptfilt.ufdaf

8-192

Properties Since your adaptfilt.ufdaf filter is an object, it has properties that define its
behavior in operation. Note that many of the properties are also input

blocklen Block length for the coefficient updates. This
must be a positive integer. For faster
execution, (blocklen + l) should be a power of
two. blocklen defaults to l.

offset Offset for the normalization terms in the
coefficient updates. This can help you avoid
divide by zero conditions, or divide by very
small numbers conditions, when any of the
FFT input signal powers become very small.
Default value is zero.

coeffs Initial time-domain coefficients of the
adaptive filter. It should be a length l vector.
The filter object uses these coefficients to
compute the initial frequency-domain filter
coefficients via an FFT computed after
zero-padding the time-domain vector by
blocklen.

states Adaptive filter states. states defaults to
a zero vector with length equal to l.

Input Argument Description

adaptfilt.ufdaf

8-193

arguments for creating adaptfilt.ufdaf objects. To show you the properties
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter
algorithm the object uses
during adaptation

AvgFactor Specifies the averaging factor
used to compute the
exponentially-windowed FFT
input signal powers for the
coefficient updates.
AvgFactor should lie in the
range (0,1]. For default
UFDAF filter objects,
AvgFactor defaults to 0.9.
Note that AvgFactor and
lambda are the same thing—
lambda is an input argument
and AvgFactor a property of
the object.

BlockLength Block length for the
coefficient updates. This
must be a positive integer.
For faster execution,
(blocklen + l) should be a
power of two. blocklen
defaults to l.

FFTCoefficients Stores the discrete Fourier
transform of the filter
coefficients in coeffs.

FFTStates States for the FFT operation.

adaptfilt.ufdaf

8-194

FilterLength Any positive
integer

Reports the length of the
filter, the number of
coefficients or taps

Leakage 0 to 1 Leakage parameter of the
adaptive filter. When you set
this argument to a value
between zero and one, you
are implementing a leaky
version of the UFDAF
algorithm. leakage defaults
to 1—no leakage.

Offset Offset for the normalization
terms in the coefficient
updates. This can help you
avoid divide by zero
conditions, or divide by very
small numbers conditions,
when any of the FFT input
signal powers become very
small. Default value is zero.

PersistentMemory false or true Determine whether the filter
states get restored to their
starting values for each
filtering operation. The
starting values are the
values in place when you
create the filter.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.
Defaults to false.

Name Range Description

adaptfilt.ufdaf

8-195

Examples Show an example of Quadrature Phase Shift Keying (QPSK) adaptive
equalization using a 32-coefficient adaptive filter. For fidelity, use 1024
iterations. The figure that follows the code provides the information you need
to assess the performance of the equalization process.

D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1024; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
ha = adaptfilt.ufdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d);
subplot(2,2,1);
plot(1:1000,real([d(1:1000);y(1:1000);e(1:1000)]));

Power 2*l element
vector

A vector of 2*l elements,
each initialized with the
value delta from the input
arguments. As you filter
data, Power gets updated by
the filter process.

StepSize 0 to 1 Adaptive filter step size. It
must be a nonnegative scalar.
You can use maxstep to
determine a reasonable
range of step size values for
the signals being processed.
step defaults to 0.

Name Range Description

adaptfilt.ufdaf

8-196

title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

0 500 1000 1500
−3

−2

−1

0

1

2
Quadrature Components

Time Index

S
ig

na
l V

al
ue

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

Desired

Output

Error

Desired

Output

Error

adaptfilt.ufdaf

8-197

See Also adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blms, adaptfilt.blmsfft

References J.J. Shynk, “Frequency-domain and Multirate Adaptive Filtering,” IEEE
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

allpassbpc2bpc

8-198

8allpassbpc2bpcPurpose Allpass filter for complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt) returns the
numerator, AllpassNum, and the denominator, AllpassDen, of the first-order
allpass mapping filter for performing a complex bandpass to complex bandpass
frequency transformation. This transformation effectively places two features
of an original filter, located at frequencies Wo1 and Wo2, at the required target
frequency locations Wt1 and Wt2. It is assumed that Wt2 is greater than Wt1. In
most of the cases the features selected for the transformation are the band
edges of the filter passbands. In general it is possible to select any feature; e.g.,
the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., complex notch filters or resonators can be repositioned at two distinct
desired frequencies at any place around the unit circle. This is very attractive
for adaptive systems.

Examples Design the allpass filter changing the complex bandpass filter with the band
edges originally at Wo1=0.2 and Wo2=0.4 to the new band edges of Wt1=0.3 and
Wt2=0.6 precisely defined:

Wo = [0.2, 0.4];
Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[ha, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi,angle(ha)/pi, Wt, Wo, 'ro');

allpassbpc2bpc

8-199

title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

To demonstrate, the following figure shows the mapping function between old
and new frequencies.

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping function Wo(Wt)

New frequency, Wt

O
ld

 fr
eq

ue
nc

y,
 W

o

allpassbpc2bpc

8-200

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirbpc2bpc, zpkbpc2bpc

allpasslp2bp

8-201

8allpasslp2bpPurpose Allpass filter for lowpass to bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the second-order allpass
mapping filter for performing a real lowpass to real bandpass frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1. This transformation implements the
“DC mobility,” which means that the Nyquist feature stays at Nyquist, but the
DC feature moves to a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
repositioned at two distinct desired frequencies.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at
Wo=0.5 to the real bandpass filter with cutoff frequencies at Wt1=0.25 and
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2bp

8-202

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

Shown in the figure, with the x-axis as the new frequency, you see the mapping
filter for the example.

Arguments Wo
Frequency value to be transformed from the prototype filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2bp

8-203

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2bp, zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

allpasslp2bpc

8-204

8allpasslp2bpcPurpose Allpass filter for lowpass to complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to complex bandpass frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandpass filters for radio receivers from the high-quality
prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex bandpass filter with band edges of Wt1=0.2
and Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2bpc

8-205

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[-1,1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

The figure shown here details the mapping filter provided by the function.

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2bpc

8-206

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bpc, zpklp2bpc

allpasslp2bs

8-207

8allpasslp2bsPurpose Allpass filter for lowpass to bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the second-order allpass
mapping filter for performing a real lowpass to real bandstop frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1. This transformation implements the
“Nyquist Mobility,” which means that the DC feature stays at DC, but the
Nyquist feature moves to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at
Wo=0.5 to the real bandstop filter with cutoff frequencies at Wt1=0.25 and
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

allpasslp2bs

8-208

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

In the figure, you find the mapping filter function as determined by the
example. Note the response is normalized to π, as mentioned earlier.

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2bs

8-209

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

allpasslp2bsc

8-210

8allpasslp2bscPurpose Allpass filter for lowpass to complex bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to complex bandstop frequency
transformation. This transformation effectively places one feature of an
original filter, located at frequency -Wo, at the required target frequency
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2.
It is assumed that Wt2 is greater than Wt1. Additionally the transformation
swaps passbands with stopbands in the target filter.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandstop filters for band attenuation or frequency
equalizers, from the high-quality prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex bandstop filter with band edges of Wt1=0.2
and Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

allpasslp2bsc

8-211

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[1,-1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

We plot the resulting allpass mapping function response in this figure.

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2bsc

8-212

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bsc, zpklp2bsc

allpasslp2hp

8-213

8allpasslp2hpPurpose Allpass filter for lowpass to highpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to real highpass frequency
transformation. This transformation effectively places one feature of an
original filter, located originally at frequency, Wo, at the required target
frequency location, Wt, at the same time rotating the whole frequency response
by half of the sampling frequency. Result is that the DC and Nyquist features
swap places.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way by using the lowpass to highpass transformation.

Examples Design the allpass filter changing the lowpass filter to the highpass filter with
its cutoff frequency moved from Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2hp

8-214

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

For transforming your lowpass filter to an highpass variation, the mapping
function shown in this figure does the job.

Arguments Wo
Frequency value to be transformed from the prototype filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2hp

8-215

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2hp, zpklp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

allpasslp2lp

8-216

8allpasslp2lpPurpose Allpass filter for lowpass to lowpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the first-order allpass
mapping filter for performing a real lowpass to real lowpass frequency
transformation. This transformation effectively places one feature of an
original filter, located originally at frequency Wo, at the required target
frequency location, Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband and so on.

Lowpass to lowpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way by applying the lowpass to lowpass transformation.

Examples Design the allpass filter changing the lowpass filter cutoff frequency originally
at Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');

allpasslp2lp

8-217

title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

As shown in the figure, allpasslp2lp generates a mapping function that
converts your prototype lowpass filter to a target lowpass filter with different
passband specifications.

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2lp

8-218

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2lp, zpklp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

allpasslp2mb

8-219

8allpasslp2mbPurpose Allpass filter for lowpass to M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass
mapping filter for performing a real lowpass to real multipassband frequency
transformation. Parameter M is the number of times an original feature is
replicated in the target filter. This transformation effectively places one
feature of an original filter, located at frequency Wo, at the required target
frequency locations, Wt1,...,WtM. By default the DC feature is kept at its original
location.

[AllpassNum,AllpassDen]=allpasslp2mb(Wo,Wt,Pass) allows you to specify
an additional parameter, Pass, which chooses between using the “DC Mobility”
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its
original location and the DC feature is free to move. In the second case the DC
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations without redesigning them. A good application would be an
adaptive tone cancellation circuit reacting to the changing number and location
of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a real multiband filter with band edges of
Wt=[1:2:9]/10 precisely defined:

allpasslp2mb

8-220

Wo = 0.5;
Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

As the figure shows, the mapping function, or mapping filter, creates more
than one band from your prototype.

allpasslp2mb

8-221

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2mb

8-222

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering,
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and
frequency transformation problem,” Proceedings 20th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168,
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7,
Reading, Massachusetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm
for frequency transformations, Linear Circuits, Systems and Signal Processing:
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

allpasslp2mbc

8-223

8allpasslp2mbcPurpose Allpass filter for lowpass to complex M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass
mapping filter for performing a real lowpass to complex multipassband
frequency transformation. Parameter M is the number of times an original
feature is replicated in the target filter. This transformation effectively places
one feature of an original filter, located at frequency Wo, at the required target
frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations without the need to design them again. A good application
would be an adaptive tone cancellation circuit reacting to the changing number
and location of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff
frequency of Wo=0.5 into a complex multiband filter with band edges of
Wt=[-3+1:2:9]/10 precisely defined:

Wo = 0.5;
Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mbc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpasslp2mbc

8-224

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

In this example, the resulting mapping function converts real filters to
multiband complex filters.

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

−0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2mbc

8-225

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2mbc, zpklp2mbc

allpasslp2xc

8-226

8allpasslp2xcPurpose Allpass filter for lowpass to complex N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass
mapping filter, where N is the allpass filter order, for performing a real lowpass
to complex multipoint frequency transformation. Parameter N also specifies the
number of replicas of the prototype filter created around the unit circle after
the transformation. This transformation effectively places N features of the,
original filter located at frequencies Wo1,...,WoN, at the required target frequency
locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design the allpass filter moving four features of an original complex filter given
in Wo to the new independent frequency locations Wt. Please note that the
transformation creates N replicas of an original filter around the unit circle,
where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7, 0.4];
Wt = [0.3, 0.5, 0.7, 0.9];

allpasslp2xc

8-227

[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

As shown, the mapping function copies four features of interest in your
prototype to multiple, independent locations in your target filter.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpasslp2xc

8-228

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2xc, zpklp2xc

allpasslp2xn

8-229

8allpasslp2xnPurpose Allpass filter for lowpass to N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass
mapping filter, where N is the allpass filter order, for performing a real lowpass
to real multipoint frequency transformation. Parameter N also specifies the
number of replicas of the prototype filter created around the unit circle after
the transformation. This transformation effectively places N features of an
original filter, located at frequencies Wo1,...,WoN, at the required target frequency
locations, Wt1,...,WtM. By default the DC feature is kept at its original location.

[AllpassNum,AllpassDen]=allpasslp2xn(Wo,Wt,Pass) allows you to specify
an additional parameter, Pass, which chooses between using the “DC Mobility”
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its
original location and the DC feature is free to move. In the second case the DC
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations without the need of designing them again. A good
application would be an adaptive tone cancellation circuit reacting to the
changing number and location of tones.

allpasslp2xn

8-230

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirlp2xn, zpklp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

allpassrateup

8-231

8allpassrateupPurpose Allpass filter for integer upsample transformation

Syntax [AllpassNum,AllpassDen] = allpassrateup(N)

Description [AllpassNum,AllpassDen] = allpassrateup(N) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass
mapping filter for performing the rateup frequency transformation, which
creates N equal replicas of the prototype filter frequency response.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Examples Design the allpass filter creating the effect of upsampling the digital filter four
times:

N = 4;

Choose any feature from an original filter, say at Wo=0.2:

Wo = 0.2;
Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

While this creates the effect of upsampling your prototype filter, compare the
results to cicinterp for another approach to upsampling.

allpassrateup

8-232

Arguments N
Frequency replication ratio (upsampling ratio)

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirrateup, zpkrateup

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpassshift

8-233

8allpassshiftPurpose Allpass filter for real shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshift(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshift(Wo,Wt) returns the numerator,
AllpassNum, and the denominator, AllpassDen, of the second-order allpass
mapping filter for performing a real frequency shift transformation. This
transformation places one selected feature of an original filter, located at
frequency Wo, at the required target frequency location, Wt. This transformation
implements the “DC mobility,” which means that the Nyquist feature stays at
Nyquist, but the DC feature moves to a location dependent on the selection of
Wo and Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible to
select any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be moved to a different frequency by
applying a shift transformation. In such a way you can avoid designing the
filter from the beginning.

Examples Design the allpass filter precisely shifting one feature of the lowpass filter
originally at Wo=0.5 to the new frequencies of Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

allpassshift

8-234

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt). Please note that the transformation works in the same way for
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpassshift

8-235

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirshift, zpkshift

allpassshiftc

8-236

8allpassshiftcPurpose Allpass filter for complex shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt) returns the numerator,
AllpassNum, and denominator, AllpassDen, vectors of the allpass mapping
filter for performing a complex frequency shift of the frequency response of the
digital filter by an arbitrary amount.

[AllpassNum,AllpassDen]=allpassshiftc(0,0.5) calculates the allpass
filter for doing the Hilbert transformation, i.e. a 90 degree counterclockwise
rotation of an original filter in the frequency domain.

[AllpassNum,AllpassDen]=allpassshiftc(0,-0.5) calculates the allpass
filter for doing an inverse Hilbert transformation, i.e. a 90 degree clockwise
rotation of an original filter in the frequency domain.

Examples Design the allpass filter precisely rotating the whole filter by the amount
defined by the location of the selected feature from an original filter, Wo=0.5,
and its required position in the target filter, Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

The figure shows you that the transformation by the mapping filter does
exactly what you intend.

allpassshiftc

8-237

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirshiftc, zpkshiftc

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mapping Function Wo(Wt)

New Frequency, Wt

O
ld

 F
re

qu
en

cy
, W

o

allpassshiftc

8-238

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On Digital Differentiators, Hilbert
Transformers, and Half-band Low-pass Filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

block

8-239

8blockPurpose Generate Signal Processing Blockset block from floating-point or fixed-point
multirate (mfilt) filter objects

Syntax block(hm)
block(hm,'propertyname1',propertyvalue1,'propertyname2',...

propertyvalue2,...)

Description block(hm) generates a Signal Processing Blockset block equivalent to hm.

block(hm,'propertyname1',propertyvalue1,'propertyname2',...
propertyvalue2,...) generates a Signal Processing Blockset block using the
options specified in the property name/property value pairs. The valid
properties and their values are

Property Name Description and Values

Destination Determines which Simulink model gets the
block. Choose either current or new. Specifying
new opens a new Simulink model and adds the
block. Current adds the block to your current
Simulink model. Current is the default setting.

Blockname Specifies the name of the generated block. The
name appears below the block in the model.
When you do not specify a block name, the
default is filter.

block

8-240

Using block to Realize Fixed-Point Multirate Filters
When the source filter hm is fixed-point, such as an FIR decimator with
fixed-point arithmetic, block maps the fixed-point properties for hm to the new
block according to a set of rules:

• The input word and fraction lengths for the block are derived from the block
input signal. The realization process ignores the input word and input
fraction lengths that are part of the source filter object, choosing to inherit
the settings from the input data. You see a warning message in MATLAB
that points this out.

• Rounding modes that the block does not support—fix, ceil, and
convergent—convert to nearest in the filter block. Supported rounding
modes do not change. MATLAB warns you about this change.

Other fixed-point properties map directly to settings for word and fraction
length in the realized block.

 Examples Two examples of using block demonstrate the syntax capabilities. Both
examples start from an mfilt object with interpolation factor of three. In the
first example, use block with the default syntax, letting the function determine
the block name and configuration.

OverwriteBlock Tells block whether to overwrite an existing
block of the same name, or create a new block.
Off is the default setting—block does not
overwrite existing blocks with matching names.
Switching from off to on directs block to
overwrite existing blocks.

MapStates Specifies whether to apply the current filter
states to the new block. This lets you save states
from a filter object you may have used or
configured in a specific way. The default setting
of off means the states are not transferred to
the block. Choosing on preserves the current
filter states in the block.

Property Name Description and Values

block

8-241

l = 3; % Interpolation factor
hm = mfilt.firdecim(l);

Now use the default syntax to create a block.

block(hm);

In this second example, define the block name to meet your needs by using the
property name/property value pair input arguments.

block(hm, 'blockname', 'firdecim');

The figure below shows the blocks in a Simulink model. When you try these
examples, you see that the second block writes over the first block location. You
can avoid this by moving the first block before you generate the second, always
naming your block with the blockname property, or setting the Destination
property to new which puts the filter block in a new Simulink model.

See Also Refer to the Realize Model option in FDATool, and realizemdl

x[3n]

firdecim

x[3n]

Filter

butter

8-242

8butterPurpose Design Butterworth IIR digital filter using the specifications in filter
specification object

Syntax hd = design(d,'butter')
hd = design(d,'butter',designoption,value,designoption,value,...)

Description hd = design(d,'butter') designs a Butterworth IIR digital filter using the
specifications supplied in the object d.

hd = design(d,'butter',designoption,value) returns a Butterworth IIR
filter where you specify a design option and value.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using butter, refer to the command line help system.
For example, to get specific information about using butter with d, the
specification object, enter the following at the MATLAB prompt.

help(d,'butter')

Examples The first example constructs a default lowpass filter specification object and
uses it to design a Butterworth filter.

d = fdesign.lowpass;
designopts(d,'butter')

ans =

 FilterStructure: 'df2sos'
 MatchExactly: 'stopband'
hd = design(d,'butter','matchexactly','stopband');

Example 2 constructs a highpass filter specification object with order (n) and
cutoff frequency (fc) specifications, and then designs a Butterworth filter from
the object.

d = fdesign.highpass('n,fc',8,.6);
design(d,'butter');

butter

8-243

See Also cheby1, cheby2, ellip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

ca2tf

8-244

8ca2tfPurpose Convert coupled allpass filter form to transfer function forms

Syntax [b,a] = ca2tf(d1,d2)
[b,a] = ca2tf(d1,d2,beta)
[b,a,bp] = ca2tf(d1,d2)
[b,a,bp] = ca2tf(d1,d2,beta)

Description [b,a]=ca2tf(d1,d2) returns the vector of coefficients b and the vector of
coefficients a corresponding to the numerator and the denominator of the
transfer function

d1 and d2 are real vectors corresponding to the denominators of the allpass
filters H1(z) and H2(z).

[b,a]=ca2tf(d1,d2,beta) where d1, d2 and beta are complex, returns the
vector of coefficients b and the vector of coefficients a corresponding to the
numerator and the denominator of the transfer function

[b,a,bp]=ca2tf(d1,d2), where d1 and d2 are real, returns the vector bp of real
coefficients corresponding to the numerator of the power complementary filter
G(z)

[b,a,bp]=ca2tf(d1,d2,beta), where d1, d2 and beta are complex, returns the
vector of coefficients bp of real or complex coefficients that correspond to the
numerator of the power complementary filter G(z)

H z() B z() A z()⁄ 1
2
--- H1 z() H2 z()+[]= =

H z() B z() A z()⁄ 1
2
--- β()– H1 z()• β H2 z()•+[]= =

G z() Bp z() A z()⁄ 1
2
--- H1 z() H2 z()–[]= =

G z() Bp z() A z()⁄ 1
2j
----- β()– H1 z()• β H2 z()•+[]= =

ca2tf

8-245

Examples Create a filter, convert the filter to coupled allpass form, and convert the result
back to the original structure (create the power complementary filter as well).

See Also cl2tf, iirpowcomp, tf2ca, tf2cl

[b,a]=cheby1(10,.5,.4);
[d1,d2,beta]=tf2ca(b,a); % tf2ca returns the

% denominators of the
% allpasses.

[num,den,numpc]=ca2tf(d1,d2,beta); % Reconstruct the original
% filter plus the power
% complementary one.

[h,w,s]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
freqzplot([h hpc],w,s); % Plot the mag response of the

% original filter and the
% power complementary one.

cheby1

8-246

8cheby1Purpose Design Chebyshev Type I digital filter using filter specification object

Syntax hd = design(d,'cheby1')
hd = design(d,'cheby1',designoption,value,designoption,value,...)

Description hd = design(d,'cheby1') designs a Chebyshev I IIR digital filter using the
specifications supplied in the object d.

hd = design(d,'cheby1',designoption,value,designoption,value,...)
returns a Chebyshev I IIR filter where you specify design options as input
arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using cheby1, refer to the command line help system.
For example, to get specific information about using cheby1 with d, the
specification object, enter the following at the MATLAB prompt.

help(d,'cheby1')

Examples These examples use filter specification objects to construct Chebyshev type I
filters. In the first example, you use the matchexactly option to ensure the
performance of the filter in the passband.

d = fdesign.lowpass
designopts(d,'cheby1')
ans =

 FilterStructure: 'df2sos'
 MatchExactly: 'passband'

hd = design(d,'cheby1','matchexactly','passband')

d =

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}

cheby1

8-247

 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 1
 Astop: 60

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 PersistentMemory: false

cheby1 also design highpass filters, among others. Specify the filter order,
passband edge frequency. and the passband ripple to get the filter exactly as
required.

d = fdesign.highpass('n,fp,ap',7,20,.4,50)
hd = design(d,'cheby1')

d =

 Response: 'Highpass'
 Specification: 'N,Fp,Ap'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 50
 FilterOrder: 7
 Fpass: 20
 Apass: 0.4

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 PersistentMemory: false

cheby1

8-248

Use fvtool to view the resulting filter.

fvtool(hd)

By design, cheby1 returns filters that use second-order sections. For many
applications, and for most fixed-point applications, SOS filters are particularly
well-suited.

See Also butter, cheby2, ellip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

cheby2

8-249

8cheby2Purpose Design Chebyshev Type II digital filter using filter specification object

Syntax hd = design(d,'cheby2')
hd = design(d,'cheby2',designoption,value,designoption,value,...)

Description hd = design(d,'cheby2') designs a Chebyshev II IIR digital filter using the
specifications supplied in the object d.

hd = design(d,'cheby2',designoption,value,designoption,value,...)
returns a Chebyshev II IIR filter where you specify design options as input
arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using cheby1, refer to the command line help system.
For example, to get specific information about using cheby2 with d, the
specification object, enter the following at the MATLAB prompt.

help(d,'cheby2')

Examples These examples use filter specification objects to construct Chebyshev type I
filters. In the first example, you use the matchexactly option to ensure the
performance of the filter in the passband.

d = fdesign.lowpass;
hd = design(d,'cheby2','matchexactly','passband')

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [5x6 double]
 ScaleValues: [6x1 double]

PersistentMemory: false

cheby2

8-250

cheby2 also design highpass, bandpass, and bandstop filters. Here is a
highpass filter where you specify the filter order, the stopband edge frequency.
and the stopband attenuation to get the filter exactly as required.

d = fdesign.highpass('n,fst,ast',5,20,55,50)

d =

 Response: 'Highpass'
 Specification: 'N,Fst,Ast'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 50
 FilterOrder: 5
 Fstop: 20
 Astop: 55

hd=design(d,'cheby2')

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [3x6 double]
 ScaleValues: [0.199517233712056;0.0879972176933622;0.145046319812257;1]
 PersistentMemory: false

The Filter Visualization Tool shows the highpass filter meets the
specifications.

fvtool(hd)

cheby2

8-251

By design, cheby2 returns filters that use second-order sections. For many
applications, and for most fixed-point applications, SOS filters are particularly
well-suited for use.

See Also butter, cheby1, ellip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

cl2tf

8-252

8cl2tfPurpose Convert coupled allpass lattice to transfer function form

Syntax [b,a] = cl2tf(k1,k2)
[b,a] = cl2tf(k1,k2,beta)
[b,a,bp] = cl2tf(k1,k2)
[b,a,bp] = cl2tf(k1,k2,beta)

Description [b,a] = cl2tf(k1,k2) returns the numerator and denominator vectors of
coefficients b and a corresponding to the transfer function

where H1(z) and H2(z) are the transfer functions of the allpass filters
determined by k1 and k2, and k1 and k2 are real vectors of reflection
coefficients corresponding to allpass lattice structures.

[b,a] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns the
numerator and denominator vectors of coefficients b and a corresponding to the
transfer function

[b,a,bp] = cl2tf(k1,k2) where k1 and k2 are real, returns the vector bp of
real coefficients corresponding to the numerator of the power complementary
filter G(z)

[b,a,bp] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns
the vector of coefficients bp of possibly complex coefficients corresponding to
the numerator of the power complementary filter G(z)

Examples [b,a]=cheby1(10,.5,.4);
[k1,k2,beta]=tf2cl(b,a); %TF2CL returns the reflection coeffs

H z() B z() A z()⁄ 1
2
--- H1 z() H2 z()+[]= =

H z() B z() A z()⁄ 1
2
--- β()– H1 z()• β H2 z()•+[]= =

G z() Bp z() A z()⁄ 1
2
--- H1 z() H2 z()–[]= =

G z() Bp z() A z()⁄ 1
2j
----- β()– H1 z()• β H2 z()•+[]= =

cl2tf

8-253

% Reconstruct the original filter
% plus the power complementary one.
[num,den,numpc]=cl2tf(k1,k2,beta);
[h,w,s1]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
% Plot the mag response of the original filter and the power
% complementary one.
freqzplot([h hpc],w,s1);

See Also tf2cl, tf2ca, ca2tf, tf2latc, latc2tf, iirpowcomp

coefficients

8-254

8coefficientsPurpose Filter coefficients for adaptive filters, discrete-time filters, and multirate filters

Syntax c = coefficients(ha)
coefficients(ha)
c = coefficients(hd)
coefficients(hd)
c = coefficients(hm)
coefficients(hm)

Description The next sections describe common coefficients operation with adaptive,
discrete-time, and multirate filters.

Adaptive Filters

c = coefficients(ha) returns a cell array c containing the coefficients of
adaptive filter ha. These are the instantaneous filter coefficients available at
the time you use the function.

coefficients(ha) without an output argument opens FVTool in the
coefficients analysis mode displaying the filter coefficients.

Discrete-Time Filters

c = coefficients(hd) returns a cell array c that contains the coefficients of
discrete-time filter hd.

coefficients(hd) without an output argument opens FVTool in the
coefficients analysis mode displaying the filter coefficients.

Multirate Filters

c = coefficients(hm) returns c, a cell array containing the coefficients of
discrete-time filter hm. CIC-based filters do not have coefficients and this
function does not work with constructors like mfilt.cicdecim.

coefficients(hm) with no output argument opens FVTool in the coefficients
analysis mode displaying the filter coefficients.

coefficients

8-255

Examples coefficients works the same way for all filters. This example uses a multirate
filter hm to demonstrate the function.

hm=mfilt.firdecim(3)

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Decimator'
 Numerator: [1x72 double]
 DecimationFactor: 3

PersistentMemory: false
 States: [69x1 double]

c=coefficients(hm)

c =

 [1x72 double]

c{1}

ans =

 Columns 1 through 8

 0 -0.0000 -0.0001 0 0.0002 0.0003 0 -0.0005

 Columns 9 through 16

 -0.0007 0 0.0011 0.0014 0 -0.0022 -0.0028 0

 Columns 17 through 24

 0.0040 0.0048 0 -0.0068 -0.0080 0 0.0111 0.0129

 Columns 25 through 32

 0 -0.0177 -0.0207 0 0.0287 0.0342 0 -0.0513

 Columns 33 through 40

 -0.0659 0 0.1363 0.2749 0.3333 0.2749 0.1363 0

 Columns 41 through 48

 -0.0659 -0.0513 0 0.0342 0.0287 0 -0.0207 -0.0177

 Columns 49 through 56

 0 0.0129 0.0111 0 -0.0080 -0.0068 0 0.0048

 Columns 57 through 64

coefficients

8-256

 0.0040 0 -0.0028 -0.0022 0 0.0014 0.0011 0

 Columns 65 through 72

 -0.0007 -0.0005 0 0.0003 0.0002 0 -0.0001 -0.0000

coefficients(hm)

coefficients

8-257

See Also adaptfilt, freqz, grpdelay, impz, info, phasez, stepz, zerophase, zplane

coeread

8-258

8coereadPurpose Read Xilinx CORE Generator™ coefficient (.COE) file

Syntax hd = coeread('filename')

Description hd = coeread(filename) extracts the Distributed Arithmetic FIR filter
coefficients defined in the XILINX CORE Generator .COE file specified by
filename. It returns a dfilt object, the fixed-point filter hd. If you do not
provide the file type extension .coe with the filename, the function assumes
the .coe extension.

See Also coewrite, dfilt, dfilt.dffir

coewrite

8-259

8coewritePurpose Write Xilinx CORE Generator™ coefficient (.COE) file

Syntax coewrite(hd)
coewrite(hd,radix)
coewrite(...,filename)

Description coewrite(hd) writes a XILINX Distributed Arithmetic FIR filter coefficient
.COE file which can be loaded into the XILINX CORE Generator. The
coefficients are extracted from the fixed-point dfilt object hd. Your fixed-point
filter must be a direct form FIR structure dfilt object with one section and
whose Arithmetic property is set to fixed. You cannot export single-precision,
double-precision, or floating-point filters as .coe files, nor multiple-section
filters. To enable you to provide a name for the file, coewrite displays a dialog
where you fill in the file name. If you do not specify the name of the output file,
the default file name is untitled.coe.

coewrite(hd,radix) indicates the radix (number base) used to specify the FIR
filter coefficients. Valid radix values are 2 for binary, 10 for decimal, and 16 for
hexadecimal (default).

coewrite(...,filename) writes a XILINX.COE file to filename. If you omit
the file extension, coewrite adds the .coe extension to the name of the file.

Examples coewrite generates an ASCII text file that contains the filter coefficients in
a format the XILINX CORE Generator can read and load. In this example, you
create a 30th-order fixed-point filter and generate the .coe file that include the
filter coefficients as well as associated information about the filter.

b = firceqrip(30,0.4,[0.05 0.03]);
hq = dfilt.dffir(b);
set(hq,'arithmetic','fixed');
coewrite(hq,10,'mycoefile');

When you look at mycoefile.coe, you see the following:

;
; XILINX CORE Generator(tm) Distributed Arithmetic FIR filter
coefficient (.COE) File
; Generated by MATLAB(tm) and the Filter Design Toolbox.
;

coewrite

8-260

; Generated on: 4-Dec-2003 13:47:15
;
Radix = 10;
Coefficient_Width = 16;
CoefData = -41,
 -851,
 -366,
 308,
 651,
 22,
 -873,
 -658,
 749,
 1504,
 21,
-2367,
-2012,
 3014,
 9900,
....

coewrite puts the filter coefficients in column-major order and reports the
radix, the coefficient width, and the coefficients. These represent the minimum
set of data needed in a .coe file.

See Also coeread, dfilt, dfilt.dffir

convert

8-261

8convertPurpose Convert filter structures of discrete-time and multirate filters

Syntax hq = convert(hq,newstruct)
hm = convert(hm,newstruct)

Description Discrete-Time Filters
hq = convert(hq,newstruct) returns a quantized filter whose structure has
been transformed to the filter structure specified by string newstruct. You can
enter any one of the following quantized filter structures:

• 'antisymmetricfir': Antisymmetric finite impulse response (FIR).

• 'df1': Direct form I.

• 'df1t': Direct form I transposed.

• 'df2': Direct form II.

• 'df2t': Direct form II transposed. Default filter structure.

• 'dffir': FIR.

• 'dffirt': Direct form FIR transposed.

• 'latcallpass': Lattice allpass.

• 'latticeca': Lattice coupled-allpass.

• 'latticecapc': Lattice coupled-allpass power-complementary.

• 'latticear': Lattice autoregressive (AR).

• 'latticema': Lattice moving average (MA) minimum phase.

• 'latcmax': Lattice moving average (MA) maximum phase.

• 'latticearma': Lattice ARMA.

• 'statespace': Single-input/single-output state-space.

• 'symmetricfir': Symmetric FIR. Even and odd forms.

All filters can be converted to the following structures:

• df1
• df1t
• df2
• df2t
• statespace
• latticearma

convert

8-262

For the following filter classes, you can specify other conversions as well:

• Minimum phase FIR filters can be converted to latticema

• Maximum phase FIR filters can be converted to latcmax

• Allpass filters can be converted to latcallpass

convert generates an error when you specify a conversion that is not possible.

Multirate Filters

hm = convert(hm,newstruct) returns a multirate filter whose structure has
been transformed to the filter structure specified by string newstruct. You can
enter any one of the following multirate filter structures, defined by the strings
shown, for newstruct:

Cascaded Integrator-Comb Structures

• cicdecim—CIC-based decimator

• cicdecimzerolat—CIC-based decimator that exhibits no latency

• cicinterp—CIC-based interpolator

• cicinterpzerolat—CIC-based interpolater that does not induce latency

FIR Structures

• firdecim—FIR decimator

• firtdecim—transposed FIR decimator

• firfracdecim—FIR fractional decimator

• firinterp—FIR interpolator

• firfracinterp—FIR fractional interpolator

• firsrc—FIR sample rate change filter

• firholdinterp—FIR interpolator that uses hold interpolation between
input samples

• firlinearinterp—FIR interpolator that uses linear interpolation between
input samples

• fftfirinterp—FFT-based FIR interpolator

You cannot convert between the FIR and CIC structures.

convert

8-263

Examples [b,a]=ellip(5,3,40,.7);
hq = dfilt.df2t(b,a);
hq2 = convert(hq,'df1')
hq2 =

 FilterStructure: 'Direct-Form I'
 Arithmetic: 'double'
 Numerator: [0.1980 0.7886 1.4236 1.4236 0.7886 0.1980]
 Denominator: [1 1.4339 1.8021 0.6139 0.2047 -0.2342]

PersistentMemory: false
 States: Numerator: [5x1 double]
 Denominator:[5x1 double]

For an example of changing the structure of a multirate filter, try the following
conversion from a CIC interpolator to a CIC interpolator with zero latency.

hm = mfilt.cicinterp(2,2,3,8,8)

hm =

 FilterStructure: 'Cascaded Integrator-Comb Interpolator'
 Arithmetic: 'int'
 DifferentialDelay: 2
 NumberOfSections: 3
 InterpolationFactor: 2
 RoundMode: 'floor'

PersistentMemory: false
 States: Integrator: [3x1 States]
 Comb: [3x1 States]

 InputWordLength: 8

 SectionWordLengthMode: 'MinWordLengths'

 OutputWordLength: 8

hm2=convert(hm,'cicinterpzerolat')

hm2 =

 FilterStructure: 'Zero-Latency Cascaded Integrator-Comb Interpolator'
 Arithmetic: 'int'
 DifferentialDelay: 2
 NumberOfSections: 3
 InterpolationFactor: 2
 RoundMode: 'floor'

PersistentMemory: false

 States: Integrator: [3x1 States]
 Comb: [3x1 States]

convert

8-264

 InputWordLength: 8

 SectionWordLengthMode: 'MinWordLengths'

 OutputWordLength: 8

See Also mfilt

dfilt in the Signal Processing Toolbox documentation

cost

8-265

8costPurpose Estimate cost of using discrete-time or multirate filter

Syntax c = cost(hd)
c = cost(hm)

Description c = cost(hd) and c = cost(hm) return a cost estimate c for the filter hd or hm.
The returned cost estimate contains the following fields.

Examples These examples show you the cost method applied to dfilt and mfilt objects.

hd = design(fdesign.lowpass);
c = cost(hd)
c =

Estimated Value Property Description

Number of
Multiplications

nmult Number of
multiplications
during the filter run.
nmult ignores
multiplications by -1,
0, and 1 in the total
multiple.

Number of Additions nadd Number of additions
during the filter run.

Number of States nstates Number of states the
filter uses.

MultPerInputSample multperinputsample Number of
multiplication
operations performed
for each input sample

AddPerInputSample addperinputsample Number of addition
operations performed
for each input sample

cost

8-266

Number of Multipliers : 43
Number of Adders : 42
Number of States : 42
MultPerInputSample : 43
AddPerInputSample : 42
hd

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x43 double]
 PersistentMemory: false

When you are using a multirate filter object, cost works the same way.

d = fdesign.decimator(4,'cic');
hm = design(d,'multisection')

hm =

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 4
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

c=cost(hm)

c =

Number of Multipliers : 0
Number of Adders : 4
Number of States : 4

cost

8-267

MultPerInputSample : 0
AddPerInputSample : 2.5

See Also report

cumsec

8-268

8cumsecPurpose Vector of filters for cumulative sections

Syntax h = cumsec(hd)
h = cumsec(hd,indices)
h = cumsec(hd,indices,secondary)
cumsec(hd)

Description h = cumsec(hd) returns a vector h of SOS filter objects with the cumulative
sections. Each element in h is a filter with the structure of the original filter.
The first element is the first filter section of hd. The second element of h is
a filter that represents the combination of the first and second sections of hd.
The third element of h is a filter which combines sections 1, 2, and 3 of hd. this
pattern continues until the final element of h contains all the sections of hd and
should be identical to hd.

h = cumsec(hd,indices) returns a vector h of SOS filter objects whose indices
into the original filter are in the vector indices. Now you can specify the filter
sections cumsec uses to compute the cumulative responses.

h = cumsec(hd,indices,secondary) when secondary is true, cumsec uses
the secondary scaling points in the sections to determine where the sections
should be split. This option applies only when hd is a df2sos and df1tsos filter.
For these second-order section structures, the secondary scaling points refer to
the scaling locations between the recursive and the nonrecursive parts of the
section (the “middle” of the section). Argument secondary accepts either true
or false. By default, secondary is false.

cumsec(hd,...) without an output arguments uses FVTool to plot the
magnitude response of the cumulative sections.

 Examples To demonstrate how cumsec works, this example plots the relative responses of
the sections of a sixth-order filter SOS filter with three sections. Each curve
adds one more section to form the filter response.

hs = fdesign.lowpass('n,fc',6,.4);
hd = butter(hs);
h = cumsec(hd);
hfvt = fvtool(h);

cumsec

8-269

legend(hfvt,'First Section','First Two Sections','Overall
Filter');

See Also scale, scalecheck

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

denormalize

8-270

8denormalizePurpose Undo filter coefficient and gain changes caused by normalize

Syntax denormalize(hq)

Description denormalize(hq) reverses the coefficient changes you make when you use
normalize with hq. The filter coefficients do not change if you call
denormalize(hq) before you use normalize(hq). Calling denormalize more
than once on a filter does not change the coefficients after the first
denormalize call.

Examples Make a quantized filter hq and normalize the filter coefficients. After
normalizing the coefficients, restore them to their original values by reversing
the effects of the normalize function.

d=fdesign.highpass('n,fc',14,0.45)

d =

 Response: 'Highpass'
 Specification: 'N,Fc'
 Description: {'Filter Order';'Cutoff Frequency'}
 NormalizedFrequency: true
 FilterOrder: 14
 Fcutoff: 0.45

hd = butter(d)

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [7x6 double]
 ScaleValues: [8x1 double]
 PersistentMemory: false

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'

denormalize

8-271

 Arithmetic: 'fixed'
 sosMatrix: [7x6 double]
 ScaleValues: [8x1 double]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 StageInputWordLength: 16
 StageInputAutoScale: true

 StageOutputWordLength: 16
 StageOutputAutoScale: true

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

hq=hd;
g=normalize(hq)'

g =

 2 2 2 2 2 2 2

denormalize

8-272

hq.SosMatrix

ans =

 0.5000 -1.0000 0.5000 1.0000 -0.2817 0.8008
 0.5000 -1.0000 0.5000 1.0000 -0.2359 0.5081
 0.5000 -1.0000 0.5000 1.0000 -0.2051 0.3110
 0.5000 -1.0000 0.5000 1.0000 -0.1842 0.1776
 0.5000 -1.0000 0.5000 1.0000 -0.1704 0.0892
 0.5000 -1.0000 0.5000 1.0000 -0.1619 0.0350
 0.5000 -1.0000 0.5000 1.0000 -0.1579 0.0093

denormalize(hq)
hq.SosMatrix

ans =

 1.0000 -2.0000 1.0000 1.0000 -0.2817 0.8008
 1.0000 -2.0000 1.0000 1.0000 -0.2359 0.5081
 1.0000 -2.0000 1.0000 1.0000 -0.2051 0.3110
 1.0000 -2.0000 1.0000 1.0000 -0.1842 0.1776
 1.0000 -2.0000 1.0000 1.0000 -0.1704 0.0892
 1.0000 -2.0000 1.0000 1.0000 -0.1619 0.0350
 1.0000 -2.0000 1.0000 1.0000 -0.1579 0.0093

See Also normalize

design

8-273

8designPurpose Implement FIR or IIR filter from discrete-time or multirate filter specification
object

Syntax h = design(d)
h = design(d,designmethod)
h = design(d,designmethod,specname,specvalue,...)

Description h = design(d) uses specifications object d to generate a filter h. When you do
not provide a design method as an input argument, design chooses the design
method to use by following these rules in the order listed.

1 Use equiripple if it applies to the object d.

2 When equiripple does not apply to d, use another FIR design method, such
as firls.

3 If FIR design methods do not apply to d, use ellip.

4 When ellip does not apply to d, use another IIR design method, such as
butter or cheby2, that applies to the object d.

More rules apply.

• design uses an FIR filter design method before using an IIR design method.

• fdesign.nyquist specifications objects use the kaiserwin design method as
the first design choice, rather than equiripple, because kaiserwin produces
better filters than equiripple.

• For decimators, interpolators, and rational sample rate changers that use
fdesign.nyquist objects, the default design method is kaiserwin.
Otherwise, those objects use the equiripple design method by default.

For more guidance about using design to design filters, refer to “Designing
Fixed-Point Filters” on page 2-3 of the Filter Design Toolbox User’s Guide. In
this section you find some examples that use design to design filters and use
methods in the toolbox to analyze them.

h = design(d,designmethod) lets you specify a valid design method to design
the filter as an input string. Note that the filter returned by design changes
depending on the design method you choose. For more information about the
filter that a design method returns, refer to the help for the design method.

design

8-274

The design method you provide as the designmethod input argument must be
one of the methods returned by

designmethods(d)

for the specifications object d.

Valid entries depend on d. This is the complete set of design methods. The
methods that apply to a specific specifications object usually represent a subset
of this list.

• butter

• cheby1

• cheby2

• ciccomp

• ellip

• equiripple

• firls

• ifir
• iirhilbert
• iirlinphase

• isinclp

• kaiserwin

• multistage

• window

To help you design filters more quickly, the input argument designmethod
accepts a variety of special keywords that force design to behave in different

design

8-275

ways. The following table presents the keywords you can use for designmethod
and how design responds to the keyword.

Keywords are not case sensitive and must be enclosed in single quotation
marks like any string input.

When design returns multiple filters in the output object, use indexing to see
the individual filters. For example, to see the third filter in h, enter

h(3)

Designmethod Keyword Description of the design Response

fir Forces design to produce an FIR filter. When
no FIR design method exists for object d,
design returns an error.

iir Forces design to produce an IIR filter. When
no IIR design method exists for object d,
design returns an error.

allfir Produces filters from every applicable FIR
design method for the specifications in d, one
filter for each design method. As a result,
design returns multiple filters in the output
object.

alliir Produces filters from every applicable IIR
design method for the specifications in d, one
filter for each design method. As a result,
design returns multiple filters in the output
object.

all Designs filters using all applicable design
methods for the specifications object d. As a
result, design returns multiple filters, one for
each design method. design uses the design
methods in the order that designmethods(d)
returns them. Refer to Examples to see this in
use.

design

8-276

at the MATLAB prompt.

h = design(d,designmethod,specname,specvalue,...) with this syntax
you can specify not only the designmethod but also values for the filter
specifications in the method. Provide the specifications in the order of the name
of the specification, such as the FilterOrder, followed by the value to assign to
the specification. Enter as many specname/specvalue pairs as you need to
define your filter. Any specification you do not define uses the default
specification value. To use the specname/specvalue syntax, you must provide
the design method to use in designmethod.

Examples To demonstrate some of the design options, these examples use a few different
input arguments and output arguments. For the first example, use design to
return the default filter based on the default design method equiripple.

d = fdesign.lowpass(.2,.22);
hd = design(d) % Uses the default equiripple method.

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x202 double]
 PersistentMemory: false

In this example, use the allfir keyword with design to return an FIR filter
for each valid design method for the specifications in specifications object d.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin

design

8-277

multistage

hallfir=design(d,'allfir')

hallfir =

dfilt.basefilter: 1-by-4

hallfir contains filters designed using the ellip, equiripple, ifir, and
multistage design methods, in the order shown by designmethods(d). The
first filter in hallfir comes from the ellip design method; the second from the
equiripple method; the third from using ifir to design the filter; and the
fourth from using multistage.

To see an individual filter, use an index with the filter object. For example, to
see the second filter in hallfir, enter hallfir(2)

hallfir(2)

ans =

 FilterStructure: Cascade
 Stage(1): Direct-Form FIR
 Stage(2): Direct-Form FIR
 PersistentMemory: false

Here is the multistage filter hallfir(4)

hallfir(4)

ans =

 FilterStructure: Cascade
 Stage(1): Direct-Form FIR Polyphase Decimator
 Stage(2): Direct-Form FIR Polyphase Decimator
 Stage(3): Direct-Form FIR Polyphase Decimator
 Stage(4): Direct-Form FIR Polyphase Interpolator
 Stage(5): Direct-Form FIR Polyphase Interpolator
 Stage(6): Direct-Form FIR Polyphase Interpolator
 PersistentMemory: false

design

8-278

This final example uses equiripple to design an FIR filter with the density
factor set to 20 by using the specname/specvalue syntax.

[hd,res,err] = design(d,'equiripple','densityfactor',20);
hd

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x202 double]
 PersistentMemory: false
res

res =

 0.9903

err

err =

 order: 201
 fgrid: [2060x1 double]
 H: [2060x1 double]
 error: [2060x1 double]
 des: [2060x1 double]
 wt: [2060x1 double]
 iextr: [102x1 double]
 fextr: [102x1 double]
 iterations: 12
 evals: 12905
 edgeCheck: [4x1 double]
 returnCode: 0

res and err are optional output arguments that design returns when you
specify the density factor with the equiripple design method.

See Also designmethods, butter, cheby1, cheby2, ellip, equiripple, firls,
fdesign.halfband, kaiserwin, fdesign.nyquist, fdesign.rsrc

designmethods

8-279

8designmethodsPurpose Design methods available for designing filter from filter specification object

Syntax m = designmethods(d)
m = designmethods(d,'default')
m = designmethods(d,type)
m = designmethods(d,'full')

Description m = designmethods(d) returns a list of the design methods available for the
filter specification object d with its Specification. When you change the
Specification for a filter specification object, the methods available to design
filters from the object change.

Here are all the design methods and the filters they produce.

Design Method Filter Result

butter IIR

cheby1 IIR

cheby2 IIR

ellip IIR

equiripple FIR

firls FIR

ifir Interpolated FIR

iirhilbert IIR Hilbert filter

iirlinphase IIR filter with linear phase

iirlpnorm IIR filter from an arbitrary magnitude
specifications object. Compare to iirls.

iirls IIR filter from an arbitrary magnitude
and phase specifications object. Compare
to iirlpnorm.

kaiserwin FIR with Kaiser window

designmethods

8-280

m = designmethods(d,'default') returns the default design method for the
filter specification object d and its current Specification.

m = designmethods(d,type) returns either the FIR or IIR design methods
that apply to d, as specified by the type string, either fir or iir. By default,
designmethods returns all the valid design methods when you omit the type
string.

m = designmethods(d,'full') returns the full name for each of the available
design methods. For example, designmethods with the full argument returns
Butterworth for the butter method.

Examples Construct a lowpass filter specification object and determine the design
methods available to design a filter from the object.

d=fdesign.lowpass('n,fc',10,12000,48000)

d =

 Response: 'Lowpass'
 Specification: 'N,Fc'
 Description: {'Filter Order';'Cutoff Frequency'}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff: 12000

designmethods(d)

Design Methods for class fdesign.lowpass (N,Fc):

multistage Multistage filter that cascades multiple
filters

window FIR with windowed impulse response

Design Method Filter Result

designmethods

8-281

window

hd=window(d)

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x11 double]
 PersistentMemory: false

Now change the Specification string for d to 'fp,fst,ap,ast' and
determine the design methods that apply to your modified specifications object.

set(d,'specification','fp,fst,ap,ast');
d

d =

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 Fpass: 10800
 Fstop: 13200
 Apass: 1
 Astop: 60

m2 = designmethods(d)
m3 = designmethods(d, 'iir')
m4 = designmethods(d, 'iir', 'full')

m2 =

 'butter'
 'cheby1'
 'cheby2'
 'ellip'
 'equiripple'
 'ifir'

designmethods

8-282

 'kaiserwin'
 'multistage'

m3 =

 'butter'
 'cheby1'
 'cheby2'
 'ellip'

m4 =

 'Butterworth'
 'Chebyshev Type I'
 'Chebyshev Type II'
 'Elliptic'

Now you can get specific help on a particular design method for the
specifications object. This example returns the help for the first design method
for the m2 set of methods—butter.

help(d,m2{1})

This is the same as help(d,'butter').

See Also butter, cheby1, cheby2, designopts, ellip, equiripple, kaiserwin,
multistage

designopts

8-283

8designoptsPurpose Input arguments and default values applicable to filter specification object and
method

Syntax options = designopts(d,'designmethod')

Description options = designopts(d,'designmethod') returns the structure options
with the default design parameters used by the design method designmethod,
specific to the response you defined for d. Replace designmethod with one of the
strings returned by designmethods.

Use help(d,designmethod) to get a description of the design parameters. For
example, to see the help for designing a highpass Chebyshev II filter from
a specifications object d, enter

help(d,'cheby2')

at the prompt. MATLAB responds with help for Chebyshev II filter designs
that use the specification Fst,Fp,Ast,Ap, as shown here.

help(d,'cheby2') % Get the help for design Chebyshev II filters.

DESIGN Design a Chebyshev Type II iir filter.
HD = DESIGN(D, 'cheby2') designs a Chebyshev Type II filter
specified by the FDESIGN object H.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter
with the structure STRUCTURE. STRUCTURE is 'df2sos' by default
and can be any of the following.

'df1sos'
'df2sos'
'df1tsos'
'df2tsos'

HD = DESIGN(..., 'MatchExactly', MATCH) designs a Chebyshev Type
II filter and matches the frequency and magnitude specification
for the band MATCH exactly. The other band will exceed the
specification. MATCH can be 'stopband' or 'passband' and is
'passband' by default.

designopts

8-284

Examples Design a minimum order, lowpass Butterworth filter. Use designmethods to
determine the appropriate input arguments. Start by creating a lowpass filter
specification object d.

d = fdesign.lowpass;

Because you want information about the input arguments for designing a filter
using a design method, use designmethods(d) to get the list of valid methods.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

Pick one method and determine the design options for that method.

options = designopts(d,'butter')

options =

 FilterStructure: 'df2sos'
 MatchExactly: 'stopband'

In this example, the filter structure is Direct-Form II with second-order
sections, and the design seeks to match the desired stopband performance
exactly. As you see by reading the help, FilterStructure and MatchExactly
are input arguments for designing the Butterworth filter.

Get help for designing a filter from d using the butter design method to see the
arguments.

help(d,'butter')

 DESIGN Design a Butterworth IIR filter.

designopts

8-285

 HD = DESIGN(D, 'butter') designs a Butterworth filter specified by the
 FDESIGN object H.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the
structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be any of
the following.

 'df1sos'
 'df2sos'
 'df1tsos'
 'df2tsos'

 HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth filter
 and matches the frequency and magnitude specification for the band
 MATCH exactly. The other band will exceed the specification. MATCH
 can be 'stopband' or 'passband' and is 'stopband' by default.

See Also design, designmethods, fdesign

dfilt

8-286

8dfiltPurpose Discrete-time filters

Syntax hd = dfilt.structure(input1,...)
hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]
hd = design(d,'designmethod')

Description hd = dfilt.structure(input1,...) returns a discrete-time filter, hd, of type
structure. Each structure takes one or more inputs. When you specify
a dfilt.structure with no inputs, a default filter is created.

Note You must use a structure with dfilt.

hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]
returns a vector containing dfilt filters.

Structures
Structures for dfilt.structure specify the type of filter structure. Available
types of structures for dfilt are shown below.

dfilt.structure Description

dfilt.allpass Allpass filter

dfilt.cascadeallpass Cascade of allpass filter sections

dfilt.cascadewdfallpass Cascade of allpass wave digital filters

dfilt.delay Delay

dfilt.df1 Direct-form I

dfilt.df1sos Direct-form I, second-order sections

dfilt.df1t Direct-form I transposed

dfilt.df1tsos Direct-form I transposed, second-order sections

dfilt.df2 Direct-form II

dfilt

8-287

dfilt.df2sos Direct-form II, second-order sections

dfilt.df2t Direct-form II transposed

dfilt.df2tsos Direct-form II transposed, second-order sections

dfilt.dffir Direct-form FIR

dfilt.dffirt Direct-form FIR transposed

dfilt.dfsymfir Direct-form symmetric FIR

dfilt.dfasymfir Direct-form antisymmetric FIR

dfilt.fftfir Overlap-add FIR

dfilt.latticeallpass Lattice allpass

dfilt.latticear Lattice autoregressive (AR)

dfilt.latticearma Lattice autoregressive moving- average (ARMA)

dfilt.latticemamax Lattice moving-average (MA) for maximum phase

dfilt.latticemamin Lattice moving-average (MA) for minimum phase

dfilt.calattice Coupled, allpass lattice

dfilt.calatticepc Coupled, allpass lattice with power complementary output

dfilt.statespace State-space

dfilt.scalar Scalar gain object

dfilt.wdfallpass Allpass wave digital filter object

dfilt.structure Description

dfilt

8-288

For more information on each structure, refer to its reference page.

hd = design(d,'designmethod') returns the dfilt object hd resulting from
the filter specification object d and the design method you specify in
designmethod. When you omit the designmethod argument, design uses the
default design method to construct a filter from the object d.

With this syntax, you design filters by

1 Specifying the filter specifications, such as the response shape (perhaps
highpass) and details (passband edges and attenuation).

2 Selecting a method (such as equiripple) to design the filter.

3 Applying the method to the specifications object with
design(d,'designmethod).

Using the specification-based technique can be more effective than the
coefficient-based filter design techniques.

Design Methods for design Syntax
When you use the hd = design(d,'designmethod') syntax, you have a range
of design methods available depending on d, the filter specification object. The
table below lists all of the design methods in the toolbox.

dfilt.cascade Filters arranged in series

dfilt.parallel Filters arranged in parallel

dfilt.structure Description

Design Method String Filter Design Result

butter Butterworth IIR

cheby1 Chebyshev Type I IIR

cheby2 Chebyshev Type II IIR

ellip Elliptic IIR

dfilt

8-289

As specifications object d changes, the methods that apply for designing filters
from d change. For instance, if d is a lowpass filter, these are the applicable
methods:

d=fdesign.lowpass % Create an object to design a lowpass filter.

d =

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 1
 Astop: 60

designmethods(d) % What design methods apply to object d?

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

equiripple Equiripple with the same ripple in the pass
and stopbands

firls Least-squares FIR

freqsamp Frequency-Sampled FIR

ifir Interpolated FIR

iirlpnorm Least Pth norm IIR

iirls Least-Squares IIR

kaiserwin Kaiser-windowed FIR

multistage Multistage FIR

window Windowed FIR

Design Method String Filter Design Result

dfilt

8-290

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

When d is a bandstop filter, the design methods change.

d=fdesign.bandstop % Create a default bandstop specifications
object.

d =

 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fpass1: 0.35
 Fstop1: 0.45
 Fstop2: 0.55
 Fpass2: 0.65
 Apass1: 1
 Astop: 60
 Apass2: 1

designmethods(d) % Find out which design methods apply to d.

Design Methods for class fdesign.bandstop
(Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):

butter
cheby1
cheby2
ellip

dfilt

8-291

equiripple
kaiserwin

Notice that ifir and multistage design methods do not apply to this bandstop
specifications object d.

Analysis Methods
Methods provide ways of performing functions directly on your dfilt object
without having to specify the filter parameters again. You can apply these
methods directly on the variable you assigned to your dfilt object.

For example, if you create a dfilt object, hd, you can check whether it has
linear phase with islinphase(hd), view its frequency response plot with
fvtool(hd), or obtain its frequency response values with h = freqz(hd). You
can use all of the methods below in this way.

Note If your variable hd is a 1-D array of dfilt filters, the method is applied
to each object in the array. Only freqz, grpdelay, impz, is*, order, and stepz
methods can be applied to arrays. The zplane method can be applied to an
array only if zplane is used without outputs.

dfilt

8-292

Some of the methods listed below have the same name as functions in the
Signal Processing or Filter Design Toolboxes. They behave similarly.

Method Description

addstage Adds a stage to a cascade or parallel object,
where a stage is a separate, modular filter. Refer to
dfilt.cascade and dfilt.parallel.

block (Available only with the Signal Processing
Blockset)

block(hd) creates a Signal Processing Blockset
block of the dfilt object. The block method can
specify these properties/values:

'Destination' indicates where to place the block.
'Current' places the block in the current
Simulink model. 'New' creates a new model.
Default value is 'Current'.

'Blockname' assigns the entered string to the
block name. Default name is 'Filter'.

'OverwriteBlock'indicates whether to overwrite
the block generated by the block method ('on')
and defined by Blockame. Default is 'off'.

'MapStates' specifies initial conditions in the block
('on'). Default is 'off'. Refer to “Using Filter
States” in the Signal Processing Toolbox
documentation.

cascade Returns the series combination of two dfilt
objects. Refer to dfilt.cascade.

coeffs Returns the filter coefficients in a structure
containing fields that use the same property
names as those in the original dfilt.

convert Converts a dfilt object from one filter structure,
to another filter structure

dfilt

8-293

fcfwrite Writes a filter coefficient ASCII file. The file can
contain a single filter or a vector of objects. If the
Filter Design Toolbox is installed, the file can
contain multirate filters (mfilt) or adaptive filters
(adaptfilt). Default filename is untitled.fcf.

fcfwrite(hd,filename) writes to a disk file
named filename in the current working directory.
The .fcf extension is added automatically.

fcfwrite(...,fmt) writes the coefficients in the
format fmt, where valid fmt strings are:
'hex' for hexadecimal
'dec' for decimal
'bin' for binary representation.

fftcoeffs Returns the frequency-domain coefficients used
when filtering with a dfilt.fftfir

filter Performs filtering using the dfilt object

firtype Returns the type (1-4) of a linear phase FIR filter

freqz Plots the frequency response in fvtool. Note that
unlike the freqz function, this dfilt freqz
method has a default length of 8192.

grpdelay Plots the group delay in fvtool

impz Plots the impulse response in fvtool

impzlength Returns the length of the impulse response

info Displays dfilt information, such as filter
structure, length, stability, linear phase, and,
when appropriate, lattice and ladder length.

isallpass Returns a logical 1 (i.e., true) if the dfilt object in
an allpass filter or a logical 0 (i.e., false) if it is not

Method Description

dfilt

8-294

iscascade Returns a logical 1 if the dfilt object is cascaded
or a logical 0 if it is not

isfir Returns a logical 1 if the dfilt object has finite
impulse response (FIR) or a logical 0 if it does not

islinphase Returns a logical 1 if the dfilt object is linear
phase or a logical 0 if it is not

ismaxphase Returns a logical 1 if the dfilt object is
maximum-phase or a logical 0 if it is not

isminphase Returns a logical 1 if the dfilt object is
minimum-phase or a logical 0 if it is not

isparallel Returns a logical 1 if the dfilt object has parallel
stages or a logical 0 if it does not

isreal Returns a logical 1 if the dfilt object has
real-valued coefficients or a logical 0 if it does not

isscalar Returns a logical 1 if the dfilt object is a scalar or
a logical 0 if it is not scalar

issos Returns a logical 1 if the dfilt object has
second-order sections or a logical 0 if it does not

isstable Returns a logical 1 if the dfilt object is stable or a
logical 0 if it are not

nsections Returns the number of sections in a second-order
sections filter. If a multistage filter contains
stages with multiple sections, using nsections
returns the total number of sections in all the
stages (a stage with a single section returns 1).

nstages Returns the number of stages of the filter, where a
stage is a separate, modular filter

nstates Returns the number of states for an object

Method Description

dfilt

8-295

order Returns the filter order. If hd is a single-stage
filter, the order is given by the number of delays
needed for a minimum realization of the filter. If
hd has multiple stages, the order is given by the
number of delays needed for a minimum
realization of the overall filter.

parallel Returns the parallel combination of two dfilt
filters. Refer to dfilt.parallel.

phasez Plots the phase response in fvtool

Method Description

dfilt

8-296

realizemdl (Available only with Simulink)

realizemdl(hd) creates a Simulink model
containing a subsystem block realization of your
dfilt.

realizemdl(hd,p1,v1,p2,v2,...) creates the
block using the properties p1, p2,... and values v1,
v2,... specified.

 The following properties are available:

'Blockname' specifies the name of the block. The
default value is 'Filter'.

'Destination' specifies whether to add the block
to a current Simulink model or create a new model.
Valid values are 'Current' and 'New'.

'OverwriteBlock' specifies whether to overwrite
an existing block that was created by realizemdl
or create a new block. Valid values are 'on' and
'off'. Note that only blocks created by
realizemdl are overwritten.

The following properties optimize the block
structure. Specifying 'on' turns the optimization
on and 'off' creates the block without
optimization. The default for each block is 'off'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks with a
direct connection.

'OptimizeNegOnes' replaces negative unity-gain
blocks with a sign change at the nearest
summation block.

'OptimizeDelayChains' replaces cascaded chains
of delay block with a single integer delay block set
to the appropriate delay.

Method Description

dfilt

8-297

removestage Removes a stage from a cascade or parallel dfilt.
Refer to dfilt.cascade and dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel dfilt.
Refer to dfilt.cascade and dfilt.parallel.

sos Converts the dfilt to a second-order sections
dfilt. If hd has a single section, the returned
filter has the same class.

sos(hd,flag) specifies the ordering of the
second-order sections. If flag='UP', the first row
contains the poles closest to the origin, and the
last row contains the poles closest to the unit
circle. If flag='down', the sections are ordered in
the opposite direction. The zeros are always
paired with the poles closest to them.

sos(hd,flag,scale) specifies the scaling of the
gain and the numerator coefficients of all
second-order sections. scale can be 'none', 'inf'
(infinity-norm) or 'two' (2-norm). Using
infinity-norm scaling with up ordering minimizes
the probability of overflow in the realization.
Using 2-norm scaling with down ordering
minimizes the peak roundoff noise.

ss Converts the dfilt to state-space. To see the
separate A,B,C,D matrices for the state-space
model, use [A,B,C,D]=ss(hd).

Method Description

dfilt

8-298

Viewing Properties
As with any object, use get to view a dfilt properties. To see a specific
property, use

 get(hd,'property')

To see all properties for an object, use

get(hd)

Note If you have the Filter Design Toolbox, dfilt objects include an
arithmetic property. You can change the internal arithmetic of the filter from
double- precision to single-precision using:
hd.arithmetic = 'single'

If you have both the Filter Design Toolbox and the Fixed-Point Toolbox, you
can change the arithmetic property to fixed-point using:
hd.arithmetic = 'fixed'

stepz Plots the step response in fvtool

stepz(hd,n) computes the first n samples of the
step response.

stepz(hd,n,Fs) separates the time samples by
T = 1/Fs, where Fs is assumed to be in Hz.

tf Converts the dfilt to a transfer function

zerophase Plots the zero-phase response in fvtool

zpk Converts the dfilt to zeros-pole-gain form

zplane Plots a pole-zero plot in fvtool

Method Description

dfilt

8-299

Changing Properties
To set specific properties, use

set(hd,'property1',value,'property2',value,...)

Note that you must use single quotation marks around the property name. Use
single quotation marks around the value argument when the value is a string,
such as specifyall or fixed.

Copying an Object
To create a copy of an object, use the copy method.

h2 = copy(hd)

Note Using the syntax H2 = hd copies only the object handle and does not
create a new, independent object.

Converting Between Filter Structures
To change the filter structure of a dfilt object hd, use

hd2 = convert(hd,'structure_string');

where structure_string is any valid structure name in single quotation
marks. If hd is a cascade or parallel structure, each stage is converted to the
new structure.

Using Filter States
Two properties control the filter states:

• states—stores the current states of the filter. Before the filter is applied, the
states correspond to the initial conditions and after the filter is applied, the
states correspond to the final conditions. For df1, df1t, df1sos and df1tsos
structures, states returns a filtstates object.

• PersistentMemory—controls whether filter states are saved. The default
value is 'false', which causes the initial conditions to be reset to zero before
filtering and turns off the display of states information. Setting
PersistentMemory to 'true' allows the filter to use your initial conditions

dfilt

8-300

or to reuse the final conditions from a previous filtering operation as the
initial conditions of the next filtering operation. The true setting also
displays information about the filter states.

Note If you set the states and want to use them for filtering, you must set
PersistentMemory to 'true' before you use the filter.

Examples Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
hd = dfilt.df1(b,a)

hd =
 FilterStructure: 'Direct-Form I'
 Numerator: [1x9 double]
 Denominator: [1x9 double]
 PersistentMemory: false

isstable(hd)
ans =
 1

If a dfilt’s numerator values do not fit on a single line, a description of the
vector is displayed. To see the specific numerator values for this example, use

get(hd,'numerator')

ans =
Columns 1 through 6
 0.0001 0.0009 0.0030 0.0060 0.0076 0.0060
 Columns 7 through 9
 0.0030 0.0009 0.0001

Create an array containing two dfilt objects, apply a method and verify that
the method acts on both objects, and use a method to test whether the objects
are FIR objects.

b = fir1(5,.5);
hd = dfilt.dffir(b); % create an FIR object

dfilt

8-301

[b,a] = butter(5,.5);
hd(2) = dfilt.df2t(b,a); % Create a DF2T object and place

% it in the second column of hd.

[h,w] = freqz(hd);
size(h) % Verify that resulting h is
ans = % 2 columns.
 8192 2
size(w) % Verify that resulting w is
ans = % 1 column.
 8192 1

test_fir = isfir(hd)
test_fir =
 1 0 % hd(1) is FIR and hd(2) is not.

Refer to the reference pages for each structure for more examples.

See Also dfilt, design, fdesign, realizemdl, sos, stepz

dfilt.cascade, dfilt.df1, dfilt.df1t, dfilt.df2, dfilt.df2t,
dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir,
dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin, dfilt.parallel,
dfilt.statespace, filter, freqz, grpdelay, impz, zplane in the Signal
Processing Toolbox documentation

dfilt.allpass

8-302

8dfilt.allpassPurpose Construct allpass filter object

Syntax hd = dfilt.allpass(c)

Description hd = dfilt.allpass(c) constructs an allpass filter with the minimum
number of multipliers from the elements in vector c. To be valid, c must contain
one, two, three, or four real elements. The number of elements in c determines
the order of the filter. For example, c with two elements creates a second-order
filter and c with four elements creates a fourth-order filter.

The transfer function for the allpass filter is defined by

given the coefficients in c.

To construct a cascade of allpass filter objects, use dfilt.cascadeallpass. For
more information about creating cascades of allpass filters, refer to
dfilt.cascadeallpass.

Properties The following table provides a list of all the properties associated with an
allpass dfilt object.

H z() c n() c n 1–()z 1– … z n–+ + +

1 c 1()z 1– … c n()z n–+ + +
--=

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass filter
object

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

dfilt.allpass

8-303

Examples This example constructs and displays the information about a second-order
allpass filter that uses the minimum number of multipliers.

c = [1.5, 0.7];
hd = dfilt.allpass(c) % Creates a second-order dfilt object.
hd =

 FilterStructure: 'Minimum-Multiplier Allpass'
 AllpassCoefficients: [1.5 0.7]
 PersistentMemory: false
 States: [0;0;0;0]

info(hd) % Gets information about the filter.
Discrete-Time IIR Filter (real)

Filter Structure : Minimum-Multiplier Allpass
Number of Multipliers : 2
Stable : Yes
Linear Phase : No

Implementation Cost
Number of Multipliers : 2
Number of Adders : 4

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. They also provide linkage between
the sections of a multisection filter, such as a
cascade filter. For details, refer to filtstates
in your Signal Processing Toolbox
documentation or in the Help system.

Property Name Brief Description

dfilt.allpass

8-304

Number of States : 4
MultPerInputSample : 2
AddPerInputSample : 4

See Also dfilt, dfilt.cascadeallpass, dfilt.cascadewdfallpass,
dfilt.latticeallpass, mfilt.iirdecim, mfilt.iirinterp

dfilt.calattice

8-305

8dfilt.calatticePurpose Construct discrete-time, coupled-allpass, lattice filter object

Syntax hd = dfilt.calattice(k1,k2,beta)
hd = dfilt.calattice

Description hd = dfilt.calattice(k1,k2,beta) returns a discrete-time, coupled-allpass,
lattice filter object hd, which is two allpass, lattice filter structures coupled
together. The lattice coefficients for each structure are vectors k1 and k2. Input
argument beta is shown in the diagram below.

hd = dfilt.calattice returns a default, discrete-time coupled-allpass,
lattice filter object, hd. The default values are k1 = k2 = [], which is the default
value for dfilt.latticeallpass, and beta = 1. This filter passes the input
through to the output unchanged.

dfilt.calattice

8-306

Example Specify a third-order lattice coupled-allpass filter structure for a dfilt filter,
hd with the following code.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calattice(k1,k2,beta)

k1 =

 0.9511 + 0.3088i
 0.7511 + 0.1158i

calattice
(Coupled−Allpass Lattice)

1
y

z

1

z (6)

z

1

z (5)

z

1

z (4)

z

1

z (3)

z

1

z (2)

z

1

z (1)

H2(z)

H1(z)

conj(k2(2)) conj(k2(2))

k1(1)k1(2)k1(3)

conj(k1(3))

0.5

conj(k1(2))

beta

−K−

k2(1)k2(2)k2(3)

conj(k2(3))

conj(k1(1))

1
x

dfilt.calattice

8-307

k2 =

 0.7502 - 0.1218i

beta =

 0.1385 + 0.9904i

hd =

 FilterStructure: 'Coupled-Allpass Lattice'
 Allpass1: [2x1 double]
 Allpass2: 0.7502- 0.1218i
 Beta: 0.1385+ 0.9904i
 PersistentMemory: false
 States: [3x1 double]

Notice that the Allpass1 and Allpass2 properties store vectors of coefficients.

hd.Allpass1

ans =

 0.9511 + 0.3088i
 0.7511 + 0.1158i

See Also dfilt.calatticepc

dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox
documentation

dfilt.calatticepc

8-308

8dfilt.calatticepcPurpose Construct discrete-time, coupled-allpass, power-complementary lattice filter
object

Syntax hd = dfilt.calatticepc(k1,k2,beta)
hd = dfilt.calatticepc

Description hd = dfilt.calatticepc(k1,k2) returns a discrete-time, coupled-allpass,
lattice filter object hd, with power-complementary output. This object is two
allpass lattice filter structures coupled together to produce complementary
output. The lattice coefficients for each structure are vectors, k1 and k2,
respectively. beta is shown in the diagram below

hd = dfilt.calatticepc returns a default, discrete-time, coupled-allpass,
lattice filter object hd, with power-complementary output. The default values
are k1=k2=[], which is the default value for the dfilt.latticeallpass. The
default for beta=1. This filter passes the input through to the output
unchanged.

dfilt.calatticepc

8-309

Example Specify a third-order lattice coupled-allpass power complementary filter
structure for a filter hd with the following code. You see from the returned
properties that Allpass1 and Allpass2 contain vectors of coefficients for the
constituent filters.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calatticepc(k1,k2,beta)
k1 =

 0.9511 + 0.3088i
 0.7511 + 0.1158i

dfilt.calatticepc

8-310

k2 =

 0.7502 - 0.1218i

beta =

 0.1385 + 0.9904i

hd =

 FilterStructure: 'Coupled-Allpass Lattice, Power
Complementary Output'
 Allpass1: [2x1 double]
 Allpass2: 0.7502- 0.1218i
 Beta: 0.1385+ 0.9904i
 PersistentMemory: false
 States: [3x1 double]

To see the coefficients for Allpass1, check the property values.

get(hd,'Allpass1')

ans =

 0.9511 + 0.3088i
 0.7511 + 0.1158i

See Also dfilt.calattice

dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox
documentation

dfilt.cascade

8-311

8dfilt.cascadePurpose Construct cascade of discrete-time filter objects

Syntax Refer to dfilt.cascade in the Signal Processing Toolbox for more information.

Description hd = dfilt.cascade(filterobject1,filterobject2,...) returns a
discrete-time filter object hd of type cascade, which is a serial interconnection
of two or more filter objects filterobject1, filterobject2, and so on.
dfilt.cascade accepts any combination of dfilt objects (discrete time filters),
to cascade.

You can use the standard notation to cascade one or more filters:

cascade(hd1,hd2,...)

where hd1, hd2, and so on can be mixed types, such as dfilt objects and mfilt
objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the cascade must be
the same arithmetic format—double, single, or fixed. hd, the filter object
returned, inherits the format of the cascaded filters.

Examples Cascade a lowpass filter and a highpass filter to produce a bandpass filter.

[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
h1=dfilt.df2t(b1,a1);
h2=dfilt.df2t(b2,a2);
hcas=dfilt.cascade(h1,h2) % Bandpass with passband 0.4-0.6

hcas =
 Filterstructure: Cascade
 Section(1): Direct Form II Transposed
 Section(2): Direct Form II Transposed
 PersistentMemory: false

X(z) Y(z)hd1(z) hd2(z)

hd

 . . .

dfilt.cascade

8-312

To view the details of one filter section, use

hcas.section(1)
 ans =
 FilterStructure: 'Direct Form II Transposed'
 Arithmetic: 'double'
 Numerator: [1x9 double]
 Denominator: [1x9 double]
 PersistentMemory: false
 States: [8x1 double]

See Also dfilt, dfilt.parallel, dfilt.scalar

dfilt.cascadeallpass

8-313

8dfilt.cascadeallpassPurpose Construct cascade of allpass discrete-time filter objects

Syntax hd = dfilt.cascadeallpass(c1,c2,...)

Description hd = dfilt.cascadeallpass(c1,c2,...) constructs a cascade of allpass
filters, each of which uses the minimum number of multipliers, given the filter
coefficients provided in c1, c2, and so on.

Each vector c represents one section in the cascade filter. c vectors must
contain one, two, three, or four elements as the filter coefficients for each
section. As a result of the design algorithm, each section is a dfilt.allpass
structure whose coefficients are given in the matching c vector, such as the c1
vector contains the coefficients for the first stage.

States for each section are shared between sections.

Vectors c do not have to be the same length. You can combine various length
vectors in the input arguments. For example, you can cascade fourth-order
sections with second-order sections, or first-order sections.

For more information about the vectors ci and about the transfer function of
each section, refer to dfilt.allpass.

Generally, you do not construct these allpass cascade filters directly. Instead,
they result from the design process for an IIR filter. Refer to the first example
in Examples for more about using dfilt.cascadeallpass to design an IIR
filter.

Properties In the next table, the row entries are the filter properties and a brief
description of each property.

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass filter
object

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

dfilt.cascadeallpass

8-314

Examples Two examples show how dfilt.cascadeallpass works in very different
applications—designing a halfband IIR filter and constructing an allpass
cascade of dfilt objects.

First, design the IIR halfband filter using cascaded allpass filters. Each branch
of the parallel cascade construction is a cascadeallpas filter object.

tw = 100; % Transition width of filter to be designed, 100 Hz.
ast = 80; % Stopband attenuation of filter to be designed, 80dB.
fs = 2000; % Sampling frequency of signal to be filtered.
% Store halfband design specs in the specifications object d.
d = fdesign.halfband('tw,ast',tw,ast,fs);

Now perform the actual filter design. hd contains two dfilt.cascadeallpass
objects.

hd = design(d,'ellip','filterstructure','cascadeallpass');
% Get summary information about one dfilt.cascadeallpass stage.
hd.Stage(2).Stage(1)
ans =

 FilterStructure: 'Cascade Minimum-Multiplier Allpass'
 AllpassCoefficients: Section1: [0 0.0602973909571244]
 Section2: [0 0.412590720361056]
 Section3: [0 0.772715653742923]

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. They also provide linkage between
the sections of a multisection filter, such as a
cascade filter. For details, refer to filtstates
in your Signal Processing Toolbox
documentation or in the Help system.

Property Name Brief Description

dfilt.cascadeallpass

8-315

 PersistentMemory: false
 States: [0;0;0;0;0;0;0;0]
 NumSamplesProcessed: 0

hd

hd =

 FilterStructure: Cascade
 Stage(1): Scalar
 Stage(2): Parallel
 Stage(1): Cascade Minimum-Multiplier Allpass
 Stage(2): Cascade
 Stage(1): Delay
 Stage(2): Cascade Minimum-Multiplier Allpass
 PersistentMemory: false

This second example constructs a dfilt.cascadeallpass filter object directly
given allpass coefficients for the input vectors.

section1 = 0.8;
section2 = [1.2,0.7];
section3 = [1.3,0.9];
hd = dfilt.cascadeallpass(section1,section2,section3);
info(hd) % Get information about the filter.
fvtool(hd) % Visualize the filter.

hd looks like this, showing both the magnitude and phase responses in FVTool.
Note the units for the magnitude response on the left y-axis. Clearly this is an
allpass filter.

dfilt.cascadeallpass

8-316

See Also dfilt, dfilt.allpass, dfilt.cascadewdfallpass, mfilt.iirdecim,
mfilt.iirinterp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.1369

0.2956

1.728

3.1605

4.5929

6.0254
x 10

−14

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−16.4891

−13.0343

−9.5794

−6.1245

−2.6697

0.7852

P
ha

se
 (

ra
di

an
s)

dfilt.cascadewdfallpass

8-317

8dfilt.cascadewdfallpassPurpose Construct allpass wave digital filter (WDF) object by cascading allpass WDF
filter objects

Syntax hd = dfilt.cascadewdfallpass(c1,c2,...)

Description hd = dfilt.cascadewdfallpass(c1,c2,...) constructs a cascade of allpass
wave digital filters given the allpass coefficients in the vectors c1, c2, and so on.

Each c vector contains the coefficients for one section of the cascaded filter. C
vectors must have one, two, or four elements (coefficients). Three element
vectors are not supported.

When the c vector has four elements, the first and third elements of the vector
must be 0. Each section of the cascade is an allpass wave digital filter, from
dfilt.wdfallpass, with the coefficients given by the corresponding c vector.
That is, the first section has coefficients from vector c1, the second section
coefficients come from c2, and on until all of the c vectors are used.

You can mix the lengths of the c vectors. They do not need to be the same
length. For example, you can cascade several fourth-order sections
(length(c) = 4) with first or second-order sections.

Wave digital filters are usually used to create other filters. This toolbox uses
them to implement halfband filters, which the first example in Examples
demonstrates. They are most often building blocks for filters.

Generally, you do not construct these WDF allpass cascade filters directly.
Instead, they result from the design process for an IIR filter. Refer to the first
example in Examples for more about using dfilt.cascadewdfallpass to
design an IIR filter.

For more information about the c vectors and the transfer function for the
allpass filters, refer to dfilt.wdfallpass.

dfilt.cascadewdfallpass

8-318

Properties In the next table, the row entries are the filter properties and a brief
description of each property.

Examples To demonstrate two approaches to using dfilt.cascadewdfallpass to design
a filter, these examples show both direct construction and construction as part
of another filter.

The first design shown creates an IIR halfband filter that uses lattice wave
digital filters. Each branch of the parallel connetion in the lattice is an allpass
cascade wave digital filter.

tw = 100; % Transition width of filter to designe, 100 Hz.
ast = 80; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
d = fdesign.halfband('tw,ast',tw,ast,fs); % Store halfband specs.

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass wave
digital filter object

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. They also provide linkage between
the sections of a multisection filter, such as a
cascade filter. For details, refer to filtstates
in your Signal Processing Toolbox
documentation or in the Help system.

dfilt.cascadewdfallpass

8-319

Now perform the actual halfband design process. hd contains two
dfilt.cascadewdfallpass filters.

hd = design(f,'ellip','filterstructure','cascadewdfallpass');

hd.stage(2).stage(1) % Summary info on dfilt.cascadewdfallpass.
realizemdl(hd.stage(2).stage(1)) % Requires Simulink to realize model.

This example demonstrates direct construction of a dfilt.cascadewdfallpass
filter with allpass coefficients.

section1 = 0.8;
section2 = [1.5,0.7];
section3 = [1.8,0.9];
hd = dfilt.cascadewdfallpass(section1,section2,section3);
info(hd) % Show information about the filter.
fvtool(hd) % Visualize the filter.

Using FVTool lets you view the filter response.

dfilt.cascadewdfallpass

8-320

See Also dfilt, dfilt.wdfallpass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−2

0

2

4

6

8

10

12

14

16

x 10
−14

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

dfilt.df1

8-321

8dfilt.df1Purpose Construct discrete-time, direct-form I filter object

Syntax Refer to dfilt.df1 in the Signal Processing Toolbox.

Description hd = dfilt.df1 returns a default discrete-time, direct-form I filter object that
uses double-precision arithmetic. By default, the numerator and denominator
coefficients b and a are set to 1. With these coefficients the filter passes the
input to the output without changes.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

Note a(1), the leading denominator coefficient, cannot be 0. To allow you to
change the arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form I filter implemented
by dfilt.df1. To help you see how the filter processes the coefficients, input,
output, and states of the filter, as well as numerical operations, the figure
includes the locations of the arithmetic and data type format elements within
the signal flow.

dfilt.df1

8-322

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

InputFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

NumFormat

NumFormat

DenProdFormat

DenFormat

NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenAccumFormatDenAccumFormatNumAccumFormat DenAccumFormatNumAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1z

−1

z
−1

z
−1

1
input

dfilt.df1

8-323

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the
DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Properties In this table you see the properties associated with df1 implementations of
dfilt objects.

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale,
Signed, Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

dfilt.df1

8-324

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs stored
values. Choose from full precision
(FullPrecision), or whether to keep the most
significant bits (KeepMSB) or least significant bits
(KeepLSB) when output results need shorter
word length than the accumulator supports. To
let you set the word length and the precision (the
fraction length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives you
the options double, single, and fixed. In short,
this property defines the operating mode for
your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown in
the signal flow diagrams) before performing sum
operations.

dfilt.df1

8-325

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength and
DenFracLength properties to specify the
precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length the filter algorithm
uses to interpret the results of product
operations involving denominator coefficients.
You can change the value for this property when
you set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Stores the denominator coefficients for the IIR
filter.

DenProdFracLength Specifies how the filter algorithm interprets the
results of product operations involving
denominator coefficients. You can change this
property value when you set ProductMode to
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that perform
operations during filtering—gains, delays, sums,
products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

Property Name Brief Description

dfilt.df1

8-326

InputWordLength Specifies the word length applied to interpret
input data.

NumAccumFracLength Specifies how the filter algorithm interprets the
results of addition operations involving
numerator coefficients. You can change the value
of this property after you set AccumMode to
SpecifyPrecision.

Numerator Holds the numerator coefficient values for the
filter.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets the
results of product operations involving
numerator coefficients. Available to be changed
when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set OutputMode to
SpecifyPrecision.

OutputWordLength Determines the word length used for the output
data.

Property Name Brief Description

dfilt.df1

8-327

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic).
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

ProductMode Determines how the filter handles the output of
product operations. Choose from full precision
(FullPrecision), or whether to keep the most
significant bit (KeepMSB) or least significant bit
(KeepLSB) in the result when you need to shorten
the data words. For you to be able to set the
precision (the fraction length) used by the output
from the multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This property
becomes writable (you can change the value)
when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets you
decide whether your filter retains states from
previous filtering runs. False is the default
setting.

Property Name Brief Description

dfilt.df1

8-328

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always round. Finally,
products never overflow—they maintain full
precision.

Property Name Brief Description

dfilt.df1

8-329

Examples Specify a second-order direct-form I structure for a dfilt object, hd, with the
following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1(b,a)
hd =

 FilterStructure: 'Direct-Form I'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]

Now convert hd to a fixed-point filter:

set(hd,'arithmetic','fixed')
hd

hd =

 FilterStructure: 'Direct-Form I'
 Arithmetic: 'fixed'

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States This property contains the filter states before,
during, and after filter operations. States act as
filter memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to filtstates in your Signal
Processing Toolbox documentation or in the Help
system.

Property Name Brief Description

dfilt.df1

8-330

 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 fi]
 Denominator:[2x1 fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputFracLength: 15

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.df1t, dfilt.df2, dfilt.df2t

dfilt.df1sos

8-331

8dfilt.df1sosPurpose Construct discrete-time, direct-form I filter object that uses second-order
sections

Syntax Refer to dfilt.df1sos in the Signal Processing Toolbox.

Description hd = dfilt.df1sos(s) returns a discrete-time, second-order section,
direct-form I filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time, second-order
section, direct-form I filter object hd, with coefficients for the first section given
in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors,
and so on.

hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g are the
gains for each section. The maximum length of g is the number of sections plus
one. When you do not specify g, all gains default to one.

hd = dfilt.df1sos returns a default, discrete-time, second-order section,
direct-form I filter object, hd. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be equal
to 1.

dfilt.df1sos

8-332

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form I filter implemented
in second-order sections by dfilt.df1sos. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as numerical
operations, the figure includes the locations of the formatting objects within
the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

InputFormat

DenFormat

ScaleValueFormat

NumProdFormat

DenProdFormat

DenFormat

NumFormat

NumStateFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

DenAccumFormat DenAccumFormat DenStateFormat

DenProdFormat

OutputFormatInputFormat

ScaleValueFormat

NumStateFormat DenStateFormat

NumAccumFormat DenAccumFormat

NumStateFormat

ScaleValueFormat ScaleValueFormat
ScaleValueFormat

NumStateFormatDenStateFormat DenStateFormat

NumAccumFormat

2

Output2

1
output

b3

−K−−K− −K−

−K−

−K−

b2

b1

a3

a2

Section n

Cast

Section 1

Cast Cast

Section 2

[Sect1] [Sect1]

z
−1

z
−1

z
−1

z
−1

2
input

1
input1

dfilt.df1sos

8-333

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale,
Signed, Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

DenStateFormat DenStateWordLength DenStateFracLength CastBeforeSum,
States

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFormat NumStateWordLength NumStateFracLength States

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale,
ScaleValues

dfilt.df1sos

8-334

DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Properties In this table you see the properties associated with SOS implementation of
direct-form I dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

dfilt.df1sos

8-335

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change
this property value when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df1sos

8-336

DenStateFracLength Specifies the fraction length used to
interpret the states associated with
denominator coefficients in the filter.

DenStateWordLength Specifies the word length used to represent
the states associated with denominator
coefficients in the filter.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumStateFracLength Specifies the fraction length used to
interpret the states associated with
numerator coefficient operations in the filter.

NumWordFracLength Specifies the word length used to interpret
the states associated with numerator
coefficient operations in the filter.

Property Name Brief Description

dfilt.df1sos

8-337

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length applied for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description

dfilt.df1sos

8-338

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.df1sos

8-339

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting
this property controls how your filter
interprets the scale values by setting the
fraction length. Only available when you
disable AutoScaleMode by setting it to false.

ScaleValues Scaling for the filter objects in SOS filters.

Property Name Brief Description

dfilt.df1sos

8-340

Examples Specify a fixed-point, second-order section, direct-form I dfilt object with the
following code:

b=[0.3 0.6 0.3];
a=[1 0 0.2];
hd=dfilt.df1sos(b,a)

hd =

 FilterStructure: 'Direct-Form I, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
 ScaleValues: [2x1 double]

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a
filter with 6 coefficients per section and 15
sections, using data type double to represent
the coefficients.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.df1sos

8-341

 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form I, Second-Order Sections'
 ScaleValues: [2x1 double]
 Arithmetic: 'fixed'
 sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 fi]
 Denominator:[2x1 fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 NumStateWordLength: 16
 NumStateFracLength: 15

 DenStateWordLength: 16
 DenStateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

dfilt.df1sos

8-342

See Also dfilt, dfilt.df2tsos

dfilt.df1t

8-343

8dfilt.df1tPurpose Construct discrete-time, direct-form I transposed filter object

Syntax Refer to dfilt.df1t in the Signal Processing Toolbox.

Description hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter
object hd, with numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed
filter object hd, with b=1 and a=1. This filter passes the input through to the
output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be equal
to 1.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the transposed direct-form I filter
implemented by dfilt.df1t. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical operations, the
figure includes the locations of the formatting objects within the signal flow.

dfilt.df1t

8-344

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

OutputFormatMultiplicandFormat

DenAccFormat

DenStateFormat

DenStateFormat

DenProdFormat

DenProdFormat

DenFormat

DenFormat

NumFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

NumStateFormat

NumStateFormat

NumAccFormat

NumAccumFormatDenAccumFormatInputFormat

1
output

b3

b2

b1

a3

a2

Cast

CastCast

CastCast

Cast

z
−1

z
−1

z
−1

z
−1

1
input

dfilt.df1t

8-345

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the
DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed,
Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

DenStateFormat DenStateWordLength DenStateFracLength CastBeforeSum, States

InputFormat InputWordLength InputFracLength

MultiplicandFormat MultiplicandWordLength MultiplicandFracLength CastBeforeSum

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed,
Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFormat NumStateWordLength NumStateFracLength States

OutputFormat OutputWordLength OutputFracLength OutputMode

dfilt.df1t

8-346

Properties In this table you see the properties associated with df1t implementation of
dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

dfilt.df1t

8-347

CastBeforeSum Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Holds the denominator coefficients for the
filter.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change
this property value when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df1t

8-348

DenStateFracLength Specifies the fraction length used to
interpret the states associated with
denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

MultiplicandFracLength Sets the fraction length for values
(multiplicands) used in multiply operations
in the filter.

MultiplicandWordLength Sets the word length applied to the values
input to a multiply operation (the
multiplicands).

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for
the filter.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

Property Name Brief Description

dfilt.df1t

8-349

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

NumStateFracLength For IIR filters, this defines the binary point
location applied to the numerator states of
the filter. Specifies the fraction length used
to interpret the states associated with
numerator coefficient operations in the filter.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

Property Name Brief Description

dfilt.df1t

8-350

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.df1t

8-351

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if
the least significant bit (after rounding)
would be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

Property Name Brief Description

dfilt.df1t

8-352

Examples Specify a second-order direct-form I transposed filter structure for a dfilt
object, hd, with the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)

hd =

 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]

Now convert the filter to single-precision filtering arithmetic.

set(hd,'arithmetic','single')
hd
hd =

 FilterStructure: 'Direct-Form I Transposed'

StateAutoScale Setting autoscaling for filter states to true
reduces the possibility of overflows occurring
during fixed-point operations. Set to false,
StateAutoScale lets the filter select the
fraction length to limit the overflow
potential.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.df1t

8-353

 Arithmetic: 'fixed'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 fi]
 Denominator:[2x1 fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 MultiplicandWordLength: 16
 MultiplicandFracLength: 15

 StateWordLength: 16
 StateAutoScale: true

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.df1, dfilt.df2, dfilt.df2t

dfilt.df1tsos

8-354

8dfilt.df1tsosPurpose Construct discrete-time, second-order section, direct-form I transposed filter
object

Syntax Refer to dfilt.df1tsos in the Signal Processing Toolbox.

Description hd = dfilt.df1tsos(s) returns a discrete-time, second-order section,
direct-form I, transposed filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form I, transposed filter object hd, with coefficients
for the first section given in the b1 and a1 vectors, for the second section given
in the b2 and a2 vectors, etc.

hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements of g are
the gains for each section. The maximum length of g is the number of sections
plus one. If g is not specified, all gains default to one.

hd = dfilt.df1tsos returns a default, discrete-time, second-order section,
direct-form I, transposed filter object, hd. This filter passes the input through
to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be equal
to 1.

dfilt.df1tsos

8-355

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form I transposed filter
implemented using second-order sections by dfilt.df1tsos. To help you see
how the filter processes the coefficients, input, and states of the filter, as well
as numerical operations, the figure includes the locations of the formatting
objects within the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word

MultiplicandFormat

ScaleValueFormat

DenAccumFormat

DenStateFormat

DenStateFormat

DenProdFormat

DenProdFormat

DenFormat

DenFormat

NumFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

NumStateFormat

NumStateFormat

NumAccumFormat

NumAccumFormat

OutputFormat
InputFormat

DenAccumFormatStageInputFormat

StageInputFormat

InputFormat StageOutputFormat

ScaleValueFormat ScaleValueFormat ScaleValueFormat

StageOutputFormat StageInputFormat StageOutputFormat StageInputFormatNumAccumFormat DenAccumFormat

If scale value is equal to 1

2

Output2

1
output

b3

−K−

−K− −K−−K−

b2

b1

a3

a2

Section nCast

Cast Cast

Section 2

CastCast

CastCast

Section 1

[Sect1] [Sect1]

z
−1

z
−1

z
−1

z
−1

2
input

1
input1

dfilt.df1tsos

8-356

length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed,
Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

DenStateFormat DenStateWordLength DenStateFracLength CastBeforeSum, States

InputFormat InputWordLength InputFracLength

MultiplicandFormat MultiplicandWordLength MultiplicandFracLength CastBeforeSum

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed,
Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

NumStateFormat NumStateWordLength NumStateFracLength States

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale, ScaleValues

StageInputFormat StageInputWordLength StageInputFracLength StageInputAutoScale

StageOutputFormat StageOutputWordLength StageOutputFracLength StageOutputAutoScale

dfilt.df1tsos

8-357

include denominator coefficients. From reviewing the table, you see that the
DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Properties In this table you see the properties associated with SOS implementation of
transposed direct-form I dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

dfilt.df1tsos

8-358

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change
this property value when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df1tsos

8-359

DenStateFracLength Specifies the fraction length used to
interpret the states associated with
denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

MultiplicandFracLength Sets the fraction length for values
(multiplicands) used in multiply operations
in the filter.

MultiplicandWordLength Sets the word length applied to the values
input to a multiply operation (the
multiplicands)

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for
the filter.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

Property Name Brief Description

dfilt.df1tsos

8-360

NumStateFracLength For IIR filters, this defines the binary point
location applied to the numerator states of
the filter. Specifies the fraction length used
to interpret the states associated with
numerator coefficient operations in the filter.

NumStateWordLength For IIR filters, this defines the word length
applied to the numerator states of the filter.
Specifies the word length used to interpret
the states associated with numerator
coefficient operations in the filter.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

Property Name Brief Description

dfilt.df1tsos

8-361

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.df1tsos

8-362

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if
the least significant bit (after rounding)
would be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting
this property controls how your filter
interprets the scale values by setting the
fraction length. Only available when you
disable AutoScaleMode by setting it to
false.

Property Name Brief Description

dfilt.df1tsos

8-363

ScaleValues Scaling for the filter objects in SOS filters.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a
filter with 6 coefficients per section and 15
sections, using data type double to represent
the coefficients.

StageInputAutoScale Tells the filter whether to set the stage input
data format to minimize the occurrence of
overflow conditions.

StageInputFracLength Lets you set the fraction length for stage
inputs in SOS filters, if you set
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for stage inputs
in SOS filters, if you set
StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage
output data format to minimize the
occurrence of overflow conditions.

StageOutputFracLength Lets you set the fraction length for stage
outputs in SOS filters, if you set
StageOutputAutoScale to false.

StageOutputWordLength Lets you set the word length for stage
outputs in SOS filters, if you set
StageOutputAutoScale to false.

Property Name Brief Description

dfilt.df1tsos

8-364

Examples With the following code, this example specifies a second-order section,
direct-form I transposed dfilt object for a filter. Then we convert the filter to
fixed-point operation.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)

hd =

 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]

set(hd,'arithmetic','fixed')
hd

hd =

StateAutoScale Setting autoscaling for filter states to true
reduces the possibility of overflows occurring
during fixed-point operations. Set to false,
StateAutoScale lets the filter select the
fraction length to limit the overflow
potential.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.df1tsos

8-365

 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'fixed'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: Numerator: [2x1 fi]
 Denominator:[2x1 fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 MultiplicandWordLength: 16
 MultiplicandFracLength: 15

 StateWordLength: 16
 StateAutoScale: true

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.df1sos, dfilt.df2sos, dfilt.df2tsos

dfilt.df2

8-366

8dfilt.df2Purpose Construct discrete-time, direct-form II filter object

Syntax Refer to dfilt.df2 in the Signal Processing Toolbox.

Description hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter object hd,
with numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.df2 returns a default, discrete-time, direct-form II filter object hd,
with b=1 and a=1. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be equal
to 1.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form II filter implemented
by dfilt.df2. To help you see how the filter processes the coefficients, input,
and states of the filter, as well as numerical operations, the figure includes the
locations of the formatting objects within the signal flow.

dfilt.df2

8-367

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

DenAccumFormat

NumProdFormat

NumAccumFormatDenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1

z
−1

1
input

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale,
Signed, Denominator

dfilt.df2

8-368

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the
DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Properties In this table you see the properties associated with the df2 implementation of
dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

dfilt.df2

8-369

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

dfilt.df2

8-370

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Holds the denominator coefficients for IIR
filters.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change
this property value when you set
ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

Property Name Brief Description

dfilt.df2

8-371

InputWordLength Specifies the word length applied to
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for
the filter.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df2

8-372

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description

dfilt.df2

8-373

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.df2

8-374

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if
the least significant bit (after rounding)
would be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

Property Name Brief Description

dfilt.df2

8-375

Examples Specify a second-order direct-form II filter structure for a dfilt object, hd, with
the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2(b,a)

hd =
 FilterStructure: 'Direct Form II'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 NumberOfSamplesProcessed: 0
 ResetStates: 'on'
 States: [2x1 double]

To convert the filter to fixed-point arithmetic, change the value of the
Arithmetic property

set(hd,'arithmetic','fixed')

to specify the fixed-point option.

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2t

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.df2sos

8-376

8dfilt.df2sosPurpose Construct discrete-time, second-order section, direct-form II filter object

Syntax Refer to dfilt.df2sos in the Signal Processing Toolbox.

Description hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time, second-order
section, direct-form II object, hd, with coefficients for the first section given in
the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.

hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g are the
gains for each section. The maximum length of g is the number of sections plus
one. If g is not specified, all gains default to one.

hd = dfilt.df2sos returns a default, discrete-time, second-order section,
direct-form II filter object, hd. This filter passes the input through to the output
unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be equal
to 1.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form II filter implemented
with second-order sections by dfilt.df2sos. To help you see how the filter

dfilt.df2sos

8-377

processes the coefficients, input, and states of the filter, as well as numerical
operations, the figure includes the locations of the formatting objects within
the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

StateFormatInputFormat

ScaleValueFormat NumFormat

NumProdFormat NumAccumFormat
StageOutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

StageInputFormat

OutputFormatInputFormat StageInputFormat

DenAccumFormat DenAccumFormat NumAccumFormat

StageInputFormat

ScaleValueFormat

NumAccumFormat

ScaleValueFormat ScaleValueFormat

DenAccumFormat StageOutputFormat StageInputFormat StageOutputFormat

If scale value is equal to 1

2
output2

1
output

b3

−K−

−K− −K−−K−

b2

b1

a3

a2

Section nCastSection 1

CastCast Cast

Section 2

Cast [Sect1] [Sect1]

z
−1

z
−1

2
input

1
input1

dfilt.df2sos

8-378

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the
DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed,
sosMatrix

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength,
sosMatrix

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed,
sosMatrix

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale, ScaleValues

StageInputFormat StageInputWordLength StageInputFracLength StageInputAutoScale

StageOutputFormat StageOutputWordLength StageOutputFracLength StageOutputAutoScale

StateFormat StateWordLength StateFracLength CastBeforeSum, States

dfilt.df2sos

8-379

Properties In this table you see the properties associated with second-order section
implementation of direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

dfilt.df2sos

8-380

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change
this property value when you set
ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

Property Name Brief Description

dfilt.df2sos

8-381

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df2sos

8-382

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects only
the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description

dfilt.df2sos

8-383

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.df2sos

8-384

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting
this property controls how your filter
interprets the scale values by setting the
fraction length. Only available when you
disable AutoScaleMode by setting it to false.

ScaleValues Scaling for the filter objects in SOS filters.

Property Name Brief Description

dfilt.df2sos

8-385

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a
filter with 6 coefficients per section and 15
sections, using data type double to represent
the coefficients.

StageInputAutoScale Tells the filter whether to set the stage input
data format to minimize the occurrence of
overflow conditions.

StageInputFracLength Lets you set the fraction length for stage
inputs in SOS filters, if you set
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for stage inputs
in SOS filters, if you set
StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage
output data format to minimize the
occurrence of overflow conditions.

StageOutputFracLength Lets you set the fraction length for stage
outputs in SOS filters, if you set
StageOutputAutoScale to false.

StageOutputWordLength Lets you set the word length for stage
outputs in SOS filters, if you set
StageOutputAutoScale to false.

Property Name Brief Description

dfilt.df2sos

8-386

Examples Specify a second-order section, direct-form II dfilt object for a Butterworth
filter converted to second-order sections, with the following code:

[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(s,g)

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2x15 double]

With the SOS filter constructed, now change the filter operation to
single-precision filtering, and then to fixed-point filtering.

set(hd,'arithmetic','single')
hd

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'single'

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.df2sos

8-387

 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2x15 single]

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 StageInputWordLength: 16
 StageInputAutoScale: true

 StageOutputWordLength: 16
 StageOutputAutoScale: true

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

dfilt.df2sos

8-388

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2tsos

dfilt.df2t

8-389

8dfilt.df2tPurpose Construct discrete-time, direct-form II transposed filter object

Syntax Refer to dfilt.df2t in the Signal Processing Toolbox.

Description hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed
filter object hd, with numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed
filter object hd, with b=1 and a=1. This filter passes the input through to the
output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be equal
to 1.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form II transposed filter
implemented by dfilt.df2t. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical operations, the
figure includes the locations of the formatting objects within the signal flow.

dfilt.df2t

8-390

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

NumAccumFormat

StateFormat

StateFormat

InputFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

DenFormat

DenFormat

DenProdFormat

DenProdFormat

DenAccumFormat

NumFormat

OutputFormat

NumAccumFormat

DenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast

Cast

Cast

z
−1

z
−1

1
input

dfilt.df2t

8-391

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode,
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale,
Signed, Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode,
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

StateFormat StateWordLength StateFracLength States

dfilt.df2t

8-392

DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Properties In this table you see the properties associated with df2t implementation of
dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

dfilt.df2t

8-393

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

Denominator Holds the denominator coefficients for IIR
filters.

Property Name Brief Description

dfilt.df2t

8-394

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change
this property value when you set
ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for
the filter.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df2t

8-395

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description

dfilt.df2t

8-396

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.df2t

8-397

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

Property Name Brief Description

dfilt.df2t

8-398

Examples Create a fixed-point filter by specifying a second-order direct-form II
transposed filter structure for a dfilt object, and then converting the
double-precision arithmetic setting to fixed-point.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t(b,a)

hd =

 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [2x1 double]

set(hd,'arithmetic','fixed')

StateAutoScale Setting autoscaling for filter states to true
reduces the possibility of overflows occurring
during fixed-point operations. Set to false,
StateAutoScale lets the filter select the
fraction length to limit the overflow
potential.

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.df2t

8-399

hd

hd =

 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'fixed'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputFracLength: 15

 StateWordLength: 16
 StateAutoScale: true

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2

dfilt.df2tsos

8-400

8dfilt.df2tsosPurpose Construct discrete-time, second-order section direct-form II transposed filter
object

Syntax Refer to dfilt.df2tsos in the Signal Processing Toolbox.

Description hd = dfilt.df2sos(s) returns a discrete-time, second-order section,
direct-form II, transposed filter object hd, with coefficients given in the matrix
s.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time,
second-order section, direct-form II, transposed filter object hd, with
coefficients for the first section given in the b1 and a1 vectors, for the second
section given in the b2 and a2 vectors, etc.

hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements of g are
the gains for each section. The maximum length of g is the number of sections
plus one. If g is not specified, all gains default to one.

hd = dfilt.df2tsos returns a default, discrete-time, second-order section,
direct-form II, transposed filter object, hd. This filter passes the input through
to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0. To allow
you to change the arithmetic setting to fixed or single, a(1) must be equal
to 1.

dfilt.df2tsos

8-401

Fixed-Point
Filter Structure

The figure below shows the signal flow for the second-order section transposed
direct-form II filter implemented by dfilt.dftsos. To help you see how the
filter processes the coefficients, input, and states of the filter, as well as
numerical operations, the figure includes the locations of the formatting objects
within the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

NumAccumFormat

StateFormat

StateFormat

InputFormat

ScaleValueFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

DenFormat

DenFormat

DenProdFormat

DenProdFormat

DenAccFormat

NumAccumFormat

NumFormat

NumAccumFormat

StageOutputFormatStageInputFormat

OutputFormat
InputFormat

ScaleValueFormat ScaleValueFormat ScaleValueFormat ScaleValueFormat

StageInputFormat StageOutputFormat StageInputFormat StageOutputFormat StageInputFormat StageOutputFormat

2

output2

1

output

b3

−K−−K− −K−

−K−

−K−

b2

b1

a3

a2

Cast

Section 1

Cast

Cast

Section n

Cast

Section 2

[Sect1] [Sect1]

z
−1

z
−1

2

input1

1

input

dfilt.df2tsos

8-402

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label DenProdFormat, which always follows
a denominator coefficient multiplication element in the signal flow. The label
indicates that denominator coefficients leave the multiplication element with
the word length and fraction length associated with product operations that

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed,
Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode,
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed,
Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength,
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale,
ScaleValues

StageInputFormat StageInputWordLength StageInputFracLength StageInputAutoScale

StageOutputFormat StageOutputWordLength StageOutputFracLength StageOutputAutoScale

StateFormat StateWordLength StateFracLength States

dfilt.df2tsos

8-403

include denominator coefficients. From reviewing the table, you see that the
DenProdFormat refers to the properties ProdWordLength, ProductMode and
DenProdFracLength that fully define the denominator format after multiply (or
product) operations.

Properties In this table you see the properties associated with second-order section
implementation of transposed direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

dfilt.df2tsos

8-404

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength and DenFracLength
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

DenAccumFracLength Specifies the fraction length used to
interpret data in the accumulator used to
hold the results of sum operations. You can
change the value for this property when you
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to
interpret denominator coefficients.
DenFracLength is always available, but it is
read-only until you set CoeffAutoScale to
false.

DenProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
denominator coefficients. You can change
this property value when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df2tsos

8-405

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets
the results of addition operations involving
numerator coefficients. You can change the
value of this property after you set
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets
the results of product operations involving
numerator coefficients. Available to be
changed when you set ProductMode to
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.df2tsos

8-406

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description

dfilt.df2tsos

8-407

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.df2tsos

8-408

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if
the least significant bit (after rounding)
would be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting
this property controls how your filter
interprets the scale values by setting the
fraction length. Only available when you
disable AutoScaleMode by setting it to
false.

Property Name Brief Description

dfilt.df2tsos

8-409

ScaleValues Scaling for the filter objects in SOS filters.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property
values—you use set and get to modify
them. Displays the matrix in the format
[sections x coefficients/section data type].
A [15x6 double] SOS matrix represents
a filter with 6 coefficients per section and 15
sections, using data type double to represent
the coefficients.

StageInputFracLength Lets you set the fraction length for stage
inputs in SOS filters, if you set
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for stage inputs
in SOS filters, if you set
StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage
output data format to minimize the
occurrence of overflow conditions.

StageOutputFracLength Lets you set the fraction length for stage
outputs in SOS filters, if you set
StageOutputAutoScale to off.

StageOutputWordLength Lets you set the word length for stage
outputs in SOS filters, if you set
StageOutputAutoScale to false.

Property Name Brief Description

dfilt.df2tsos

8-410

Examples Construct a second-order section Butterworth filter for fixed-point filtering.
Start by specifying a Butterworth filter, and then convert the filter to
second-order sections, with the following code:

[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2tsos(s,g)

hd =

 FilterStructure: [1x48 char]
 Arithmetic: 'double'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2x15 double]

StateAutoScale Setting autoscaling for filter states to true
reduces the possibility of overflows occurring
during fixed-point operations. Set to false,
StateAutoScale lets the filter select the
fraction length to limit the overflow
potential.

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.df2tsos

8-411

Now change the setting of the property Arithmetic to convert the filter to
fixed-point operation.

hd.arithmetic='fixed'

hd =

 FilterStructure: [1x48 char]
 Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 StageInputWordLength: 16
 StageInputFracLength: 15

 StageOutputWordLength: 16
 StageOutputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateAutoScale: true

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'

dfilt.df2tsos

8-412

 OverflowMode: 'wrap'

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2sos

dfilt.dfasymfir

8-413

8dfilt.dfasymfirPurpose Construct discrete-time, direct-form antisymmetric FIR filter object

Syntax Refer to dfilt.dfasymfir in the Signal Processing Toolbox.

Description hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form,
antisymmetric FIR filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.dfasymfir returns a default, discrete-time, direct-form,
antisymmetric FIR filter object hd, with b=1. This filter passes the input
through to the output unchanged.

Note Only the coefficients in the first half of vector b are used because
dfilt.dfasymfir assumes the coefficients in the second half are
antisymmetric to those in the first half. For example, in the figure coefficients,
b(4) = -b(3), b(5) = -b(2), and b(6) = -b(1).

Fixed-Point
Filter Structure

The figure below shows the signal flow for the odd-order antisymmetric FIR
filter implemented by dfilt.dfasymfir. The even-order filter uses similar
flow. To help you see how the filter processes the coefficients, input, and states
of the filter, as well as numerical operations, the figure includes the locations
of the formatting objects within the signal flow.

dfilt.dfasymfir

8-414

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

InputFormat InputFormat

TapSumFormat

TapSumFormat

TapSumFormat

NumFormat

NumFormat

NumFormat

ProductFormat

ProductFormat

ProductFormat

AccumFormat AccumFormat OutputFormat
1

Output

b3

b2

b1

Cast

Cast

z
−1

z
−1

z
−1

z
−1

z
−1

1

Input

dfilt.dfasymfir

8-415

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength and ProductWordLength that fully define the coefficient
format after multiply (or product) operations.

Properties In this table you see the properties associated with an antisymmetric FIR
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength

TapSumFormat InputWordLength InputFracLength InputFormat

dfilt.dfasymfir

8-416

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits
[27]

Specifies the fraction length used to interpret
data output by the accumulator.

AccumWordLength Any integer
number of bits[33]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

dfilt.dfasymfir

8-417

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data. Also controls
TapSumFracLength.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data. Also determines TapSumWordLength.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[29]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[33]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

dfilt.dfasymfir

8-418

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic).
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

ProductFracLength Any positive or
negative integer
number of bits [27]

Specifies the fraction length to use for
multiplication operation results. This property
becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

ProductWordLength Any integer
number of bits
[33]

Specifies the word length to use for
multiplication operation results. This property
becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

Name Values Description

dfilt.dfasymfir

8-419

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

dfilt.dfasymfir

8-420

Examples Odd Order
Specify a fifth-order direct-form antisymmetric FIR filter structure for a dfilt
object, hd, with the following code:

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hd = dfilt.dfasymfir(b)

hd =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]
 PersistentMemory: false

set(hd,'arithmetic','fixed')
hd =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter
arithmetic setting

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system.

Name Values Description

dfilt.dfasymfir

8-421

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

Now look at the coefficients after converting hd to fixed-point format.

get(hd,'numerator')

ans =

 -0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080

Even Order
Specify a fourth-order direct-form antisymmetric FIR filter structure for dfilt
object hd, with the following code:

b = [-0.01 0.1 0.0 -0.1 0.01];
hd = dfilt.dfasymfir(b)

hd =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
 PersistentMemory: false

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

dfilt.dfasymfir

8-422

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

get(hd,'numerator')

ans =

 -0.0100 0.1000 0 -0.1000 0.0100

See Also dfilt, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir

dfilt.dffir

8-423

8dfilt.dffirPurpose Construct discrete-time direct-form FIR filter object

Syntax Refer to dfilt.dffir in the Signal Processing Toolbox.

Description hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse
response (FIR) filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter
object hd, with b=1. This filter passes the input through to the output
unchanged.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form FIR filter
implemented by dfilt.dffir. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical operations, the
figure includes the locations of the formatting objects within the signal flow.

dfilt.dffir

8-424

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

input output

InputFormat

NumFormat

ProductFormat OutputFormat

ProductFormat

AccumFormat

NumFormat

NumFormat

ProductFormat

AccumFormat
1CastCast

b3

b2

b1

z
−1

z
−1

1

dfilt.dffir

8-425

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength and ProductWordLength that fully define the coefficient
format after multiply (or product) operations.

Properties In this table you see the properties associated with direct-form FIR
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength

dfilt.dffir

8-426

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits
[30]

Specifies the fraction length used to interpret
data output by the accumulator.

AccumWordLength Any integer
number of bits[34]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

dfilt.dffir

8-427

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

dfilt.dffir

8-428

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic).
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

ProductFracLength Any positive or
negative integer
number of bits [30]

Specifies the fraction length to use for
multiplication operation results. This property
becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

ProductWordLength Any integer
number of bits
[32]

Specifies the word length to use for
multiplication operation results. This property
becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

Name Values Description

dfilt.dffir

8-429

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

dfilt.dffir

8-430

Examples Specify a second-order direct-form FIR filter structure for a dfilt object hd,
with the following code that constructs the filter in double-precision format and
then converts the filter to fixed-point operation:

b = [0.05 0.9 0.05];
hd = dfilt.dffir(b)

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter
arithmetic setting

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system.

Name Values Description

dfilt.dffir

8-431

 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

hd.filterInternals='specifyPrecision'

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'SpecifyPrecision'

 OutputWordLength: 34
 OutputFracLength: 30

 ProductWordLength: 32
 ProductFracLength: 30

 AccumWordLength: 34
 AccumFracLength: 30

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir

dfilt.dffirt

8-432

8dfilt.dffirtPurpose Construct discrete-time, direct-form FIR transposed filter object

Syntax Refer to dfilt.dffirt in the Signal Processing Toolbox.

Description hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed
filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR
transposed filter object hd, with b=1. This filter passes the input through to the
output unchanged.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the transposed direct-form FIR filter
implemented by dfilt.dffirt. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical operations, the
figure includes the locations of the formatting objects within the signal flow.

dfilt.dffirt

8-433

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

InputFormat

NumFormat

ProductFormat

NumFormat

NumFormat

ProductFormat

ProductFormat

AccumFormat OutputFormat

AccumFormat

NumFormat

ProductFormat

AccumFormat

AccumFormat

1

Output

b4

b3

b2

b1Cast Cast

Cast

z
−1

z
−1

z
−1

1

Input

dfilt.dffirt

8-434

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength and ProductWordLength that fully define the coefficient
format after multiply (or product) operations.

Properties In this table you see the properties associated with the transposed direct-form
FIR implementation of dfilt objects.

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed,
Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength

dfilt.dffirt

8-435

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits
[30]

Specifies the fraction length used to interpret
data output by the accumulator.

AccumWordLength Any integer
number of bits[34]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

dfilt.dffirt

8-436

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[30]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[34]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

dfilt.dffirt

8-437

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic).
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

Name Values Description

dfilt.dffirt

8-438

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

dfilt.dffirt

8-439

Examples Specify a second-order direct-form FIR transposed filter structure for a dfilt
object, hd, with the following code:

b = [0.05 0.9 0.05];
hd = dfilt.dffirt(b)

hd =

 FilterStructure: 'Direct-Form FIR Transposed'
 Arithmetic: 'double'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false

Now use the filter property Arithmetic to change the filter to fixed-point
format.

set(hd,'arithmetic','fixed')
hd

hd =

 FilterStructure: 'Direct-Form FIR Transposed'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter
arithmetic setting

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system.

Name Values Description

dfilt.dffirt

8-440

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

hd.filterInternals='specifyPrecision'

hd =

 FilterStructure: 'Direct-Form FIR Transposed'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'SpecifyPrecision'

 OutputWordLength: 34
 OutputFracLength: 30

 ProductWordLength: 32
 ProductFracLength: 30

 AccumWordLength: 34
 AccumFracLength: 30

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

dfilt.dffirt

8-441

See Also dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dfsymfir

dfilt.dfsymfir

8-442

8dfilt.dfsymfirPurpose Construct discrete-time, direct-form symmetric FIR filter object

Syntax Refer to dfilt.dfsymfir in the Signal Processing Toolbox.

Description hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR
filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric
FIR filter object hd, with b=1. This filter passes the input through to the output
unchanged.

Note Only the coefficients in the first half of vector b are used because
dfilt.dfsymfir assumes the coefficients in the second half are symmetric to
those in the first half. In the figure below, for example, b(3) = 0, b(4) = b(2) and
b(5) = b(1).

Fixed-Point
Filter Structure

In the following figure you see the signal flow diagram for the symmetric FIR
filter that dfilt.dfsymfir implements.

dfilt.dfsymfir

8-443

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

InputFormat InputFormat

TapSumFormat

TapSumFormat

TapSumFormat

NumFormat

NumFormat

NumFormat

ProductFormat

ProductFormat

ProductFormat

AccumFormat AccumFormat OutputFormat
1

Output

b3

b2

b1

Cast

Cast

z
−1

z
−1

z
−1

z
−1

z
−1

1

Input

dfilt.dfsymfir

8-444

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength and ProductWordLength that fully define the coefficient
format after multiply (or product) operations.

Properties In this table you see the properties associated with the symmetric FIR
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale,
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength

TapSumFormat InputWordLength InputFracLength

dfilt.dfsymfir

8-445

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3..

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits
[27]

Specifies the fraction length used to interpret
data output by the accumulator.

AccumWordLength Any integer
number of bits[33]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

dfilt.dfsymfir

8-446

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[29]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[33]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

dfilt.dfsymfir

8-447

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic).
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

ProductFracLength Any positive or
negative integer
number of bits [29]

Specifies the fraction length to use for
multiplication operation results. This property
becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

ProductWordLength Any integer
number of bits
[33]

Specifies the word length to use for
multiplication operation results. This property
becomes writable (you can change the value)
when you set ProductMode to SpecifyPrecision.

Name Values Description

dfilt.dfsymfir

8-448

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

dfilt.dfsymfir

8-449

Examples Odd Order
Specify a fifth-order direct-form symmetric FIR filter structure for a dfilt
object hd, with the following code:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd = dfilt.dfsymfir(b)

hd =

 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
 PersistentMemory: false

set(hd,'arithmetic','fixed')
hd

hd =

 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
 PersistentMemory: false

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter
arithmetic setting

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system.

Name Values Description

dfilt.dfsymfir

8-450

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

hd.filterinternals='specifyPrecision'

hd =

 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
 PersistentMemory: false

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'SpecifyPrecision'

 OutputWordLength: 36
 OutputFracLength: 31

 ProductWordLength: 33
 ProductFracLength: 31

 AccumWordLength: 36
 AccumFracLength: 31

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

dfilt.dfsymfir

8-451

To use hd for fixed-point filtering, change the value of the property Arithmetic
to fixed with the following command:

hd.arithmetic = 'fixed'

Even Order
Specify a fourth-order, fixed-point, direct-form symmetric FIR filter structure
for a dfilt object hd, with the following code:

b = [-0.01 0.1 0.8 0.1 -0.01];
hd = dfilt.dfsymfir(b)

hd =

 FilterStructure: 'Direct-Form Symmetric FIR'

 Arithmetic: 'double'

 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

 PersistentMemory: false

set(hd,'arithmetic','fixed')

hd

hd =

 FilterStructure: 'Direct-Form Symmetric FIR'

 Arithmetic: 'fixed'

 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

 PersistentMemory: false

 CoeffWordLength: 16

 CoeffAutoScale: true

 Signed: true

 InputWordLength: 16

 InputFracLength: 15

 FilterInternals: 'FullPrecision'

hd.filterinternals='specifyPrecision'

dfilt.dfsymfir

8-452

hd =

 FilterStructure: 'Direct-Form Symmetric FIR'

 Arithmetic: 'fixed'

 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

 PersistentMemory: false

 CoeffWordLength: 16

 CoeffAutoScale: true

 Signed: true

 InputWordLength: 16

 InputFracLength: 15

 FilterInternals: 'SpecifyPrecision'

 OutputWordLength: 36

 OutputFracLength: 30

 ProductWordLength: 33

 ProductFracLength: 30

 AccumWordLength: 36

 AccumFracLength: 30

 RoundMode: 'convergent'

OverflowMode: 'wrap'

See Also dfilt, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt

dfilt.latticeallpass

8-453

8dfilt.latticeallpassPurpose Construct discrete-time, lattice allpass filter object

Syntax Refer to dfilt.latticeallpass in the Signal Processing Toolbox.

Description hd = dfilt.latticeallpass(k) returns a discrete-time, lattice allpass filter
object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass
filter object hd, with k=[]. This filter passes the input through to the output
unchanged.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the allpass lattice filter implemented
by dfilt.latticeallpass. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical operations, the
figure includes the locations of the formatting objects within the signal flow.

dfilt.latticeallpass

8-454

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

LatticeFormat

InputFormat

OutputFormat

AccumFormat

StateFormat

LatticeFormat LatticeFormat

LatticeFormat

ProductFormat

ProductFormat

AccumFormat

ProductFormat

ProductFormat

StateFormat

StateFormat

StateFormat

StateFormat

AccumFormat AccumFormat

StateFormat

1

Output

Cast

CastCast

Cast

Cast

Cast

k2 K1

−K− −K−

z
−1

z
−1

1

Input

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength

dfilt.latticeallpass

8-455

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the allpass lattice
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

dfilt.latticeallpass

8-456

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and lattice
filters. IIR filters have two similar
properties—DenAccumFracLength and
NumAccumFracLength—that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

dfilt.latticeallpass

8-457

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
LatticeFracLength property value to
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

Lattice Any lattice structure coefficients. No default
value.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticeallpass

8-458

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you
can change the value) when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticeallpass

8-459

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.latticeallpass

8-460

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

Property Name Brief Description

dfilt.latticeallpass

8-461

Examples Specify a third-order lattice allpass filter structure for a dfilt object hd, with
the following code:

k = [.66 .7 .44];
hd=dfilt.latticeallpass(k);

Now convert hd to fixed-point arithmetic form.

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Lattice Allpass'
 Arithmetic: 'fixed'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.latticeallpass

8-462

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax,
dfilt.latticemamin

dfilt.latticear

8-463

8dfilt.latticearPurpose Construct discrete-time, lattice, autoregressive filter object

Syntax Refer to dfilt.latticear in the Signal Processing Toolbox.

Description hd = dfilt.latticear(k) returns a discrete-time, lattice autoregressive
filter object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive
filter object hd, with k=[]. This filter passes the input through to the output
unchanged.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the autoregressive lattice filter
implemented by dfilt.latticear. To help you see how the filter processes the
coefficients, input, and states of the filter, as well as numerical operations, the
figure includes the locations of the formatting objects within the signal flow.

dfilt.latticear

8-464

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

InputFormat AccumFormat

ProductFormat

StateFormat AccumFormat

AccumFormat

ProductFormat

ProductFormat

LatticeFormat LatticeFormat

LatticeFormat

StateFormat

StateFormat

StateFormat

OutputFormat
1

Output

Cast

CastCast

Cast

Cast

k2 k1

−K−

z
−1

z
−1

1

Input

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength

dfilt.latticear

8-465

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the autoregressive lattice
implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

dfilt.latticear

8-466

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and lattice
filters. IIR filters have two similar
properties—DenAccumFracLength and
NumAccumFracLength—that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

dfilt.latticear

8-467

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
LatticeFracLength to specify the precision
used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticear

8-468

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you
can change the value) when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticear

8-469

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.latticear

8-470

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

Property Name Brief Description

dfilt.latticear

8-471

Examples Specify a third-order lattice autoregressive filter structure for a dfilt object,
hd, with the following code that creates a fixed-point filter.

k = [.66 .7 .44];
hd1=dfilt.latticear(k)

hd1 =

 FilterStructure: 'Lattice Autoregressive (AR)'
 Arithmetic: 'double'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [3x1 double]

hd1.arithmetic='fixed'

hd1 =

 FilterStructure: 'Lattice Autoregressive (AR)'
 Arithmetic: 'fixed'

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.latticear

8-472

 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

specifyall(hd1)
hd1

hd1 =

 FilterStructure: 'Lattice Autoregressive (AR)'
 Arithmetic: 'fixed'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: false
 LatticeFracLength: 15

dfilt.latticear

8-473

 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'SpecifyPrecision'
 OutputFracLength: 12

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'SpecifyPrecision'
 ProductWordLength: 32
 ProductFracLength: 30

 AccumMode: 'SpecifyPrecision'
 AccumWordLength: 40
 AccumFracLength: 30
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.latticeallpass, dfilt.latticearma, dfilt.latticemamax,
dfilt.latticemamin

dfilt.latticearma

8-474

8dfilt.latticearmaPurpose Construct discrete-time, lattice, autoregressive, moving-average filter object

Syntax Refer to dfilt.latticearma in the Signal Processing Toolbox.

Description hd = dfilt.latticearma(k) returns a discrete-time, lattice moving-average
autoregressive filter object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

hd = dfilt.latticearma returns a default, discrete-time, lattice
moving-average, autoregressive filter object hd, with k=[]. This filter passes
the input through to the output unchanged.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the autoregressive lattice filter
implemented by dfilt.latticearma. To help you see how the filter processes
the coefficients, input, and states of the filter, as well as numerical operations,
the figure includes the locations of the formatting objects within the signal
flow.

dfilt.latticearma

8-475

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to

LadderAccumFormat

LadderFormat

InputFormat LatticeAccumFormat

LatticeProdFormat

LatticeAccumFormat

StateFormat

LatticeFormat

LatticeFormatLatticeFormat

LatticeProdFormat

LatticeProdFormat

LatticeAccumFormat

LadderFormat

LadderProdFormat LadderProdFormat

OutputFormat

StateFormat

1

Output

v2 v1

Cast

Cast

Cast

Cast

k2 k1

conj(k)

z
−1

z
−1

1

Input

dfilt.latticearma

8-476

the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label LatticeProdFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
lattice coefficients leave the multiplication element with the word length and
fraction length associated with product operations that include coefficients.
From reviewing the table, you see that the LatticeProdFormat refers to the
properties ProductWordLength, LatticeProdFracLength, and ProductMode
that fully define the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the autoregressive
moving-average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

Signal Flow Label Word Length
Property

Fraction Length Property Related Properties

InputFormat InputWordLength InputFracLength

LadderAccumFormat AccumWordLength LadderAccumFracLength AccumMode

LadderFormat CoeffWordLength LadderFracLength CoeffAutoScale

LadderProdFormat ProductWordLength LadderProdFracLength ProductMode

LatticeAccumFormat AccumWordLength LatticeAccumFracLength AccumMode

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

LatticeProdFormat ProductWordLength LatticeProdFracLength ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

StateFormat StateWordLength StateFracLength States

dfilt.latticearma

8-477

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and lattice
filters. IIR filters have two similar
properties—DenAccumFracLength and
NumAccumFracLength—that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

dfilt.latticearma

8-478

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
LatticeFracLength property to specify the
precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

Ladder Stores the ladder coefficients for lattice
ARMA (dfilt.latticearma) filters.

Property Name Brief Description

dfilt.latticearma

8-479

LadderAccumFracLength Sets the fraction length used to interpret the
output from sum operations that include the
ladder coefficients. You can change this
property value after you set AccumMode to
SpecifyPrecision.

LadderFracLength Determines the precision used to represent
the ladder coefficients in ARMA lattice
filters.

Lattice Stores the lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

Property Name Brief Description

dfilt.latticearma

8-480

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you
can change the value) when you set
ProductMode to SpecifyPrecision.

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

Property Name Brief Description

dfilt.latticearma

8-481

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description

dfilt.latticearma

8-482

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticemamin,
dfilt.latticemamin

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.latticemamax

8-483

8dfilt.latticemamaxPurpose Construct discrete-time, lattice, moving-average filter object with maximum
phase

Syntax Refer to dfilt.latticemamax in the Signal Processing Toolbox.

Description hd = dfilt.latticemamax(k) returns a discrete-time, lattice,
moving-average filter object hd, with lattice coefficients k.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

Note When the k coefficients define a maximum phase filter, the resulting
filter in this structure is maximum phase. When your coefficients do not
define a maximum phase filter, placing them in this structure does not
produce a maximum phase filter.

hd = dfilt.latticemamax returns a default discrete-time, lattice,
moving-average filter object hd, with k=[]. This filter passes the input through
to the output unchanged.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the maximum phase implementation
of a moving-average lattice filter implemented by dfilt.latticemamax. To
help you see how the filter processes the coefficients, input, and states of the
filter, as well as numerical operations, the figure includes the locations of the
formatting objects within the signal flow.

dfilt.latticemamax

8-484

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

InputFormat

StateFormat

LatticeFormat

LatticeFormat

ProductFormat

ProductFormat

AccumFormat StateFormat

StateFormat
LatticeFormat

LatticeFormat

ProductFormat

ProductFormat

AccumFormat StateFormat

LatticeFormat
StateFormat

ProductFormat

OutputFormat
AccumFormat

AccumFormat AccumFormat

1

Output

Cast

Cast

Cast

Cast

Cast

Cast

Cast

k2k3

conj(k)conj(k)conj(k)

z
−1

z
−1

z
−1

1

Input

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength

LatticeFormat

dfilt.latticemamax

8-485

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the maximum phase,
moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

dfilt.latticemamax

8-486

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and lattice
filters. IIR filters have two similar
properties—DenAccumFracLength and
NumAccumFracLength—that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

dfilt.latticemamax

8-487

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
LatticeFracLength property to specify the
precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticemamax

8-488

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you
can change the value) when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticemamax

8-489

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.latticemamax

8-490

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

Property Name Brief Description

dfilt.latticemamax

8-491

Examples Specify a fourth-order lattice, moving-average, maximum phase filter
structure for a dfilt object, hd, with the following code:

k = [.66 .7 .44 .33];
hd = dfilt.latticemamax(k)

hd =
 FilterStructure: 'Lattice maximum phase'
 Lattice: [1x4 double]
 NumberOfSamplesProcessed: 0
 ResetStates: 'on'
 States: [4x1 double]

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamin

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.latticemamin

8-492

8dfilt.latticemaminPurpose Construct discrete-time, lattice, moving-average filter object with minimum
phase

Syntax Refer to dfilt.latticemamin in the Signal Processing Toolbox.

Description hd = dfilt.latticemamin(k) returns a discrete-time, lattice,
moving-average, minimum phase, filter object hd, with lattice coefficients k.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

Note When the k coefficients define a minimum phase filter, the resulting
filter in this structure is minimum phase. When your coefficients do not define
a minimum phase filter, placing them in this structure does not produce
a minimum phase filter.

hd = dfilt.latticemamin returns a default discrete-time, lattice,
moving-average, minimum phase, filter object hd, with k=[]. This filter passes
the input through to the output unchanged.

Fixed-Point
Filter Structure

The figure below shows the signal flow for the minimum phase implementation
of a moving-average lattice filter implemented by dfilt.latticemamin. To
help you see how the filter processes the coefficients, input, and states of the
filter, as well as numerical operations, the figure includes the locations of the
formatting objects within the signal flow.

dfilt.latticemamin

8-493

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point
arithmetic during filtering, the figure shows various labels associated with
data flow and functional elements in the filter. The following table describes
each label in the signal flow and relates the label to the filter properties that
are associated with it.

You see that the labels use a common format—a prefix followed by the word
“format.” In this use, “format” means the word length and fraction length
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction
length used to interpret the data input to the filter. The format properties
InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated
with representing filter numerator coefficients.

InputFormat

StateFormat
LatticeFormat LatticeFormat LatticeFormat

LatticeFormat LatticeFormat

AccumFormat AccumFormat

StateFormat

StateFormatAccumFormat

ProductFormat

ProductFormat ProductFormat

AccumFormat StateFormat

ProductFormat ProductFormat

AccumFormat OutputFormat

1

Output

Cast

Cast Cast

Cast

Cast

Cast

k1k2k3

−K−−K−

z
−1

z
−1

z
−1

1

Input

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength

LatticeFormat

dfilt.latticemamin

8-494

Most important is the label position in the diagram, which identifies where the
format applies.

As one example, look at the label ProductFormat, which always follows
a coefficient multiplication element in the signal flow. The label indicates that
coefficients leave the multiplication element with the word length and fraction
length associated with product operations that include coefficients. From
reviewing the table, you see that the ProductFormat refers to the properties
ProductFracLength, ProductWordLength, and ProductMode that fully define
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the minimum phase,
moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length
Property

Fraction Length
Property

Related Properties

dfilt.latticemamin

8-495

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters and lattice
filters. IIR filters have two similar
properties—DenAccumFracLength and
NumAccumFracLength—that let you set the
precision for numerator and denominator
operations separately.

AccumMode Determines how the accumulator outputs
stored values. Choose from full precision
(FullPrecision), or whether to keep the
most significant bits (KeepMSB) or least
significant bits (KeepLSB) when output
results need shorter word length than the
accumulator supports. To let you set the
word length and the precision (the fraction
length) used by the output from the
accumulator, set AccumMode to
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the
appropriate accumulator format (as shown
in the signal flow diagrams) before
performing sum operations.

dfilt.latticemamin

8-496

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
LatticeFracLength property to specify the
precision used.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice
coefficients.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticemamin

8-497

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this
sets the fraction length used to interpret the
data. This property becomes writable (you
can change the value) when you set
ProductMode to SpecifyPrecision.

Property Name Brief Description

dfilt.latticemamin

8-498

ProductMode Determines how the filter handles the
output of product operations. Choose from
full precision (FullPrecision), or whether to
keep the most significant bit (KeepMSB) or
least significant bit (KeepLSB) in the result
when you need to shorten the data words.
For you to be able to set the precision (the
fraction length) used by the output from the
multiplies, you set ProductMode to
SpecifyPrecision.

ProductWordLength Specifies the word length to use for
multiplication operation results. This
property becomes writable (you can change
the value) when you set ProductMode to
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.latticemamin

8-499

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would
be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

Property Name Brief Description

dfilt.latticemamin

8-500

Examples Specify a third-order lattice, moving-average, minimum phase, filter structure
for a dfilt object, hd, with the following code:

k = [.66 .7 .44];
hd = dfilt.latticemamin(k)

hd =

 FilterStructure: 'Lattice Moving-Average (MA) For Minimum
Phase'
 Arithmetic: 'double'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [3x1 double]

set(hd,'arithmetic','fixed')
specifyall(hd)
hd

hd =

StateFracLength When you set StateAutoScale to false, you
enable the StateFracLength property that
lets you set the fraction length applied to
interpret the filter states.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

StateWordLength Sets the word length used to represent the
filter states.

Property Name Brief Description

dfilt.latticemamin

8-501

 FilterStructure: 'Lattice Moving-Average (MA) For Minimum
Phase'
 Arithmetic: 'fixed'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: false
 LatticeFracLength: 15
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'SpecifyPrecision'
 OutputFracLength: 12

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'SpecifyPrecision'
 ProductWordLength: 32
 ProductFracLength: 30

 AccumMode: 'SpecifyPrecision'
 AccumWordLength: 40
 AccumFracLength: 30
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,
dfilt.latticemamax

dfilt.parallel

8-502

8dfilt.parallelPurpose Construct discrete-time, parallel structure filter object

Syntax Refer to dfilt.parallel in the Signal Processing Toolbox.

Description hd = dfilt.parallel(hd1,hd2,...) returns a discrete-time filter object hd,
which is a structure of two or more dfilt filter objects, hd1, hd2, and so on
arranged in parallel.

You can also use the standard notation to combine filters into a parallel
structure.

parallel(hd1,hd2,...)

In this syntax, hd1, hd2, and so on can be a mix of dfilt objects, mfilt objects,
and adaptfilt objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the parallel structure
must be the same arithmetic format—double, single, or fixed. hd, the filter
returned, inherits the format of the individual filters.

See Also dfilt, dfilt.cascade

dfilt.cascade, dfilt.parallel in your Signal Processing Toolbox
documentation

X(z)

Y(z)

hd1((z))

hd2((z)) +

hd

 .
 .
 .

dfilt.scalar

8-503

8dfilt.scalarPurpose Construct discrete-time, scalar filter object

Syntax Refer to dfilt.scalar in the Signal Processing Toolbox.

Description dfilt.scalar(g) returns a discrete-time, scalar filter object with gain g,
where g is a scalar.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on
page 7-20.

dfilt.scalar returns a default, discrete-time scalar gain filter object hd, with
gain 1.

Properties In this table you see the properties associated with the scalar implementation
of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the
properties are dynamic, meaning they exist only in response to the settings of
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

dfilt.scalar

8-504

For further information about the properties of this filter or any dfilt object,
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

Arithmetic Defines the arithmetic the filter uses. Gives
you the options double, single, and fixed.
In short, this property defines the operating
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to
the appropriate accumulator format (as
shown in the signal flow diagrams) before
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
CoeffFracLength property to specify the
precision used.

CoeffFracLength Set the fraction length the filter uses to
interpret coefficients. CoeffFracLength is
always available, but it is read-only until
you set CoeffAutoScale to false.

CoeffWordLength Specifies the word length to apply to filter
coefficients.

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

Gain Returns the gain for the scalar filter. Scalar
filters do not alter the input data except by
adding gain.

dfilt.scalar

8-505

InputFracLength Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Specifies the word length applied to
interpret input data.

OutputFracLength Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the
filtered data for output. You have the
following choices:

- AvoidOverflow—directs the filter to set
the output data word length and fraction
length to avoid causing the data to
overflow.

- BestPrecision—directs the filter to set
the output data word length and fraction
length to maximize the precision in the
output data.

- SpecifyPrecision—lets you set the
word and fraction lengths used by the
output data from filtering.

OutputWordLength Determines the word length used for the
output data.

Property Name Brief Description

dfilt.scalar

8-506

OverflowMode Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic). The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

PersistentMemory Specifies whether to reset the filter states
and memory before each filtering operation.
Lets you decide whether your filter retains
states from previous filtering runs. False is
the default setting.

Property Name Brief Description

dfilt.scalar

8-507

RoundMode Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if
the least significant bit (after rounding)
would be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description

dfilt.scalar

8-508

Example Create a direct-form I filter object hd_filt and a scalar object with a gain of 3
hd_gain and cascade them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd_filt = dfilt.df1(b,a)
hd_gain = dfilt.scalar(3)
hd=cascade(hd_gain,hd_filt)
fvtool(hd_filt,hd_gain,hd)

hd_filt =
 FilterStructure: 'direct-form I'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [4x1 double]

hd_gain =
 FilterStructure: 'Scalar'
 Arithmetic: 'double'
 Gain: 3
 PersistentMemory: false
 States: []

Signed Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
filtstates in your Signal Processing
Toolbox documentation or in the Help
system.

Property Name Brief Description

dfilt.scalar

8-509

hd =
 FilterStructure: Cascade
 Section(1): Scalar
 Section(2): Direct Form I
 PersistentMemory: false

To view the sections of the cascaded filter, use

hd.section(1)

ans =
 FilterStructure: 'Scalar'
 Arithmetic: 'double'

dfilt.scalar

8-510

 Gain: 3
 PersistentMemory: false
 States: []

and

hd.section(2)

ans =
 FilterStructure: 'Direct Form I'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [4x1 double]

See Also dfilt, dfilt.cascade

dfilt.wdfallpass

8-511

8dfilt.wdfallpassPurpose Construct wave digital allpass filter object

Syntax hd = dfilt.wdfallpass(c)

Description hd = dfilt.wdfallpass(c) constructs an allpass wave digital filter structure
given the allpass coefficients in vector c.

Vector c must have, one, two, or four elements (filter coefficients). Filters with
three coefficients are not supported. When you use c with four coefficients, the
first and third coefficients must be 0.

Given the coefficients in c, the transfer function for the wave digital allpass
filter is defined by

Internally, the allpass coefficients are converted to wave digital filters for
filtering. Note that dfilt.wdfallpass allows only stable filters. Also note that
the leading coefficient in the denominator, a 1, does not need to be included in
vector c.

Use the constructor dfilt.cascadewdfallpass to cascade wdfallpass filters.

To compare these filters to other similar filters, dfilt.wdfallpass and
dfilt.cascadewdfallpass filters have the same number of multipliers as the
non-wave digital filters dfilt.allpass and dfilt.cascadeallpass. However,
the wave digital filters use fewer states and they may require more adders in
the filter structure.

Wave digital filters are usually used to create other filters. This toolbox uses
them to implement halfband filters, which the first example in Examples
demonstrates. They are most often building blocks for filters.

H z() c n() c n 1–()z 1– … z n–+ + +

1 c 1()z 1– … c n()z n–+ + +
--=

dfilt.wdfallpass

8-512

Properties In the next table, the row entries are the filter properties and a brief
description of each property.

Filter Structure When you change the order of the wave digital filters in the cascade, the filter
structure changes as well.

As shown in this example, realizemdl lets you see the filter structure used for
your filter, if you have Simulink installed.

section11=0.8;
section12=[1.5,0.7];
section13=[1.8,0.9];
hd1=dfilt.cascadewdfallpass(section11,section12,section13);
realizemdl(hd1)

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass wave
digital filter object

FilterStructure Describes the signal flow for the filter object,
including all of the active elements that
perform operations during filtering—gains,
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states and
memory before each filtering operation. Lets
you decide whether your filter retains states
from previous filtering runs. False is the
default setting.

States This property contains the filter states before,
during, and after filter operations. States act
as filter memory between filtering runs or
sessions. They also provide linkage between
the sections of a multisection filter, such as a
cascade filter. For details, refer to filtstates
in your Signal Processing Toolbox
documentation or in the Help system.

dfilt.wdfallpass

8-513

section21=[0.8,0.4];
section22=[0,1.5,0,0.7];
section23=[0,1.8,0,0.9];
hd2=dfilt.cascadewdfallpass(section21,section22,section23);
realizemdl(hd2)

hd1 has this filter structure with three sections.

1

output

−K−

gain(2)(3)

−K−

gain(2)(2)

−K−

gain(1)(3)

−K−

gain(1)(2)

−K−

gain(1)(1)

z
−1

z
−1

z
−1

z
−1

z
−1

1

input

dfilt.wdfallpass

8-514

The filter structure for hd2 is somewhat different, with the different orders and
interconnections between the three sections.

Examples Construct a second-order wave digital allpass filter with two coefficients.

c = [1.5,0.7];
hd = dfilt.wdfallpass(c);
info(hd)

1

output

−K−

gain(3)(3)

−K−

gain(3)(2)

−K−

gain(2)(1)

−K−

gain(1)(3)

−K−

gain(1)(2)

−K−

gain(1)(1)

z
−2

z
−2

z
−2

z
−2

z
−1

z
−1

1

input

dfilt.wdfallpass

8-515

Discrete-Time IIR Filter (real)

Filter Structure : Wave Digital Filter Allpass
Number of Multipliers : 2
Stable : Yes
Linear Phase : No

Implementation Cost
Number of Multipliers : 2
Number of Adders : 6
Number of States : 2
MultPerInputSample : 2
AddPerInputSample : 6

realizemdl(hd) % Requires Simulink to build the filter model.

With Simulink installed, realizemdl returns this structure for hd.

See Also dfilt, dfilt.allpass, dfilt.latticeallpass, dfilt.cascadewdfallpass,
dfilt.cascadeallpass, mfilt.iirdecim, mfilt.iirinterp

1

output

−K−

gain(2)(1)

−K−

gain(1)(1)

z
−1

z
−1

1

input

disp

8-516

8dispPurpose Filter object with properties and values

Syntax disp(hd)
disp(ha)
disp(hm)

Description Similar to omitting the closing semicolon from an expression on the command
line, except that disp does not display the variable name. disp lists the
property names and property values for any filter object, such as a dfilt object
or adaptfilt object.

The following examples illustrate the default display for an adaptive filter ha
and a multirate filter hm.

ha=adaptfilt.rls

ha =

 Algorithm: 'Direct Form FIR RLS Adaptive Filter'
 FilterLength: 10
 Coefficients: [0 0 0 0 0 0 0 0 0 0]
 States: [9x1 double]
 ForgettingFactor: 1
 KalmanGain: []
 InvCov: [10x10 double]
 PersistentMemory: false

disp(ha)
 Algorithm: 'Direct-Form FIR RLS Adaptive Filter'
 FilterLength: 10
 Coefficients: [0 0 0 0 0 0 0 0 0 0]
 States: [9x1 double]
 ForgettingFactor: 1
 KalmanGain: []
 InvCov: [10x10 double]
 PersistentMemory: false

hm=mfilt.cicdecim(6)

hm =

disp

8-517

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 6
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

 SectionWordLengthMode: 'MinWordLengths'

 OutputWordLength: 16

disp(hm)

FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 6
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

 SectionWordLengthMode: 'MinWordLengths'

 OutputWordLength: 16

See Also set

double

8-518

8doublePurpose Cast fixed-point filter to filter that uses double-precision arithmetic

Syntax hd = double(h)

Description hd = double(h) returns a new filter hd that has the same structure and
coefficients as h, but whose arithmetic property is set to double to use
double-precision arithmetic for filtering. double(h) is not the same as the
reffilter(h) function:

• hd, the filter returned by double has the quantized coefficients of h
represented in double-precision floating-point format

• The reference filter returned by reffilter has double-precision,
floating-point coefficients that have not been quantized.

You might find double(h) useful to isolate the effects of quantizing the
coefficients of a filter by using double to create a filter hd that operates in
double-precision but uses the quantized filter coefficients.

Examples Use the same filter, once with fixed-point arithmetic and once with
floating-point, to compare fixed-point filtering with double-precision
floating-point filtering.

h = dfilt.dffir(firgr(27,[0 .4 .6 1],
[1 1 0 0])); % Lowpass filter.
h.arithmetic = 'fixed'; % Set h to use fixed-point arithmetic

% to filter. Quantize the coeffs.
hd = double(h); % Cast h to double-precision

% floating-point coefficients.
n = 0:99; x = sin(0.7*pi*n(:)); % Set up an input signal.
y = filter(h,x); % Fixed-point output.
yd = filter(hd,x); % Floating-point output.
norm(yd-double(y),inf)
ans =

 9.2014e-004

norm shows that the largest difference (maximum error) between the output
values from the fixed versus floating filtering comparison is about 0.0009—
either good or less good depending on your application.

double

8-519

See Also reffilter

ellip

8-520

8ellipPurpose Design elliptical or Cauer digital filter using filter specification object

Syntax hd = design(d,'ellip')
hd = design(d,'ellip',designoption,value,designoption,value,...)

Description hd = design(d,'ellip') designs an elliptical IIR digital filter using the
specifications supplied in the object h.

hd = design(d,'ellip',designoption,value,designoption,...
value,...) returns an eliptical or Cauer FIR filter where you specify design
options as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using ellip, refer to the command line help system.
For example, to get specific information about using ellip with d, the
specification object, enter the following at the MATLAB prompt.

help(d,'ellip')

Examples These example demonstrate using ellip to design filters based on filter
specification objects.

Example 1—construct the default bandpass filter specification object and
design an elliptic filter.

d = fdesign.bandpass;
designopts(d,'ellip')

ans =

 FilterStructure: 'df2sos'
 MatchExactly: 'both'

hd = design(d,'ellip','matchexactly','both');

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'

ellip

8-521

 Arithmetic: 'double'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 PersistentMemory: false

Example 2—construct a lowpass object with order, passband-edge frequency,
stopband-edge frequency, and passband ripple specifications, and then design
an elliptic filter.

d = fdesign.lowpass('n,fp,fst,ap',6,20,25,.8,80);
design(d,'ellip'); % Starts FVtool to display the filter.

Example 3—construct a lowpass object with filter order, passband edge
frequency, passband ripple, and stopband attenuation specifications, and then
design an elliptic filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

ellip

8-522

d = fdesign.lowpass('n,fp,ap,ast',6,20,.8,60,80);
design(d,'ellip'); % Starts FVTool to display the filter.

See Also butter, cheby1, cheby2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

euclidfactors

8-523

8euclidfactorsPurpose Use Euclid’s theorem to return integer factors for multirate filter

Syntax [lo,mo] = euclidfactors(hm)

Description [lo,mo] = euclidfactors(hm) returns integer factors lo and mo such that
(lo*L)-(mo*M) = -1. L and M are relatively prime and represent the
interpolation and decimation factors of the multirate filter hm.

euclidfactors works with multirate filters that have both decimation and
interpolation factors, such as mfilt.firfracdecim, mfilt.firfracinterp, or
mfilt.firsrc. You cannot return the factors for plain decimators or
interpolators

Examples Use an FIR fractional decimator, with L = 5 and M = 7, to show what
euclidfactors does.

hm=mfilt.firfracdecim(5,7)

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
 Numerator: [1x168 double]
 RateChangeFactors: [5 7]
 PersistentMemory: false
 States: [62x1 double]

[lo,mo]=euclidfactors(hm)

lo =

 4

mo =

 3

Indeed, (lo*L)-(mo*M) = (4*5)-(3*7) = -1.

See Also polyphase, nstates

equiripple

8-524

8equiripplePurpose Design equiripple single-rate or multirate FIR filter from filter specification
object

Syntax hd = design(d,'equiripple')
hd = design(d,'equiripple',designoption,value,designoption,...

value,...)

=Description hd = design(d,'equiripple') designs an equiripple FIR digital filter or
multirate filter using the specifications supplied in the object d. Equiripple
filter designs minimize the maximum ripple in the pass- and stopbands.

hd is either a dfilt object (a single-rate digital filter) or an mfilt object
(a multirate digital filter) depending on the Specification property of the
filter specification object d and the specifications object type—halfband or
interpolator.

When you use equiripple with Nyquist filter specification objects, you might
encounter design cases where the filter design does not converge. Convergence
errors occur mostly at large filter orders, or small transition widths, or large
stopband attenuations. These specifications, alone or combined, can cause
design failures. For more information, refer to fdesign.nyquist in the online
Help system.

hd = design(d,'equiripple',designoption,value,designoption,...
value,...) returns an equiripple FIR filter where you specify design options
as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using equiripple, refer to the command line help
system. For example, to get specific information about using equiripple with
d, the specification object, enter the following at the MATLAB prompt.

help(d,'equiripple')

Examples Here is an example of designing a single-rate equiripple filter from a halfband
filter specification object.

d = fdesign.halfband

equiripple

8-525

designopts(d,'equiripple')

ans =

 FilterStructure: 'dffir'
 MinPhase: 0
 StopbandShape: 'flat'
 StopbandDecay: 0
hd = design(d,'equiripple','stopbandshape','flat');
fvtool(hd);

Displaying the filter in FVTool shows the equiripple nature of the filter.

equiripple also designs multirate filters. This example generates a halfband
interpolator filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

equiripple

8-526

d = fdesign.interpolator(2);
hd = design(d,'equiripple');

hd

hd =

 FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
 Arithmetic: 'double'
 Numerator: [1x95 double]
 InterpolationFactor: 2
 PersistentMemory: false

This final example designs an equiripple filter with a direct-form structure by
specifying the filterstructure argument.

d = fdesign.lowpass('fp,fst,ap,ast');
designopts(d,'equiripple')

ans =

 FilterStructure: 'dffir'
 DensityFactor: 16
 MinPhase: 0
 MinOrder: 'any'
 StopbandShape: 'flat'
 StopbandDecay: 0

hd = design(d,'equiripple','filterstructure','dffir');
hd

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x43 double]
 PersistentMemory: false

See Also fdesign.nyquist, firls, kaiserwin

farrow

8-527

8farrowPurpose Implement Farrow filter

Syntax hd = farrow.structure(delay,...)

Description hd = farrow.structure(delay,...) returns a Farrow filter hd that
associates delay, the fractional delay, with a filter structure specified by
structure.

More information about Farrow filters is available in References.

In contrast to most single-rate filters, Farrow filters use two inputs—the input
data and the fractional delay. You can change the fractional delay input value
as you filter by assigning a new value to delay before you filter with hd. Thus
Farrow filters provide delay tunability when your input signals have
time-varying delays.

Digital fractional delay filters are useful tools for fine-tuning the sampling
instants of signals, such as implementing the required bandlimited
interpolation. They can be found in the synchronization of digital modems
where the delay parameter varies over time, or in wireless communications
systems where the signal delay changes with location and distance from the
transmitter. Farrow filters are one such fractional delay filter that allows the
user to vary the delay.

Provide the fractional delay as a decimal part of an input sample, such as 0.2.
delay must be positive and between 0 and 1.

structure accepts the following strings that describe the filter structure to
use:

In the farrow.fd syntax

hd = farrow.fd(delay,...)

structure String Description

fd Generic fractional delay Farrow filter

linearfd Linear fractional delay Farrow filter

farrow

8-528

you must specify the coefficients as input arguments. Start with basic
coefficients from Lagrange polynomials (also called interpolation polynomials).
for more information about the coefficients, refer to References.

Farrow filters support numerous functions for analyzing and simulating the
filter, and for generating code from the filter. To learn about the functions you
use with Farrow filters, enter

help farrow/functions

at the Command prompt to see the complete list of functions.

The functions that you use most often with digital filters are

Examples Construct a filter with linear fractional delay of 0.4 samples. Use linearfd for
the structure and set delay equal to 0.4.

delay = 0.4;
hd = farrow.linearfd(delay);
fvtool(hd) % Analyze the filter.

realizemdl produces this model from basic Signal Processing blockset blocks.

Function Description

cost Estimate the hardware
implementation cost in terms of
mathematical operations like add
and multiply

filter Execute the filter by using it to
filter data

fvtool Display and analyze the filter

freqz Compute the instantaneous
frequency response of the filter

realizemdl Generate a Simulink subsystem
model of the filter as a block
(Requires Simulink)

farrow

8-529

References [1] Erup, L., Floyd M. Gardner, and Robert A. Harris, “Interpolation in Digital
Modems-Part II: Implementation and Performance,” IEEE Transactions on
Communications, vol. 41, No. 6, June 1993, pp. 998-1008.

[2] Marvasti, F., Nonuniform Sampling—Theory and Practice, Kluwer
Academic/Plenum Publishers, New York, 2001.

See Also adaptfilt, dfilt, fdesign, mfilt

1

Output

z
−1

2

FracDelay

1

Input

fcfwrite

8-530

8fcfwritePurpose Write file containing filter coefficients for multirate, adaptive, or discrete-time
filter objects

Syntax fcfwrite(h)
fcfwrite(h,filename)
fcfwrite(...,'fmt')

Description fcfwrite(h) writes a filter coefficient ASCII file to a directory you choose, or
your current MATLAB working directory. h can be a single filter object or a
vector of filter objects. On execution, fcfwrite opens the Export Filter
Coefficients to .FCF File dialog to let you assign a file name for the output file.
You can choose the destination directory within this dialog as well.

The default file name is untitled.fcf. When you have the Filter Design
Toolbox, you can use fcfwrite(h) to write filter coefficient files for multirate
filters, adaptive filters, and discrete-time filters.

fcfwrite(h,filename) writes the filter coefficients and general information to
a text file called filename in your present MATLAB working directory and
opens the file in the MATLAB editor for you to review or modify.

If you do not include a file extension in filename, fcfwrite adds the extension
fcf to filename.

fcfwrite(...,'fmt') writes the filter coefficients in the format specified by the input
argument fmt. Valid fmt values are hex for hexadecimal, dec for decimal, or bin
for binary representation of the filter coefficients.

Examples To demonstrate fcfwrite, create a fixed-point IIR filter at the command line,
and then write the filter coefficients to a file named iirfilter.fcf.

d=fdesign.lowpass

d =

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.45

fcfwrite

8-531

 Fstop: 0.55
 Apass: 1
 Astop: 60

hd=butter(d)

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [13x6 double]
 ScaleValues: [14x1 double]
 PersistentMemory: false

set(hd,'arithmetic','fixed');

fcfwrite(hd,'iirfilter.fcf');

Here is the output from fcfwrite as it appears in the MATLAB editor. Not
shown here is the filename—iirfilter.fcf as specified and some comments
at the top of the file.

%
%
% Coefficient Format: Decimal
%
% Discrete-Time IIR Filter (real)
% -------------------------------
% Filter Structure : Direct-Form II, Second-Order Sections
% Number of Sections : 13
% Stable : Yes
% Linear Phase : No
% Arithmetic : fixed
% Numerator : s16,13 -> [-4 4)
% Denominator : s16,14 -> [-2 2)
% Scale Values : s16,14 -> [-2 2)
% Input : s16,15 -> [-1 1)
% Section Input : s16,8 -> [-128 128)
% Section Output : s16,10 -> [-32 32)
% Output : s16,10 -> [-32 32)

fcfwrite

8-532

% State : s16,15 -> [-1 1)
% Numerator Prod : s32,28 -> [-8 8)
% Denominator Prod : s32,29 -> [-4 4)
% Numerator Accum : s40,28 -> [-2048 2048)
% Denominator Accum : s40,29 -> [-1024 1024)
% Round Mode : convergent
% Overflow Mode : wrap
% Cast Before Sum : true

SOS matrix:
1 2 1 1 -0.22222900390625 0.88262939453125
1 2 1 1 -0.19903564453125 0.68621826171875
1 2 1 1 -0.18060302734375 0.5303955078125
1 2 1 1 -0.1658935546875 0.40570068359375
1 2 1 1 -0.154052734375 0.305419921875
1 2 1 1 -0.14453125 0.22479248046875
1 2 1 1 -0.136962890625 0.16015625
1 2 1 1 -0.13092041015625 0.10906982421875
1 2 1 1 -0.126220703125 0.06939697265625
1 2 1 1 -0.12274169921875 0.0399169921875
1 2 1 1 -0.12030029296875 0.01947021484375
1 2 1 1 -0.118896484375 0.0074462890625
1 1 0 1 -0.0592041015625 0

Scale Values:
0.41510009765625
0.371826171875
0.33746337890625
0.3099365234375
0.287841796875
0.27008056640625
0.25579833984375
0.2445068359375
0.23577880859375
0.22930908203125
0.22479248046875
0.22216796875
0.47039794921875
1

fcfwrite

8-533

To write two or more filters out to one file, provide the filters as a vector to
fcfwrite:

fcfwrite([hd hd1 hd2])

See Also adaptfilt, mfilt

dfilt in the Signal Processing Toolbox documentation

fdatool

8-534

8fdatoolPurpose Open Filter Design and Analysis Tool

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to:

• Design filters

• Quantize filters (with Filter Design Toolbox installed)

• Analyze filters

• Modify existing filter designs

• Create multirate filters (with Filter Design Toolbox installed)

• Realize Simulink models of quantized, direct-form, FIR filters (with Filter
Design Toolbox installed)

• Import filters into FDATool

• Perform digital frequency transformations of filters (with Filter Design
Toolbox installed)

Refer to “Using FDATool with the Filter Design Toolbox” for more information
about using the analysis, design, and quantization features of FDATool. For
general information about using FDATool, refer to “Filter Design and Analysis
Tool” in your Signal Processing Toolbox documentation.

When you open FDATool and you have Filter Design Toolbox installed,
FDATool incorporates features that are added by Filter Design Toolbox. With
Filter Design Toolbox installed, FDATool lets you design and analyze
quantized filters, as well as convert quantized filters to various filter
structures, transform filters, design multirate filters, and realize models of
filters.

fdatool

8-535

Use the buttons on the sidebar to configure the design area to use various tools
in FDATool.

Set Quantization Parameters—provides access to the properties of the
quantizers that compose a quantized filter. When you click Set Quantization
Parameters, you see FDATool displaying the quantization options at the
bottom of the dialog (the design area), as shown in the figure.

fdatool

8-536

Transform Filter—clicking this button opens the Frequency
Transformations pane so you can use digital frequency transformations to
change the magnitude response of your filter.

Create a multirate filter—clicking this button switches FDATool to multirate
filter design mode so you can design interpolators, decimators, and fractional
rate change filters.

Realize Model—starting from your quantized, direct-form, FIR filter, clicking
this button creates a Simulink model of your filter structure in new model
window.

Other options in the menu bar let you convert the filter structure to a new
structure, change the order of second-order sections in a filter, or change the
scaling applied to the filter, among many possibilities.

fdatool

8-537

Remarks By incorporating many advanced filter design methods from Filter Design
Toolbox, FDATool provides more design methods than the SPTool Filter
Designer.

See Also fdatool, fvtool, sptool in your Signal Processing Toolbox documentation

fdesign

8-538

8fdesignPurpose Create filter specification object

Syntax d = fdesign.response
d = fdesign.response(spec)
d = fdesign.response(spec,specvalue1,specvalue2,...)
d = fdesign.response(...,fs)
d = fdesign.response(...,magunits)

Description Filter Specification Objects

d = fdesign.response returns a filter specification object d, of filter response
response. To create filters from d, use one of the design methods listed in
“Using Filter Design Methods With Specification Objects” on page 8-544.

Here is how you design filters using fdesign.

1 Use fdesign.response to construct a filter specification object.

2 Use designmethods to determine which filter design methods work for your
new filter specification object.

3 Use design to apply your filter design method from step 2 to your filter
specification object to construct a filter object.

4 Use FVTool to inspect and analyze your filter object.

Note fdesign does not create filters. fdesign returns a filter specification
object that contains the specifications for a filter, such as the passband cutoff
or attenuation in the stopband.

To design a filter hd from a filter specification object d, use d with a filter
design method such as butter—hd = design(d,'butter').

For more guidance about using fdesign to design filters, refer to “Designing
Fixed-Point Filters” on page 2-3 of the Filter Design Toolbox User’s Guide. This
section provides examples that use fdesign to design filters and that use
methods in the toolbox to analyze them.

fdesign

8-539

reponse can be one of the entries in the following table that specify the filter
response desired, such as a bandstop filter or an interpolator.

fdesign Response String Description

arbmag fdesign.arbmag creates an object to
design IIR filters that have arbitrary
magnitude responses defined by the input
arguments.

arbmagnphase fdesign.arbmagnphase creates an object
to design IIR filters that have arbitrary
magnitude and phase responses defined
by the input arguments.

bandpass fdesign.bandpass creates an object to
design bandpass filters.

bandstop fdesign.bandstop creates an object to
design bandstop filters.

ciccomp fdesign.ciccomp creates an object to
design filters that compensate for the CIC
decimator or interpolator response
curves.

decimator fdesign.decimator creates an object to
design decimators.

differentiator fdesign.differentiator creates an
object to design differentiators.

halfband fdesign.halfband creates an object to
design halfband filters.

highpass fdesign.highpass creates an object to
design highpass filters.

hilbert fdesign.hilbert creates an object to
design Hilbert filters.

fdesign

8-540

Use the doc fdesign.response syntax at the MATLAB prompt to get help on
a specific structure. Using doc in a syntax like

doc fdesign.lowpass
doc fdesign.bandstop

gets more information about the lowpass or bandstop structure objects.

Each response has a property Specification that defines the specifications to
use to design your filter. You can use defaults or specify the Specification
property when you construct the specifications object.

With the strings for the Specification property, you provide filter constraints
such as the filter order or the passband attenuation to use when you construct
your filter from the specification object.

interpolator fdesign.interpolator creates an object
to design interpolators.

isinclp fdesign.isinclp creates an object to
design lowpass filters that use
inverse-sinc form.

lowpass fdesign.lowpass creates an object to
design lowpass filters.

nyquist fdesign.nyquist creates an object to
design nyquist filters.

rsrc fdesign.rsrc creates an object to design
rational-factor sample-rate convertors.

fdesign Response String Description

fdesign

8-541

Properties fdesign returns a filter specification object. Every filter specification object
has the following properties.

Property Name Default Value Description

Response Depends on the chosen
type

Defines the type of
filter to design, such
as an interpolator or
bandpass filter. This is
a read-only value.

Specification Depends on the chosen
type

Defines the filter
characteristics used to
define the desired
filter performance,
such as the cutoff
frequency Fstop or the
filter order N.

Description Depends on the filter
type you choose

Contains descriptions
of the filter
specifications used to
define the object, and
the filter specifications
you use when you
create a filter from the
object. This is a
read-only value.

NormalizedFrequency Logical true Determines whether
the filter calculation
uses normalized
frequency from 0 to 1,
or the frequency band
from 0 to Fs/2, the
sampling frequency.
Accepts either true or
false without single
quotation marks.

fdesign

8-542

In addition to these properties, filter specification objects may have other
properties as well, depending on whether they design dfilt objects or mfilt
objects.

d = fdesign.type(spec) In spec, you specify the variables to use that define
your filter design, such as the passband frequency or the stopband attenuation.
These variables are applied to the filter design method you choose to design
your filter.

For example, when you create a default lowpass filter specification object d,
fdesign sets the passband frequency Fpass, the stopband frequency Fstop, the
stopband attenuation Astop, and the passband attenuation Apass (ripple in the
passband) for d:

d = fdesign.lowpass

d =

 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}

Added Properties for mfilt Objects Description

DecimationFactor Specifies the amount to decrease
the sampling rate. Always
a positive integer.

InterpolationFactor Specifies the amount to increase
the sampling rate. Always
a positive integer.

PolyphaseLength Polyphase length is the length of
each polyphase subfilter that
composes the decimator or
interpolator or rate-change factor
filters. Total filter length is the
product of pl and the rate change
factors. pl must be an even
integer.

fdesign

8-543

 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 1
 Astop: 60

However, lowpass design syntax accepts any one of the following Spec strings
(among others) to define the filter response:

Other filter object types, such as Nyquist or highpass, accept a different set of
strings for Spec. Refer to the Help system for details about the strings for each
filter type.

One important note is that the Spec string you choose controls which design
method works for the specifications object.

For the lowpass filter specification object d from earlier, you can use butter,
cheby1, cheby2, or ellip (to name a few) to design a filter. However, if the Spec

Spec String Description

Fp,Fst,Ap,Ast Define the filter by specifying the passband
cutoff, the stopband cutoff, the ripple in the
passband, and the attenuation in the stopband.
This is the default string for a lowpass filter.

N,Fc Set the filter order and the cutoff frequency to
define the filter.

N,Fp,Ap Set the filter order, passband cutoff frequency,
and passband ripple.

N,Fst,Ast Define the filter by setting the order, stopband
frequency, and stopband attenuation.

N,Fp,Ap,Ast Set the order, passband cutoff frequency,
passband ripple, and stopband attenuation.

N,Fp,Fst,Ap Set the filter order, passband cutoff frequency,
stopband frequency, and passband ripple.

fdesign

8-544

string had been 'n,fp,fst,ap', you could only use the ellip design method to
design your filter.

When you implement this lowpass filter hd using a filter design method such
as Butterworth (the butter design function), the constraints in fp, fst, ap, and
ast (the default string and filter specification) define the response of the final
minimum-order lowpass filter:

hd = design(d,'butter')

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [13x6 double]
 ScaleValues: [14x1 double]
 PersistentMemory: false

FVTool shows that hd is a lowpass filter that meets the design specification.

d = fdesign.type(...,fs) adds the argument fs, specified in Hz to define
the sampling frequency to use. In this case, all frequencies in the specifications
are in Hz as well.

d = fdesign.type(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Using Filter Design Methods With Specification Objects
After you create a filter specification object, you use a filter design method to
implement your filter with a selected algorithm. The following methods are
available for filter specification objects, but all methods do not apply to all

fdesign

8-545

object types. Also, the specification string you use to define the object changes
the algorithms available to design a filter. Enter doc butter, for example, to
get more information about using the Butterworth design method with your
filter specification object.

When you use any of the design methods without providing an output
argument, the resulting filter design appears in FVTool by default.

Design Function Description

butter Implement a Butterworth filter
resulting in an SOS filter with
direct-form II structure.

cheby1 Implement a Chebyshev Type I
filter, resulting in a direct-form II
second-order filter.

cheby2 Implement a Chebyshev Type II
filter, resulting in an SOS filter
with direct-form II structure

ellip Implement an elliptic filter
resulting in an SOS filter with
direct-form II structure

equiripple Implement an equiripple filter.

firls Implement a least-squares filter.

kaiserwin Implement a filter that uses a
Kaiser window.

multistage Implement a multistage filter

fdesign

8-546

Along with filter design methods, fdesign works with supporting methods that
help you create filter specification objects or determine which design methods
work for a given specifications object.

You can set filter specification values by passing them after the Specification
argument, or by passing the values without the Specification string.

Filter object constructors take the input arguments in the same order as
setspecs and the order in the strings for Specification. Enter doc setspecs
at the prompt for more information about using setspecs.

When the first input to fdesign is not a valid Specification string like 'n,fc',
fdesign assumes that the input argument is a filter specification and applies
it using the default Specification string—fp,fst,ap,ast for a lowpass
object, for example.

Examples These examples show a few default filter objects constructed from the
MATLAB command prompt, and how to design a Butterworth filter.

Example 1—Halfband filter specification object with filter order and stopband
attenuation provided as input arguments. Add the linear magunits option so
you specify the attenuation in decimal—0.0001.

n = 80;
ast = 1e-4;
fs = 48000
d=fdesign.halfband('n,ast',n,ast,fs,'linear') % specifications
object.

d =

Supporting Function Description

setspecs Set all of the specifications simultaneously.

designmethods Return the design methods.

designopts Return the input arguments and default values
that apply to a specifications object and
method

fdesign

8-547

 Response: [1x51 char]
 Specification: 'N,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 80
 Astop: 80

d.description

ans =

 'Filter Order'

 'Stopband Attenuation (dB)'

Example 2—Interpolator filter specification object

d = fdesign.interpolator % A specifications object.

d =

 Response: 'Minimum-order halfband'
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 InterpolationFactor: 2
 NormalizedFrequency: true
 Fs: 'Normalized'
 TransitionWidth: 0.1000
 Astop: 80

d.Description

ans =

 'Transition Width'
 'Stopband Attenuation (dB)'

Example 3—Highpass filter specification object

fdesign

8-548

d=fdesign.highpass % Creates a specifications object.

d =

 Response: 'Minimum-order highpass'
 Specification : 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fstop: 0.4500
 Fpass: 0.5500
 Astop: 60
 Apass: 1

d.Description

ans =

 'Stopband Frequency'
 'Passband Frequency'
 'Stopband Attenuation (dB)'
 'Passband Ripple (dB)'

Notice the correspondence between the properties Specification and
Description—in Description you see in words the definitions of the variables
shown in Specification.

Example 4—Lowpass Butterworth filter specification object

Use a filter specification object to construct a lowpass Butterworth filter with
default Specification fp,fst,ap,ast—the edge frequencies of the passband
and stopband, the attenuation in the passband, and the attenuation in the
stopband. Start by creating the specifications object d and providing the filter
order and cutoff frequency values.

d = fdesign.lowpass(0.4,0.5,1,80);
d

d =

 Response: 'Minimum-order lowpass'

fdesign

8-549

 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass: 0.4000
 Fstop: 0.5000
 Apass: 1
 Astop: 80

Determine which design methods apply to d.

designmethods(d)

Design Methods for class fdesign.lowpass:

butter
cheby1
cheby2
ellip

Now use d and the butter design method to design a Butterworth filter.

hd = design(d,'butter','matchexactly','passband'); % A filter.
fvtool(hd);

The resulting filter magnitude response shown by FVTool appears below.

fdesign

8-550

If you had a default Nyquist filter specification object d

d = fdesign.nyquist

you could find out which design methods apply to d by entering

designmethods(d)

Design methods for class fdesign.nyquist:

kaiserwin

Notice that only the Kaiser window-based design method applies to default
Nyquist filter objects.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−800

−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

fdesign

8-551

See Also butter, cheby1, cheby2, designmethods, ellip, equiripple, fdatool,
fdesign.bandpass, fdesign.bandstop, fdesign.decimator,
fdesign.halfband, fdesign.highpass, fdesign.interpolator,
fdesign.lowpass, fdesign.nyquist, fdesign.rsrc, firls, fvtool,
kaiserwin, setspecs

fdesign.arbmag

8-552

8fdesign.arbmagPurpose Construct filter specification object for designing arbitrary response magnitude
filters

Syntax d = fdesign.arbmag
d = fdesign.arbmag(specification)
d = fdesign.arbmag(specification,specvalue1,specvalue2,...)
d = fdesign.arbmag(specvalue1,specvalue2,specvalue3)
d = fdesign.arbmag(...,fs)

Description d = fdesign.arbmag constructs an arbitrary magnitude filter designer d.

d = fdesign.arbmag(specification) initializes the Specification property
for specifications object d to the string in specification. The input argument
specification must be one of the following strings. Specification strings are
not case sensitive and must be entered as shown.

Specification String Description of Resulting Filter

 n,f,a Single band design (default). FIR and IIR (n is
the order for both numerator and
denominator).

n,b,f,a Multiband design where b defines the number
of bands. FIR and IIR (n is the order for both
numerator and denominator).

nb,na,f,a IIR single band design.

nb,na,b,f,a IIR multiband design where b defines the
number of bands

fdesign.arbmag

8-553

The arguments in the strings are

By default, this method assumes that all frequency specifications are supplied
in normalized frequency.

Specifying f and a
f and a are the input arguments you use to define the filter response desired.
Each frequency value you specify in f must have a corresponding response
value in a. Here is an example that creates a filter with two passbands
(b = 4)and shows how f and a are related. This example is for illustration only.
It is not a real filter.

Define the frequency vector f as [0 0.1 0.2 0.4 0.5 0.6 0.9 1.0]

Define the reponse vector a as [0 0.5 0.5 0.1 0.1 0.8 0.8 0]

Argument Description

a Amplitude vector. Values in a define the filter
amplitude at frequency points you specify in f,
the frequency vector. If you use a, you must
use f as well. Amplitude values must be real.
For complex values designs, use
fdesign.arbmagnphase.

b Number of bands in the multiband filter.

f Frequency vector. Frequency values in f
specify locations where you provide specific
filter response amplitudes. When you provide
f you must also provide a.

n Filter order for FIR filters and the numerator
and denominator orders for IIR filters.

nb Numerator order for IIR filters.

na Denominator order for IIR filter designs.

fdesign.arbmag

8-554

With those specifications, f and a are connected as follows:

A response with two passbands—one roughly between 0.1 and 0.2 and the
second between 0.6 and 0.9 —results from the mapping between f and a.
A filter that used f and a might look like this

f (normalized frequency) a (response desired at f)

0 0

0.1 0.5

0.2 0.5

0.4 0.1

0.5 0.1

0.6 0.8

0.9 0.8

1.0 0.0

fdesign.arbmag

8-555

.

Different specification types often have different design methods available.
Use designmethods(d) to get a list of design methods available for a given
specification string and specifications object.

d = fdesign.arbmag(specification,specvalue1,specvalue2,...)
initializes the filter specification object specifications with specvalue1,
specvalue2, and so on. Use get(d,'description') for descriptions of the
various specifications specvalue1, specvalue2,...specn.

d = fdesign.arbmag(specvalue1,specvalue2,specvalue3) uses the default
specification string n,f,a, setting the filter order, filter frequency vector, and
the amplitude vector to the values specvalue1, specvalue2, and specvalue3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−18

−16

−14

−12

−10

−8

−6

−4

−2

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

fdesign.arbmag

8-556

d = fdesign.arbmag(...,fs) specifies the sampling frequency in Hz. All
other frequency specifications are also assumed to be in Hz when you specify
fs.

Examples These three examples introduce designing filters that have arbitrary filter
response shapes. In this first example, use fdesign.arbmag to design
a single-band, arbitrary-magnitude FIR filter. Notice that the design process
uses the default design method for the n,f,a specification.

n = 120;
f = linspace(0,1,100); % 100 frequency points.
as = ones(1,100)-f*0.2;
absorb = [ones(1,30),(1-0.6*bohmanwin(10))',...
ones(1,5), (1-0.5*bohmanwin(8))',ones(1,47)];
a = as.*absorb; % Optical absorption of atomic Rubidium 87 vapor.
d = fdesign.arbmag(n,f,a);
hd1 = design(d,'freqsamp');

Next, design a single-band, arbitrary-magnitude IIR filter and display the
magnitude response in FVTool. Use f and a from the previous example as input
arguments for this case. Display the response from the previous example in
FVTool as well, because the FIR and IIR filters are similar.

To demonstrate that the same specification generates both FIR and IIR filters,
use the same specifications object d, but change the design method to
iirlpnorm.

d.filterorder=10

d =

Response: 'Arbitrary Magnitude'
Specification: 'N,F,A'

Description: {'Filter Order';'Frequency Vector';'Amplitude Vector'}
NormalizedFrequency: true

FilterOrder: 10
Frequencies: [1x100 double]
Amplitudes: [1x100 double]

hd2=design(d,'iirlpnorm') % Design an IIR filter from the same object.

hd2 =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [5x6 double]
 ScaleValues: [0.85714867585342;1;1;1;1;1]
 PersistentMemory: false

fdesign.arbmag

8-557

fvtool(hd1,hd2)

FVTool returns the following plot for the filters.

For the third example, design a multiband filter for noise shaping when you are
simulating the Rayleigh fading phenomenon in a wireless communications
channel. This example uses the default design method for fdesign.arbmag
specifications objects with the nb,na,nbands specification—iirlpnorm.

nb = 4; % Numerator order.
na = 6; % Denominator order.
nbands = 2; % Number of filter bands.
f1 = 0:0.01:0.4; % Frequency vector values.
a1 = 1.0 ./ (1 - (f1./0.42).^2).^0.25; % Amplitude values.
f2 = [.45 1];
a2 = [0 0];

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−2.5

−2

−1.5

−1

−0.5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

FIR Filter hd1

IIR Filter hd2

fdesign.arbmag

8-558

d = fdesign.arbmag('nb,na,b,f,a',nb,na,nbands,f1,a1,f2,a2);
design(d); % Starts FVTool to display the filter response.

The filter response shows the characteristic shape for noise shaping—
increasing gain with increasing frequency in the passband, and a narrow
transition region.

See Also design, designopts, fdesign, setspecs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

fdesign.arbmagnphase

8-559

8fdesign.arbmagnphasePurpose Design discrete-time filter specification object for arbitrary magnitude and
phase response

Syntax d = fdesign.arbmagnphase
d = fdesign.arbmagnphase(specification)
d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,...)
d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3)
d = fdesign.arbmagnphase(...,fs)

Description d = fdesign.arbmag constructs an arbitrary magnitude filter specification
object d.

d = fdesign.arbmag(specification) initializes the Specification property
for specifications object d to the string in specification. The input argument
specification must be one of the following strings. Specification strings are
not case sensitive and must be entered as shown.

Specification String Description of Resulting Filter

 n,f,h Single band design (default). FIR and IIR (n is
the order for both numerator and
denominator).

n,b,f,h Multiband design where b defines the number
of bands. FIR and IIR (n is the order for both
numerator and denominator).

nb,na,f,h IIR single band design.

fdesign.arbmagnphase

8-560

The arguments in the strings are

By default, this method assumes that all frequency specifications are supplied
in normalized frequency.

Specifying f and h
f and h are the input arguments you use to define the filter response desired.
Each frequency value you specify in f must have a corresponding response
value in h. Here is an example that creates a filter with two passbands (b = 4)
and shows how f and h are related. This example is for illustration only. It is
not a real filter.

Define the frequency vector f as [0 0.1 0.2 0.4 0.5 0.6 0.9 1.0]

Define the reponse vector h as [0 0.5 0.5 0.1 0.1 0.8 0.8 0]

Argument Description

b Number of bands in the multiband filter.

f Frequency vector. Frequency values in
f specify locations where you provide specific
filter response amplitudes. When you provide
f you must also provide h which contains the
reponse values.

h Complex frequency response values.

n Filter order for FIR filters and the numerator
and denominator orders for IIR filters (when
not specified by nb and na).

nb Numerator order for IIR filters.

na Denominator order for IIR filter designs.

fdesign.arbmagnphase

8-561

With those specifications, f and h are connected as follows:

A response with two passbands—one roughly between 0.1 and 0.2 and the
second between 0.6 and 0.9 —results from the mapping between f and h.
Plotting f and h yeilds this figure that resembles a filter with two passbands.

f (normalized frequency) h (response desired at f)

0 0

0.1 0.5

0.2 0.5

0.4 0.1

0.5 0.1

0.6 0.8

0.9 0.8

1.0 0.0

fdesign.arbmagnphase

8-562

The second example in Examples shows this in more detail with a complex
filter response for h. In the example, h uses complex values for the response.

Different specification types often have different design methods available.
Use designmethods(d) to get a list of design methods available for a given
specification string and specifications object.

d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,...)
initializes the filter specification object with specvalue1, specvalue2, and so
on. Use get(d,'description') for descriptions of the various specifications
specvalue1, specvalue2,...specn.

d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3) uses the
default specification string n,f,h, setting the filter order, filter frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (normalized)

R
es

po
ns

e

fdesign.arbmagnphase

8-563

vector, and the complex frequency response vector to the values specvalue1,
specvalue2, and specvalue3.

d = fdesign.arbmagnphase(...,fs) specifies the sampling frequency in Hz.
All other frequency specifications are also assumed to be in Hz when you
specify fs.

Examples Use fdesign.arbmagnphase to model a complex analog filter.

d=fdesign.arbmagnphase('n,f,h',100); % N=100, f and h set to defaults.
design(d,'freqsamp');

For a more complex example, design a bandpass filter with low group delay by
specifying the desired delay and using f and h to define the filter bands.

n = 50; % Group delay of a linear phase filter would be 25.
gd = 12; % Set the desired group delay for the filter.
f1=linspace(0,.25,30); % Define the first stopband frequencies.
f2=linspace(.3,.56,40);% Define the passband frequencies.
f3=linspace(.62,1,30); % Define the second stopband frequencies.
h1 = zeros(size(f1)); % Specify the filter response at the freqs in f1.
h2 = exp(-j*pi*gd*f2); % Specify the filter response at the freqs in f2.
h3 = zeros(size(f3)); % Specify the response at the freqs in f3.
d=fdesign.arbmagnphase('n,b,f,h',50,3,f1,h1,f2,h2,f3,h3);
design(d,'equiripple')

Displaying the filter in FVTool shows both the magnitude response and the
nearly linear phase.

fdesign.arbmagnphase

8-564

See Also fdesign, design, designmethods, setspecs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−32.4876

−25.5628

−18.638

−11.7132

−4.7884

2.1364

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−52.9319

−41.8414

−30.7509

−19.6604

−8.5699

2.5206

P
ha

se
 (

ra
di

an
s)

Filter Magnitude Response
Filter Phase Response

fdesign.bandpass

8-565

8fdesign.bandpassPurpose Construct bandpass filter specification object

Syntax d = fdesign.bandpass
d = fdesign.bandpass(spec)
d = fdesign.bandpass(spec,specvalue1,specvalue2,...)
d = fdesign.bandpass(specvalue1,specvalue2,specvalue3,specvalue4,

specvalue4,specvalue5,specvalue6,specvalue7)
d = fdesign.bandpass(...,fs)
d = fdesign.bandpass(...,magunits)

Description d = fdesign.bandpass constructs a bandpass filter specification object d,
applying default values for the properties Fstop1, Fpass1, Fpass2, Fstop2,
Astop1, Apass, and Astop2—one possible set of values you use to specify a
bandpass filter.

Using fdesign.bandpass with a design method generates a dfilt object.

d = fdesign.bandpass(spec) constructs object d and sets its Specification
property to spec. Entries in the spec string represent various filter response
features, such as the filter order, that govern the filter design. Valid entries for
spec are shown below and used to define the bandpass filter. The strings are
not case sensitive.

• fst1,fp1,fp2,fst2,ast1,ap,ast2 (default spec)

• n,f3dB1,f3dB2

• n,f3dB1,f3dB2,ap

• n,f3dB1,f3dB2,ast

• n,f3dB1,f3dB2,ast1,ap,ast2

• n,f3dB1,f3dB2,bwp

• n,f3dB1,f3dB2,bwst

• n,fc1,fc2

• n,fp1,fp2,ap

• n,fp1,fp2,ast1,ap,ast2

• n,fst1,fp1,fp2,fst2

• n,fst1,fp1,fp2,fst2,ap

fdesign.bandpass

8-566

• n,fst1,fst2,ast

• nb,na,fst1,fp1,fp2,fst2

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band. Also called Apass.

• ast1—attenuation in the first stop band in dB (the default units). Also called
Astop1.

• ast2—attenuation in the second stop band in dB (the default units). Also
called Astop2.

• bwp—bandwidth of the filter passband. Specified in normalized frequency
units.

• bwst—bandwidth of the filter stopband. Specified in normalized frequency
units.

• f3dB1—cutoff frequency for the point 3dB point below the passband value for
the first cutoff. Specified in normalized frequency units. (IIR filters)

• f3dB2—cutoff frequency for the point 3dB point below the passband value for
the second cutoff. Specified in normalized frequency units. (IIR filters)

• fc1—cutoff frequency for the point 3dB point below the passband value for
the first cutoff. Specified in normalized frequency units. (FIR filters)

• fc2—cutoff frequency for the point 3dB point below the passband value for
the second cutoff. Specified in normalized frequency units. (FIR filters)

• fp1—frequency at the edge of the start of the pass band. Specified in
normalized frequency units. Also called Fpass1.

• fp2—frequency at the edge of the end of the pass band. Specified in
normalized frequency units. Also called Fpass2.

• fst1—frequency at the edge of the start of the first stop band. Specified in
normalized frequency units. Also called Fstop1.

• fst2—frequency at the edge of the start of the second stop band. Specified in
normalized frequency units. Also called Fstop2.

• n—filter order for FIR filters. Or both the numerator and denominator orders
for IIR filters when na and nb are not provided.

• na—denominator order for IIR filters

• nb—numerator order for IIR filters

fdesign.bandpass

8-567

Graphically, the filter specifications look like this.

Regions between specification values like fst1 and fp1 are transition regions
where the filter response is not explicitly defined.

The filter design methods that apply to a bandpass filter specification object
change depending on the Specification string.Use designmethods to
determine which design method applies to an object and its specification string.

d = fdesign.bandpass(spec,specvalue1,specvalue2,...) constructs
an object d and sets its specifications at construction time.

d = fdesign.bandpass(specvalue1,specvalue2,specvalue3,specvalue4,
specvalue4,specvalue5,specvalue6) constructs d, an object with the default
Specification property string, using the values you provide as input
arguments for specvalue1,specvalue2,specvalue3,specvalue4,specvalue
4,specvalue5,specvalue6 and specvalue7.

d = fdesign.bandpass(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.bandpass(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

fdesign.bandpass

8-568

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples These examples show how to construct a bandpass filter specification object.
First, create a default specifications object without using input arguments.

d = fdesign.bandpass
d =

 Response: 'Minimum-order bandpass'
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fstop1: 0.3500
 Fpass1: 0.4500
 Fpass2: 0.5500
 Fstop2: 0.6500
 Astop1: 60
 Apass: 1
 Astop2: 60

Now, pass the filter specifications that correspond to the default
Specification—fst1,fp1,fp2,fst2,ast1,ap,ast2—without specifying the
Specification string. Notice that we add fs as the final input argument to
specify the sampling frequency of 48 Hz.

d = fdesign.bandpass(10, 12, 14, 16, 80, .5, 60, 48)
d =

 Response: 'Minimum-order bandpass'
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: false
 Fs: 48
 Fstop1: 10
 Fpass1: 12

fdesign.bandpass

8-569

 Fpass2: 14
 Fstop2: 16
 Astop1: 80
 Apass: 0.5000

 Astop2: 60

Next create a specifications object by passing a specification type string
'n,fc1,fc2'—the resulting object uses default values for n, fc1, and fc2.

d = fdesign.bandpass('n,fc1,fc2')

d =

 Response: 'Bandpass with cutoff'
 Specification: 'N,Fc1,Fc2'
 Description: {3x1 cell}
 NormalizedFrequency: true
 FilterOrder: 10
 Fcutoff1: 0.4000
 Fcutoff2: 0.6000

Create the same filter, passing the specification values to the object rather
than accepting the default values for n, fc1, and fc2. Notice that you can
include the sampling frequency fs as the final input argument, and that you
specify the cutoff frequencies in Hz since fs is in Hz.

d = fdesign.bandpass('n,fc1,fc2', 10, 9600, 14400, 48000)
d =

 Response: 'Bandpass with cutoff'
 Specification: 'N,Fc1,Fc2'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff1: 9600
 Fcutoff2: 14400

See Also fdesign, fdesign.bandstop, fdesign.highpass, fdesign.lowpass

fdesign.bandstop

8-570

8fdesign.bandstopPurpose Construct bandstop filter specification object

Syntax d = fdesign.bandstop
d = fdesign.bandstop(spec)
d = fdesign.bandstop(spec,specvalue1,specvalue2,...)
d = fdesign.bandstop(specvalue1,specvalue2,specvalue3,specvalue4,

specvalue4,specvalue5,specvalue6,specvalue7)
d = fdesign.bandstop(...,fs)
d = fdesign.bandstop(...,magunits)

Description d = fdesign.bandstop constructs a bandstop filter specification object d,
applying default values for the properties Fpass1, Fstop1, Fstop2, Fpass2,
Apass1, Astop1 and Apass2.

Using fdesign.bandstop with a design method generates a dfilt object.

d = fdesign.bandstop(spec) constructs object d and sets its 'Specification'
to spec. Entries in the spec string represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for spec are
shown below. The strings are not case sensitive.

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default spec)

• n,f3dB1,f3dB2

• n,f3dB1,f3dB2,ap

• n,f3dB1,f3dB2,ap,ast

• n,f3dB1,f3dB2,ast

• n,f3dB1,f3dB2,bwp

• n,f3dB1,f3dB2,bwst

• n,fc1,fc2

• n,fp1,fp2,ap

• n,fp1,fp2,ap,ast

• n,fp1,fst1,fst2,fp2

• n,fp1,fst1,fst2,fp2,ap

• n,fst1,fst2,ast

• nb,na,fp1,fst1,fst2,fp2

The string entries are defined as follows:

fdesign.bandstop

8-571

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• ast—attenuation in the first stop band in dB (the default units). Also called
Astop1.

• bwp—bandwidth of the filter passband. Specified in normalized frequency
units.

• bwst—bandwidth of the filter stopband. Specified in normalized frequency
units.

• f3dB1—cutoff frequency for the point 3dB point below the passband value for
the first cutoff. Specified in normalized frequency units.

• f3dB2—cutoff frequency for the point 3dB point below the passband value for
the second cutoff. Specified in normalized frequency units.

• fp1—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass1.

• fp2—frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2.

• fst1—frequency at the end of the first stop band. Specified in normalized
frequency units. Also called Fstop1.

• fst2—frequency at the start of the second stop band. Specified in normalized
frequency units. Also called Fstop2.

• n—filter order.

• na—denominator order for IIR filters

• nb—numerator order for IIR filters.

Graphically, the filter specifications look like this:

fdesign.bandstop

8-572

Regions between specification values like fp1 and fst1 are transition regions
where the filter response is not explicitly defined.

The filter design methods that apply to a bandstop filter specification object
change depending on the Specification string. Use designmethods to
determine which design method applies to an object and its specification string.

d = fdesign.bandstop(spec,specvalue1,specvalue2,...) constructs an
object d and sets its specifications at construction time.

d = fdesign.bandstop(fpass1,fstop1,fstop2,fpass2,apass1,...
astop,apass2) constructs an object d with the default Specification
property string, using the values you
provide for specvalue1,specvalue2,specvalue3,specvalue4,specvalue4,
specvalue5,specvalue6 and specvalue7.

d = fdesign.bandstop(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.bandstop(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

fdesign.bandstop

8-573

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples These examples show how to construct a bandpass filter specification object.
First, create a default specifications object without using input arguments.

d = fdesign.bandstop
d =

 Response: 'Minimum-order bandstop'
 Description: {7x1 cell}
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 NormalizedFrequency: true
 Fpass1: 0.3500
 Fstop1: 0.4500
 Fstop2: 0.5500
 Fpass2: 0.6500
 Apass1: 1
 Astop: 60
 Apass2: 1

Now create an object by passing a specification type string 'n,fc1,fc2'—the
resulting object uses default values for n, fc1, and fc2.

d=fdesign.bandstop('n,f3dB1,f3dB2')

d =

 Response: 'Bandstop with cutoff'
 Specification: 'N,F3dB1,F3dB2'
 Description: {3x1 cell}
 NormalizedFrequency: true
 FilterOrder: 10
 Fcutoff1: 0.4000
 Fcutoff2: 0.6000

designmethods(d)

fdesign.bandstop

8-574

Design Methods for class fdesign.bandstop:

butter
cheby1
cheby2
ellip

Create another bandstop filter, passing the specification values to the object
rather than accepting the default values for n, f3db1, and fc2. Notice that you
can add fs as the final input argument to specify the sampling frequency of 48
kHz.

d = fdesign.bandstop('n,f3db1,f3db2', 10, 9600, 14400, 48000)

d =

 Response: 'Bandstop with cutoff'
 Specification: 'N,F3dB1,F3dB2'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff1: 9600
 Fcutoff2: 14400

For this bandstop filter, pass the filter specifications that correspond to the
default Specification—fp1,fst1,fst2,fp2,ap1,ast,ap2.

d = fdesign.bandstop(0.3,0.4,0.6,0.7,0.5,60,1)

d =

 Response: 'Minimum-order bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fpass1: 0.3000
 Fstop1: 0.4000
 Fstop2: 0.6000
 Fpass2: 0.7000

fdesign.bandstop

8-575

 Apass1: 0.5000
 Astop: 60
 Apass2: 1

And for the final example, pass the magnitude specifications in squared units,
using the magunits option squared.

d = fdesign.bandstop(0.4,0.5,0.6,0.7,0.98,0.01,0.99,'squared')
d =

 Response: 'Minimum-order bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fpass1: 0.4000
 Fstop1: 0.5000
 Fstop2: 0.6000
 Fpass2: 0.7000
 Apass1: 0.0877
 Astop: 20
 Apass2: 0.0436

See Also fdesign, fdesign.bandpass, fdesign.highpass, fdesign.lowpass

fdesign.ciccomp

8-576

8fdesign.ciccompPurpose Construct filter cascaded-integrator comb (CIC) compensator filter
specification object

Syntax h = fdesign.ciccomp
h = fdesign.ciccomp(d,nsections)
h = fdesign.ciccomp(...,spec)
h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...)

Description h = fdesign.ciccomp constructs a CIC compensator specifications object d,
applying default values for the properties Fpass, Fstop, Apass, and Astop. In
this syntax, the filter has two sections and the differential delay is 1.

Using fdesign.ciccomp with a design method creates a dfilt object,
a single-rate discrete-time filter.

h = fdesign.ciccomp(d,nsections) constructs a CIC compensator
specifications object with the filter differential delay set to d and the number of
sections in the filter set to nsections. By default, d and nsections are 1 and
2 if you omit them as input arguments.

h = fdesign.ciccomp(...,spec) constructs a CIC Compensator
specifications object and sets its Specification property to spec. Entries in
the spec string represent various filter response features, such as the filter
order, that govern the filter design. Valid entries for spec are shown in the list
below. The strings are not case sensitve.

• fp,fst,ap,ast (default spec)
• n,fc,ap,ast
• n,fp,ap,ast
• n,fp,fst
• n,fst,ap,ast

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called
Astop.

fdesign.ciccomp

8-577

• fc—cutoff frequency for the point 3dB point below the passband value.
Specified in normalized frequency units.

• fp—frequency at the end of the pass band. Specified in normalized frequency
units. Also called Fpass.

• fst—frequency at the start of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n—filter order.

In graphic form, the filter specifications look like this:

Regions between specification values like fp and fst are transition regions
where the filter response is not explicitly defined.

The filter design methods that apply to a CIC compensator specifications object
change depending on the Spcification string. Use designmethods to
determine which design method applies to an object and its specification string.

h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...) constructs
an object and sets the specifications in the order they are specified in the spec
input when you construct the object.

Designing CIC Compensators
Typically, when they develop filters, designers want flat passbands and
transition regions that are as narrow as possible. CIC filters present a (sinx/x)
profile in the passband and relatively wide transitions.

fdesign.ciccomp

8-578

To compensate for this fall off in the passband, and to try to reduce the width
of the transition region, you can use a CIC compensator filter that
demonstrates an (x/sinx) profile in the passband. fdesign.ciccomp is
specifically tailored to designing CIC compensators.

Here is a plot of a CIC filter and a compensator for that filter. The example that
produces these filters follows the plot.

Given a CIC filter, how do you design a compensator for that filter? CIC
compensators share three defining properties with the CIC filter—differential
delay, d; number of sections, numberofsections; and the usable passband
frequency, Fpass.

By taking the number of sections, passband, and differential delay from your
CIC filter and using them in the definition of the CIC compensator, the

0 5 10 15 20 25 30 35 40 45

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

CIC Decimator hd(1)

CIC Compensator hd(2)

Resulting Cascade Filter hd(1), hd(2)

fdesign.ciccomp

8-579

resulting compensator filter effectively corrects for the passband droop of the
CIC filter, and narrows the transition region.

As a demonstration of this concept, this example creates a CIC decimator and
its compensator.

fs = 96e3; % Input sampling frequency.
fpass = 4e3; % Frequency band of interest.
m = 6; % Decimation factor.
hcic = design(fdesign.decimator(m,'cic',1,fpass,60,fs));
hd = cascade(dfilt.scalar(1/gain(hcic)),hcic);
hd(2) = design(fdesign.ciccomp(hcic.differentialdelay, ...
 hcic.numberofsections,fpass,4.5e3,.1,60,fs/m));
fvtool(hd(1),hd(2),cascade(hd(1),hd(2)),'Fs',[96e3 96e3/m 96e3])

You see the results in the preceeding plot.

Examples Designed to compensate for the roll-off inherent in CIC filters, CIC
compensators can improve the performance of your CIC design. This example
designs a compensator d with five sections and a differential delay equal to one.
The plot displayed after the code shows the increasing gain in the passband
that is characteristic of CIC compensators, to overcome the droop in the CIC
filter passband. Ideally, cascading the CIC compensator with the CIC filter
results in a lowpass filter with flat passband response and narrow transition
region.

h = fdesign.ciccomp;
set(h, 'NumberOfSections', 5, 'DifferentialDelay', 1);
hd = equiripple(h);
fvtool(hd);

fdesign.ciccomp

8-580

This compensator would work for a decimator or interpolator that had
diffential delay of 1 and 5 sections.

See Also fdesign.decimator, fdesign.interpolator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

fdesign.decimator

8-581

8fdesign.decimatorPurpose Construct decimator filter specification object

Syntax d = fdesign.decimator(m)
d = fdesign.decimator(m,design)
d = fdesign.decimator(m,design,spec)
d = fdesign.decimator(...,spec,specvalue1,specvalue2,...
d = fdesign.decimator(...,fs)
d = fdesign.decimator(...,magunits)

Description d = fdesign.decimator(m) constructs a decimating filter specification object
d, applying default values for the properties fp, fst, ap, and ast and using the
default design, Nyquist. Specify m, the decimation factor, as an integer. When
you omit the input argument m, fdesign.decimator sets the decimation factor
m to 2.

Using fdesign.decimator with a design method generates an mfilt object.

d = fdesign.decimator(m,design) constructs a decimator with the
decimation factor m and the design type you specify in design. By using the
design input argument, you can choose the sort of filter that results from using
the decimator specifications object. design accepts the following strings that
define the filter response.

design String Description

bandpass Sets the design for the decimator
specifications object to bandpass.

bandstop Sets the design for the decimator
specifications object to bandstop.

cic Sets the design for the decimator
specifications object to CIC filter.

ciccomp Sets the design for the decimator
specifications object to CIC compensator.

halfband Sets the design for the decimator
specifications object to halfband.

fdesign.decimator

8-582

Notice the entries in the first column. They match the design method names.
However, when you create your specifications object, the Response property
contains the full name of the response, such as CIC Compensator or
Inverse-Sinc Lowpass, rather than the shorter method names isinclp or
ciccomp. So, when you seek to design a new filter object, use the design method
name shown in the table. To change the Response property value for an
existing specifications object, use the full response name.

d = fdesign.decimator(m,design,spec) constructs object d and sets its
Specification property to spec. Entries in the spec string represent various
filter response features, such as the filter order, that govern the filter design.
Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input
argument.

Because you are designing multirate filters, the specification strings available
are not the same as the specifications for designing single-rate filters with such
design methods as fdesign.lowpass. The strings are not case sensitive.

highpass Sets the design for the decimator
specifications object to highpass.

isinclp Sets the design for the decimator
specifications object to inverse-sinc
lowpass.

lowpass Sets the design for the decimator
specifications object to lowpass.

nyquist Sets the design for the decimator
specifications object to Nyquist.

design String (Continued) Description

fdesign.decimator

8-583

Notice that the decimation factor m is not in the specification strings. Various
design types provide different specifications, as shown in this table. .

Design Type Valid Specification Strings

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default
string)

CIC • fp,ast (default and only string)

CIC Compensator • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast

fdesign.decimator

8-584

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc Lowpass • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fst,ap,ast

• n,fp,ap,ast

• n,fp,fst

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

Design Type Valid Specification Strings

fdesign.decimator

8-585

• ap1—amount of ripple allowed in the pass band in dB (the default units).
Also called Apass1. Bandpass and bandstop filters use this option.

• ap2—amount of ripple allowed in the pass band in dB (the default units).
Also called Apass2. Bandpass and bandstop filters use this option.

• ast—attenuation in the first stop band in dB (the default units). Also called
Astop.

• ast1—attenuation in the first stop band in dB (the default units). Also called
Astop1. Bandpass and bandstop filters use this option.

• ast2—attenuation in the first stop band in dB (the default units). Also called
Astop2. Bandpass and bandstop filters use this option.

• fc1—cutoff frequency for the point 3dB point below the passband value for
the first cutoff. Specified in normalized frequency units. Bandpass and
bandstop filters use this option.

• fc2—cutoff frequency for the point 3dB point below the passband value for
the second cutoff. Specified in normalized frequency units. Bandpass and
bandstop filters use this option.

• fp1—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass1. Bandpass and bandstop filters use this
option.

• fp2—frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2. Bandpass and bandstop filters use this
option.

• fst1—frequency at the end of the first stop band. Specified in normalized
frequency units. Also called Fstop1. Bandpass and bandstop filters use this
option.

• fst2—frequency at the start of the second stop band. Specified in normalized
frequency units. Also called Fstop2. Bandpass and bandstop filters use this
option.

• n—filter order.

• tw—width of the transition region between the pass and stop bands. Both
halfband and Nyquist filters use this option.

d = fdesign.decimator(...,spec,specvalue1,specvalue2,...) constructs
an object d and sets its specifications at construction time.

fdesign.decimator

8-586

d = fdesign.decimator(...,fs) adds the argument fs, specified in Hz, to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.decimator(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits can be
one of

• linear—specify the magnitude in linear units.

• dB—specify the magnitude in dB (decibels).

• squared—specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples These examples show how to construct decimating filter specification objects.
First, create a default specifications object without using input arguments
except for the decimation factor m.

d = fdesign.decimator(2,0.1,80) % Set tw=0.1, and ast=80.

d =

 MultirateType: 'Decimator'
 Response: 'Nyquist'
 DecimationFactor: 2
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 NormalizedFrequency: true
 TransitionWidth: 0.1
 Astop: 80

Now create an object by passing a specification type string
'fst1,fp1,fp2,fst2,ast1,ap,ast2' and a design—the resulting object uses
default values for the filter specifications. You must provide the design input
argument, bandpass in this example, when you include a specification.

d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')

d =

fdesign.decimator

8-587

 MultirateType: 'Decimator'
 Response: 'Bandpass'
 DecimationFactor: 8
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fstop1: 0.35
 Fpass1: 0.45
 Fpass2: 0.55
 Fstop2: 0.65
 Astop1: 60
 Apass: 1
 Astop2: 60

Create another decimating filter specification object, passing the specification
values to the object rather than accepting the default values for fp,fst,ap,ast.

d=fdesign.decimator(3,'lowpass',.45,0.55,.1,60)

d =

 MultirateType: 'Decimator'
 Response: 'Lowpass'
 DecimationFactor: 3
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 0.1
 Astop: 60

Now pass the filter specifications that correspond to the specifications—
n,fc,ap,ast.

d=fdesign.decimator(3,'cic compensator','n,fc,ap,ast',...
20,0.45,.05,50)

d =

fdesign.decimator

8-588

 MultirateType: 'Decimator'
 Response: 'CIC Compensator'
 DecimationFactor: 3
 Specification: 'N,Fc,Ap,Ast'
 Description: {4x1 cell}
 NumberOfSections: 2
 DifferentialDelay: 1
 NormalizedFrequency: true
 FilterOrder: 20
 Fcutoff: 0.45
 Apass: 0.05
 Astop: 50

Now design a decimator using the kaiserwin design method.

hm = kaiserwin(d)

Pass a new specification type for the filter, specifying the filter order. Note that
the inputs must include the differential delay dd with the CIC input argument
to design a CIC specification object.

m = 5;
dd = 2;
d = fdesign.decimator(m,'cic',dd,'fp,ast',0.55,55)

d =

 MultirateType: 'Decimator'
 Response: 'CIC'
 DecimationFactor: 5
 Specification: 'Fp,Ast'
 Description: {'Passband Frequency';'Stopband Attenuation(dB)'}
 DifferentialDelay: 2
 NormalizedFrequency: true
 Fpass: 0.55

In this example, you specify a sampling frequency as the last input argument.

d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,...
ap,ast2',0.25,0.35,.55,.65,50,.05,50,1e3) % Fs = 1000 Hz.

d =

 MultirateType: 'Decimator'

fdesign.decimator

8-589

 Response: 'Bandpass'
 DecimationFactor: 8
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: false
 Fs: 1000
 Fstop1: 0.25
 Fpass1: 0.35
 Fpass2: 0.55
 Fstop2: 0.65
 Astop1: 50
 Apass: 0.05
 Astop2: 50

In this, the last example, use the linear option for the filter specification object
and specify the stopband ripple attenuation in linear format.

hs = fdesign.decimator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,50,...
1e-3,'linear') % 1e-3 = 60dB.

hs =

 Response: 'Lowpass decimator'
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 DecimationFactor: 4
 NormalizedFrequency: false
 Fs: 500
 TransitionWidth: 0.1
 Astop: 60

Design the filter and display the magnitude response in FVTool.

designmethods(hs);
equiripple(hs); % Starts FVTool to display the response.

fdesign.decimator

8-590

See Also fdesign, fdesign.interpolator, fdesign.rsrc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−12

−10

−8

−6

−4

−2

0

2

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

fdesign.differentiator

8-591

8fdesign.differentiatorPurpose Construct differentiator filter specification object

Syntax d = fdesign.differentiator
d = fdesign.differentiator(spec)
d = fdesign.differentiator(spec,specvalue1,specvalue2,...)
d = fdesign.differentiator(specvalue1)
d = fdesign.differentiator(...,fs)
d = fdesign.differentiator(...,magunits)

Description d = fdesign.differentiator constructs a default differentiator filter
designer d the filter order, set to 31.

d = fdesign.differentiator(spec) initializes the filter designer
Specification property to spec. You provide one of the following strings as
input to replace spec. The string you provide is not case sensitive:

• n—full band differentiator (default).

• n,fp,fst—partial band differentiator.

• ap—minimum-order full band differentiator.

• fp,fst,ap,ast—minimum-order partial band differentiator.

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called
Astop.

• fp—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst—frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n—filter order.

By default, fdesign.differentiator assumes that all frequency specifications
are provided in normalized frequency units. Also, dB is the default for all
magnitude specifications.

fdesign.differentiator

8-592

Different specification strings may have different design methods available.
Use designmethods(d) to get a list of the design methods available for a given
specification string.

d = fdesign.differentiator(spec,specvalue1,specvalue2, ...)
initializes the filter designer specifications in spec with specvalue1,
specvalue2, and so on. To get a description of the specifications specvalue1,
specvalue2, and more, enter

get(d,'description')

at the Command prompt.

d = fdesign.differentiator(specvalue1) assumes the default specification
string n, setting the filter order to the value you provide.

d = fdesign.differentiator(...,fs) adds the argument fs, specified in Hz
to define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.differentiator(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits can be
one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples The toolbox lets you design a range of differentiators. These examples present
a few possible designs. The first example designs a 33rd-order full band
differentiator. The FVTool plot following the code shows the resulting
33rd-order filter.

d = fdesign.differentiator(33); % N is the filter order of 33.
designmethods(d);

fdesign.differentiator

8-593

hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange',...
'[-pi, pi)')

Design Methods for class fdesign.differentiator (N):

equiripple
firls

For the second example, design a narrow band differentiator. Differentiate the
first 25 percent of the frequencies in the Nyquist range and filter the higher
frequencies.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−3

−2

−1

0

1

2

3

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

fdesign.differentiator

8-594

d = fdesign.differentiator('n,fp,fst',54,.25,.3);
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase');
set(hf,'frequencyrange','[-fs/2, fs/2]')

Here is the view from FVTool.

Finally, design a minimum-order, wide-band differentiator.

d = fdesign.differentiator('fp,fst,ap,ast',.8,.9,1,80);
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange')

FVTool returns this plot.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

fdesign.differentiator

8-595

See Also design, fdesign, setspecs

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

fdesign.halfband

8-596

8fdesign.halfbandPurpose Construct halfband filter specification object

Syntax d = fdesign.halfband
d = fdesign.halfband(spec)
d = fdesign.halfband(spec,specvalue1,specvalue2,...)
d = fdesign.halfband(specvalue1,specvalue2)
d = fdesign.halfband(...,fs)
d = fdesign.halfband(...,magunits)

Description d = fdesign.halfband constructs a halfband filter specification object d,
applying default values for the properties tw and ast.

Using fdesign.halfband with a design method generates a dfilt object.

d = fdesign.halfband(spec) constructs object d and sets its 'Specification'
to spec. Entries in the spec string represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for spec are
shown below. The strings are not case sensitive.

• tw,ast (default spec)

• n,tw
• n

• n,ast

The string entries are defined as follows:

• ast—attenuation in the stop band in dB (the default units).

• n—filter order.

• tw—width of the transition region between the pass and stop bands.
Specified in normalized frequency units.

The filter design methods that apply to a halfband filter specification object
change depending on the Specification string. Use designmethods to
determine which design method applies to an object and its specification string.

d = fdesign.halfband(spec,specvalue1,specvalue2,...) constructs an
object d and sets its specifications at construction time.

d = fdesign.halfband(specvalue1,specvalue2) constructs an object d
assuming the default Specification property string tw,ast, using the values

fdesign.halfband

8-597

you provide for the input arguments specvalue1 and specvalue2 for tw and
ast.

d = fdesign.halfband(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.halfband(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples These examples show how to construct a halfband filter specification object.
First, create a default specifications object without using input arguments.

d=fdesign.halfband

d =

 Response: 'Minimum-order halfband'
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: true
 TransitionWidth: 0.1000
 Astop: 80

Now create an object by passing a specification type string 'n,ast'—the
resulting object uses default values for n and ast.

d=fdesign.halfband('n,ast')

d =

 Response: 'Halfband with filter order and stopband attenuation'
 Specification: 'N,Ast'
 Description: {2x1 cell}

fdesign.halfband

8-598

 NormalizedFrequency: true
 FilterOrder: 10
 Astop: 80

Create another halfband filter object, passing the specification values to the
object rather than accepting the default values for n and ast.

d = fdesign.halfband('n,ast', 42, 80)

d =

 Response: 'Halfband with filter order and stopband attenuation'
 Specification: 'N,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: true
 FilterOrder: 42
 Astop: 80

For another example, pass the filter values that correspond to the default
Specification—n,ast.

d = fdesign.halfband(.01, 80)

d =

 Response: 'Minimum-order halfband'
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: true
 TransitionWidth: 0.0100
 Astop: 80%

This example designs an equiripple FIR filter, starting by passing a new
specification type and specification values to fdesign.halfband.

hs = fdesign.halfband('n,ast',80,70);
hs

hs =

 Response: [1x51 char]
 Specification: 'N,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: true
 FilterOrder: 80
 Astop: 70

fdesign.halfband

8-599

equiripple(hs); % Opens FVTool automatically.

In the final example, pass the for the filter, and then design a least-squares FIR
filter from the object, using firls as the design method.

hs = fdesign.halfband('n,tw', 42, .04)

hs =

 Response: [1x47 char]
 Specification: 'N,TW'
 Description: {2x1 cell}
 NormalizedFrequency: true
 FilterOrder: 42
 TransitionWidth: 0.0400

designmethods(hs)

Design Methods for class fdesign.halfband:

equiripple
kaiserwin
firls

hd=firls(hs)

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x43 double]
 PersistentMemory: false
 States: [42x1 double]

See Also fdesign, fdesign.decimator, fdesign.interpolator, fdesign.nyquist

fdesign.highpass

8-600

8fdesign.highpassPurpose Construct highpass filter specification object

Syntax d = fdesign.highpass
d = fdesign.highpass(spec)
d = fdesign.highpass(spec,specvalue1,specvalue2,...)
d = fdesign.highpass(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.highpass(...,fs)
d = fdesign.highpass(...,magunits)

Description d = fdesign.highpass constructs a highpass filter specification object d,
applying default values for the properties fst, fp, ast and ap.

Using fdesign.highpass with a design method generates a dfilt object.

d = fdesign.highpass(spec) constructs object d and sets its 'Specification'
to spec. Entries in the spec string represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for spec are
shown below. The strings are not case sensitive.

• fst,fp,ast,ap (default spec)

• n,f3db

• n,f3db,ap

• n,f3db,ast

• n,f3db,ast,ap

• n,f3db,fp

• n,fc

• n,fc,ast,ap

• n,fp,ap

• n,fp,ast,ap

• n,fst,ast

• n,fst,ast,ap

• n,fst,f3db

• n,fst,fp

• n,fst,fp,ap

• n,fst,fp,ast

fdesign.highpass

8-601

• nb,na,fst,fp

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called
Astop.

• f3db—cutoff frequency for the point 3dB point below the passband value.
Specified in normalized frequency units.

• fc—cutoff frequency for the point 3dB point below the passband value.
Specified in normalized frequency units.

• fp—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst—frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n—filter order.

• na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look like this:

Regions between specification values like fst1 and fp are transition regions
where the filter response is not explicitly defined.

fdesign.highpass

8-602

The filter design methods that apply to a highpass filter specification object
change depending on the Specification string. Use designmethods to
determine which design method applies to an object and its specification string.

d = fdesign.highpass(spec,specvalue1,specvalue2,...) constructs an
object d and sets its specification values at construction time.

d = fdesign.highpass(specvalue1,specvalue2,specvalue3,specvalue4)
constructs an object d with the values for the default Specification property
string, using the specifications you provide as input arguments
specvalue1,specvalue2,specvalue3,specvalue4.

d = fdesign.highpass(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.highpass(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples These examples how to construct a highpass filter specification object. First,
create a default specifications object without using input arguments.

d=fdesign.highpass

d =

 Response: 'Minimum-order highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fstop: 0.4500

fdesign.highpass

8-603

 Fpass: 0.5500
 Astop: 60
 Apass: 1

This time, pass the specifications that correspond to the default Specification
string.

hs = fdesign.highpass(.4,.5,80,1);

hs =

 Response: 'Minimum-order highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fstop: 0.4000
 Fpass: 0.5000
 Astop: 80
 Apass: 1

Now create an object by passing a specification type string 'n,fc'—the
resulting object uses default values for n and fc.

d=fdesign.highpass('n,fc')

d =

 Response: 'Highpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true
 FilterOrder: 10
 Fcutoff: 0.5000

Create the same filter, passing the values for n and fc rather than accepting
the default values. Notice that you can add include the sampling frequency fs
as the final input argument. Adding fs puts all the frequency specifications into
linear frequency format, rather than normalized frequency.

d=fdesign.highpass('n,fc',10,9600,48000)

d =

fdesign.highpass

8-604

 Response: 'Highpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff: 9600

Finally, pass values for the filter specifications that match the default
Specification string—fp = 10, fst = 12, ast = 80 and ap = 0.5. Add the
sampling frequency on the end.

d=fdesign.highpass(10,12,80,0.5,48000)

d =

 Response: 'Minimum-order highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 Fstop: 10
 Fpass: 12
 Astop: 80

To demonstrate the magunits input option, pass the magnitude specifications
in squared units and include the squared input argument for magunits.

hs = fdesign.highpass(.4, .5, .02, .98, 'squared');
hd = cheby1(hs);
fvtool(hd,'MagnitudeDisplay','Magnitude Squared');

The figure below shows the filter response.

fdesign.highpass

8-605

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.lowpass

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 s

qu
ar

ed

Magnitude Response (squared)

fdesign.hilbert

8-606

8fdesign.hilbertPurpose Construct Hilbert filter specification object

Syntax d = fdesign.hilbert
d = fdesign.hilbert(specvalue1,specvalue2)
d = fdesign.hilbert(spec)
d = fdesign.hilbert(spec,specvalue1,specvalue2)
d = fdesign.hilbert(...,fs)
d = fdesign.hilbert(...,magunits)

Description d = fdesign.hilbert constructs a default Hilbert filter designer d with n, the
filter order, set to 31.

d = fdesign.hilbert(specvalue1,specvalue2) constructs a Hilbert filter
designer d assuming the default specification string n,tw.You input specvalue1
and specvalue2 for n and tw.

d = fdesign.hilbert(spec) initializes the filter designer Specification
property to spec. You provide one of the following strings as input to replace
spec. The string you provide is not case sensitive:

• n,tw—default spec string.

• tw,ap—minimum-order Hilbert filter.

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• n—filter order.

• tw—width of the transition region between the pass and stop bands.

By default, fdesign.hilbert assumes that all frequency specifications are
provided in normalized frequency units. Also, dB is the default for all
magnitude specifications.

Different specification strings may have different design methods available.
Use designmethods(d) to get a list of the design methods available for a given
specification string.

fdesign.hilbert

8-607

d = fdesign.hilbert(spec,specvalue1,specvalue2) initializes the filter
designer specifications in spec with specvalue1, specvalue2, and so on. To get
a description of the specifications specvalue1 and specvalue2, enter

get(d,'description')

at the Command prompt.

d = fdesign.hilbert(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.hilbert(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples The toolbox lets you design a range of Hilbert filters. These examples present
a few possible designs. The first example designs a 30th-order type III Hilbert
transformer filter. The FVTool plot following the code shows the resulting
filter.

d = fdesign.hilbert(30,0.2); % n,tw specification string.
designmethods(d);

hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange',...
'[-pi, pi)')

Design Methods for class fdesign.hilbert (N,TW):

ellip
iirlinphase

fdesign.hilbert

8-608

equiripple
firls

For the second example, design a 35th-order type IV Hilbert transformer.

d = fdesign.hilbert('n,tw',35,0.1);
designmethods(d);
hd = design(d,'equiripple');
hf = fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange')
set(hf,'frequencyrange','[-fs/2, fs/2]')

Here is the view from FVTool.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de
Zero−phase Response

fdesign.hilbert

8-609

Finally, design a minimum-order transformer that has a sampling frequency
of 100 Hz—add Fs as an input argument in Hz.

d = fdesign.hilbert('tw,ap',1,0.1,100); % Fs = 100 Hz.
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase');
set(hf,'frequencyrange','[-fs/2, fs/2]')

FVTool returns this plot.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Normalized Frequency (×π rad/sample)

A
m

pl
itu

de

Zero−phase Response

fdesign.hilbert

8-610

See Also design, fdesign, setspecs

0 5 10 15 20 25 30 35 40 45

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Frequency (Hz)

A
m

pl
itu

de

Zero−phase Response

iirlinphase

8-611

8iirlinphasePurpose Design quasi-linear phase IIR filter from halfband filter specification object

Syntax hd = design(d,'iirlinphase')
hd = design(d,'iirlinphase','filterstructure',structure)

Description hd = design(d,'iirlinphase') designs a quasi-linear phase filter hd
specified by the filter specification object d.

hd = design(...,'filterstructure',structure) returns a filter with the
structure specified by structure. By default, the filter structure is df2sos
(direct-form II with second-order sections). You can substitute one of the
following strings for structure to specify the structure of hd.

Examples Design a quasi-linear phase, minimum-order halfband IIR filter with
transition width of 0.36 and stopband attenuation of at least 80 dB.

tw = 0.36;
ast = 80;
d = fdesign.halfband('tw,ast',tw,ast); % Transition width,

% stopband attenuation.
hd = design(d,'iirlinphase');

fvtool(hd)

Notice the characteristic halfband nature of the ripple in the stopband. If you
measure the resulting filter, you see it meets the specifications.

Structure String Filter Structure

df1sos Direct-form I IIR filter with second-order
sections

df2sos Direct-form II IIR filter with second-order
sections

df1tsos Transposed direct-form I IIR filter with
second-order sections

df2tsos Transposed direct-form II IIR filter with
second-order sections

iirlinphase

8-612

measure(hd)

ans =

Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.32
3-dB Point : 0.5
6-dB Point : 0.51911
Stopband Edge : 0.68
Passband Ripple : 4.0866e-008 dB
Stopband Atten. : 80.2642 dB
Transition Width : 0.36

See Also fdesign.nyquist

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−95.842

−75.7409

−55.6399

−35.5388

−15.4377

4.6633

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−24.2069

−19.135

−14.0631

−8.9911

−3.9192

1.1527

P
ha

se
 (

ra
di

an
s)

Magnitude

Phase

fdesign.interpolator

8-613

8fdesign.interpolatorPurpose Construct interpolator filter specification object

Syntax d = fdesign.interpolator(l)
d = fdesign.interpolator(l,design)
d = fdesign.interpolator(l,design,spec)
d = fdesign.interpolator(...,spec,specvalue1,specvalue2,...
d = fdesign.interpolator(...,fs)
d = fdesign.interpolator(...,magunits)

Description d = fdesign.interpolator(l) constructs an interpolating filter specification
object d, applying default values for the properties fp, fst, ap, and ast and
using the default design, Nyquist. Specify l, the interpolation factor, as an
integer. When you omit the input argument l, fdesign.interpolator sets the
interpolation factor l to 3.

Using fdesign.interpolator with a design method generates an mfilt object.

d = fdesign.interpolator(l,design) constructs an interpolator with the
interpolation factor l and the response you specify in design. By using the
design input argument, you can choose the sort of filter that results from using
the interpolator specifications object. design accepts the following strings that
define the filter response.

design String Description

Bandpass Sets the response for the interpolator
specifications object to bandpass.

Bandstop Sets the response for the interpolator
specifications object to bandstop.

CIC Sets the response for the interpolator
specifications object to CIC filter.

CIC Compensator Sets the response for the interpolator
specifications object to CIC compensator.

Halfband Sets the response for the interpolator
specifications object to halfband.

fdesign.interpolator

8-614

d = fdesign.interpolator(l,design,spec) constructs object d and sets its
Specification property to spec. Entries in the spec string represent various
filter response features, such as the filter order, that govern the filter design.
Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input
argument.

Because you are designing multirate filters, the specification strings available
are not the same as the specifications for designing single-rate filters with such
design methods as fdesign.lowpass. The strings are not case sensitive.

Notice that the interpolation factor l is not in the specification strings. Various
design types provide different specifications, as shown in this table.

Highpass Sets the response for the interpolator
specifications object to highpass.

Inverse-Sinc Lowpass Sets the response for the interpolator
specifications object to inverse-sinc
lowpass.

Lowpass Sets the response for the interpolator
specifications object to lowpass.

Nyquist Sets the response for the interpolator
specifications object to Nyquist.

Design Type Valid Specification Strings

Arbitrary Magnitude • n,b,f,a
• n,f,a

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

design String (Continued) Description

fdesign.interpolator

8-615

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default
string)

CIC • fp,ast (default and only string)

CIC Compensator • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc Lowpass • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fst,ap,ast

• n,fp,ap,ast

• n,fp,fst

Design Type Valid Specification Strings

fdesign.interpolator

8-616

The string entries are defined as follows:

• a—magnitude response at the frequencies in f. Usually this is a vector of
values with the same length as f.

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• ap1—amount of ripple allowed in the pass band in dB (the default units).
Also called Apass1. Bandpass and bandstop filters use this option.

• ap2—amount of ripple allowed in the pass band in dB (the default units).
Also called Apass2. Bandpass and bandstop filters use this option.

• ast—attenuation in the first stop band in dB (the default units). Also called
Astop.

• ast1—attenuation in the first stop band in dB (the default units). Also called
Astop1. Bandpass and bandstop filters use this option.

• ast2—attenuation in the first stop band in dB (the default units). Also called
Astop2. Bandpass and bandstop filters use this option.

• b—number of filter bands.

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

Design Type Valid Specification Strings

fdesign.interpolator

8-617

• f—vector of specific frequency points in the filter response. In combination
with a, this specifies the desired filter response.

• fc1—cutoff frequency for the point 3dB point below the passband value for
the first cutoff. Specified in normalized frequency units. Bandpass and
bandstop filters use this option.

• fc2—cutoff frequency for the point 3dB point below the passband value for
the second cutoff. Specified in normalized frequency units. Bandpass and
bandstop filters use this option.

• fp1—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass1. Bandpass and bandstop filters use this
option.

• fp2—frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2. Bandpass and bandstop filters use this
option.

• fst1—frequency at the end of the first stop band. Specified in normalized
frequency units. Also called Fstop1. Bandpass and bandstop filters use this
option.

• fst2—frequency at the start of the second stop band. Specified in normalized
frequency units. Also called Fstop2. Bandpass and bandstop filters use this
option.

• n—filter order.

• tw—width of the transition region between the pass and stop bands.
Halfband, Hilbert, and Nyquist filters use this option.

d = fdesign.interpolator(...,spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d = fdesign.interpolator(...,fs) adds the argument fs, specified in Hz,
to define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.interpolator(...,magunits) specifies the units for any
magnitude specification you provide in the input arguments. magunits can be
one of

• linear—specify the magnitude in linear units.

• dB—specify the magnitude in dB (decibels).

fdesign.interpolator

8-618

• squared—specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples These examples show how to construct interpolating filter specification objects.
First, create a default specifications object without using input arguments
except for the interpolation factor l.

l = 2;
d = fdesign.interpolator(2)

d =

 MultirateType: 'Interpolator'
 Response: 'Nyquist'
 DecimationFactor: 2
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 NormalizedFrequency: true
 TransitionWidth: 0.1
 Astop: 80

Now create an object by passing a specification string
'fst1,fp1,fp2,fst2,ast1,ap,ast2' and a design—the resulting object uses
default values for all of the filter specifications. You must provide the design
input argument when you include a specification.

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')

d =

 MultirateType: 'Interpolator'
 Response: 'Bandpass'
 DecimationFactor: 8
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fstop1: 0.35
 Fpass1: 0.45

fdesign.interpolator

8-619

 Fpass2: 0.55
 Fstop2: 0.65
 Astop1: 60
 Apass: 1
 Astop2: 60

Create another interpolating filter object, passing the specification values to
the object rather than accepting the default values for, in this case,
fp,fst,ap,ast.

d=fdesign.interpolator(3,'lowpass',.45,0.55,.1,60)

d =

 MultirateType: 'Interpolator'
 Response: 'Lowpass'
 DecimationFactor: 3
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 0.1
 Astop: 60

Now pass the filter specifications that correspond to the specifications—
n,fc,ap,ast.

d=fdesign.interpolator(3,'cic compensator','n,fc,ap,ast',...
20,0.45,.05,50)

d =

 MultirateType: 'Interpolator'
 Response: 'CIC Compensator'
 DecimationFactor: 3
 Specification: 'N,Fc,Ap,Ast'
 Description: {4x1 cell}
 NumberOfSections: 2
 DifferentialDelay: 1
 NormalizedFrequency: true

fdesign.interpolator

8-620

 FilterOrder: 20
 Fcutoff: 0.45
 Apass: 0.05
 Astop: 50

With the specifications object in your workspace, design an interpolator using
the kaiserwin design method.

hm = design(d,'kaiserwin')

Pass a new specification type for the filter, specifying the filter order.

d = fdesign.interpolator(5,'CIC','fp,ast',0.55,55)

d =

 MultirateType: 'Interpolator'
 Response: 'CIC'
 DecimationFactor: 5
 Specification: 'Fp,Aa'
 Description: {'Passband Frequency';'Stopband Attenuation(dB)'}
 DifferentialDelay: 1
 NormalizedFrequency: true
 Fpass: 0.55

In this example, you specify a sampling frequency as the rightmost input
argument.

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,...
ap,ast2',0.25,0.35,.55,.65,50,.05,50,1e3) % Fs = 1000 Hz.

d =

 MultirateType: 'Interpolator'
 Response: 'Bandpass'
 DecimationFactor: 8
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: false
 Fs: 1000
 Fstop1: 0.25
 Fpass1: 0.35
 Fpass2: 0.55
 Fstop2: 0.65

fdesign.interpolator

8-621

 Astop1: 50
 Apass: 0.05
 Astop2: 50

In this, the last example, use the linear option for the filter specification object
and specify the stopband ripple attenuation in linear form.

d = fdesign.interpolator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,...
50,1e3,'linear') % 1e3 = 60dB.

d =

 Response: 'Lowpass interpolator'
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 DecimationFactor: 4
 NormalizedFrequency: false
 Fs: 500
 TransitionWidth: 0.1
 Astop: 60

Design the filter and display the magnitude response in FVTool.

designmethods(d);
design(d,'equiripple'); % Opens FVTool to display the response.

Now design a CIC interpolator for a signal sampled at 19200 Hz. Specify the
differential delay of 2 and set the attenuation of information beyond 50 Hz to
be at least 80 dB.

Notice that the filter object sampling frequency is (l x fs) where fs is the
sampling frequency of the input signal.

dd = 2; % Differential delay.
fp = 50; % Passband of interest.
ast = 80; % Minimum attenuation of alias components in passband.
fs = 600; % Sampling frequency for input signal.
l = 32; % Interpolation factor.
d = fdesign.interpolator(l,'cic',dd,'fp,ast',fp,ast,l*fs);
d =

 MultirateType: 'Interpolator'
 InterpolationFactor: 32
 Response: 'CIC'
 Specification: 'Fp,Ast'
 Description: {'Passband Frequency';'Imaging Attenuation(dB)'}
 DifferentialDelay: 2
 NormalizedFrequency: false

fdesign.interpolator

8-622

 Fs: 19200
 Fs_in: 600
 Fs_out: 19200
 Fpass: 50
 Astop: 80
hm = design(d); %Use the default design method.
hm

hm =

 FilterStructure: 'Cascaded Integrator-Comb Interpolator'
 Arithmetic: 'fixed'
 DifferentialDelay: 2
 NumberOfSections: 2
 InterpolationFactor: 32
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

This next example results in a minimum-order CIC compensator that
interpolates by 4 and compensates for the droop in the passband for the CIC
filter hm from the previous example.

nsecs = hm.numberofsections;
d = fdesign.interpolator(4,'ciccomp',dd,nsecs,...
50,100,0.1,80,fs);
hmc = design(d,'equiripple');
hmc.arithmetic = 'fixed';

hmc is designed to compensate for hm. To see the effect of the compensating CIC
filter, use FVTool to analyze both filters individually and include the compound
filter response by cascading hm and hmc.

fvtool(hmc,hm,cascade(hmc,hm),'fs',[fs,l*fs,l*fs],...
'showreference','off');
legend('CIC Compensator','CIC Interpolator',...
'Overall Response');

FVTool returns with this plot.

fdesign.interpolator

8-623

For the third example, use fdesign.interpolator to design a minimum-order
Nyquist interpolator that uses a Kaiser window. For comparison, design
a multistage interpolator as well and compare the responses.

l = 15; % Set the interpolation factor and the Nyquist band.
tw = 0.05; % Specify the normalized transition width.
ast = 40; % Set the minimum stopband attenuation in dB.
d = fdesign.interpolator(l,'nyquist',l,tw,ast);
hm = design(d,'kaiserwin');
hm2 = design(d,'multistage'); % Design the multistage interpolator.
fvtool(hm,hm2);
legend('Kaiser Window','Multistage')

FVTool shows both responses.

0 1 2 3 4 5 6 7 8 9
−20

0

20

40

60

80

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

CIC Compensator
CIC Interpolator
Overall Response

fdesign.interpolator

8-624

Design a lowpass interpolator for an interpolation factor of 8. Compare the
single-stage equiripple design to a multistage design with the same
interpolation factor.

l = 8; % Interpolation factor.
d = fdesign.interpolator(l,'lowpass');
hm(1) = design(d,'equiripple');
hm(2) = design(d,'multistage','usehalfbands',true); % Use...

% halfband filters whenever possible.
fvtool(hm);
legend('Single-Stage Equiripple','Multistage')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−70

−60

−50

−40

−30

−20

−10

0

10

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Kaiser Window
Multistage

fdesign.interpolator

8-625

See Also fdesign, fdesign.decimator, fdesign.rsrc, setspecs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Single−Stage Equiripple
Multistage

fdesign.isinclp

8-626

8fdesign.isinclpPurpose Construct inverse-sinc filter specification object

Syntax d = fdesign.isinclp
d = fdesign.isinclp(spec)
d = fdesign.isinclp(spec,specvalue1,specvalue2,...)
d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.isinclp(...,fs)
d = fdesign.isinclp(...,magunits)

Description d = fdesign.isinclp constructs an inverse-sinc lowpass filter specification
object d, applying default values for the properties tw and ast.

Using fdesign.isinclp with a design method generates a dfilt object.

d = fdesign.isinclp(spec) constructs object d and sets its 'Specification'
to spec. Entries in the spec string represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for spec are
shown below. The strings are not case sensitive.

• fp,fst,ap,ast (default spec)

• n,fst,ap,ast

• n,fp,fst

The string entries are defined as follows:

• ast—attenuation in the first stop band in dB (the default units). Also called
Astop.

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• fp—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst—frequency at the end of the first stop band. Specified in normalized
frequency units. Also called Fstop.

• n—filter order.

The filter design methods that apply to an inverse-sinc lowpass filter
specification object change depending on the Specification string. Use
designmethods to determine which design method applies to an object and its
specification string.

fdesign.isinclp

8-627

d = fdesign.isinclp(spec,specvalue1,specvalue2,...) constructs an
object d and sets its specifications at construction time.

d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4)
constructs an object d assuming the default Specification property string
fp,fst,ap,ast, using the values you provide in specvalue1,specvalue2,
specvalue3, and specvalue4.

d = fdesign.isinclp(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.isinclp(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples Pass the specifications for the default specification—fp,fst,ap,ast—as input
arguments to the specifications object.

d = fdesign.isinclp(.4,.5,.01,40);
designmethods(d)
hd = design(d,'equiripple');
fvtool(hd);

FVTool shows the classic inverse-sinc filter response.

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.halfband,
fdesign.highpass, fdesign.lowpass, fdesign.nyquist

fdesign.lowpass

8-628

8fdesign.lowpassPurpose Construct lowpass filter specification object

Syntax d = fdesign.lowpass
d = fdesign.lowpass(spec)
d = fdesign.lowpass(spec,specvalue1,specvalue2,)
d = fdesign.lowpass(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.lowpass(...,fs)
d = fdesign.lowpass(...,magunits)

Description d = fdesign.lowpass constructs a lowpass filter specification object d,
applying default values for the properties fp, fst, ap, and ast.

Using fdesign.lowpass with a design method generates a dfilt object.

d = fdesign.lowpass(spec) constructs object d and sets its 'Specification'
to spec. Entries in the spec string represent various filter response features,
such as the filter order, that govern the filter design. Valid entries for spec are
shown below. The strings are not case sensitive.

• fp,fst,ap,ast (default spec)
• n,f3db
• n,f3db,ap
• n,f3db,ap,ast
• n,f3db,ast
• n,f3db,fst
• n,fc
• n,fc,ap,ast
• n,fp,ap
• n,fp,ap,ast
• n,fp,fst,ap
• n,fp,f3db
• n,fp,fst
• n,fp,fst,ap
• n,fp,fst,ast
• n,fst,ap,ast
• n,fst,ast

• nb,na,fp,fst

The string entries are defined as follows:

fdesign.lowpass

8-629

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called
Astop.

• f3db—cutoff frequency for the point 3dB point below the passband value.
Specified in normalized frequency units.

• fc—cutoff frequency for the point 3dB point below the passband value.
Specified in normalized frequency units.

• fp—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass.

• fst—frequency at the end of the stop band. Specified in normalized
frequency units. Also called Fstop.

• n—filter order.

• na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look like this:

Regions between specification values like fp and fst are transition regions
where the filter response is not explicitly defined.

The filter design methods that apply to a lowpass filter specification object
change depending on the Specification string. Here are all the valid strings
for lowpass filter specification objects.

• fp,fst,ap,ast

fdesign.lowpass

8-630

• n,f3dB
• n,f3dB,Ap
• n,f3dB,Ap,Ast
• n,f3dB,Ast
• n,f3dB, Fst
• n,fc
• n,fc,Ap,Ast
• n,fp,ap
• n,fp,ap,ast
• n,fp,f3db
• n,fp,fst
• n,fp,fst,ap
• n,fp,fst,ast
• n,fst,ap,ast
• n,fst,ast
• n,fp,ap,ast
• nb,na,fp,fst

d = fdesign.lowpass(spec,specvalue1,specvalue2,...) constructs an
object d and sets its specification values at construction time.

d = fdesign.lowpass(fp,fst,ap,ast) constructs an object d with values for
the default Specification property string fp,fst,ap,ast using the
specifications you provide as input arguments
specvalue1,specvalue2,specvalue3,specvalue4.

d = fdesign.lowpass(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.lowpass(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB

fdesign.lowpass

8-631

(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples These examples how to construct a lowpass filter specification object. First,
create a default lowpass filter object without using input arguments.

d=fdesign.lowpass

d =

 Response: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

Now create an object by passing specifications for the passband and stopband
edge frequencies and the passband and stopband attenuations—the resulting
object uses the input values for fp, fst, ap, and ast.

hs = fdesign.lowpass(.4,.5,1,80);
hs

hs =

 Response: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.4000
 Fstop: 0.5000
 Apass: 1
 Astop: 80

Create another filter object, passing the values for n and fc rather than
accepting the default values. Notice that you can add include the sampling
frequency fs as the final input argument.

fdesign.lowpass

8-632

d=fdesign.lowpass('n,fc',10, 9600,48000)

d =

 Response: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff: 9600

Finally, pass values for the filter specifications that match the default
Specification string entries—fp = 0.4, fst = 0.5, ast = 80 and ap = 1.0.
Add the sampling frequency on the end.

hs = fdesign.lowpass(.4,.5,1,80)

hs =

 Response: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.4000
 Fstop: 0.5000
 Apass: 1
 Astop: 80

Finally, the next examples add the sampling frequency specification in Hz, and
then the magunits option.

hs = fdesign.lowpass('N,Fp,Ap', 10, 9600, .5, 48000);

and

hsmag = fdesign.lowpass(.4, .5, .98, .02, 'squared');

Using the last example filter object, create a highpass filter.

hd = design(hsmag,'cheby1';

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.highpass

fdesign.nyquist

8-633

8fdesign.nyquistPurpose Construct Nyquist filter specification object

Syntax d = fdesign.nyquist
d = fdesign.nyquist(l,spec)
d = fdesign.nyquist(l,spec,specvalue1,specvalue2,)
d = fdesign.nyquist(l,specvalue1,specvalue2)
d = fdesign.nyquist(...,fs)
d = fdesign.nyquist(...,magunits)

Description d = fdesign.nyquist constructs a Nyquist or L-band filter specification
object d, applying default values for the properties tw and ast. By default, the
filter object designs a minimum-order half-band (L=2) Nyquist filter.

Using fdesign.nyquist with a design method generates a dfilt object.

d = fdesign.nyquist(l,spec) constructs object d and sets its Specification
property to spec. Use l to specify the desired value for L. L=2 design a
half-band FIR filter, L=3 a third-band FIR filter, and so on. When you use a
Nyquist filter as an interpolator, l or L is the interpolation factor. The first
input argument must be l when you are not using the default syntax
d = fdesign.nyquist.

Entries in the spec string represent various filter response features, such as
the filter order, that govern the filter design. Valid entries for spec are shown
below. The strings are not case sensitive.

• tw,ast (default spec)

• n,tw
• n

• n,ast

The string entries are defined as follows:

• ast—attenuation in the stop band in dB (the default units).

• n—filter order.

• tw—width of the transition region between the pass and stop bands.
Specified in normalized frequency units.

The filter design methods that apply to an interpolating filter specification
object change depending on the Specification string. Paired with each string

fdesign.nyquist

8-634

in the following table are the design methods for interpolating filter
specification objects that use that string.

d = fdesign.nyquist(l,spec,specvalue1,specvalue2,...) constructs an
object d and sets its specification to spec, and the specification values to
specvalue1, specvalue2, and so on at construction time.

d = fdesign.nyquist(l,specvalue1,specvalue2) constructs an object d
with the values you provide in l, specvalue1,specvalue2 as the values for l,
tw and ast.

d = fdesign.nyquist(...,fs) adds the argument fs, specified in Hz to
define the sampling frequency to use. In this case, all frequencies in the
specifications are in Hz as well.

d = fdesign.nyquist(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Specification String Applicable Design Method

tw,ast kaiserwin

n,tw kaiserwin

n window

n,ast kaiserwin

fdesign.nyquist

8-635

Limitations of the Nyquist fdesign Object
Using Nyquist filter specification objects with the equiripple design method
imposes a few limitations on the resulting filter, caused by the equiripple
design algorithm.

• When you request a minimum-order design from equiripple with your
Nyquist object, the design algorithm might not converge and can fail with a
filter convergence error.

• When you specify the order of your desired filter, and use the equiripple
design method, the design might not converge.

• Generally, the following specifications, alone or in combination with one
another, can cause filter convergence problems with Nyquist objects and the
equiripple design method.

- very high order

- small transition width

- very large stopband attenuation

Note that halfband filters (filters where band = 2) do not exhibit convergence
problems.

When convergence issues arise, either in the cases mentioned or in others, you
might be able to design your filter with the kaiserwin method.

In addition, if you use Nyquist objects to design decimators or interpolators
(where the interpolation or decimation factor is not a prime number), using
multistage filter designs might be your best approach.

Examples These examples show how to construct a Nyquist filter specification object.
First, create a default specifications object without using input arguments.

d=fdesign.nyquist

d =

 Response: 'Nyquist'
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 Band: 2
 NormalizedFrequency: true
 TransitionWidth: 0.1
 Astop: 80

fdesign.nyquist

8-636

Now create an object by passing a specification type string 'n,ast'—the
resulting object uses default values for n and ast.

d=fdesign.nyquist(2,'n,ast')

d =

 Response: 'Nyquist'
 Specification: 'N,Ast'
 Description: {'Filter Order';'Stopband Attenuation (dB)'}
 Band: 2
 NormalizedFrequency: true
 FilterOrder: 10
 Astop: 80

Create another Nyquist filter object, passing the specification values to the
object rather than accepting the default values for n and ast.

d=fdesign.nyquist(3,'n,ast',42,80)

d =

 Response: 'Nyquist'
 Specification: 'N,Ast'
 Description: {'Filter Order';'Stopband Attenuation (dB)'}
 Band: 3
 NormalizedFrequency: true
 FilterOrder: 42
 Astop: 80

Finally, pass the filter specifications that correspond to the default
Specification—tw,ast. When you pass only the values, fdesign.nyquist
assumes the default Specification string.

d = fdesign.nyquist(4,.01,80)

d =

 Response: 'Nyquist'
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 Band: 4
 NormalizedFrequency: true
 TransitionWidth: 0.01
 Astop: 80

Now design a Nyquist filter using the kaiserwin design method.

hd = design(d,'kaiserwin')

fdesign.nyquist

8-637

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x1005 double]
 PersistentMemory: false

See Also fdesign, fdesign.interpolator, fdesign.halfband, fdesign.interpolator,
fdesign.rsrc

fdesign.rsrc

8-638

8fdesign.rsrcPurpose Construct rational-factor sample-rate converter specifications object

Syntax d = fdesign.rsrc(l,m)
d = fdesign.rsrc(...,design)
d = fdesign.rsrc(...,design,spec)
d = fdesign.rsrc(l,m,design,spec,specvalue1,specvalue2)
d = fdesign.rsrc(...,fs)
d = fdesign.rsrc(...,magunits)

Description d = fdesign.rsrc(l,m) constructs a rational-factor sample-rate convertor
filter specification object d, applying default values for the properties tw and
ast and using the default design, Nyquist. Specify l and m, the interpolation
and decimation factors, as integers.

l/m is the rational-factor for the rate change. When you omit the input
argument l or m or both, fdesign.rsrc sets the values to defaults—the
interpolation factor (if omitted) to 3 and the decimation factor (if omitted) to 2.
The default rate change factor is 3/2 .

Using fdesign.rsrc with a design method generates an mfilt object.

d = fdesign.rsrc(...,design) constructs an rational-factor sample-rate
converter with the interpolation factor l, decimation factor m, and the response
you specify in design. Using the design input argument lets you choose the
sort of filter that results from using the rational-factor sample-rate converter
specifications object. design accepts the following strings that define the filter
response.

design String Description

Bandpass Sets the design for the rational-factor
sample-rate converter specifications object
to bandpass.

Bandstop Sets the design for the rational-factor
sample-rate converter specifications object
to bandstop.

fdesign.rsrc

8-639

d = fdesign.rsrc(...,design,spec) constructs object d and sets its
Specification property to spec. Entries in the spec string represent various
filter response features, such as the filter order, that govern the filter design.
Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input
argument.

Because you are designing multirate filters, the specification strings available
are not the same as the specifications for designing single-rate filters with such
design methods as fdesign.lowpass. The strings are not case sensitive.

CIC Sets the design for the rational-factor
sample-rate converter specifications object
to CIC filter.

CIC Compensator Sets the design for the rational-factor
sample-rate converter specifications object
to CIC compensator.

Halfband Sets the design for the rational-factor
sample-rate converter specifications object
to halfband.

Highpass Sets the design for the rational-factor
sample-rate converter specifications object
to highpass.

Inverse-Sinc Lowpass Sets the design for the rational-factor
sample-rate converter specifications object
to inverse-sinc lowpass.

Lowpass Sets the design for the rational-factor
sample-rate converter specifications object
to lowpass.

Nyquist Sets the design for the rational-factor
sample-rate converter specifications object
to Nyquist.

design String (Continued) Description

fdesign.rsrc

8-640

Notice that the interpolation factor l is not in the specification strings. Various
design types provide different specifications. as shown in this table. In the
third column, you see the filter design methods that apply to specifications
objects that use the specification string in column two.

Design Type Valid Specification Strings

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default
string)

CIC • fp,ast (default and only string)

CIC Compensator • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast

fdesign.rsrc

8-641

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also
called Apass.

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc Lowpass • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,fst

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

Design Type Valid Specification Strings

fdesign.rsrc

8-642

• ap1—amount of ripple allowed in the pass band in dB (the default units).
Also called Apass1. Bandpass and bandstop filters use this option.

• ap2—amount of ripple allowed in the pass band in dB (the default units).
Also called Apass2. Bandpass and bandstop filters use this option.

• ast—attenuation in the first stop band in dB (the default units). Also called
Astop.

• ast1—attenuation in the first stop band in dB (the default units). Also called
Astop1. Bandpass and bandstop filters use this option.

• ast2—attenuation in the first stop band in dB (the default units). Also called
Astop2. Bandpass and bandstop filters use this option.

• fc1—cutoff frequency for the point 3dB point below the passband value for
the first cutoff. Specified in normalized frequency units. Bandpass and
bandstop filters use this option.

• fc2—cutoff frequency for the point 3dB point below the passband value for
the second cutoff. Specified in normalized frequency units. Bandpass and
bandstop filters use this option.

• fp1—frequency at the start of the pass band. Specified in normalized
frequency units. Also called Fpass1. Bandpass and bandstop filters use this
option.

• fp2—frequency at the end of the pass band. Specified in normalized
frequency units. Also called Fpass2. Bandpass and bandstop filters use this
option.

• fst1—frequency at the end of the first stop band. Specified in normalized
frequency units. Also called Fstop1. Bandpass and bandstop filters use this
option.

• fst2—frequency at the start of the second stop band. Specified in normalized
frequency units. Also called Fstop2. Bandpass and bandstop filters use this
option.

• n—filter order.

• tw—width of the transition region between the pass and stop bands. Both
halfband and Nyquist filters use this option.

d = fdesign.rsrc(...,spec,specvalue1,specvalue2,...) constructs an
object d and sets its specifications at construction time.

fdesign.rsrc

8-643

d = fdesign.rsrc(...,fs) adds the argument fs, specified in Hz, to define
the sampling frequency to use. In this case, all frequencies in the specifications
are in Hz as well.

d = fdesign.rsrc(...,magunits) specifies the units for any magnitude
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units.

• dB—specify the magnitude in dB (decibels).

• squared—specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes
are in dB. Note that fdesign stores all magnitude specifications in dB
(converting to dB when necessary) regardless of how you specify the
magnitudes.

Examples This series of examples demonstrates progressively more complete techniques
for creating rational sample-rate change filters. First, pass the filter design
specifications directly to the Nyquist design type. Then use kaiserwin, one of
the valid design methods, to design the rate change filter.

d = fdesign.rsrc(5,3,'nyquist',.05,40);
designmethods(d)
hm = design(d,'kaiserwin'); % Use Kaiser window to design rate
changer.

For this example, specify the filter order (12) when you create the specifications
object d.

d = fdesign.rsrc(5,3,'nyquist','n,tw',12)

Expand the input arguments by specify a sampling frequency for the filter.
Recall that the sampling frequency for rate changers refers to the input sample
rate times the interpolation factor.

d = fdesign.rsrc(5,3,'nyquist','n,tw',12,0.1,5)
designmethods(d);
design(d,'equiripple'); % Opens FVTool to display the response.

Specify a stopband ripple in linear units.

fdesign.rsrc

8-644

d = fdesign.rsrc(4,7,'nyquist','tw,ast',.1,1e-3,5,...
'linear') % 1e-3 = 60dB attenuation in the stopband.

See Also design, designmethods, fdesign.decimator, fdesign.interpolator,
setspecs

fftcoeffs

8-645

8fftcoeffsPurpose Frequency-domain coefficients used when filtering with discrete-time and
adaptive filter objects

Syntax c = fftcoeffs(hd)
c = fftcoeffs(ha)

Description c = fftcoeffs(hd) Return the frequency-domain coefficients used when
filtering with the dfilt.fftfir object. c contains the coefficients

c = fftcoeffs(ha) Return the frequency-domain coefficients used when
filtering with adaptfilt objects.

fftcoeffs applies to the following adaptive filter algorithms:

• adaptfilt.fdaf
• adaptfilt.pbfdaf
• adaptfilt.pbufdaf
• adaptfilt.ufdaf

Examples This example demonstrates returning the FFT coefficients from the
discrete-time filter hd.

b = [0.05 0.9 0.05];
len = 50;
hd = dfilt.fftfir(b,len)

hd =

 FilterStructure: 'Overlap-Add FIR'
 Numerator: [0.0500 0.9000 0.0500]
 BlockLength: 50
 NonProcessedSamples: []
 PersistentMemory: false

c=fftcoeffs(hd)

c =

 1.0000
 0.9920 + 0.1204i

fftcoeffs

8-646

 0.9681 + 0.2386i
 0.9289 + 0.3523i
 0.8753 + 0.4594i
 0.8084 + 0.5580i
 0.7297 + 0.6464i
 0.6408 + 0.7233i
 0.5435 + 0.7874i
 0.4398 + 0.8381i
 0.3317 + 0.8747i
 0.2211 + 0.8971i
 0.1099 + 0.9054i
 0 + 0.9000i
 -0.1070 + 0.8815i
 -0.2097 + 0.8506i
 -0.3066 + 0.8084i
 -0.3967 + 0.7558i
 -0.4790 + 0.6939i
 -0.5528 + 0.6240i
 -0.6176 + 0.5472i
 -0.6730 + 0.4645i
 -0.7185 + 0.3771i
 -0.7541 + 0.2860i
 -0.7796 + 0.1921i
 -0.7949 + 0.0965i
 -0.8000
 -0.7949 - 0.0965i
 -0.7796 - 0.1921i
 -0.7541 - 0.2860i
 -0.7185 - 0.3771i
 -0.6730 - 0.4645i
 -0.6176 - 0.5472i
 -0.5528 - 0.6240i
 -0.4790 - 0.6939i
 -0.3967 - 0.7558i
 -0.3066 - 0.8084i
 -0.2097 - 0.8506i
 -0.1070 - 0.8815i
 0 - 0.9000i
 0.1099 - 0.9054i
 0.2211 - 0.8971i

fftcoeffs

8-647

 0.3317 - 0.8747i
 0.4398 - 0.8381i
 0.5435 - 0.7874i
 0.6408 - 0.7233i
 0.7297 - 0.6464i
 0.8084 - 0.5580i
 0.8753 - 0.4594i
 0.9289 - 0.3523i
 0.9681 - 0.2386i
 0.9920 - 0.1204i

Similarly, you can use fftcoeffs with the adaptive filters algorithms listed
above. Start by constructing an adaptive filter ha.

d = 16; % Number of samples of delay.
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel.
a = [1 -0.7]; % Denominator coefficients of channel.
ntr= 1000; % Number of iterations.
s = sign(randn(1,ntr+d)) +...
j*sign(randn(1,ntr+d)); % Baseband QPSK signal.
n = 0.1*(randn(1,ntr+d) + j*randn(1,ntr+d)); % Noise signal.
r = filter(b,a,s)+n; % Received signal.
x = r(1+d:ntr+d); % Input signal (received signal).
d = s(1:ntr); % Desired signal (delayed QPSK signal).
del = 1; % Initial FFT input powers.
mu = 0.1; % Step size.
lam = 0.9; % Averaging factor.
d = 8; % Block size.
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,n);

Here are the coefficients before you filter a signal.

c=fftcoeffs(ha)

c =

 Columns 1 through 13

 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0

fftcoeffs

8-648

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 14 through 16

 0 0 0
 0 0 0
 0 0 0
 0 0 0

Filtering a signal y produces complex nonzero coefficients that you use
fftcoeffs to see.

[y,e] = filter(ha,x,d);
c=fftcoeffs(ha)

c =

 Columns 1 through 4

 0.1425 - 0.0957i 0.0487 - 0.0503i -0.0479 + 0.0315i 0.0769 - 0.0435i
 0.7264 - 0.7605i -0.7423 - 0.6382i 0.1758 + 0.6679i 0.2018 - 0.6544i
 -0.1604 + 0.0747i -0.0709 + 0.2610i -0.1634 + 0.2929i -0.1488 + 0.3610i
 -0.0396 + 0.0416i 0.0985 + 0.0095i 0.0733 + 0.0011i 0.0700 + 0.0348i

 Columns 5 through 8

 -0.0604 + 0.1767i 0.0732 - 0.0648i -0.0870 + 0.0383i 0.0298 - 0.0852i
 -0.1665 + 0.3741i 0.3174 - 0.5234i -0.1990 + 0.4150i 0.3657 - 0.4760i
 -0.2198 + 0.4273i -0.2690 + 0.3981i -0.2820 + 0.3095i -0.3633 + 0.3517i
 -0.0537 - 0.0855i -0.0190 + 0.0336i 0.0091 - 0.0061i -0.0299 + 0.0001i

 Columns 9 through 12

 -0.0437 + 0.0676i 0.0499 - 0.0164i -0.0397 + 0.0165i 0.0455 - 0.0085i
 -0.3293 + 0.3076i 0.4986 - 0.3949i -0.3300 + 0.3448i 0.5492 - 0.2633i
 -0.2671 + 0.3238i -0.3813 + 0.2999i -0.4130 + 0.2333i -0.2910 + 0.2823i
 -0.0300 + 0.0236i -0.0103 + 0.0438i 0.0244 + 0.0476i 0.1043 + 0.0359i

 Columns 13 through 16

 -0.0602 + 0.1189i -0.0227 - 0.1076i -0.0282 + 0.0634i 0.0170 - 0.0464i
 -0.4385 + 0.0549i 0.5232 - 0.1904i -0.6414 - 0.1717i 0.5580 + 0.6477i
 -0.4511 + 0.3217i -0.4301 + 0.1765i -0.2805 + 0.1270i -0.2531 + 0.0299i
 0.1076 - 0.0383i -0.0166 + 0.0020i 0.0004 - 0.0376i 0.0071 - 0.0714i

See Also adaptfilt.fdaf, adaptfilt.pbfdaf, adaptfilt.pbufdaf, adaptfilt.ufdaf

filter

8-649

8filterPurpose Apply filter objects to data and access states and filtering information

Syntax Fixed-Point Filter Syntaxes
y = filter(hd,x)
y = filter(hd,x,dim)

Adaptive Filter Syntax
y = filter(ha,x,d)
[y,e] = filter(ha,x,d)

Multirate Filter Syntax
y = filter(hm,x)

y = filter(hm,x,dim)

Description This reference page contains three sections that describe the syntaxes for the
filter objects:

• Fixed-Point Filter Syntaxes

• “Adaptive Filter Syntaxes” on page 8-650

• “Multirate Filter Syntaxes” on page 8-651

Fixed-Point Filter Syntaxes

y = filter(hd,x) filters a vector of real or complex input data x through a
fixed-point filter hd, producing filtered output data y. The vectors x and y have
the same length. filter stores the final conditions for the filter in the States
property of hd—hd.states.

When you set the property PersistentMemory to false (the default setting),
the initial conditions for the filter are set to zero before filtering starts. To use
nonzero initial conditions for hd, set PersistentMemory to true. Then set
hd.states to a vector of nstates(hd) elements, one element for each state to
set. If you specify a scalar for hd.states, filter expands the scalar to a vector
of the proper length for the states. All elements of the expanded vector have the
value of the scalar.

filter

8-650

If x is a matrix, y = filter(hd,x) filters along each column of x to produce a
matrix y of independent channels. If x is a multidimensional array,
y = filter(hd,x) filters x along the first nonsingleton dimension of x.

To use nonzero initial conditions when you are filtering a matrix x, set the filter
states to a matrix of initial condition values. Set the initial conditions by
setting the States property for the filter (hd.states) to a matrix of
nstates(hd) rows and size(x,2) columns.

y = filter(hd,x,dim) applies the filter hd to the input data located along the
specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which
dimension of the input matrix to filter along—whether a row represents
a channel or a column represents a channel. When you provide the dim input
argument, the filter operates along the dimension specified by dim. When your
input data x is a vector or matrix and dim is 1, each column of x is treated as a
one input channel. When dim is 2, the filter treats each row of the input x as a
channel.

To filter multichannel data in a loop environment, you must use the dim input
argument to set the proper processing dimension.

You specify the initial conditions for each channel individually, when needed,
by setting hm.states to a matrix of nstates(hd) rows (one row containing the
states for one channel of input data) and size(x,2) columns (one column
containing the filter states for each channel).

Adaptive Filter Syntaxes

y = filter(ha,x,d) filters a vector of real or complex input data x through an
adaptive filter object ha, producing the estimated desired response data y from
the process of adapting the filter. The vectors x and y have the same length.
Use d for the desired signal. Note that d and x must be the same length signal
chains.

[y,e] = filter(ha,x,d) produces the estimated desired response data y and
the prediction error e (refer to previous syntax for more information).

filter

8-651

Multirate Filter Syntaxes

y = filter(hd,x) filters a vector of real or complex input data x through a
fixed-point filter hd, producing filtered output data y. The vectors x and y have
the same length. filter stores the final conditions for the filter in the States
property of hd—hd.states.

y = filter(hm,x,dim) applies the filter hd to the input data located along the
specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which
dimension of the input matrix to filter along—whether a row represents
a channel or a column represents a channel. When you provide the dim input
argument, the filter operates along the dimension specified by dim. When your
input data x is a vector or matrix and dim is 1, each column of x is treated as a
one input channel. When dim is 2, the filter treats each row of the input x as a
channel.

To filter multichannel data in a loop environment, you must use the dim input
argument to set the processing dimension.

You specify the initial conditions for each channel individually, when needed,
by setting hm.states to a matrix of nstates(hm) rows (one row containing the
states for one channel of input data) and size(x,2) columns (one column
containing the filter states for each channel).

The number of data samples in your input data set x does not need to be
a multiple of the rate change factor r for the object. When the rate change
factor is not an even divisor of the number of input samples x, filter processes
the samples as shown in the following figure, where the rate change factor is 3
and the number of input samples is 23. Decimators always take the first input
sample to generate the first output sample. After that, the next output sample
comes after each r number of input samples.

filter

8-652

Examples Filter a signal using a filter with various initial conditions (IC) or no initial
conditions.

x = randn(100,1); % Original signal.
b = fir1(50,.4); % 50th-order linear-phase FIR filter.
hd = dfilt.dffir(b); % Direct-form FIR implementation.

% Do not set specific initial conditions.

y1 = filter(hd,x); % 'PersistentMemory' is 'false' (default).
zf = hd.states; % Final conditions.

Now use nonzero initial conditions by setting ICs after before you filter.

hd.persistentmemory = true;
hd.states = 1; % Uses scalar expansion.
y2 = filter(hd,x);
stem([y1 y2]) % Different sequences at the beginning.

Looking at the stem plot shows that the sequences are different at the
beginning of the filter process.

Given 23 Input Data Samples

 You Get 7 Output Data Samples
After Decimation By 3

{ { { { { { { {

2 Processed Samples
That Did Not Generate

An Output Sample

filter

8-653

Here is one way to use filter with streaming data.

reset(hd); % Clear filter history.
y3 = filter(hd,x); % Filter the entire signal in one block.

As an experiment, repeat the process, filtering the data as sections, rather than
in streaming form.

reset(hd); % Clear filter history.
yloop = zeros(100,1) % Preallocate output array.
xblock = reshape(x,[20 5]);
for i=1:5,

yloop = [yloop; filter(hd,xblock(:,i))];
end

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

Samples

F
ilt

er
 R

es
po

ns
e

Filter without ICs
Filter with ICs set

filter

8-654

Use a stem plot to see the comparison between streaming and block-by-block
filtering.

stem([y3 yloop]);

Filtering the signal section-by-section is equivalent to filtering the entire
signal at once.

To show the similarity between filtering with discrete-time and with multirate
filters, this example demonstrates multirate filtering.

Fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = [0:10239].'; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
m = 2; % Decimation factor.
hm = mfilt.firdecim(m); % Use the default filter.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

Input Samples

F
ilt

er
 R

es
po

ns
e

y3
yloop

filter

8-655

First, filter without setting initial conditions.

y1 = filter(hm,x); % PersistentMemory is false (default).
zf = hm.states; % Final conditions.

This time, set nonzero initial conditions before filtering the data.

hm.persistentmemory = true;
hm.states = 1; % Uses scalar expansion to set ICs.
y2 = filter(Hm,x);
stem([y1(1:60) y2(1:60)]) % Show the filtering results.

Note the different sequences at the start of filtering.

Finally, try filtering streaming data.

reset(hm); % Clear the filter history.
y3 = filter(hm,x); % Filter the entire signal in one block.

As with the discrete-time filter, filtering the signal section by section is
equivalent to filtering the entire signal at once.

reset(hm); % Clear filter history again.
yloop = zeros(100,1) % Preallocate output array.
xblock = reshape(x,[2048 5]);
for i=1:5,

yloop = [yloop; filter(Hm,xblock(:,i))];
end

Algorithm Quantized Filters
The filter command implements fixed- or floating-point arithmetic on the
quantized filter structure you specify.

The algorithm applied by filter when you use a discrete-time filter object on
an input signal depends on the response you chose for the filter, such as
lowpass or Nyquist or bandstop. To learn more about each filter algorithm,
refer to the literature reference provided on the appropriate discrete-time filter
reference page.

filter

8-656

Note dfilt/filter does not normalize the filter coefficients automatically.
Function filter supplied by MATLAB does normalize the coefficients.

Adaptive Filters
The algorithm used by filter when you apply an adaptive filter object to
a signal depends on the algorithm you chose for your adaptive filter. To learn
more about each adaptive filter algorithm, refer to the literature reference
provided on the appropriate adaptfilt.algorithm reference page.

Multirate Filters
The algorithm applied by filter when you apply a multirate filter objects to
signals depends on the algorithm you chose for the filter—the form of the
multirate filter, such as decimator or interpolator. To learn more about each
filter algorithm, refer to the literature reference provided on the appropriate
multirate filter reference page.

See Also adaptfilt, impz, mfilt, nstates
dfilt in the Signal Processing Toolbox

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Pren-
tice-Hall, 1989.

filtmsb

8-657

8filtmsbPurpose Bmax, most significant bit, of cascaded integrator-comb (CIC) filter

Syntax filtmsb(hm)

Description filtmsb(hm) returns the most significant bit (MSB) of the filter output and is
a function of the following parameters of filter hm.

• R—the interpolation factor or decimation factor depending on the filter form

• M—the differential delay

• N—the number of sections in the filter

Because the output of the integrators can grow without bound, the MSB
returned represents the maximum number of bits that can propagate through
the filter without losing data. This MSB is both the MSB at the filter output
and the MSB for all stages.

Examples Using the mfilt.cicdecim filter constructor, create a multirate filter and
determine the most significant bit. For the decimator specifications used here,
refer to the CIC decimator design example D on pp. 159 in [1].

hm = mfilt.cicdecim(25,1,4,16,16)

hm =

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 4
 DecimationFactor: 25
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

 SectionWordLengthMode: 'MinWordLengths'

 OutputWordLength: 16

bmax=filtmsb(hm)
bmax =

filtmsb

8-658

 34

Reviewing the referenced Hogenauer paper [1] shows that 34 is the correct
result.

Algorithm filtmsb calculates the most significant bit for interpolators and decimators
using the following algorithms and filter property values. In each case, hm is a
multirate filter of the approriate form, either decimator or interpolator. Both
equations derive from [1].

Decimators
From equation 11 in [1], calculate Bmax as follows for decimators:

bmax = ceil(hm.NumberOfSections*log2(hm.DecimationFactor*
hm.DifferentialDelay) + hm.InputWordLength -1)

Interpolators
Interpolators use a slightly different formulation, equation 23 in [1].

bmax = ceil(hm.InputWordLength + log2(Gmax))

where

gmax = (((hm.InterpolationFactor*hm.DifferentialDelay)^hm.NumberOfSections)/...
hm.InterpolationFactor)

See Also gain, mfilt

filtstates.cic

8-659

8filtstates.cicPurpose Object for storing states of cascaded-integrator comb (CIC) filters

Description filtstates.cic objects hold the states information for CIC filters. Once you
create a CIC filter, the states for the filter are stored in filtstates.cic
objects, and you can access them and change them as you would any property
of the filter. This arrangement parallels that of the filtstates object that IIR
direct-form I filters use (refer to filtstates for more information).

Each States property in the CIC filter comprises two properties—Numerator
and Comb—that hold filtstates.cic objects.Within the filtstates.cic
objects are the numerator-related and comb-related filter states. The states are
column vectors, where each column represents the states for one section of the
filter. For example, a CIC filter with four decimator sections and four
interpolator sections has filtstates.cic objects that contain four columns of
states each.

Examples To show you the filtstates.cic object, create a CIC decimator and filter a signal.

hm=mfilt.cicdecim(5,2,4)

hm =

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 2
 NumberOfSections: 4
 DecimationFactor: 5
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

 SectionWordLengthMode: 'MinWordLengths'

hm.persistentMemory=true

hm =

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'

filtstates.cic

8-660

 DifferentialDelay: 2
 NumberOfSections: 4
 DecimationFactor: 5
 PersistentMemory: true
 States: Integrator: [4x1 States]
 Comb: [4x1 States]
 InputOffset: 0

 InputWordLength: 16
 InputFracLength: 15

 SectionWordLengthMode: 'MinWordLengths'

Use hm to filter some input data.

fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1kHz.
y=filter(hm,x)

hm has nonzero states now.

s=hm.states

s =

 Integrator: [4x1 States]
 Comb: [4x1 States]

s.Integrator

ans =

 1.0e+003 *

 0.0043
 -2.0347
 -0.4175
 0.8206

s.Comb

filtstates.cic

8-661

ans =

 1.0e+003 *

 -3.1301
 -0.8493
 -2.5474
 1.7888
 -1.6253
 3.1981
 0.4729
 3.4559

You can use int to see the states as 32-bit integers.

int(s.Integrator)

ans =

 142435
 -8334019
 -427469
 210081

whos shows you the filtstates.cic object.

whos
 Name Size Bytes Class

 Fs 1x1 8 double array
 ans 4x1 16 int32 array
 hm 1x1 mfilt.cicdecim
 n 1x10240 81920 double array
 s 1x1 filtstates.cic
 x 1x10240 81920 double array
 y 1x2048 embedded.fi

Grand total is 20488 elements using 163864 bytes

See Also mfilt, mfilt.cicdecim, mfilt.cicinterp

filtstates.cic

8-662

filtstates in the Signal Processing Toolbox documentation

fircband

8-663

8fircbandPurpose Perform constrained-band equiripple FIR filter design

Syntax b = fircband(n,f,a,w,c)
b = fircband(n,f,a,s)
b = fircband(...,'1')
b = fircband(...,'minphase')
b = fircband(..., 'check')
b = fircband(...,{lgrid})
[b,err] = fircband(...)
[b,err,res] = fircband(...)

Description fircband is a minimax filter design algorithm that you use to design the
following types of real FIR filters:

• Types 1-4 linear phase

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase,

• Minimum order (even or odd), extra ripple

• Maximal ripple

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain

• Arbitrary shape frequency response curve filters

b = fircband(n,f,a,w,c) designs filters having constrained error
magnitudes (ripples). c is a cell array of strings of the same length as w. The
entries of c must be either 'c' to indicate that the corresponding element in w is
a constraint (the ripple for that band cannot exceed that value) or 'w' indicating
that the corresponding entry in w is a weight. There must be at least one
unconstrained band—c must contain at least one w entry. For instance,

fircband

8-664

Example 1 below uses a weight of one in the passband, and constrains the
stopband ripple not to exceed 0.2 (about 14 dB).

A hint about using constrained values: if your constrained filter does not touch
the constraints, increase the error weighting you apply to the unconstrained
bands.

Notice that, when you work with constrained stopbands, you enter the
stopband constraint according to the standard conversion formula for power—
the resulting filter attenuation or constraint equals 20*log(constraint) where
constraint is the value you enter in the function. For example, to set 20 dB of
attenuation, use a value for the constraint equal to 0.1. This applies to
constrained stopbands only.

b = fircband(n,f,a,s) is used to design filters with special properties at
certain frequency points. s is a cell array of strings and must be the same
length as f and a. Entries of s must be one of:

• 'n'—normal frequency point.

• 's'—single-point band. The frequency band is given by a single point. You
must specify the corresponding gain at this frequency point in a.

• 'f'—forced frequency point. Forces the gain at the specified frequency band
to be the value specified.

• 'i'—indeterminate frequency point. Use this argument when bands abut
one another (no transition region).

b = fircband(...,'1') designs a type 1 filter (even-order symmetric). You
could also specify type 2 (odd-order symmetric), type 3 (even-order
antisymmetric), or type 4 (odd-order antisymmetric) filters. Note there are
restrictions on a at f = 0 or f=1 for types 2, 3, and 4.

b = fircband(...,'minphase') designs a minimum-phase FIR filter. There
is also 'maxphase'.

b = fircband(..., 'check') produces a warning when there are potential
transition-region anomalies in the filter response.

b = fircband(...,{lgrid}), where {lgrid} is a scalar cell array containing
an integer, controls the density of the frequency grid.

fircband

8-665

[b,err] = fircband(...) returns the unweighted approximation error
magnitudes. err has one element for each independent approximation error.

[b,err,res] = fircband(...) returns a structure res of optional results
computed by fircband, and contains the following fields:.

Structure Field Contents

res.fgrid Vector containing the frequency grid used in
the filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency
grid

res.error Error at each point (desired response - actual
response) on the frequency grid

res.iextr Vector of indices into fgrid of extremal
frequencies

res.fextr Vector of extremal frequencies

res.order Filter order

res.edgecheck Transition-region anomaly check. One element
per band edge. Element values have the
following meanings:

1 = OK
0 = probable transition-region anomaly

-1 = edge not checked

Computed when you specify the 'check' input
option in the function syntax.

fircband

8-666

Examples Two examples of designing filters with constrained bands.

Example 1—design a 12th-order lowpass filter with a constraint on the filter
response.

b = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2], {'w' 'c'});

Using fvtool to display the result b shows you the response of the filter you
designed.

res.iterations Number of Remez iterations for the
optimization

res.evals Number of function evaluations for the
optimization

Structure Field Contents

fircband

8-667

Example 2—design two filters of different order with the stopband constrained
to 60 dB. Use excess order (80) in the second filter to improve the passband
ripple.

b1=fircband(60,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
b2=fircband(80,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
fvtool(b1,1,b2,1)

To set the stopband constraint to 60 dB, enter 0.001, since 20*log(0.001) = -60,
or 60 dB of signal attenuation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

fircband

8-668

See Also firceqrip, firgr, firls

firpm in the Signal Processing Toolbox
Also refer to “Constrained Band Equiripple FIR Filter Design” in Demos

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter Order = 60

Filter Order = 80

fireqint

8-669

8fireqintPurpose Design equiripple FIR interpolators

Syntax b = fireqint(n,l,alpha)
b = fireqint(n,l,alpha,w)
b = fireqint('minorder',l,alpha,r)
b = fireqint({'minorder',initord},l,alpha,r)

Description b = fireqint(n,l,alpha) designs an FIR equiripple filter useful for
interpolating input signals. n is the filter order and it must be an integer. l,
also an integer, is the interpolation factor. alpha is the bandlimitedness factor,
identical to the same feature in intfilt.

alpha is inversely proportional to the transition bandwidth of the filter. It also
affects the bandwith of the don't-care regions in the stopband. Specifying alpha
allows you to control how much of the Nyquist interval your input signal
occupies. This can be beneficial for signals to be interpolated because it allows
you to increase the transition band width without affecting the interpolation,
resulting in better stopband attenuation for a given l. If you set alpha to 1,
fireqint assumes that your signal occupies the entire Nyquist interval. Setting
alpha to a value less than one allows for don't-care regions in the stopband. For
example, if your input occupies half the Nyquist interval, you could set alpha
to 0.5.

The signal to be interpolated is assumed to have zero (or negligible) power in
the frequency band between (alpha*π) and π. alpha must therefore be a
positive scalar between 0 and 1. fireqint treat such bands as don’t-care
regions for assessing filter design.

b = fireqint(n,l,alpha,w) allows you to specify a vector of weights in w. The
number of weights required in w is given by 1 + floor(l/2). The weights in w are
applied to the passband ripple and stopband attenuations. Using weights
(values between 0 and 1) enables you to specify different attenuations in
different parts of the stopband, as well as providing the ability to adjust the
compromise between passband ripple and stopband attenuation.

b = fireqint('minorder',l,alpha,r) allows you to design a
minimum-order filter that meets the design specifications. r is a vector of
maximum deviations or ripples from the ideal filter magnitude response. When

fireqint

8-670

you use the input argument minorder, you must provide the vector r. The
number of elements required in r is given by 1 + floor(l/2).

b = fireqint({'minorder',initord},l,alpha,r) adds the argument
initord si you can provide an initial estimate of the filter order. Any positive
integer is valid here. Again, you must provide r, the vector of maximum
deviations or ripples, from the ideal filter magnitude response.

Examples Design a minimum order interpolation filter for l = 6 and alpha = 0.8. A vector
of ripples must be supplied with the input argument minorder.

b = fireqint('minorder',6,.8,[0.01 .1 .05 .02]);
hm = mfilt.firinterp(6,b); % Create a polyphase interpolator filter
zerophase(hm);

Here is the resulting plot of the zerophase response for hm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−1

0

1

2

3

4

5

6

Normalized Frequency (×π rad/sample)

Z
er

o−
ph

as
e

Zerophase Response

fireqint

8-671

For hm, the minimum order filter with the requested design specifications, here
is the filter information.

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
 Arithmetic: 'double'
 Numerator: [1x70 double]
 InterpolationFactor: 6
 PersistentMemory: false

See Also firgr, firhalfband, firls, firnyquist, mfilt

intfilt in your Signal Processing Toolbox documentation

firceqrip

8-672

8firceqripPurpose Design constrained, equiripple FIR filter

Syntax hd = firceqrip(n,wo,del)
hd = firceqrip(...,'slope',r)
hd = firceqrip(...,'passedge')
hd = firceqrip(...,'stopedge')
hd = firceqrip(...,'high')
hd = firceqrip(...,'min')
hd = firceqrip(...,'invsinc',c)

Description hd = firceqrip(n,wo,del) design an order n filter (filter length equal n+1)
lowpass FIR filter with linear phase.

firceqrip produces the same equiripple lowpass filters that firpm produces
using the Parks-McClellan algorithm. The difference is how you specify the
filter characteristics for the function.

Input argument wo specifies the cutoff frequency. The two-element vector del
specifies the peak or maximum error allowed in the passband and stopbands.
Enter [d1 d2] for del where d1 sets the passband error and d2 sets the
stopband error. Since firceqrip works in the normalized frequency domain,
you must set wo to be between 0 and 1 (0 < wo < 1).

hd = firceqrip(...,'slope',r) uses the input keyword 'slope' and input
argument r to design a filter with a stopband that does not demonstrate
equiripple characteristics. r determines the slope of the stopband in dB when
r > 0.

In this constrained equiripple design approach, you can specify a stopband
slope (increasing attenuation with increasing frequency). Enter your desired
slope in dB as a positive value. Larger slope values create increasing
attenuation of the stopband as frequency increases.

Slope is defined in the following ways:

• For filters specified in linear frequency, the slope is defined over every Fs/2
frequency bands.

• For filters specified in normalized frequency, the slope is defined over
π rad/sample.

firceqrip

8-673

Here is a description of how slope works. The algorithm defines slope in dB per
half of the Nyquist interval. If you are working in normalized frequency and
you set the slope to 40 dB, the stopband attenuation increases by 40 dB every
rad/sample.

Try setting r to 10 to see the effect on the filter frequency response. In the
Examples section, example 3 designs a filter with r equal to 20.

hd = firceqrip(...,'passedge') designs a filter where wo specifies the
frequency at which the passband starts to roll off.

hd = firceqrip(...,'stopedge') designs a filter where wo specifies the
frequency at which the stopband begins.

hd = firceqrip(...,'high') designs a high pass FIR filter instead of
a lowpass filter.

hd = firceqrip(...,'min') designs an FIR filter with minimum phase.

hd = firceqrip(...,'invsinc',c)) designs a lowpass filter whose passband
has the shape of the inverse sinc function. For this syntax, keyword invsinc
applies the inverse sinc function as defined by whether c is a scalar or a
two-element vector:

• When you use c as a scalar with the invsinc keyword, firceqrip applies the
function 1/sinc(c*w), where w is the normalized frequency, to the passband.

• When you use c as a two-element vector entered as [c p], with the invsinc
keyword, firceqrip applies the function 1/sinc(c*w)p to the passband, where
w is the normalized frequency.

In both cases, c must meet the condition c < 1/wo.

When you use a cascaded-integrated comb (CIC) filter in series with this FIR
filter, argument p lets you compensate for the droop in the passband of the CIC
filter. Setting p equal to the number of stages in your CIC generally produces
an FIR filter whose passband neatly compensates for the CIC passband shape.

To let you specify precisely the FIR filter to design, use any or all of the optional
input arguments together. Any ordering of the optional arguments works—
order is not important in the function call. Refer to Examples 3 and 4 to see
multiple optional input arguments being used.

firceqrip

8-674

Note If the wo you specify is too small or too large, or if either c or p is too
large, your filter specifications may be unfeasible, causing the design
algorithm to fail to generate your filter.

Examples To introduce a few of the variations on FIR filters that you design with
firceqrip, these five examples cover both the default syntax
hd = firceqrip(n,wo,del) and some of the optional input arguments. For
each example, the input arguments n, wo, and del remain the same.

Example 1—Design an order = 30 FIR filter without using optional input
arguments or keywords.

hd = firceqrip(n,wo,del); fvtool(hd)

Both the phase and magnitude response for the resulting lowpass filter appear
in the plot shown here.

firceqrip

8-675

Example 2—Design an order = 30 FIR filter with the stopedge keyword to
define the response at the edge of the filter stopband.

hd = firceqrip(n,wo,del,'stopedge'); fvtool(hd,1)

Example 3—Design an order = 30 FIR filter with the slope keyword and
r = 20.

hd = firceqrip(n,wo,del,'slope',20,'stopedge'); fvtool(hd)

Example 4—Design an order = 30 FIR filter defining the stopband and
specifying that the resulting filter is minimum phase with the min keyword.

hd = firceqrip(n,wo,del,'stopedge','min'); fvtool(hd)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−70

−50

−30

−10

10

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1400

−1120

−840

−560

−280

0

Normalized Frequency (×π rad/sample)

P
ha

se
(d

eg
re

es
)

Filter #1: Discrete filter magnitude
Filter #1: Discrete filter phase

firceqrip

8-676

Comparing this filter to the filter in Example 1, notice that the cutoff frequency
wo = 0.4 now applies to the edge of the stopband rather than the point at which
the frequency response magnitude is 0.5.

Viewing the zero-pole plot shown here reveals this is a minimum phase FIR
filter—the zeros lie on or inside the unit circle, z = 1.

Example 5—Design an order = 30 FIR filter with the invsinc keyword to
shape the filter passband with an inverse sinc function.

hd = firceqrip(n,wo,del,'invsinc',[2 1.5]); fvtool(hd,1)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

30

Real Part

Im
ag

in
ar

y
P

ar
t

Pole/Zero Plot

Filter #1: Zeros
Filter #1: Poles

firceqrip

8-677

With the inverse sinc function being applied defined as 1/sinc(2*w)1.5, the figure
shows the reshaping of the passband that results from using the invsinc
keyword option, and entering c as the two-element vector [2 1.5].

See Also firhalfband, firnyquist, firgr, ifir, iirgrpdelay, iirlpnorm, iirlpnormc

fircls, firls, firpm in your Signal Processing Toolbox documentation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

firgr

8-678

8firgrPurpose Use Parks-McClellan technique to design digital FIR filter

Syntax b = firgr(n,f,a,w)
b = firgr(n,f,a,'hilbert')
b = firgr(n,f,a,'differentiator')
b = firgr(m,f,a,r)
b = firgr({m,ni},f,a,r)
b = firgr(n,f,a,w,e)
b = firgr(n,f,a,s)
b = firgr(n,f,a,s,w,e)

Description firgr is a minimax filter design algorithm you use to design the following types
of real FIR filters:

• Types 1-4 linear phase:

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase

• Minimum order (even or odd)

• Extra ripple

• Maximal ripple

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain

• Arbitrary shape frequency response curve filters

b = firgr(n,f,a,w) returns a length n+1 linear phase FIR filter which has
the best approximation to the desired frequency response described by f and
a in the minimax sense. w is a vector of weights, one per band. When you omit
w, all bands are weighted equally. For more information on the input
arguments, refer to firpm in Signal Processing Toolbox User’s Guide.

firgr

8-679

b = firgr(n,f,a,'hilbert') and b = firgr(n,f,a,'differentiator')
design FIR Hilbert transformers and differentiators. For more information on
designing these filters, refer to firpm in Signal Processing Toolbox User’s
Guide.

b = firgr(m,f,a,r), where m is one of 'minorder', 'mineven' or 'minodd',
designs filters repeatedly until the minimum order filter, as specified in m, that
meets the specifications is found. r is a vector containing the peak ripple per
frequency band. You must specify r. When you specify 'mineven' or 'minodd', the
minimum even or odd order filter is found.

b = firgr({m,ni},f,a,r) where m is one of 'minorder', 'mineven' or 'minodd',
uses ni as the initial estimate of the filter order. ni is optional for common filter
designs, but it must be specified for designs in which firpmord cannot be used,
such as while designing differentiators or Hilbert transformers.

b = firgr(n,f,a,w,e) specifies independent approximation errors for
different bands. Use this syntax to design extra ripple or maximal ripple filters.
These filters have interesting properties such as having the minimum
transition width. e is a cell array of strings specifying the approximation errors
to use. Its length must equal the number of bands. Entries of e must be in the
form 'e#' where # indicates which approximation error to use for the
corresponding band. For example, when e = {'e1','e2','e1'}, the first and
third bands use the same approximation error 'e1' and the second band uses
a different one 'e2'. Note that when all bands use the same approximation
error, such as {'e1','e1','e1',...}, it is equivalent to omitting e, as in
b = firgr(n,f,a,w).

b = firgr(n,f,a,s) is used to design filters with special properties at certain
frequency points. s is a cell array of strings and must be the same length as f
and a. Entries of s must be one of:

• 'n' - normal frequency point.

• 's' - single-point band. The frequency “band” is given by a single point. The
corresponding gain at this frequency point must be specified in a.

• 'f' - forced frequency point. Forces the gain at the specified frequency band
to be the value specified.

• 'i' - indeterminate frequency point. Use this argument when adjacent
bands abut one another (no transition region).

firgr

8-680

For example, the following command designs a bandstop filter with zero-valued
single-point stop bands (notches) at 0.25 and 0.55.

b = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})

b = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'})
designs a highpass filter with the gain at 0.06 forced to be zero. The band edge
at 0.055 is indeterminate since the first two bands actually touch. The other
band edges are normal.

b = firgr(n,f,a,s,w,e) specifies weights and independent approximation
errors for filters with special properties. The weights and properties are
included in vectors w and e. Sometimes, you may need to use independent
approximation errors to get designs with forced values to converge. For
example,

b = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

b = firgr(...,'1') designs a type 1 filter (even-order symmetric). You can
specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), and
type 4 (odd-order antisymmetric) filters as well. Note that restrictions apply to
a at f=0 or f=1 for FIR filter types 2, 3, and 4.

b = firgr(...,'minphase') designs a minimum-phase FIR filter. You can
use the argument 'maxphase' to design a maximum phase FIR filter.

b = firgr(..., 'check') returns a warning when there are potential
transition-region anomalies.

b = firgr(...,{lgrid}), where {lgrid} is a scalar cell array. The value of
the scalar controls the density of the frequency grid by setting the number of
samples used along the frequency axis.

[b,err] = firgr(...) returns the unweighted approximation error
magnitudes. err contains one element for each independent approximation
error returned by the function.

firgr

8-681

[b,err,res] = firgr(...) returns the structure res comprising optional
results computed by firgr. res contains the following fields.

Structure Field Contents

res.fgrid Vector containing the frequency grid used in
the filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency
grid

res.error Error at each point (desired response - actual
response) on the frequency grid

res.iextr Vector of indices into fgrid of extremal
frequencies

res.fextr Vector of extremal frequencies

res.order Filter order

res.edgecheck Transition-region anomaly check. One element
per band edge. Element values have the
following meanings:

1 = OK
0 = probable transition-region anomaly

-1 = edge not checked

Computed when you specify the 'check' input
option in the function syntax.

res.iterations Number of s iterations for the optimization

res.evals Number of function evaluations for the
optimization

firgr

8-682

firgr is also a “function function”, allowing you to write a function that defines
the desired frequency response.

b = firgr(n,f,fresp,w) returns a length N+1 FIR filter which has the best
approximation to the desired frequency response as returned by the
user-defined function fresp. Use the following firgr syntax to call fresp:

[dh,dw] = fresp(n,f,gf,w)

where:

• fresp is the string variable that identifies the function that you use to define
your desired filter frequency response.

• n is the filter order.

• f is the vector of frequency band edges which must appear monotonically
between 0 and 1, where 1 is one-half of the sampling frequency. The
frequency bands span f(k) to f(k+1) for k odd. The intervals f(k+1) to
f(k+2) for k odd are “transition bands” or “don't care” regions during
optimization.

• gf is a vector of grid points that have been chosen over each specified
frequency band by firgr, and determines the frequencies at which firgr
evaluates the response function.

• w is a vector of real, positive weights, one per band, for use during
optimization. w is optional in the call to firgr. If you do not specify w, it is set
to unity weighting before being passed to fresp.

• dh and dw are the desired frequency response and optimization weight
vectors, evaluated at each frequency in grid gf.

firgr includes a predefined frequency response function named 'firpmfrf2'.
You can write your own based on the simpler 'firpmfrf'. See the help for
private/firpmfrf for more information.

b = firgr(n,f,{fresp,p1,p2,...},w) specifies optional arguments p1,
p2,..., pn to be passed to the response function fresp.

b = firgr(n,f,a,w) is a synonym for b = firgr(n,f,{'firpmfrf2',a},w),
where a is a vector containing your specified response amplitudes at each band
edge in f. By default, firgr designs symmetric (even) FIR filters. 'firpmfrf2'
is the predefined frequency response function. If you do not specify your own

firgr

8-683

frequency response function (the fresp string variable), firgr uses
'firpmfrf2'.

b = firgr(...,'h') and b = firgr(...,'d') design antisymmetric (odd)
filters. When you omit the 'h' or 'd' arguments from the firgr command
syntax, each frequency response function fresp can tell firgr to design either
an even or odd filter. Use the command syntax
sym = fresp('defaults',{n,f,[],w,p1,p2,...}).

firgr expects fresp to return sym = 'even' or sym = 'odd'. If fresp does not
support this call, firgr assumes even symmetry.

For more information about the input arguments to firgr, refer to firpm.

Examples These examples demonstrate some filters you might design using firgr.

Example 1—design an FIR filter with two single-band notches at 0.25 and 0.55

b1 = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});

Example 2—design a highpass filter whose gain at 0.06 is forced to be zero. The
gain at 0.055 is indeterminate since it should abut the band.

b2 = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'});

Example 3—design a second highpass filter with forced values and
independent approximation errors.

b3 = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1], ...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

Use the filter visualization tool to view the results of the filters created in these
examples.

fvtool(b1,1,b2,1,b3,1)

Here is the figure from FVTool.

firgr

8-684

See Also butter, cheby1, cheby2, ellip, freqz, filter, firls, fircls, and firpm in
your Signal Processing Toolbox documentation

Reference Shpak, D.J. and A. Antoniou, “A generalized Remez method for the design of
FIR digital filters,” IEEE Trans. Circuits and Systems, pp. 161-174,Feb. 1990.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter b1

Filter b2

Filter b3

firhalfband

8-685

8firhalfbandPurpose Design halfband FIR filter

Syntax b = firhalfband(n,fp)
b = firhalfband(n,win)
b = firhalfband(n,dev,'dev')
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')

b = firhalfband(...,'minphase')

Description b = firhalfband(n,fp) designs a lowpass halfband FIR filter of order n with
an equiripple characteristic. n must be an even integer. fp determines the
passband edge frequency, and it must satisfy 0 < fp < 1/2, where 1/2
corresponds to rad/sample.

b = firhalfband(n,win) designs a lowpass Nth-order filter using the
truncated, windowed-impulse response method instead of the equiripple
method. win is an n+1 length vector. The ideal impulse response is truncated to
length n + 1, and then multiplied point-by-point with the window specified in
win.

b = firhalfband(n,dev,'dev') designs an Nth-order lowpass halfband
filter with an equiripple characteristic. Input argument dev sets the value for
the maximum passband and stopband ripple allowed.

b = firhalfband('minorder',fp,dev) designs a lowpass minimum-order
filter, with passband edge fp. The peak ripple is constrained by the scalar dev.
This design uses the equiripple method.

b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass
minimum-order filter, with passband edge fp. The peak ripple is constrained
by the scalar dev. This design uses the Kaiser window method.

b = firhalfband(...,'high') returns a highpass halfband FIR filter.

b = firhalfband(...,'minphase') designs a minimum-phase FIR filter such
that the filter is a spectral factor of a halfband filter (recall that
h = conv(b,fliplr(b)) is a halfband filter). This can be useful for designing
perfect reconstruction, two-channel FIR filter banks. The minphase option for

π 2⁄

firhalfband

8-686

firhalfband is not available for the window-based halfband filter designs—
b = firhalfband(n,win) and
b = firhalfband('minorder',fp,dev,'kaiser').

In the minimum phase cases, the filter order must be odd.

Examples This example designs a minimum order halfband filter with specified
maximum ripple:

b = firhalfband('minorder',.45,0.0001);
h = dfilt.dfsymfir(b);
impz(b) % Impulse response is zero for every other sample

The next example designs a halfband filter with specified maximum ripple of
0.0001 dB in the pass and stop bands.

0 10 20 30 40 50 60 70 80 90
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Samples

A
m

pl
itu

de

Impulse Response

firhalfband

8-687

b = firhalfband(98,0.0001,'dev');
h = mfilt.firdecim(2,b); % Create a polyphase decimator
freqz(h); % 80 dB attenuation in the stopband

See Also firnyquist, firgr
fir1, firls, firpm in your Signal Processing Toolbox documentation

References Saramaki, T, “Finite Impulse Response Filter Design,” Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

firlp2lp

8-688

8firlp2lpPurpose Convert FIR Type I lowpass to FIR Type 1 lowpass with inverse bandwidth

Syntax g = firlp2lp(b)

Description g = firlp2lp(b) transforms the Type I lowpass FIR filter b with zero-phase
response Hr(w) to a Type I lowpass FIR filter g with zero-phase response
[1 - Hr(π-w)].

When b is a narrowband filter, g will be a wideband filter and vice versa. The
passband and stopband ripples of g will be equal to the stopband and passband
ripples of b.

Examples Overlay the original narrowband lowpass and the resulting wideband lowpass

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
zerophase(b);
hold on
h = firlp2lp(b);
zerophase(h); hold off

See Also firlp2hp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

firlp2hp

8-689

8firlp2hpPurpose Convert FIR lowpass filter to Type I FIR highpass filter

 Syntax g = firlp2hp(b)
g = firlp2hp(b,'narrow')
g = firlp2hp(b,'wide')

Description g = firlp2hp(b) transforms the lowpass FIR filter b into a Type I highpass
FIR filter g with zero-phase response Hr(π-w). Filter b can be any FIR filter,
including a nonlinear-phase filter.

The passband and stopband ripples of g will be equal to the passband and
stopband ripples of b.

g = firlp2hp(b,'narrow') transforms the lowpass FIR filter b into a Type I
narrow band highpass FIR filter g with zero-phase response Hr(π-w). b can be
any FIR filter, including a nonlinear-phase filter.

g = firlp2hp(b,'wide') transforms the Type I lowpass FIR filter b with
zero-phase response Hr(w) into a Type I wide band highpass FIR filter g with
zero-phase response 1 - Hr(w). Note the restriction that b must be a Type I
linear-phase filter.

For this case, the passband and stopband ripples of g will be equal to the
stopband and passband ripples of b.

Examples Overlay the original narrowband lowpass (the prototype filter) and the
post-conversion narrowband highpass and wideband highpass filters to
compare and assess the conversion. The plot below shows the results.

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 3]);
zerophase(b); hold on;
h = firlp2hp(b);
zerophase(h);
g = firlp2hp(b,'wide');
zerophase(g); hold off

firlp2hp

8-690

See Also firlp2lp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized frequency (× π rad/sample)

A
m

pl
itu

de

Prototype lowpass
Narrowband highpass
Wideband highpass

firlpnorm

8-691

8firlpnormPurpose Least P-norm optimal FIR filter design

Syntax b = firlpnorm(n,f,edges,a)
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

Description b = firlpnorm(n,f,edges,a) returns a filter of numerator order n which
represents the best approximation to the frequency response described by f
and a in the least-Pth norm sense. P is set to 128 by default, which essentially
equivalent to the infinity norm. Vector edges specifies the band-edge
frequencies for multiband designs. firlpnorm uses an unconstrained
quasi-Newton algorithm to design the specified filter.

f and a must have the same number of elements, which can exceed the number
of elements in edges. This lets you specify filters with any gain contour within
each band. However, the frequencies in edges must also be in vector f. Always
use freqz to check the resulting filter.

Note firlpnorm uses a nonlinear optimization routine that may not converge
in some filter design cases. Furthermore the algorithm is not well-suited for
certain large-order (order > 100) filter designs.

b = firlpnorm(n,f,edges,a,w) uses the weights in w to weight the error.
w has one entry per frequency point (the same length as f and a) which tells
firlpnorm how much emphasis to put on minimizing the error in the vicinity
of each frequency point relative to the other points. For example,

b = firlpnorm(20,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband, and with
emphasis placed on minimizing the error in the stopband.

firlpnorm

8-692

b = firlpnorm(n,f,edges,a,w,p) where p is a two-element vector [pmin
pmax] lets you specify the minimum and maximum values of p used in the
least-pth algorithm. Default is [2 128] which essentially yields the L-infinity,
or Chebyshev, norm. pmin and pmax should be even numbers. The design
algorithm starts optimizing the filter with pmin and moves toward an optimal
filter in the pmax sense.When p is the string 'inspect', firlpnorm does not
optimize the resulting filter. You might use this feature to inspect the initial
zero placement.

b = firlpnorm(n,f,edges,a,w,p,dens) specifies the grid density dens used
in the optimization. The number of grid points is [dens*(n+1)]. The default is
20. You can specify dens as a single-element cell array. The grid is equally
spaced.

b = firlpnorm(n,f,edges,a,w,p,dens,initnum) lets you determine the
initial estimate of the filter numerator coefficients in vector initnum. This can
prove helpful for difficult optimization problems. The pole-zero editor in the
Signal Processing Toolbox can be used for generating initnum.

b = firlpnorm(...,'minphase') where string 'minphase' is the last
argument in the argument list generates a minimum-phase FIR filter. By
default, firlpnorm design mixed-phase filters. Specifying input option
'minphase' causes firlpnorm to use a different optimization method to design
the minimum-phase filter. As a result of the different optimization used, the
minimum-phase filter can yield slightly different results.

[b,err] = firlpnorm(...) returns the least-pth approximation error err.

Examples To demonstrate firlpnorm, here are two examples — the first designs a
lowpass filter and the second a highpass, minimum-phase filter.

% Lowpass filter with a peak of 1.4 in the passband.
b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...
[1 1 1 2 2]);
fvtool(b)

firlpnorm

8-693

From the figure you see the resulting filter is lowpass, with the desired 1.4
peak in the passband (notice the 1.4 specified in vector a).

Now for the minimum-phase filter.

% Highpass minimum-phase filter optimized for the 4-norm.
b = firlpnorm(44,[0 .4 .45 1],[0 .4 .45 1],[0 0 1 1],[5 1 1 1],...
[2 4],'minphase');
fvtool(b)

As shown in the next figure, this is a minimum-phase, highpass filter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Lowpass FIR Filter Magnitude Response

firlpnorm

8-694

The next zero-pole plot shows the minimum phase nature more clearly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−180

−140

−100

−60

−20

20

M
ag

ni
tu

de
 (

dB
)

Magnitude and Phase Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−800

−640

−480

−320

−160

0

rad/sample

P
ha

se
 (

de
gr

ee
s)

Filter #1: Discrete filter magnitude
Filter #1: Discrete filter phase

firlpnorm

8-695

See Also firgr, iirgrpdelay, iirlpnorm, iirlpnormc
filter, fvtool, freqz, zplane in your Signal Processing Toolbox
documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Part

Im
ag

in
ar

y
P

ar
t

Zero−Pole Plot of Minimum Phase FIR Filter

244

firls

8-696

8firlsPurpose Design filter from filter specification object using least-square minimization
technique

Syntax hd = firls(d)

Description hd = firls(d) designs a discrete-time FIR filter using a least-squares error
minimization method. Only halfband and interpolation specifications objects
with Specification of 'n,tw' or 'pl,tw' work as specifications objects for
firls.

hd is either a dfilt object (a single-rate digital filter) or an mfilt object (a
multirate digital filter) depending on the Specification property of the filter
specification object d and the filter specification object type—halfband or
interpolator.

Examples Here are two examples of using firls to design filters. The first example
returns a single-rate halfband filter.

d = fdesign.halfband('n,tw',120,.04); % 120 is the filter order.
hd = firls(d);

Now use firls to design a multirate halfband interpolator filter.

d = fdesign.interpolator(2,'pl,tw',60,.04); % 60 is the polyphase
% length.

hm = firls(d);

See Also equiripple, kaiserwin

firminphase

8-697

8firminphasePurpose Compute minimum-phase FIR spectral factor

Syntax h = firminphase(b)
h = firminphase(b,nz)

Description h = firminphase(b) computes the minimum-phase FIR spectral factor h of a
linear-phase FIR filter b. Filter b must be real, have even order, and have
nonnegative zero-phase response.

h = firminphase(b,nz) specifies the number of zeros, nz, of b that lie on the
unit circle. You must specify nz as an even number to compute the
minimum-phase spectral factor because every root on the unit circle must have
even multiplicity. Including nz can help firminphase calculate the required
FIR spectral factor. Zeros with multiplicity greater than two on the unit circle
cause problems in the spectral factor determination.

Note You can find the maximum-phase spectral factor, g, by reversing h,
such that , and .

Example This example designs a constrained least squares filter with a nonnegative
zero-phase response, and then uses firminphase to compute the
minimum-phase spectral factor.

f = [0 0.4 0.8 1];
a = [0 1 0];
up = [0.02 1.02 0.01];
lo = [0 0.98 0]; % The zeros insure nonnegative zero-phase resp.
n = 32;
b = fircls(n,f,a,up,lo);
h = firminphase(b);

See Also firgr
fircls, zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

g fliplr h()= b conv h g,()=

firnyquist

8-698

8firnyquistPurpose Design lowpass Nyquist (Lth-band) FIR filter

Syntax firnyquist(n,l,r,varargin)

Description b = firnyquist(n,l,r) designs an Nth order, Lth band, Nyquist FIR filter
with a roll-off factor r and an equiripple characteristic.

The rolloff factor r is related to the normalized transition width tw by
 (rad/sample). The order, n, must be even. l must be an integer

greater than one. If l is not specified, it defaults to 4. r must satisfy 0< r < 1.
If r is not specified, it defaults to 0.5.

b = firnyquist('minorder',l,r,dev) designs a minimum-order, Lth band
Nyquist FIR filter with a rolloff factor r using the Kaiser window. The peak
ripple is constrained by the scalar dev.

b = firnyquist(n,l,r,decay) designs an Nth order, Lth band, Nyquist FIR
filter where the scalar decay, specifies the rate of decay in the stopband. decay
must be nonnegative. If omitted or left empty, decay defaults to 0 which yields
an equiripple stopband. A nonequiripple stopband may be desirable for
decimation purposes.

b = firnyquist(n,l,r,'nonnegative') returns an FIR filter with
nonnegative zero-phase response. This filter can be spectrally factored into
minimum-phase and maximum-phase “square-root” filters. This allows using
the spectral factors in applications such as matched-filtering.

b = firnyquist(n,l,r,'minphase') returns the minimum-phase spectral
factor bmin of order n. bmin meets the condition b=conv(bmin,bmax) so that b
is an Lth band FIR Nyquist filter of order 2n with rolloff factor r. Obtain bmax,
the maximum phase spectral factor by reversing the coefficients of bmin. For
example, bmax = bmin(end:-1:1).

Example Example 1: This example designs a minimum phase factor of a Nyquist filter.

bmin = firnyquist(47,10,.45,'minphase');
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

tw 2π r l⁄()=

firnyquist

8-699

Example 2: This example compares filters with different decay rates.

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,.5);
b3 = firnyquist(72,8,.3,1);
fvtool(b1,1,b2,1,b3,1);

See Also firhalfband, firgr, firls, firminphase
firrcos, firls in your Signal Processing Toolbox documentation

References [1] T. Saramaki, Finite Impulse Response Filter Design, Handbook for Digital
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y.,
1993, Chapter 4.

firpr2chfb

8-700

8firpr2chfbPurpose Design two-channel FIR filter bank for perfect reconstruction

Syntax [h0,h1,g0,g1] = firpr2chfb(n,fp)
[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev')
[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev)

Description [h0,h1,g0,g1] = firpr2chfb(n,fp) designs four FIR filters for the analysis
sections (h0 and h1) and synthesis section is (g0 and g1) of a two-channel
perfect reconstruction filter bank. The design corresponds to the orthogonal
filter banks also known as power-symmetric filter banks.

n is the order of all four filters. It must be an odd integer. fp is the
passband-edge for the lowpass filters h0 and g0. The passband-edge argument
fp must be less than 0.5. h1 and g1 are highpass filters with the passband-edge
given by (1-fp).

[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev') designs the four filters such
that the maximum stopband ripple of h0 is given by the scalar dev. The
stopband-ripple of h1 is also be given by dev, while the maximum
stopband-ripple for both g0 and g1 is (2*dev).

[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev) designs the four filters
such that h0 meets the passband-edge specification fp and the stopband-ripple
dev using minimum order filters to meet the specification.

Algorithm For perfect reconstruction, filters that compose the filter bank must fulfill
these conditions.

Examples Design a filter bank with filters of order n equal to 99 and passband edges of
0.45 and 0.55.

n = 99;
[h0,h1,g0,g1] = firpr2chfb(n,.45);
fvtool(h0,1,h1,1,g0,1,g1,1);

Here are the filters, showing clearly the passband edges.

firpr2chfb

8-701

Use the following stem plots to verify perfect reconstruction using the filter
bank created by firpr2chfb.

stem(1/2*conv(g0,h0)+1/2*conv(g1,h1))
n=0:n;
stem(1/2*conv((-1).^n.*h0,g0)+1/2*conv((-1).^n.*h1,g1))
stem(1/2*conv((-1).^n.*g0,h0)+1/2*conv((-1).^n.*g1,h1))
stem(1/2*conv((-1).^n.*g0,(-1).^n.*h0)+1/2*conv((-1).^n.*g1,...
(-1).^n.*h1))
stem(conv((-1).^n.*h1,h0)-conv((-1).^n.*h0,h1))

See Also firceqrip, firgr, firhalfband, firnyquist

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

firtype

8-702

8firtypePurpose Determine type of linear phase FIR filter

Syntax t = firtype(hd)
t = firtype(hm)

Description The next sections describe common firtype operation with discrete-time and
multirate filters.

Discrete-Time Filters

t = firtype(hd) determines the type (1 through 4) of a discrete-time FIR
filter object hd, returning the type number in t. Filter hd must be both real and
have linear phase.

Filter types 1 through 4 are defined as follows:

• Type 1—even order symmetric coefficients

• Type 2—odd order symmetric coefficients

• Type 3—even order antisymmetric coefficients

• Type 4—odd order antisymmetric coefficients

When hd is a cascade or parallel filter and therefore has multiple stages, each
stage must be a real FIR filter with linear phase. In this case, t is a cell array
containing the filter type of each stage.

Multirate Filters

t = firtype(hm) determines the type (1 through 4) of the multirate filter
object hm. The filter must be real and have linear phase.

Filter types 1 through 4 are defined as follows:

• Type 1—even order symmetric coefficients

• Type 2—odd order symmetric coefficients

• Type 3—even order antisymmetric coefficients

• Type 4—odd order antisymmetric coefficients

When hm has multiple sections, all sections must be real FIR filters with linear
phase. In this case, t is a cell array containing the filter type of each section.

firtype

8-703

Examples Determine the type of the default interpolator for L=4.

l = 4;
hm = mfilt.firinterp(l);
firtype(hm)
ans =

 1

See Also islinphase

freqsamp

8-704

8freqsampPurpose Design real or complex frequency-sampled FIR filters from filter specification
objects

Syntax hd = design(d,'freqsamp')
hd = design(...,'filterstructure',structure)
hd = design(...,'window',window)

Description hd = design(d,'freqsamp') designs a frequency-sampled filter specified by
the fspecifications object h.

hd = design(...,'filterstructure',structure) returns a filter with the
filter structure you specify by the structure input argument. structure is
dffir by default and can be any one of the following filter structures.

hd = design(...,'window',window) designs filters using the window
specified by the string in window. Provide the input argument window as

• A string for the window type. For example, use bartlett or chebwin, or
hamming. Click window for the full list of windows available or refer to
window in the Signal Processing Toolbox User’s Guide.

• A function handle that references the window function. When the window
function requires more than one input, use a cell array to hold the required
arguments. The final example below shows a cell array input argument.

• The window vector itself.

Structure String Description of Resulting Filter Structure

dffir Direct-form FIR filter

dffirt Transposed direct-form FIR filter

dfsymfir Symmetrical direct-form FIR filter

dfasymfir Asymmetrical direct-form FIR filter

fftfir Fast Fourier transform FIR filter

freqsamp

8-705

Examples These examples design FIR filters that have arbitrary magnitude responses. In
the first filter, the response has three distinct sections and the resulting filter
is real.

The second example creates a complex filter.

b1 = 0:0.01:0.18;b2 = [.2 .38 .4 .55 .562 .585 .6
.78];b3 = [0.79:0.01:1];
a1 = .5+sin(2*pi*7.5*b1)/4; % Sinusoidal response section.
a2 = [.5 2.3 1 1 -.2 -.2 1 1]; % Piecewise linear response section.
a3 = .2+18*(1-b3).^2; % Quadratic response section.
f = [b1 b2 b3];
a = [a1 a2 a3];
n = 300;
d = fdesign.arbmag('n,f,a',n,f,a); % First specifications object.
hd = design(d,'freqsamp','window',{@kaiser,.5}); % Filter.
fvtool(hd)

The plot from FVTool shows the response for hd.

freqsamp

8-706

Now design the arbitrary-magnitude complex FIR filter. Recall that vector
f contains frequency locations and vector a contains the desired filter response
values at the locations specified in f.

f = [-1 -.93443 -.86885 -.80328 -.7377 -.67213 -.60656 -.54098 ...
-.47541,-.40984 -.34426 -.27869 -.21311 -.14754 -.081967 ...
-.016393 .04918 .11475,.18033 .2459 .31148 .37705 .44262 ...
 .5082 .57377 .63934 .70492 .77049,.83607 .90164 1];
a = [.0095848 .021972 .047249 .099869 .23119 .57569 .94032 ...
.98084 .99707,.99565 .9958 .99899 .99402 .99978 .99995 .99733 ...
.99731 .96979 .94936,.8196 .28502 .065469 .0044517 .018164 ...
.023305 .02397 .023141 .021341,.019364 .017379 .016061];
n = 48;
d = fdesign.arbmag('n,f,a',n,f,a); % Second spec. object.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−10

−5

0

5

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

freqsamp

8-707

hdc = design(d,'freqsamp','window','rectwin'); % Filter.
fvtool(hdc)

FVTool shows you the response for hdc from -1 to 1 in normalized frequency.
design(d,...) returns a complex filter for hdc because the frequency vector
includes negative frequency values.

See Also design, designmethods, fdesign.arbmag, help

window in the Signal Processing Toolbox documentation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−35

−30

−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

freqz

8-708

8freqzPurpose Compute frequency response of discrete-time filters, adaptive filters, or
multirate filters

Syntax [h,w] = freqz(ha)
[h,w] = freqz(ha,n)
freqz(ha)
[h,w] = freqz(hd)
[h,w] = freqz(hd,n)
freqz(hd)
[h,w] = freqz(hm)
[h,w] = freqz(hm,n)
freqz(hm)

Description The next sections describe common freqz operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to freqz in
the Signal Processing Toolbox.

Adaptive Filters
For adaptive filters, freqz returns the instantaneous frequency response based
on the current filter coefficients.

[h,w] = freqz(ha) returns the frequency response vector h and the
corresponding frequency vector w for the adaptive filter ha. When ha is a vector
of adaptive filters, freqz returns the matrix h. Each column of h corresponds to
one filter in the vector ha.

[h,w] = freqz(ha,n) returns the frequency response vector h and the
corresponding frequency vector w for the adaptive filter ha. freqz uses the
transfer function associated with the adaptive filter to calculate the frequency
response of the filter with the current coefficient values. The vectors h and w
are both of length n. The frequency vector w has values ranging from 0 to π
radians per sample. If you do not specify the integer n, or you specify it as the
empty vector [], the frequency response is calculated using the default value
of 8192 samples for the FFT.

freqz(ha) uses FVTool to plot the magnitude and unwrapped phase of the
frequency response of the adaptive filter ha. If ha is a vector of filters, freqz
plots the magnitude response and phase for each filter in the vector.

freqz

8-709

Discrete-Time Filters

[h,w] = freqz(hd) returns the frequency response vector h and the
corresponding frequency vector w for the discrete-time filter hd. When hd is
a vector of discrete-time filters, freqz returns the matrix h. Each column of
h corresponds to one filter in the vector hd.

[h,w] = freqz(hd,n) returns the frequency response vector h and the
corresponding frequency vector w for the discrete-time filter hd. freqz uses the
transfer function associated with the discrete-time filter to calculate the
frequency response of the filter with the current coefficient values. The vectors
h and w are both of length n. The frequency vector w has values ranging from 0
to π radians per sample. If you do not specify the integer n, or you specify it as
the empty vector [], the frequency response is calculated using the default
value of 8192 samples for the FFT.

freqz(hd) uses FVTool to plot the magnitude and unwrapped phase of the
frequency response of the adaptive filter hd. If hd is a vector of filters, freqz
plots the magnitude response and phase for each filter in the vector.

Multirate Filters

[h,w] = freqz(hm) returns the frequency response vector h and the
corresponding frequency vector w for the multirate filter hd. When hd is a vector
of multirate filters, freqz returns the matrix h. Each column of h corresponds
to one filter in the vector hd.

[h,w] = freqz(hd,n) returns the frequency response vector h and the
corresponding frequency vector w for the multirate filter hd. freqz uses the
transfer function associated with the multirate filter to calculate the frequency
response of the filter with the current coefficient values. The vectors h and w
are both of length n. The frequency vector w has values ranging from 0 to π
radians per sample. If you do not specify the integer n, or you specify it as the
empty vector [], the frequency response is calculated using the default value
of 8192 samples for the FFT.

freqz(hd) uses FVTool to plot the magnitude and unwrapped phase of the
frequency response of the adaptive filter hd. If hd is a vector of filters, freqz
plots the magnitude response and phase for each filter in the vector.

freqz

8-710

Remarks There are several ways of analyzing the frequency response of filters. freqz
accounts for quantization effects in the filter coefficients, but does not account
for quantization effects in filtering arithmetic. To account for the quantization
effects in filtering arithmetic, refer to function noisepsd.

Algorithm freqz calculates the frequency response for a filter from the filter transfer
function Hq(z). The complex-valued frequency response is calculated by
evaluating Hq(ejω) at discrete values of w specified by the syntax you use. The
integer input argument n determines the number of equally-spaced points
around the upper half of the unit circle at which freqz evaluates the frequency
response. The frequency ranges from 0 to π radians per sample when you do not
supply a sampling frequency as an input argument. When you supply the
scalar sampling frequency fs as an input argument to freqz, the frequency
ranges from 0 to fs/2 Hz.

Examples Plot the estimated frequency response of a filter. This example uses
discrete-time filters, but any adaptfilt, dfilt, or mfilt object would work.
First plot the results for one filter.

b = fir1(80,0.5,kaiser(81,8));
hd = dfilt.dffir(b);
freqz(hd);

freqz

8-711

If you have more than one filter, you can plot them on the same figure using
a vector of filters.

b = fir1(40,0.5,kaiser(41,6));
hd2 = dfilt.dffir(b);
h = [hd hd2];
freqz(h);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−140

−100

−60

−20

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−4500

−3600

−2700

−1800

−900

0

P
ha

se
 (

de
gr

ee
s)

Filter #1: Magnitude

Filter #1: Phase

freqz

8-712

See Also adaptfilt, dfilt, mfilt
fvtool in your Signal Processing Toolbox documentation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−140

−100

−60

−20

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−4500

−3600

−2700

−1800

−900

0

P
ha

se
 (

de
gr

ee
s)

hd: Magnitude

hd2: Magnitude

hd: Phase

hd2: Phase

gain

8-713

8gainPurpose Gain of cascaded integrator-comb (CIC) filter

Syntax gain(hm)
gain(hm,j)

Description gain(hm) returns the gain of hm, the CIC decimation or interpolation filter.

When hm is a decimator, gain returns the gain for the overall CIC decimator.

When hm is an interpolator, the CIC interpolator inserts zeros into the input
data stream, reducing the filter overall gain by 1/R, where R is the
interpolation factor, to account for the added zero valued samples. Therefore,

the gain of a CIC interpolator is , where N is the number of filter
sections and M is the filter differential delay. gain(hm) returns this value. The
example below presents this case.

gain(hm,j) returns the gain of the jth section of a CIC interpolation filter.
When you omit j, gain assumes that j is 2*N, where N is the number of
sections, and returns the gain of the last section of the filter. This syntax does
not apply when hm is a decimator.

Examples To compare the performance of two interpolators, one a CIC filter and the other
an FIR filter, use gain to adjust the CIC filter output amplitude to match the
FIR filter output amplitude. Start by creating an input data set—a sinusoidal
signal x.

fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.

l = 4; % Interpolation factor for FIR filter.
d = fdesign.interpolator(l);
hm = design(d,'multistage');
ym = filter(hm,x);

r = 4; % Interpolation factor for the CIC filter.
d = fdesign.interpolator(r,'cic');
hcic = design(d,'multisection');
ycic = filter(hcic,x);
gaincic = gain(hcic);

RM()N R⁄

gain

8-714

subplot(211);
plot(1:length(ym),[ym; double(ycic)]);
subplot(212)
plot(1:length(ym),[ym; double(ycic)/gain(hcic)]);

After correcting for the gain induced by the CIC interpolator, the figure below
shows the filters provide nearly identical interpolation.

See Also filtmsb

0 1000 2000 3000 4000 5000 6000
−60

−40

−20

0

20

40

60

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

FIR Interpolator
CIC Interpolator with Gain Correction

FIR Interpolator
CIC Interpolator Without Gain Correction

grpdelay

8-715

8grpdelayPurpose Group delay of adaptive, discrete-time, and multirate filters

Syntax [gd,w] = grpdelay(ha)
[gd,w] = grpdelay(ha,n)
[gd,w] = grpdelay(...,f)
grpdelay(ha)
[gd,w] = grpdelay(hd)
[gd,w] = grpdelay(hd,n)
[gd,w] = grpdelay(...,f)
grpdelay(hd)
[gd,w] = grpdelay(hm)
[gd,w] = grpdelay(hm,n)
[gd,w] = grpdelay(...,f)
grpdelay(hm)

Description The next sections describe common grpdelay operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to grpdelay
in the Signal Processing Toolbox.

Adaptive Filters
For adaptive filters, grpdelay returns the instantaneous group delay based on
the current filter coefficients.

[gd,w] = grpdelay(ha) returns the group delay vector gd and the
corresponding frequency vector w for the adaptive filter ha. When ha is a vector
of adaptive filters, grpdelay returns the matrix gd. Each column of
gd corresponds to one filter in the vector ha. If you provide a row vector of
frequency points f as an input argument, each row of gd corresponds to one
filter in the vector.

Function grpdelay uses the transfer function associated with the adaptive
filter to calculate the group delay of the filter with the current coefficient
values. The vectors gd and w are both of length n. The frequency vector w has
values ranging from 0 to π radians per sample. If you do not specify the integer
n, or you specify it as the empty vector [], the frequency response is calculated
using the default value of 8192 samples for the FFT.

grpdelay

8-716

[gd,w] = grpdelay(h,n) returns length n vectors vector gd containing the
current group delay for the adaptive filter ha and the vector w which contains
the frequencies in radians at which grpdelay calculated the delay. Group delay
is

The frequency response is evaluated at n points equally spaced around the
upper half of the unit circle. For FIR filters where n is a power of two, the
computation is done faster using FFTs. When you do not specify n, it defaults
to 8192.

grpdelay(ha) uses FVTool to plot the group delay of the adaptive filter ha. If
ha is a vector of filters, grpdelay plots the magnitude response and phase for
each filter in the vector.

Discrete-Time Filters

[gd,w] = grpdelay(hd) returns the group delay vector gd and the
corresponding frequency vector w for the discrete-time filter hd. When hd is
a vector of discrete-time filters, grpdelay returns the matrix gd. Each column
of gd corresponds to one filter in the vector hd. If you provide a row vector of
frequency points f as an input argument, each row of gd corresponds to each
filter in the vector.

Function grpdelay uses the transfer function associated with the discrete-time
filter to calculate the group delay of the filter. The vectors gd and w are both of
length n. The frequency vector w has values ranging from 0 to π radians per
sample. If you do not specify the integer n, or you specify it as the empty vector
[], the frequency response is calculated using the default value of 8192
samples for the FFT.

[gd,w] = grpdelay(hd,n) returns length n vectors vector gd containing the
current group delay for the discrete-time filter hd and the vector w which
contains the frequencies in radians at which grpdelay calculated the delay.
Group delay is

wd
d angle w()()–

wd
d angle w()()–

grpdelay

8-717

The frequency response is evaluated at n points equally spaced around the
upper half of the unit circle. For FIR filters where n is a power of two, the
computation is done faster using FFTs. When you do not specify n, it defaults
to 8192.

grpdelay(hd) uses FVTool to plot the group delay of the discrete-time filter hd.
If hd is a vector of filters, grpdelay plots the magnitude response and phase for
each filter in the vector.

Multirate Filters

[gd,w] = grpdelay(hm) returns the group delay vector gd and the
corresponding frequency vector w for the multirate filter hm. When hm is a vector
of multirate filters, grpdelay returns the matrix gd. Each column of
gd corresponds to one filter in the vector hm. If you provide a row vector of
frequency points f as an input argument, each row of gd corresponds to one
filter in the vector.

Function grpdelay uses the transfer function associated with the multirate
filter to calculate the group delay of the filter. The vectors gd and w are both of
length n. The frequency vector w has values ranging from 0 to π radians per
sample. If you do not specify the integer n, or you specify it as the empty vector
[], the frequency response is calculated using the default value of 8192
samples for the FFT.

[gd,w] = grpdelay(hm,n) returns length n vectors vector gd containing the
group delay for the multirate filter hm and the vector w which contains the
frequencies in radians at which grpdelay calculated the delay. Group delay is

The frequency response is evaluated at n points equally spaced around the
upper half of the unit circle. For FIR filters where n is a power of two, the
computation is done faster using FFTs. When you do not specify n, it defaults
to 8192.

grpdelay(hm) uses FVTool to plot the magnitude and unwrapped phase of the
group delay of the multirate filter hm. If ha is a vector of filters, grpdelay plots
the group delay for each filter in the vector.

wd
d angle w()()–

grpdelay

8-718

See Also phasez, zerophase

help

8-719

8helpPurpose Help text for design method with filter specification object

Syntax help(d,'designmethod')

Description help(d,'designmethod') displays help in the Command Window for the
design algorithm designmethod for the current specifications of the filter
specification object d. The string you enter for designmethod must be one of the
strings returned by designmethods for d, the design object.

 Examples Get specific help for designing lowpass Butterworth filters. The first lowpass
filter uses the default specification string 'Fp,Fst,Ap,Ast' and returns help
text specific to the specification string.

d = fdesign.lowpass;
designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

help(d,'butter')

DESIGN Design a Butterworth IIR filter.
HD = DESIGN(D, 'butter') designs a Butterworth filter specified
by the FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter
with the structure STRUCTURE. STRUCTURE is 'df2sos' by default
and can be any of the following.

'df1sos'
'df2sos'

help

8-720

'df1tsos'
'df2tsos'

HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth
filter and matches the frequency and magnitude specification for
the band MATCH exactly. The other band will exceed the
specification. MATCH can be 'stopband' or 'passband' and is
'stopband' by default.

% Example #1 - Compare passband and stopband MatchExactly.
h = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
Hd = design(h, 'butter', 'MatchExactly', 'passband');
Hd(2) = design(h, 'butter', 'MatchExactly', 'stopband');

% Compare the passband edges in FVTool.
fvtool(Hd);
axis([.09 .11 -2 0]);

Note the discussion of the MatchExactly input option. When you use a design
object that uses a different specification string, such as 'N,F3dB', the help
content for the butter design method changes.

In this case, the MatchExactly option does not appear in the help because it is
not an available input argument for the specification string 'N,F3dB'.

d=fdesign.lowpass('N,F3dB')

d =

 Response: 'Lowpass'
 Specification: 'N,F3dB'
 Description: {'Filter Order';'3dB Frequency'}
 NormalizedFrequency: true
 FilterOrder: 10
 F3dB: 0.5

designmethods(d)

Design Methods for class fdesign.lowpass (N,F3dB):

help

8-721

butter

help(d,'butter')
DESIGN Design a Butterworth IIR filter.

HD = DESIGN(D, 'butter') designs a Butterworth filter specified by
the FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with
the structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be
any of the following.

'df1sos'

'df2sos'

'df1tsos'

'df2tsos'

% Example #1 - Design a lowpass Butterworth filter in the DF2TSOS
structure.

h = fdesign.lowpass('N,F3dB');

Hd = design(h, 'butter', 'FilterStructure', 'df2tsos');

See Also fdesign, design, designmethods, designopts

ifir

8-722

8ifirPurpose Use interpolated FIR method to design FIR filter from filter specification object

Syntax hd = ifir(d)
hd = design(d,'ifir',designoption,value,designoption,value,...)

Description hd = ifir(d) designs an FIR filter from design object d, using the interpolated
FIR method. ifir returns hd as a cascade of two filters that act together to
meet the specifications in d. The resulting filter is particulary efficient, having
a low number of multipliers. However, if ifir determines that a single-stage
filter would be more efficient than the default two-stage design, it returns hd
as a single-stage filter. In this syntax, ifir only creates minimum phase
filters. Generally, ifir uses an advanced optimization algorithm to create
highly efficient FIR filters.

ifir returns hd as either a single-rate dfilt object or a multirate mfilt object
(when you have the Filter Design Toolbox installed), based on the specifications
you provide in d, the filter specification object.

specifications supplied in the object h.

hd = design(d,'ifir',designoption,value,designoption,...
value,...) returns an interpolated FIR filter where you specify design options
as input arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using ifir, refer to the command line help system. For
example, to get specific information about using ifir with d, the specification
object, enter the following at the MATLAB prompt.

help(d,'ifir')

Note For help about how you use ifir to design filters without using design
objects, enter

help ifir

ifir

8-723

at the MATLAB prompt.

Examples Use fdesign.lowpass and fdesign.highpass to design a lowpass filter and
a wideband highpass filter. After designing the filters, use FVTool to plot the
response curves for both.

fpass = 0.2;
fstop = 0.24;
d1 = fdesign.lowpass(fpass, fstop);
hd1 = design(d1,'ifir');
fstop = 0.2;
fpass = 0.25;
astop = 40;
apass = 1;
d2 = fdesign.highpass(fstop,fpass,astop,apass);
hd2 = design(d2,'ifir');

Here are the magnitude response curves for both filters.

fvtool(hd1,hd2)

ifir

8-724

See Also fdesign, firgr

fir1, firls, firpm in your Signal Processing Toolbox documentation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Lowpass Filter

Wideband Highpass Filter

iirbpc2bpc

8-725

8iirbpc2bpcPurpose Transform IIR complex bandpass filter to IIR complex bandpass filter with
different frequency response characteristics

Syntax [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the complex bandpass prototype by applying a
first-order complex bandpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

This transformation effectively places two features of an original filter, located
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and
Wt2 respectively. It is assumed that Wt2 is greater than Wt1. In most of the cases
the features selected for the transformation are the band edges of the filter
passbands. In general it is possible to select any feature; e.g., the stopband
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., complex notch filters or resonators can be repositioned at two distinct
desired frequencies at any place around the unit circle; e.g., in the adaptive
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc (b, a, 0.5, [0.25,0.75]);
[num, den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.5]);

Verify the result by comparing the prototype filter with the target filter:

iirbpc2bpc

8-726

fvtool(b, a, num, den);

Using FVTool to plot the filters shows you the comparison, presented in this
figure.

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

iirbpc2bpc

8-727

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpassbpc2bpc, zpkbpc2bpc

iircomb

8-728

8iircombPurpose Design IIR comb notching or peaking digital filter

Syntax [num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb(, 'type')

Description [num,den] = iircomb(n,bw) returns a digital notching filter with order n and
with the width of the filter notch at -3dB set to bw, the filter bandwidth. The
filter order must be a positive integer. n also defines the number of notches in
the filter across the frequency range from 0 to 2π—the number of notches
equals n+1.

For the notching filter, the transfer function takes the form

where a and b are the filter coefficients and n is the filter order or the number
of notches in the filter minus 1.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by
q = ω0/bw where ω0 is the frequency to remove from the signal.

[num,den] = iircomb(n,bw,ab) returns a digital notching filter whose
bandwidth, bw, is specified at a level of -ab decibels. Including the optional
input argument ab lets you specify the magnitude response bandwidth at a
level that is not the default -3dB point, such as -6 dB or 0 dB.

[num,den] = iircomb(,'type') returns a digital filter of the specified type.
The input argument type can be either

• 'notch' to design an IIR notch filter. Notch filters attenuate the response at
the specified frequencies. This is the default type. When you omit the type
input argument, iircomb returns a notch filter.

• 'peak' to design an IIR peaking filter. Peaking filters boost the signal at the
specified frequencies.

H z() b 1 z n––

1 az n––
---------------------×=

iircomb

8-729

The transfer function for peaking filters is

Examples Design and plot an IIR notch filter with 11 notches (equal to filter order plus 1)
that removes a 60 Hz tone (f0) from a signal at 600 Hz (fs). For this example,
set the Q factor for the filter to 35 and use it to specify the filter bandwidth.

fs = 600; fo = 60; q = 35; bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note the type flag 'notch'
fvtool(b,a);

Using the Filter Visualization Tool (FVTool) generates the following plot
showing the filter notches. Note the notches are evenly spaced and one falls at
exactly 60 Hz.

H z() b 1 z n–+

1 az n––
---------------------×=

iircomb

8-730

See Also firgr, iirnotch, iirpeak

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

iirftransf

8-731

8iirftransfPurpose IIR frequency transformation of digital filter

Syntax [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)

Description [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen) returns
the numerator and denominator vectors, OutNum and OutDen, of the target
filter, which is the result of transforming the prototype filter specified by the
numerator, OrigNum, and denominator, OrigDen, with the mapping filter given
by the numerator, FTFNum, and the denominator, FTFDen. If the allpass
mapping filter is not specified, then the function returns an original filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Here’s the comparison between the filters.

iirftransf

8-732

Arguments OrigNum
Numerator of the prototype lowpass filter

OrigDen
Denominator of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

OutNum
Numerator of the target filter

OutDen
Denominator of the target filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

iirftransf

8-733

See Also zpkftransf

iirgrpdelay

8-734

8iirgrpdelayPurpose Optimal IIR filter design with prescribed group-delay

Syntax [num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)

Description [num,den] = iirgrpdelay(n,f,edges,a) returns an allpass IIR filter of
order n (n must be even) which is the best approximation to the relative
group-delay response described by f and a in the least-pth sense. f is a vector
of frequencies between 0 and 1 and a is specified in samples. The vector edges
specifies the band-edge frequencies for multi-band designs. iirgrpdelay uses
a constrained Newton-type algorithm. Always check your resulting filter using
grpdelay or freqz.

[num,den] = iirgrpdelay(n,f,edges,a,w) uses the weights in w to weight
the error. w has one entry per frequency point and must be the same length
length as f and a). Entries in w tell iirgrpdelay how much emphasis to put on
minimizing the error in the vicinity of each specified frequency point relative
to the other points.

f and a must have the same number of elements. f and a can contains more
elements than the vector edges contains. This lets you use f and a to specify a
filter that has any group-delay contour within each band.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius) returns a filter having a
maximum pole radius equal to radius, where 0<radius<1. radius defaults to
0.999999. Filters whose pole radius you constrain to be less than 1.0 can better
retain transfer function accuracy after quantization.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p), where p is a
two-element vector [pmin pmax], lets you determine the minimum and
maximum values of p used in the least-pth algorithm. p defaults to [2 128]
which yields filters very similar to the L-infinity, or Chebyshev, norm. pmin and

iirgrpdelay

8-735

pmax should be even. If p is the string 'inspect', no optimization occurs. You
might use this feature to inspect the initial pole/zero placement.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens) specifies the
grid density dens used in the optimization process. The number of grid points
is (dens*(n+1)). The default is 20. dens can be specified as a single-element
cell array. The grid is not equally spaced.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden) allows
you to specify the initial estimate of the denominator coefficients in vector
initden. This can be useful for difficult optimization problems. The pole-zero
editor in the Signal Processing Toolbox can be used for generating initden.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
allows the initial estimate of the group delay offset to be specified by the value
of tau, in samples.

[num,den,tau] = iirgrpdelay(n,f,edges,a,w) returns the resulting group
delay offset. In all cases, the resulting filter has a group delay that
approximates [a + tau]. Allpass filters can have only positive group delay and
a non-zero value of tau accounts for any additional group delay that is needed
to meet the shape of the contour specified by (f,a). The default for tau is
max(a).

Hint: If the zeros or poles cluster together, your filter order may be too low or
the pole radius may be too small (overly constrained). Try increasing n or
radius.

For group-delay equalization of an IIR filter, compute a by subtracting the
filter's group delay from its maximum group delay. For example,

[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2); % Equalize only the passband.
a = max(g)-g;
[num,den]=iirgrpdelay(8, f, [0 0.2], a);

See Also freqz, filter, grpdelay, iirlpnorm, iirlpnormc, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

iirlp2bp

8-736

8iirlp2bpPurpose Transform IIR real lowpass filter to IIR real bandpass filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a second-order
real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “DC Mobility,”
meaning that the Nyquist feature stays at Nyquist, but the DC feature moves
to a location dependent on the selection of Wts.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature: the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies.

[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt) returns transformed
dfilt object G with a real bandpass magnitude response. The coefficients
AllpassNum and AllpassDen represent the allpass mapping filter for mapping
the prototype filter frequency Wo and target frequencies vector Wt. Note that in
this syntax Hd is a dfilt object with a lowpass magnitude response.

iirlp2bp

8-737

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b,a] = ellip(3, 0.1, 30, 0.409);

Create the real bandpass filter by placing the cutoff frequencies of the
prototype filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num,den] = iirlp2bp(b,a,0.5,[0.25,0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b,a,num,den);

You can compare the results in this figure to verify the transformation.

Arguments B
Numerator of the prototype lowpass filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

iirlp2bp

8-738

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2bp, zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings,
vol. 1, pp. 1129-1231, June 1969.

iirlp2bpc

8-739

8iirlp2bpcPurpose IIR lowpass to complex bandpass frequency transformation frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a first-order
real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; for example real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandpass filters for radio receivers from the high-quality
prototype lowpass filter.

[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt) returns transformed
dfilt object G with a bandpass magnitude response. The coefficients
AllpassNum and AllpassDen represent the allpass mapping filter for mapping

iirlp2bpc

8-740

the prototype filter frequency Wo and the target frequencies vector Wt. Note that
in this syntax Hd is a dfilt object with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and
Wt2=0.75 creating a complex bandpass filter:

[num, den] = iirlp2bpc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

PLotting the prototype and target filters together in FVTool lets you compare
the filters.

iirlp2bpc

8-741

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

iirlp2bpc

8-742

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also iirftransf, allpasslp2bpc, zpklp2bpc

iirlp2bs

8-743

8iirlp2bsPurpose Transform IIR real lowpass filter to IIR real bandstop filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a second-order
real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “Nyquist Mobility,”
which means that the DC feature stays at DC, but the Nyquist feature moves
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns transformed
dfilt object G with a bandstop magnitude response. The coefficients
AllpassNum and AllpassDen represent the allpass mapping filter for mapping
the prototype filter frequency Wo and the target frequencies vector Wt. Note that
in this syntax Hd is a dfilt object with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

iirlp2bs

8-744

Create the real bandstop filter by placing the cutoff frequencies of the prototype
filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num, den] = iirlp2bs(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

With both filters plotted in the figure, you see clearly the results of the
transformation.

Arguments B
Numerator of the prototype lowpass filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

iirlp2bs

8-745

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings,
vol. 1, pp. 1129-1231, June 1969.

iirlp2bsc

8-746

8iirlp2bscPurpose Transform IIR real lowpass filter to IIR complex bandstop filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a first-order
real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and the denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. Additionally the transformation swaps passbands with
stopbands in the target filter.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandstop filters for band attenuation or frequency
equalizers, from the high-quality prototype lowpass filter.

[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt) returns transformed
dfilt object G with a bandstop magnitude response. The coefficients

iirlp2bsc

8-747

AllpassNum and AllpassDen represent the allpass mapping filter for mapping
the prototype filter frequency Wo and the target frequencies vector Wt. Note that
in this syntax Hd is a dfilt object with a lowpass magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and
Wt2=0.75 creating a complex bandstop filter:

[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

The last command in the example plots both filters in the same window so you
can compare the results.

iirlp2bsc

8-748

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Target

iirlp2bsc

8-749

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2bsc, zpklp2bsc.

iirlp2hp

8-750

8iirlp2hpPurpose Transform discrete time lowpass IIR filter to highpass filter

Syntax [num,den] = iirlp2hp(b,a,wc,wd)

[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt), where Hd is a dfilt object

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the
numerator and denominator coefficients (zeros and poles) for a lowpass IIR
filter, iirlp2bp transforms the magnitude response from lowpass to highpass.
num and den return the coefficients for the transformed highpass filter. For wc,
enter a selected frequency from your lowpass filter. You use the chosen
frequency to define the magnitude response value you want in the highpass
filter. Enter one frequency for the highpass filter — the value that defines the
location of the transformed point — in wd. Note that all frequencies are
normalized between zero and one. Notice also that the filter order does not
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the
magnitude response at the wd values of your bandstop filter to be the same as
the magnitude response of your lowpass filter at wc. Filter performance
between the values in wd is not specified, except that the stopband retains the
ripple nature of your original lowpass filter and the magnitude response in the
stopband is equal to the peak response of your lowpass filter. To accurately
specify the filter magnitude response across the stopband of your bandpass
filter, use a frequency value from within the stopband of your lowpass filter as
wc. Then your bandstop filter response is the same magnitude and ripple as
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what
makes this function useful. If you have a lowpass filter whose characteristics,
such as rolloff or passband ripple, particularly meet your needs, the
transformation function lets you create a new filter with the same
characteristic performance features, but in a highpass version. Without
designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems,
resulting in incorrect conversion to the highpass filter. Use fvtool to verify the
response of your converted filter.

[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt) returns transformed
dfilt object G with a highpass magnitude response. The coefficients

iirlp2hp

8-751

AllpassNum and AllpassDen represent the allpass mapping filter for mapping
the prototype filter frequency Wo and the target frequencies vector Wt. Note that
in this syntax Hd is a dfilt object with a lowpass magnitude response.

Examples This example transforms an IIR filter from lowpass to high pass by moving the
magnitude response at one frequency in the source filter to a new location in
the transformed filter. To generate a highpass filter whose passband flattens
out at 0.4, we select the frequency in the lowpass filter where the passband
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.4.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);
fvtool(b,a,num,den);

iirlp2hp

8-752

In the figure showing the magnitude responses for the two filters, the
transition band for the highpass filter is essentially the mirror image of the
transition for the lowpass filter from 0.0175 to 0.025, stretched out over a wider
frequency range. In the passbands, the filter share common ripple
characteristics and magnitude.

See Also iirlp2bp, iirlp2bs, iirlp2lp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach,
Second Edition, McGraw-Hill, 2001.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

 Normalized Frequency: 0.4
 Magnitude (dB): −0.241

 Normalized Frequency: 0.0176
 Magnitude (dB): −0.742

Filter #1: Lowpass filter magnitude
Filter #2: Highpass filter magnitude

iirlp2lp

8-753

8iirlp2lpPurpose Transform discrete time lowpass IIR filter to different lowpass filter

Syntax [num,den] = iirlp2lp(b,a,wc,wd)

[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt), where Hd is a dfilt object

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the
numerator and denominator coefficients (zeros and poles) for a lowpass IIR
filter, iirlp2bp transforms the magnitude response from lowpass to highpass.
num and den return the coefficients for the transformed highpass filter. For wc,
enter a selected frequency from your lowpass filter. You use the chosen
frequency to define the magnitude response value you want in the highpass
filter. Enter one frequency for the highpass filter — the value that defines the
location of the transformed point — in wd. Note that all frequencies are
normalized between zero and one. Notice also that the filter order does not
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the
magnitude response at the wd values of your bandstop filter to be the same as
the magnitude response of your lowpass filter at wc. Filter performance
between the values in wd is not specified, except that the stopband retains the
ripple nature of your original lowpass filter and the magnitude response in the
stopband is equal to the peak response of your lowpass filter. To accurately
specify the filter magnitude response across the stopband of your bandpass
filter, use a frequency value from within the stopband of your lowpass filter as
wc. Then your bandstop filter response is the same magnitude and ripple as
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what
makes this function useful. If you have a lowpass filter whose characteristics,
such as rolloff or passband ripple, particularly meet your needs, the
transformation function lets you create a new filter with the same
characteristic performance features, but in a highpass version. Without
designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems,
resulting in incorrect conversion to the highpass filter. Use fvtool to verify the
response of your converted filter.

[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt) returns transformed
dfilt object G with a lowpass magnitude response. The coefficients AllpassNum

iirlp2lp

8-754

and AllpassDen represent the allpass mapping filter for mapping the prototype
filter frequency Wo and the target frequencies vector Wt. Note that in this
syntax Hd is a dfilt object with a lowpass magnitude response.

Examples This example transforms an IIR filter from lowpass to high pass by moving the
magnitude response at one frequency in the source filter to a new location in
the transformed filter. To generate a lowpass filter whose passband extends
out to 0.2, we select the frequency in the lowpass filter where the passband
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.2.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);
fvtool(b,a,num,den);

Moving the edge of the passband from 0.0175 to 0.2 results in a new lowpass
filter whose peak response in-band is the same as the original filter: same
ripple, same absolute magnitude.

iirlp2lp

8-755

Notice that the rolloff is slightly less steep and the stopband profiles are the
same for both filters; the new filter stopband is a “stretched” version of the
original, as is the passband of the new filter.

See Also iirlp2bp, iirlp2bs, iirlp2hp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach,
Second Edition, McGraw-Hill, 2001.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response

 Normalized Frequency: 0.199
 Magnitude (dB): −0.0564

 Normalized Frequency: 0.0176
 Magnitude (dB): −0.241

Filter #1: Original lowpass filter magnitude
Filter #2: Transformed filter magnitude

iirlp2mb

8-756

8iirlp2mbPurpose Transform IIR real lowpass filter to IIR real M-band filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt,Pass)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object
[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Mth-order
real lowpass to real multibandpass frequency mapping. By default the DC
feature is kept at its original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2mb(B,A,Wo,Wt,Pass) allows you
to specify an additional parameter, Pass, which chooses between using the “DC
Mobility” and the “Nyquist Mobility.” In the first case the Nyquist feature stays
at its original location and the DC feature is free to move. In the second case
the DC feature is kept at an original frequency and the Nyquist feature is
movable.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required

iirlp2mb

8-757

frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns transformed
dfilt object G with an IIR real M-band filter frequency response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping filter
for mapping the prototype filter frequency Wo and the target frequencies vector
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude
response.

[G,AllpassNum,AllpassDen] = iirlp2mb(Hd,Wo,Wt) returns transformed
dfilt object G with an IIR real M-band filter frequency response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping filter
for mapping the prototype filter frequency Wo and the target frequencies vector
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude
response.

[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass) returns transformed
dfilt object G with an IIR real M-band filter frequency response. This syntax
allows you to specify an additional parameter, Pass, which chooses between
using the “DC Mobility” and the “Nyquist Mobility.” In the first case the
Nyquist feature stays at its original location and the DC feature is free to move.
In the second case the DC feature is kept at an original frequency and the
Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping
filter for mapping the prototype filter frequency Wo and the target frequencies
vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass
magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Example 1: Create the real multiband filter with two passbands:

[num1, den1] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10);
[num2, den2] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'pass');

The second code snippet uses the pass option to select the Nyquist mobility
option. In this case the resulting filter is the same.

iirlp2mb

8-758

Example 2: Create the real multiband filter with two stopbands:

[num3, den3] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with target filters:

fvtool(b, a, num1, den1, num2, den2, num3, den3);

Combining all of the filters, prototypes and targets, on one figure makes
comparing them straightforward. Passbands for the filters in example 1 appear
separately in the figure, although they overlap to a degree that makes them
hard to identify—they have identical coefficients.

Arguments B
Numerator of the prototype lowpass filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype
Multiple Passband Filter with DC Mobility
Multiple Passband with Nyquist Mobility Option
Multiple Stopband Filter

iirlp2mb

8-759

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being the default

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering,
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and
frequency transformation problem,” Proceedings 20th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168,
November 1986.

[3] Mullis, C.T. and R. A. Roberts, Digital Signal Processing, section 6.7,
Reading, Mass., Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, “An extension of the Schur Algorithm
for frequency transformations,” Linear Circuits, Systems and Signal
Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam:
Elsevier, 1988.

iirlp2mbc

8-760

8iirlp2mbcPurpose Transform IIR real lowpass filter to IIR complex M-band filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)
[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Mth-order
real lowpass to complex multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt) returns transformed
dfilt object G with an IIR complex M-band filter frequency response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping filter
for mapping the prototype filter frequency Wo and the target frequencies vector
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude
response.

iirlp2mbc

8-761

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Now create a complex multiband filter with two passbands:

[num1, den1] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num1, den1);

You see in the figure that iirlp2mbc replicates the desired feature at 0.5 in the
lowpass filter at four locations in the multiband filter.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Lowpass Filter
Target Multiband Filter

iirlp2mbc

8-762

Arguments B
Numerator of the prototype lowpass filter.

A
Denominator of the prototype lowpass filter.

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wc
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Num
Numerator of the target filter.

Den
Denominator of the target filter.

AllpassNum
Numerator of the mapping filter.

AllpassDen
Denominator of the mapping filter.

See Also iirftransf, allpasslp2mbc, zpklp2mbc

iirlp2xc

8-763

8iirlp2xcPurpose Transform IIR real lowpass filter to IIR complex N-point filter frequency
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Nth-order
real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation effectively
places N features of an original filter, located at frequencies Wo1,...,WoN, at the
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., a stopband edge, DC, the deep minimum in the stopband, or
other ones. The only condition is that the features must be selected in such a
way that when creating N bands around the unit circle, there will be no band
overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

iirlp2xc

8-764

[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt) returns transformed
dfilt object G with an IIR complex N-point filter frequency response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping filter
for mapping the prototype filter frequency Wo and the target frequencies vector
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude
response.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create the complex bandpass filter from the real lowpass filter:

[num, den] = iirlp2xc(b, a, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

REviewing the coefficients and the figure produced by the example shows that
the target filter has complex coefficients and is indeed a bandpass filter as
expected.

iirlp2xc

8-765

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter

iirlp2xc

8-766

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2xc, zpklp2xc

iirlp2xn

8-767

8iirlp2xnPurpose Transform IIR real lowpass filter to IIR real N-point filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt,Pass)

[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object
[G,AllpassNum,AllpassDen] = iirlp2bpc(...,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Nth-order
real lowpass to real multipoint frequency transformation, where N is the
number of features being mapped. By default the DC feature is kept at its
original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2xn(B,A,Wo,Wt,Pass) allows you
to specify an additional parameter, Pass, which chooses between using the “DC
Mobility” and the “Nyquist Mobility.” In the first case the Nyquist feature stays
at its original location and the DC feature is free to move. In the second case
the DC feature is kept at an original frequency and the Nyquist feature is
allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation effectively
places N features of an original filter, located at frequencies Wo1,...,WoN, at the
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select

iirlp2xn

8-768

any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2xn(Hd,Wo,Wt) returns transformed
dfilt object G with an IIR real N-point filter frequency response. The
coefficients AllpassNum and AllpassDen represent the allpass mapping filter
for mapping the prototype filter frequency Wo and the target frequencies vector
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude
response.

[G,AllpassNum,AllpassDen] = iirlp2xn(...,Pass) returns transformed
dfilt object G with an IIR real N-point filter frequency response. This syntax
allows you to specify an additional parameter, Pass, which chooses between
using the “DC Mobility” and the “Nyquist Mobility.” In the first case the
Nyquist feature stays at its original location and the DC feature is free to move.
In the second case the DC feature is kept at an original frequency and the
Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping
filter for mapping the prototype filter frequency Wo and the target frequencies
vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass
magnitude response.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and
Wt2=0.75 creating a real bandpass filter:

[num, den] = iirlp2xn(b, a, [-0.5 0.5], [0.25 0.75], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

iirlp2xn

8-769

iirlp2xn has created the desired bandpass filter with the cutoff locations
specified in the command.

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Prototype Filter
Target Filter from Shifting Frequency

iirlp2xn

8-770

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpasslp2xn, zpklp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

iirlpnorm

8-771

8iirlpnormPurpose Least P-norm optimal IIR filter design

Syntax [num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)

Description [num,den] = iirlpnorm(n,d,f,edges,a) returns a filter having a numerator
order n and denominator order d which is the best approximation to the desired
frequency response described by f and a in the least-pth sense. The vector
edges specifies the band-edge frequencies for multi-band designs. An
unconstrained quasi-Newton algorithm is employed and any poles or zeros that
lie outside of the unit circle are reflected back inside. n and d should be chosen
so that the zeros and poles are used effectively. See the “Hints” section. Always
use freqz to check the resulting filter.

[num,den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in w to weight
the error. w has one entry per frequency point (the same length as f and a)
which tells iirlpnorm how much emphasis to put on minimizing the error in
the vicinity of each frequency point relative to the other points. f and a must
have the same number of elements, which may exceed the number of elements
in edges. This allows for the specification of filters having any gain contour
within each band. The frequencies specified in edges must also appear in the
vector f. For example,

[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

is a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p) where p is a two-element
vector [pmin pmax] allows for the specification of the minimum and maximum
values of p used in the least-pth algorithm. Default is [2 128] which essentially
yields the L-infinity, or Chebyshev, norm. Pmin and pmax should be even. If p is
the string 'inspect', no optimization will occur. This can be used to inspect
the initial pole/zero placement.

iirlpnorm

8-772

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the grid density
dens used in the optimization. The number of grid points is (dens*(n+d+1)).
The default is 20. dens can be specified as a single-element cell array. The grid
is not equally spaced.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)
allows for the specification of the initial estimate of the filter numerator and
denominator coefficients in vectors initnum and initden. This may be useful
for difficult optimization problems. The pole-zero editor in the Signal
Processing Toolbox can be used for generating initnum and initden.

Hints

• This is a weighted least-pth optimization.

• Check the radii and locations of the poles and zeros for your filter. If the zeros
are on the unit circle and the poles are well inside the unit circle, try
increasing the order of the numerator or reducing the error weighting in the
stopband.

• Similarly, if several poles have a large radii and the zeros are well inside of
the unit circle, try increasing the order of the denominator or reducing the
error weighting in the passband.

See Also iirlpnormc, filter, freqz, iirgrpdelay, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

iirlpnormc

8-773

8iirlpnormcPurpose Design constrained least Pth-norm optimal IIR filter

Syntax [num,den] = iirlpnormc(n,d,f,edges,a)
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,...

dens,initnum,initden)
[num,den,err] = iirlpnormc(...)
[num,den,err,sos,g] = iirlpnormc(...)

Description [num,den] = iirlpnormc(n,d,f,edges,a) returns a filter having numerator
order n and denominator order d which is the best approximation to the desired
frequency response described by f and a in the least-pth sense. The vector
edges specifies the band-edge frequencies for multi-band designs. A
constrained Newton-type algorithm is employed. n and d should be chosen so
that the zeros and poles are used effectively. See the “Hints” section. Always
check the resulting filter using fvtool.

[num,den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w to weight
the error. w has one entry per frequency point (the same length as f and a)
which tells iirlpnormc how much emphasis to put on minimizing the error in
the vicinity of each frequency point relative to the other points. f and a must
have the same number of elements, which can exceed the number of elements
in edges. This allows for the specification of filters having any gain contour
within each band. The frequencies specified in edges must also appear in the
vector f. For example,

[num,den] = iirlpnormc(5,5,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter having
a maximum pole radius of radius where 0<radius<1. radius defaults to
0.999999. Filters that have a reduced pole radius may retain better transfer
function accuracy after you quantize them.

iirlpnormc

8-774

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) where p is a
two-element vector [pmin pmax] allows for the specification of the minimum
and maximum values of p used in the least-pth algorithm. Default is [2 128]
which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax
should be even. If p is the string 'inspect', no optimization will occur. This can
be used to inspect the initial pole/zero placement.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) specifies the
grid density dens used in the optimization. The number of grid points is
(dens*(n+d+1)). The default is 20. dens can be specified as a single-element
cell array. The grid is not equally spaced.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens,...
initnum,initden) allows for the specification of the initial estimate of the
filter numerator and denominator coefficients in vectors initnum and initden.
This may be useful for difficult optimization problems. The pole-zero editor in
the Signal Processing Toolbox can be used for generating initnum and initden.

[num,den,err] = iirlpnormc(...) returns the least-Pth approximation
error err.

[num,den,err,sos,g] = iirlpnormc(...) returns the second-order section
representation in the matrix SOS and gain G. For numerical reasons you may
find SOS and G beneficial in some cases.

Hints

• This is a weighted least-pth optimization.

• Check the radii and location of the resulting poles and zeros.

• If the zeros are all on the unit circle and the poles are well inside of the unit
circle, try increasing the order of the numerator or reducing the error
weighting in the stopband.

• Similarly, if several poles have a large radius and the zeros are well inside of
the unit circle, try increasing the order of the denominator or reducing the
error weight in the passband.

• If you reduce the pole radius, you might need to increase the order of the
denominator.

The message

iirlpnormc

8-775

Poorly conditioned matrix. See the "help" file.

indicates that iirlpnormc cannot accurately compute the optimization because
either:

a The approximation error is extremely small (try reducing the number of
poles or zeros—refer to the hints above).

b The filter specifications have huge variation, such as a=[1 1e9 0 0].

Examples This example returns a lowpass filter whose pole radius is constrained to 0.8

[b,a,err,s,g] = iirlpnormc(6,6,[0 .4 .5 1],[0 .4 .5 1],...
[1 1 0 0],[1 1 1 1],.8);
hd = dfilt.df1sos(s,g); % Construct second-order sections filter.
fvtool(hd); % View filter's magnitude response

From the magnitude response shown here you see the lowpass nature of the
filter. The pole/zero plot following shows that the poles are constrained to 0.8
as specified in the command.

iirlpnormc

8-776

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Filter hd

iirlpnormc

8-777

See Also freqz, filter, iirgrpdelay, iirlpnorm, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc. 1993.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

2

Real Part

Im
ag

in
ar

y
P

ar
t

Pole/Zero Plot

Filter hd: Zero

Filter hd: Pole

iirls

8-778

8iirlsPurpose Design least-squares IIR filter from filter specfication object

Syntax hd = design(d,'iirls')
hd = design(d,'iirls',designoption,value,designoption,value,...)

Description hd = design(d,'iirls') designs a least-squares filter specified by the filter
specification object d.

Note The iirls algorithm might not be well behaved in all cases. Experience
is your best guide to determining if the resulting filter meets your needs.
When you use iirls to design a filter, review the filter carefully to ensure
that it is appropriate for your use.

hd = design(d,'iirls',designoption,value,designoption,value,...)
returns a least-squares IIR filter where you specify design options as input
arguments.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using iirls, refer to the command line help system.
For example, to get specific information about using iirls with d, the
specification object, enter the following at the MATLAB prompt.

help(d,'iirls')

Examples Starting from an arbitrary magnitude and phase design object d, generate
a complex bandpass filter of order = 5. To make the example a little easier to
do, use the default values for F, and H, the frequency vector and the complex
desired frequency response.

d = fdesign.arbmagnphase('N,F,H',5);
d =

Response: 'Arbitrary Magnitude and Phase'
 Specification: 'N,F,H'
 Description: {'Filter Order';'Frequency Vector';'Complex Desired Frequency

Response'}
 NormalizedFrequency: true

iirls

8-779

 FilterOrder: 5
 Frequencies: [1x655 double]
 FreqResponse: [1x655 double]

design(d,'iirls'); % Opens FVTool to show the filter.

Displaying both the phase and magnitude response in FVTool shows you the
filter.

See Also fdesign.arbmag, fdesign.arbmagnphase, firls

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−41.7835

−33.0433

−24.303

−15.5628

−6.8225

1.9177

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB) and Phase Responses

−5.3431

−2.5785

0.1861

2.9507

5.7153

8.4799

P
ha

se
 (

ra
di

an
s)

Magnitude

Phase

iirnotch

8-780

8iirnotchPurpose Design second-order IIR notch digital filter

Syntax [num,den] = iirnotch(w0,bw)
[num,den] = iirnotch(w0,bw,ab)

Description [num,den] = iirnotch(w0,bw) turns a digital notching filter with the notch
located at w0, and with the bandwidth at the -3 dB point set to bw. To design the
filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0 corresponds to
π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by
q = w0/bw where ω0 is w0, the frequency to remove from the signal.

[num,den] = iirnotch(w0,bw,ab) returns a digital notching filter whose
bandwidth, bw, is specified at a level of -ab decibels. Including the optional
input argument ab lets you specify the magnitude response bandwidth at
a level that is not the default -3dB point, such as -6 dB or 0 dB.

Examples Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from a signal
at 300 Hz (fs). For this example, set the Q factor for the filter to 35 and use it
to specify the filter bandwidth:

wo = 60/(300/2); bw = wo/35;
[b,a] = iirnotch(wo,bw);
fvtool(b,a);

Shown in the next plot, the notch filter has the desired bandwidth with the
notch located at 60 Hz, or 0.4π radians per sample. Compare this plot to the
comb filter plot shown on the reference page for iircomb.

iirnotch

8-781

See Also firgr, iircomb, iirpeak

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−25

−20

−15

−10

−5

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

iirpeak

8-782

8iirpeakPurpose Design second-order IIR peak or resonator digital filter

Syntax [num,den] = iirpeak(w0,bw)
[num,den] = iirpeak(w0,bw,ab)

Description [num,den] = iirpeak(w0,bw) turns a second-order digital peaking filter with
the peak located at w0, and with the bandwidth at the +3dB point set to bw. To
design the filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0
corresponds to π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by
q = w0/bw where ω0 is w0 the signal frequency to boost.

[num,den] = iirpeak(w0,bw,ab) returns a digital peaking filter whose
bandwidth, bw, is specified at a level of +ab decibels. Including the optional
input argument ab lets you specify the magnitude response bandwidth at a
level that is not the default +3dB point, such as +6 dB or 0 dB.

Examples Design and plot an IIR peaking filter that boosts the frequency at 1.75 Khz in
a signal and has bandwidth of 500 Hz at the -3 dB point:

fs = 10000; wo = 1750/(fs/2); bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a);

Shown in the next plot, the peak filter has the desired gain and bandwidth at
1.75 KHz.

iirpeak

8-783

See Also firgr, iircomb, iirnotch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

iirpowcomp

8-784

8iirpowcompPurpose Compute power complementary filter

Syntax [bp,ap] = iirpowcomp(b,a)
[bp,ap,c] = iirpowcomp(b,a)

Description [bp,ap] = iirpowcomp(b,a) returns the coefficients of the power
complementary IIR filter g(z) = bp(z)/ap(z) in vectors bp and ap, given the
coefficients of the IIR filter h(z) = b(z)/a(z) in vectors b and a. b must be
symmetric (Hermitian) or antisymmetric (antihermitian) and of the same
length as a. The two power complementary filters satisfy the relation

|H(w)|2 + |G(w)|2 = 1.

[bp,ap,c] = iirpowcomp(b,a) where c is a complex scalar of magnitude =1,
forces bp to satisfy the generalized hermitian property

conj(bp(end:-1:1)) = c*bp.

When c is omitted, it is chosen as follows:

• When b is real, chooses C as 1 or -1, whichever yields bp real

• When b is complex, C defaults to 1

ap is always equal to a.

Examples [b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);
[h,w,s]=freqz(b,a); [h1,w,s]=freqz(bp,ap);
s.plot='mag'; s.yunits='sq';freqzplot([h h1],w,s)

The next figure presents the results of applying iirpowcomp to the Chebyshev
filter—the power complementary version of the original filter.

iirpowcomp

8-785

See Also tf2ca, tf2cl, ca2tf, cl2tf

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 S

qu
ar

ed

iirrateup

8-786

8iirrateupPurpose Upsample IIR filter by integer factor

Syntax [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)

Description [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter being transformed from any prototype by applying an Nth-order rateup
frequency transformation, where N is the upsample ratio. Transformation
creates N equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with a
numerator specified by B and a denominator specified by A.

The relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

As shown in the figure produced by FVTool, the transformed filter appears as
expected.

iirrateup

8-787

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

N
Frequency multiplication ratio

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

iirrateup

8-788

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpassrateup, zpkrateup

iirshift

8-789

8iirshiftPurpose Shift frequency response of IIR real filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a second-order
real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass
mapping filter, AllpassDen. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

This transformation places one selected feature of an original filter located at
frequency Wo to the required target frequency location, Wt. This transformation
implements the “DC Mobility,” which means that the Nyquist feature stays at
Nyquist, but the DC feature moves to a location dependent on the selection of
Wo and Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible to
select any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can change their position in a simple way
without designing them from the beginning.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Perform the real frequency shift by defining where the selected feature of the
prototype filter, originally at Wo=0.5, should be placed in the target filter,
Wt=0.75:

iirshift

8-790

Wo = 0.5; Wt = 0.75;

[num, den] = iirshift(b, a, Wo, Wt);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Shifting the specified feature from the prototype to the target generates the
response shown in the figure.

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Prototype Filter
Target Filter from Shifting Frequency

iirshift

8-791

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpassshift, zpkshift.

iirshiftc

8-792

8iirshiftcPurpose Shift frequency response of IIR complex filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying a first-order
complex frequency shift transformation. This transformation rotates all the
features of an original filter by the same amount specified by the location of the
selected feature of the prototype filter, originally at Wo, placed at Wt in the
target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with the
numerator specified by B and the denominator specified by A.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5) calculates
the allpass filter for doing the Hilbert transformation, i.e. a 90 degree
counterclockwise rotation of an original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5) calculates
the allpass filter for doing an inverse Hilbert transformation, i.e. a 90 degree
clockwise rotation of an original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Rotate all features of the prototype filter in the frequency domain by the same
amount by specifying where the selected feature of an original filter, Wo=0.5,
should appear in the target filter, Wt=0.25:

[num, den] = iirshiftc(b, a, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

After applying the shift, the selected feature from the original filter is just
where it should be, at Wt = 0.25.

iirshiftc

8-793

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response in dB

Prototype Filter
Target Filter

iirshiftc

8-794

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also iirftransf, allpassshiftc, zpkshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert
transformers, and half-band low-pass filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

impz

8-795

8impzPurpose Compute impulse response of filters

Syntax [h,t] = impz(ha)
[h,t] = impz(...,fs)
impz(ha,...)
[h,t] = impz(hd)
[h,t] = impz(...,fs)
impz(hd,...)
[h,t] = impz(hm)
[h,t] = impz(...,fs)
impz(hm,...)

Description The next sections describe common impz operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to impz in the
Signal Processing Toolbox.

• “Discrete-Time Filters” on page 8-796

• “Multirate Filters” on page 8-796

Adaptive Filters
For adaptive filters, impz returns the instantaneous impulse response based on
the current filter coefficients.

[h,t] = impz(ha) computes the instantaneous impulse response of the
adaptive filter ha choosing the number of samples for you, and returns the
response in column vector h and a vector of times or sample intervals in
t where (t = [0 1 2...]').

[h,t] = impz(...,fs) returns a matrix h if ha is a vector. Each column of the
matrix corresponds to one filter in the vector. When ha is a vector of adaptive
filters, impz returns the matrix h. Each column of h corresponds to one filter in
the vector ha. If you provide a sampling frequency fs as an input argument,
impz uses fs in when determining the impulse response.

impz(ha,...) uses FVTool to plot the impulse response of the adaptive filter
ha. If ha is a vector of filters, impz plots the response and for each filter in the
vector.

impz

8-796

Discrete-Time Filters

[h,t] = impz(hd) computes the instantaneous impulse response of the
discrete-time filter hd choosing the number of samples for you, and returns the
response in column vector h and a vector of times or sample intervals in
t where (t = [0 1 2...]'). impz returns a matrix h if hd is a vector. Each column
of the matrix corresponds to one filter in the vector. When hd is a vector of
discrete-time filters, impz returns the matrix h. Each column of h corresponds
to one filter in the vector hd.

impz(hd) uses FVTool to plot the impulse response of the discrete-time filter
hd. If hd is a vector of filters, impz plots the response and for each filter in the
vector.

Multirate Filters

[h,t] = impz(hm) computes the instantaneous impulse response of the
multirate filter hm choosing the number of samples for you, and returns the
response in column vector h and a vector of times or sample intervals in
t where (t = [0 1 2...]'). [h,t] = impz(hm) returns a matrix h if hm is a vector.
Each column of the matrix corresponds to one filter in the vector. When hm is
a vector of multirate filters, impz returns the matrix h. Each column of
h corresponds to one filter in the vector ha.

impz(hm) uses FVTool to plot the impulse response of the multirate filter hm. If
ha is a vector of filters, impz plots the response and for each filter in the vector.

Note that the multirate filter impulse response is computed relative to the rate
at which the filter is running. When you specify fs (the sampling rate) as an
input argument, impz assumes the filter is running at that rate.

For multistage cascades, impz forms a single-stage multirate filter that is
equivalent to the cascade and computes the response relative to the rate at
which the equivalent filter is running. impz does not support all multistage
cascades. Only cascades for which it is possible to derive an equivalent
single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an
interpolation factor of 2 and the second stage has an interpolation factor of 4.
An equivalent single-stage filter with an overall interpolation factor of 8 can be

impz

8-797

found. impz uses the equivalent filter for the analysis. If a sampling frequency
fs is specified as an input argument to impz, the function interprets fs as the
rate at which the equivalent filter is running.

Note impz works for both real and complex filters. When you omit the output
arguments, impz plots only the real part of the impulse response.

Examples Create a discrete-time filter for a fourth-order, low-pass elliptic filter with a
cutoff frequency of 0.4 times the Nyquist frequency. Use a second-order
sections structure to resist quantization errors. Plot the first 50 samples of the
impulse response, along with the reference impulse response.

% Create a design object for the prototype filter.

d = fdesign.lowpass(.4,.5,1,80)

d =

 Response: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass: 0.4000
 Fstop: 0.5000
 Apass: 1
 Astop: 80

Use ellip to design the discrete-time filter in second-order section form, with
minimum-order.

hd=design(d,'ellip')

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [4x6 double]

impz

8-798

 ScaleValues: [5x1 double]
 ResetBeforeFiltering: 'on'
 States: [2x4 double]

Convert hd to fixed-point and check the impulse response
hd.arithmetic = 'fixed';

impz(hd)

See Also filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

info

8-799

8infoPurpose Information about filter objects

Syntax s = info(ha)
s = info(hd)
s = info(hm)

Description The next sections describe common info operation with adaptive,
discrete-time, and multirate filters.

info returns a variety of information about filters:

• Specifications such as the filter structure and filter order

• Information about the design method and options

• Performance measurements for the filter response, such as the passband
cutoff or stopband attenuation. Filter measurement data is the same as the
information returned by measure for the filter. Specific measurements
appearing in the display depend on the filter and on the specifications you
use when you construct the filter.

• Cost of implementing the filter in terms of operations required to apply the
filter to data. Cost information is the same as you get from the cost method.

When the filter object uses fixed-point arithmetic (fixed-point dfilt objects or
mfilt objects), info returns additional information about the filter, including
the arithmetic setting and details about the filter internals.

You do not need to assign the output of info to a variable. Omitting the output
value displays the same information in the Command Window.

Adaptive Filters

s = info(ha) returns a string matrix with information about the filter ha.

Generally, info returns more information than the default display for the
filter.

Discrete-Time Filters

s = info(hd) returns a string matrix with information about the filter hd.

info

8-800

Generally, info returns more information than the default display for the
filter.

Multirate Filters

s = info(hm) returns a string matrix with information about the filter hm.

Generally, info returns more information than the default display for the
filter.

Examples Given two filters—hd and hm, use info to learn more about each filter. Here is
hd, a discrete-time direct-form FIR filter.

d = fdesign.lowpass('N,Fc,Ap,Ast',80,0.45,0.05,60);
designmethods(d)

Design Methods for class fdesign.lowpass (N,Fc,Ap,Ast):

equiripple

hd=design(d,'equiripple')

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x81 double]
 PersistentMemory: false

Similarly, here is a multirate CIC filter hm. Note the diffential delay value 2.

d1 = fdesign.interpolator(6,'cic',2,'fp,ast',0.40,60);
designmethods(d1)

FIR Design Methods for class fdesign.interpolator (Fp,Ast):

multisection

info

8-801

hm=design(d1,'multisection')

hm =

 FilterStructure: 'Cascaded Integrator-Comb Interpolator'
 Arithmetic: 'fixed'
 DifferentialDelay: 2
 NumberOfSections: 5
 InterpolationFactor: 6
 PersistentMemory: false

 InputWordLength: 16
 InputFracLength: 15

 FilterInternals: 'FullPrecision'

Now use info to get more details about both filters.

s = info(hd)

Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR
Filter Length : 81
Stable : Yes
Linear Phase : Yes (Type 1)

Design Method Information
Design Algorithm : equiripple

Design Options
MinPhase : false
StopbandDecay : 0
StopbandShape : flat

Design Specifications
Sampling Frequency : N/A (normalized frequency)
Response : Lowpass
Specification : N,Fc,Ap,Ast
FilterOrder : 80

info

8-802

Fcutoff : 0.45
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB

Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.41517
3-dB Point : 0.44091
6-dB Point : 0.45
Stopband Edge : 0.48968
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB
Transition Width : 0.074506

Implementation Cost
Number of Multipliers : 81
Number of Adders : 80
Number of States : 80
MultPerInputSample : 81
AddPerInputSample : 80

s = info(hm)

Discrete-Time FIR Multirate Filter (real)

Filter Structure : Cascaded Integrator-Comb Interpolator
Interpolation Factor : 6
Differential Delay : 2
Number of Sections : 5
Stable : Yes
Linear Phase : Yes (Type 2)

Input : s16,15
Output : s32,15
Filter Internals : Full Precision
Integrator Section 1 : s17,15
Integrator Section 2 : s18,15
Integrator Section 3 : s19,15
Integrator Section 4 : s20,15
Integrator Section 5 : s21,15

info

8-803

Comb Section 1 : s21,15
Comb Section 2 : s24,15
Comb Section 3 : s27,15
Comb Section 4 : s29,15
Comb Section 5 : s32,15

Design Method Information
Design Algorithm : multisection

Design Specifications
Sampling Frequency : N/A (normalized frequency)
Response : CIC
Specification : Fp,Ast
MultirateType : Interpolator
InterpolationFactor : 6
DifferentialDelay : 2
Passband Edge : 0.4
Stopband Atten. : 60 dB

Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.4
Stopband Edge : -0.23333
Fnulls : 0.16667 0.33333 0.5 0.66667 0.83333 1
Passband Ripple : 87.0194 dB
Stopband Atten. : 65.5304 dB

Implementation Cost
Number of Multipliers : 0
Number of Adders : 10
Number of States : 15
MultPerInputSample : 0
AddPerInputSample : 35

If you convert your filter object, such as a dfilt or mfilt, to a fixed-point filter,
info returns more information about the ranges provided by the fixed-point
formats in the filter. After converting hd to fixed arithmetic, info returns this
display:

Discrete-Time FIR Filter (real)

Filter Structure : Direct-Form FIR
Filter Length : 81

info

8-804

Stable : Yes
Linear Phase : Yes (Type 1)
Arithmetic : fixed
Numerator : s16,16 -> [-5.000000e-001 5.000000e-001)
Input : s16,15 -> [-1 1)
Filter Internals : Full Precision
 Output : s34,31 -> [-4 4) (auto determined)
 Product : s31,31 -> [-5.000000e-001 5.000000e-001) (auto
determined)
 Accumulator : s34,31 -> [-4 4) (auto determined)
 Round Mode : No rounding
 Overflow Mode : No overflow

Design Method Information
Design Algorithm : equiripple

Design Options
MinPhase : false
StopbandDecay : 0
StopbandShape : flat

Design Specifications
Sampling Frequency : N/A (normalized frequency)
Response : Lowpass
Specification : N,Fc,Ap,Ast
FilterOrder : 80
Fcutoff : 0.45
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB

Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.41517
3-dB Point : 0.44091
6-dB Point : 0.45
Stopband Edge : 0.48962
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB
Transition Width : 0.07445

Implementation Cost
Number of Multipliers : 81
Number of Adders : 80
Number of States : 80
MultPerInputSample : 81
AddPerInputSample : 80

info

8-805

See Also coefficients, isfir, isstable, islinphase

dfilt in the Signal Processing Toolbox documentation

int

8-806

8intPurpose Return states from CIC filter as signed integer matrix containing the
numerator and denominator states for all filter sections

Syntax integerstates = int(hm.states)

Description integerstates = int(hm.states) returns the states of a CIC filter in matrix
form, rather than as the native filtstates object. An important point about
int is that it quantizes the state values to the smallest number of bits possible
while maintaining the values accurately.

Examples For many users, the states of multirate filters are most useful as a matrix, but
the CIC filters store the states as objects. Here is how you get the states from
you CIC filter as a matrix.

hm = mfilt.cicdecim;
hs = hm.states; % Returns a FILTSTATES.CIC object hs.
states = int(hs); % Convert object hs to a signed integer matrix.

After using int to convert the states object to a matrix, here is what you get.

Before converting:

hm.states

ans =

 Integrator: [2x1 States]
 Comb: [2x1 States]

After the conversion and assigning the states to states:

states

states =

 0 0
 0 0

See Also filtstates.cic, mfilt.cicdecim, mfilt.cicinterp

isallpass

8-807

8isallpassPurpose Determine whether filters are allpass structures

Syntax isallpass(hd)
isallpass(hd,tolerance)

Description isallpass(hd) determines whether the filter object hd is an allpass filter,
returning 1 if true and 0 if false.

isallpass(hd,tolerance) uses input argument tolerance to determine
whether the numerator and denominator transfer functions for the filter are
close enough in value to be considered equal, and thus allpass, returning 1 if
true (the difference between the numbers is less than tolerance) and 0 if not.

Given an allpass filter with this transfer function

if the numerator and denominator transfer functions are equal, the filter is
allpass. The tolerance input argument lets you determine how closely the
transfer functions have to match to be considered equal. This might be most
helpful in fixed-point allpass filters.

Lattice coupled allpass filters always have allpass sections, this function
always returns 1 for filters whose structure is latticeca.

Examples Use dfilt.allpass to construct an allpass filter and test whether the filter is
allpass.

c=[.8,1.5,0.4, 0.7]; % Allpass coefficients.
hd=dfilt.allpass(c)

hd =

 FilterStructure: 'Minimum-Multiplier Allpass'
 AllpassCoefficients: [.8,1.5,0.4, 0.7]
 PersistentMemory: false
 States: [0;0;0;0;0;0;0;0]
 NumSamplesProcessed: 0

H z()
an … a1z n 1–()– z n–+ + +

1 a1z 1– … anz n–+ + +
--=

isallpass

8-808

isallpass(hd)

ans =

 1

See Also isfir, islinphase, ismaxphase, isminphase, isreal, issos, isstable

isfir

8-809

8isfirPurpose Determine whether filters are FIR filters

Syntax isfir(h)

Description isfir(h) determines whether filter h is an FIR filter, returning 1when the
filter is an FIR filter, and 0 when it is IIR. isfir applies to dfilt, mfilt, and
adaptfilt objects.

To determine whether h is an FIR filter, isfir(h) inspects filter h and
determines whether the filter, in transfer function form, has a scalar
denominator. If it does, it is an FIR filter.

Examples d = fdesign.lowpass;
h = design(d);
isfir(h)
ans =

 1

returns 1 for the status of filter h; the filter is an FIR structure with
denominator reference coefficient equal to 1.

For multirate filters, isfir works the same way.

d = fdesign.interpolator(5); % Interpolate by 5.
h = design(d); % Use the default design method.
isfir(h)

ans =

 1

Use isfir with adaptive filters as well.

See Also isallpass, islinphase, ismaxphase, isminphase, isreal, issos, isstable

islinphase

8-810

8islinphasePurpose Determine whether filters are linear phase

Syntax islinphase(h)
islinphase(h,tolerance)

Description islinphase(h) determines if the filter object h is linear phase, and returns 1 if
true and 0 if false. adapfilt, dfilt, and mfilt objects work with islinphase.

islinphase(h,tolerance) uses input argument tolerance to determine
whether the filter coefficients are close enough in value to be considered
symmetric or antisymmetric, returning 1 if true (the difference between the
values is less than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter has
linear phase if it is FIR and its transfer function coefficients are symmetric or
antisymmetric. If it is IIR and it has poles on or outside the unit circle and both
numerator and denominator are symmetric or antisymmetric, it is linear phase
also.

Examples This IIR filter has linear phase.

d = fdesign.lowpass('n,fc',10,0.55);
h = design(d,'window');
islinphase(h)
ans =

 1

Using the specification nb,na,fp,fst results in an IIR filter that is not linear
phase in this design.

nb=15
na=10
d=fdesign.lowpass('nb,na,fp,fst',nb,na,0.45,0.55)

d =

 Response: 'Lowpass'
 Specification: 'Nb,Na,Fp,Fst'
 Description: {4x1 cell}
 NormalizedFrequency: true

islinphase

8-811

 NumOrder: 15
 DenOrder: 10
 Fpass: 0.45
 Fstop: 0.55

h=design(d) % Use the default design method iirlpnorm.

h =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [8x6 double]
 ScaleValues: [-0.0051749857036492;1;1;1;1;1;1;1;1]
 PersistentMemory: false

islinphase(h)

ans =

 0

See Also isallpass, isfir, ismaxphase, isminphase, isreal, issos, isstable

ismaxphase

8-812

8ismaxphasePurpose Determine whether filters are maximum phase

Syntax ismaxphase(h)
ismaxphase(h,tolerance)

Description ismaxphase(h) determines if the filter object h is maximum phase, and returns
1 if true and 0 if false. adapfilt, dfilt, and mfilt objects work with
ismaxphase.

ismaxphase(h,tolerance) uses input argument tolerance to determine
whether the zeros of the filter transfer function have values that are close
enough to 1 to be considered 1 or greater (on or outside the unit circle,
returning 1 if true (the difference between the coefficient value and 1 is less
than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter is
maximum phase when the zeros of its transfer function are on or outside the
unit circle, or when the numerator is a scalar.

Examples Two examples show ismaxphase in use. The first is a discrete-time dfilt object
and the second an adaptive filter.

fp = 100;
fst= 120;
fs = 800;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);

isminphase(h)

ans =

1

To make this a maximum phase filter, use fliplr to change the coefficient
order. Reordering the coefficients this way changes the phase from minimum
to maximum.

h.numerator=fliplr(h.numerator);

ismaxphase

8-813

ismaxphase(h)

ans =

 1

returns 1 so this is a maximum phase filter. Compare to isminphase.

For the adaptive filter example, try the following code:

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 1; % NLMS step size
offset = 50; % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);

After adapting, ha is an FIR filter that does not exhibit maximum phase.

ismaxphase(ha)

ans =

 0

See Also isallpass, isfir, islinphase, isminphase, isreal, issos, isstable

isminphase

8-814

8isminphasePurpose Determine whether filters are minimum phase

Syntax isminphase(h)
isminphase(h,tolerance)

Description isminphase(h) determines if the filter object h is maximum phase, and returns
1 if true and 0 if false. adapfilt, dfilt, and mfilt objects work with
isminphase.

isminphase(h,tolerance) uses input argument tolerance to determine
whether the values of the filter transfer function zeros are close enough to 1 to
be considered to be on the unit circle, returning 1 if true (the difference between
the transfer function zero values and 1 is less than tolerance) and 0 if not.

The determination is based on the reference coefficients. A filter is minimum
phase when the zeros of its transfer function are on or inside the unit circle, or
the numerator is a scalar.

Examples This example creates a minimum-phase filter.

fp = 200;
fst= 230;
fs = 900;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);
isminphase(h)

ans =

 1

When you make h a fixed-point filter, the quantization process results in the
filter no longer being minimum phase.

h.arithmetic='fixed';
isminphase(h)

isminphase

8-815

ans =

 0

See Also isallpass, isfir, islinphase, ismaxphase, isreal, issos, isstable,

isreal

8-816

8isrealPurpose Determine whether discrete-time filters use purely real coefficients

Syntax isreal(hd)

Description isreal(hd) returns 1 (or true) if all filter coefficients for the filter hd are real,
and returns 0 (or false) otherwise.

isreal(hd) returns 1 if all filter coefficients in filter hd have zero imaginary
part. Otherwise, isreal(hd) returns a 0 indicating that the filter is complex.
Complex filters have one or more coefficients with nonzero imaginary parts.

Note Quantizing a filter cannot make a real filter into a complex filter.

Examples To demonstrate the isreal test, this example creates a double-precision filter
and fixed-point filter, and tests the coefficients of the fixed-point filter to see if
they are strictly real.

d=fdesign.lowpass('n,fp,ap,ast',5,0.4,0.5,20);
hd=design(d,'ellip')

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [3x6 double]
 ScaleValues: [0.362583368859661;0.918321077151039;0.496533475964919;1]
 PersistentMemory: false

hq=design(d,'ellip'); % Use d to design the fixed-point filter.
hq.arithmetic='fixed'; % Convert to fixed-point arithmetic.
isreal(hq)

ans =

 1

See Also isfir, islinphase, ismaxphase, isminphase, issos, isstable, isallpass

issos

8-817

8issosPurpose Determine whether discrete-time filters are composed of second-order sections

Syntax issos(hd)

Description issos(hd) determines whether quantized filter hq consists of second-order
sections. Returns 1 if all sections of quantized filter hq have order less than or
equal to two, and 0 otherwise.

Examples By default, fdesign and design return SOS filters when possible. This example
designs a lowpass SOS filter that uses fixed-point arithmetic.

d=fdesign.lowpass('n,fp,ap,ast',40,0.55,0.1,60)

d =

 Response: 'Lowpass'
 Specification: 'N,Fp,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 FilterOrder: 40
 Fpass: 0.55
 Apass: 0.1
 Astop: 60

designmethods(d)

Design Methods for class fdesign.lowpass (N,Fp,Ap,Ast):

ellip
equiripple

hd=design(d,'ellip');
hd.arithmetic='fixed';

issos(hd)

issos

8-818

ans =

 1

Fixed-point filter hd is in second-order section form, as is the double-precision
version.

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, isstable

isstable

8-819

8isstablePurpose Determine whether discrete-time filter is stable

Syntax isstable(hd)

Description isstable(hq) tests quantized filter hq to determine whether its poles are
inside the unit circle. If the poles lie on or outside the circle, isstable
returns 0. If the poles are inside the circle, isstable returns 1.

To determine the filter stability, isstable checks the filter coefficients. When
the poles lie on or inside the unit circle, the filter is stable. FIR filters are stable
by design since the defining transfer functions do not have denominator
polynomials, thus no feedback to cause instability.

Examples Since filter stability is very important in your design process, use isstable to
determine whether your double-precision or fixed-point IIR filter is stable.

d=fdesign.nyquist(2,'n,tw',24,0.1);
hd=design(d,'iirlinphase')

hd =

 FilterStructure: Cascade
 Stage(1): Scalar
 Stage(2): Parallel
 Stage(1): Delay
 Stage(2): Cascade
 Stage(1): Delay
 Stage(2): Cascade
 PersistentMemory: false

isstable(hd)

ans =

 1

hd2=design(d,'equiripple');
isstable(hd2)

isstable

8-820

ans =

 1

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, issos,
zplane

kaiserwin

8-821

8kaiserwinPurpose Design discrete-time or multirate filter from filter specification object and
Kaiser window

Syntax h = design(d,'kaiserwin')

h = design(d,'kaiserwin',designoption,value,designoption,...
value,...)

Description h = design(d,'kaiserwin') designs a digital filter hd, or a multirate filter hm
that uses a Kaiser window. For kaiserwin to work properly, the filter order in
the specifications object must be even. In addition, higher order filters (filter
order greater than 120) tend to be more accurate for smaller transition widths.
kaiserwin returns a warning when your filter order may be too low to design
your filter accurately.

h = design(d,'kaiserwin',designoption,value,designoption,...
value,...) returns a filter where you specify design options as input
arguments and the design process uses the Kaiser window technique.

To determine the available design options, use designopts with the
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using kaiserwin, refer to the command line help
system. For example, to get specific information about using kaiserwin with d,
the specification object, enter the following at the MATLAB prompt.

help(d,'kaiserwin')

Examples This example designs a direct form FIR filter from a halfband filter
specification object.

d=fdesign.halfband('n,tw',100,0.004)

d =

 Response: 'Halfband with filter order and transition width'
 Specification: 'N,TW'
 Description: {2x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 100
 TransitionWidth: 0.0040

kaiserwin

8-822

designopts(d,'kaiserwin')

ans =

 FilterStructure: 'dffir'

hd= design(d,'kaiserwin','filterstructure','dffir')
Warning: Filter order is too low. Design may be inaccurate.

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x101 double]
 ResetBeforeFiltering: 'on'
 States: [100x1 double]

In this example, kaiserwin uses an interpolating filter specification object to
implement a multirate filter.

d=fdesign.interp(4,'pl,tw',120,0.004)

d =

 Response: [1x46 char]
 Specification: 'PL,TW'
 Description: {2x1 cell}
 InterpolationFactor: 4
 NormalizedFrequency: true
 Fs: 'Normalized'
 PolyphaseLength: 120
 TransitionWidth: 0.0040

hm = design(d,'kaiserwin')

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
 Numerator: [1x480 double]
 InterpolationFactor: 4
 ResetBeforeFiltering: 'on'
 States: [119x1 double]

kaiserwin

8-823

With the polyphase length of 120 you do not see the warning about the filter
accuracy. Increasing the transition width tw can also reduce the possible
inaccuracies.

FVTool shows clearly the multirate filter hm.

See Also equiripple, firls

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

limitcycle

8-824

8limitcyclePurpose Explore steady-state response of single-rate, fixed-point IIR filter to
zero-valued input

Syntax report = limitcycle(hd)
report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion)

Description report = limitcycle(hd) returns the structure report that contains
information about how filter hd responds to a zero-valued input vector. By
default, the input vector has length equal to twice the impulse response length
of the filter.

limitcycle returns a structure whose elements contain the details about the
limit cycle testing. As shown in this table, the report includes the following
details.

Using an input vector longer than the filter impulse response ensures that the
filter is in steady-state operation during the limit cycle testing. limitcycle

Output Object Property Description

LimitCycleType Contains one of the following results:

• Granular—indicates that a granular
overflow occurred.

• Overflow—indicates that an overflow limit
cycle occurred.

• None—indicates that the test did not find
any limit cycles.

Zi Contains the initial condition value(s) that
caused the detected limit cycle to occur.

Output Contains the output of the filter in the steady
state.

Trial Returns the number of the Monte Carlo trial
on which the limit cycle testing stopped. For
example, Trial = 10 indicates that testing
stopped on the tenth Monte Carlo trial.

limitcycle

8-825

ignores output that occurs before the filter reaches the steady state. For
example, if the filter impulse length is 500 samples, limitcycle ignores the
filter output from the first 500 input samples.

To perform limit cycle testing on your IIR filter, you must set the filter
Arithmetic property to fixed and hd must be a fixed-point IIR filter of one of
the following forms:

• df1—direct-form I
• df1t—direct-form I transposed
• df1sos—direct-form I with second-order sections
• df1tsos—direct-form I transposed with second-order sections
• df2—direct-form II
• df2t—direct-form II transposed
• df2sos—direct-form II with second-order sections
• df2tsos—direct-form II transposed with second-order sections

When you use limitcycle without optional input arguments, the default
settings are

• Run 20 Monte Carlo trials

• Use an input vector twice the length of the filter impulse response

• Stop testing if the simulation process encounters either a granular or
overflow limit cycle

To determine the length of the filter impulse response, use impzlength:

impzlength(hd)

During limit cycle testing, if the simulation runs reveal both overflow and
granular limit cycles, the overflow limit cycle takes precedence and is the limit
cycle that appears in the report.

Each time you run limitcycle, it uses a different sequence of random initial
conditions, so the results can differ from run to run.

Each Monte Carlo trial uses a new set of randomly determined initial states for
the filter. Test processing stops when limitcycle detects a zero-input limit
cycle in filter hd.
report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion) lets
you set the following optional input arguments:

limitcycle

8-826

• ntrials — Number of Monte Carlo trials (default is 20).

• inputlengthfactor — integer factor used to calculate the length of the input
vector. The length of the input vector comes from
(impzlength(hd) * inputlengthfactor), where inputlengthfactor = 2 is
the default value.

• stopcriterion — the criterion for stopping the Monte Carlo trial processing.
stopcriterion can be set to either (the default), granular, overflow. This
table describes the results of each stop criterion.

Note An important feature is that if you specify a specific limit cycle stop
criterion, such as overflow, the Monte Carlo trials do not stop when testing
encounters a granular limit cycle. You receive a warning that no overflow
limit cycle occurred, but consider that a granular limit cycle might have
occurred.

Examples In this example, there is a region of initial conditions in which no limit cycles
occur and a region where they do. If no limit cycles are detected before the
Monte Carlo trials are over, the state sequence converges to zero. When a limit
cycle is found, the states do not end at zero. Each time you run this example, it
uses a different sequence of random initial conditions, so the plot you get can
differ from the one displayed in the following figure.

s = [1 0 0 1 0.9606 0.9849];
hd = dfilt.df2sos(s);
hd.arithmetic = 'fixed';
greport = limitcycle(hd,20,2,'granular')

stopcriterion Setting Description

either Stop the Monte Carlo trials when limitcycle
detects either a granular or overflow limit cycle.

granular Stop the Monte Carlo trials when limitcycle
detects a granular limit cycle.

overflow Stop the Monte Carlo trials when limitcycle
detects an overflow limit cycle.

limitcycle

8-827

oreport = limitcycle(hd,20,2,'overflow')
figure,
subplot(211),plot(greport.Output(1:20)), title('Granular Limit Cycle');
subplot(212),plot(oreport.Output(1:20)), title('Overflow Limit Cycle');

greport =

 LimitCycle: 'granular'
 Zi: [2x1 double]
 Output: [1303x1 embedded.fi]
 Trial: 1

oreport =

 LimitCycle: 'overflow'
 Zi: [2x1 double]
 Output: [1303x1 embedded.fi]
 Trial: 2

The plots shown in this figure present both limit cycle types—the first displays
the small amplitude granular limit cycle, the second the larger amplitude
overflow limit cycle.

limitcycle

8-828

As you see from the plots, and as is generally true, overflow limit cycles are
much greater magnitude than granular limit cycles. This is why limitcycle
favors overflow limit cycle detection and reporting.

See Also freqz, noisepsd

0 2 4 6 8 10 12 14 16 18 20
−5

0

5
x 10

−4 Granular Limit Cycle

Output Sample

0 2 4 6 8 10 12 14 16 18 20
0.6787

0.6788

0.6789

0.679

0.6791

0.6792

Overflow Limit Cycle

Output Sample

maxstep

8-829

8maxstepPurpose Maximum step size that allows adaptive filter convergence

Syntax mumax = maxstep(ha,x)
[mumax,mumaxmse] = maxstep(ha,x)

Description mumax = maxstep(ha,x) predicts a bound on the step size to provide
convergence of the mean values of the adaptive filter coefficients. The columns
of the matrix x contain individual input signal sequences. The signal set is
assumed to have zero mean or nearly so.

[mumax,mumaxmse] = maxstep(ha,x) predicts a bound on the adaptive filter
step size to provide convergence of the LMS adaptive filter coefficients in the
mean-square sense. maxstep issues a warning when ha.stepsize is outside of
the range 0 < ha.stepsize < mumaxmse/2.

Note maxstep is available for the following adaptive filter objects:
—adaptfilt.blms
—adaptfilt.blmsfft
—adaptfilt.lms
—adaptfilt.nlms (uses a different syntax. Refer to the text below.)
—adaptfilt.se

For adaptfilt.nlms filter objects, maxstep uses a slightly different syntax:

mumax = maxstep(ha)
[mumax,mumaxmse] = maxstep(ha)

The maximum step size for convergence is fully defined by the filter object ha.
Matrix x is not necessary. If you include an x input matrix, MATLAB returns
an error.

Examples Analyze and simulate a 32-coefficient (31st-order) LMS adaptive filter object.
To demonstrate the adaptation process, run 2000 iterations and 50 trials.

% Specify [numiterations,numexamples] = size(x);
x = zeros(2000,50);
d = x;
obj = fdesign.lowpass('n,fc',31,0.5);

maxstep

8-830

hd = design(obj,'window'); % FIR filter to identified.
coef = cell2mat(hd.coefficients); % Convert cell array to matrix.

for k=1:size(x,2); % Create input and desired response signal
% matrices.

% Set the (k)th input to the filter.
x(:,k) = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x,1),1)));
n = 0.1*randn(size(x,1),1); % (k)th observation noise signal.
d(:,k) = filter(coef,1,x(:,k))+n; % (k)th desired signal end.

end
mu = 0.1; % LMS step size.
ha = adaptfilt.lms(32,mu);
[mumax,mumaxmse] = maxstep(ha,x);

Warning: Step size is not in the range 0 < mu < mumaxmse/2:
Erratic behavior might result.

mumax

mumax =

 0.0623

mumaxmse

mumaxmse =

 0.0530

See Also msepred, msesim, filter

measure

8-831

8measurePurpose Magnitude response measurement for discrete-time and multirate filter
created from filter specification object

Syntax measure(hd)
measure(hm)

Description measure(hd) returns measured values for specific points in the magnitude
response curve for filter object hd. When you use a design object d to create
a filter (by using fdesign.type to create d), you specify one or more values that
define your desired filter response. measure(hd) tests the filter to determine
the actual values in the magnitude response of the filter, such as the stopband
attenuation or the passband ripple. Comparing the results returned by
measure to the specifications you provided in the design object helps you assess
whether the filter meets your design criteria.

Note To use measure, hd or hm must result from using a filter design method
with a filter specifications object. measure works with multirate filters and
discrete-time filters. It does not support adaptive filters because you cannot
use fdesign.type to construct adaptive filter specifications objects.

measure(hd) returns specifications determined by the response type of the
design object you use to create the filter. For example, for single-rate lowpass
filters made from design objects, measure(hd) returns the following filter
specifications.

Lowpass Filter Specification Description

Sampling Frequency Filter sampling frequency.

Passband Edge Location of the edge of the passband as it
enters transition.

3-dB Point Location of the -3 dB point on the response
curve.

6-dB Point Location of the -6 dB point on the response
curve.

measure

8-832

In contrast, when you use a bandstop design object, measure(hd) returns these
specifications for the resulting bandstop filter.

Stopband Edge Location of the edge of the transition band
as it enters the stopband.

Passband Ripple Ripple in the passband.

Seopband Atten. Attenuation in the stopband.

Transition Width Width of the transition between the pass-
and stopband, in normalized frequency or
absolute frequency. Measured between
Fpass and Fstop.

Bandstop Filter Specification Description

Sampling Frequency Filter sampling frequency.

First Passband Edge Location of the edge of the first passband.

First 3-dB Point Location of the edge of the -3 dB point in
the first transition band.

First 6-dB Point Location of the edge of the -6 dB point in
the first transition band.

First Stopband Edge Location of the start of the stopband.

Second Stopband Edge Location of the end of the stopband.

Second 6-dB Point Location of the edge of the -6 dB point in
the second transition band.

Second 3-dB Point Location of the edge of the -3 dB point in
the second transition band.

Second Passband Edge Location of the start of the second
passband.

Lowpass Filter Specification Description

measure

8-833

Filters from different filter responses return their designated sets of
specifications. Also, whether the filter is single-rate or multirate changes the
list of specifications that measure tests.

measure(hm) is the same as measure(hd), where hm is a multirate filter object.
For multirate filters, the set of filter specifications that measure returns might
be different from the discrete-filter set.

The set of response measurements that measure returns depends on the
response you use to design the filter. When hm is an FIR lowpass interpolator
(response is lowpass), for example, measure(hm) returns this set of
measurements.

First Passband Ripple Ripple in the first passband.

Stopband Atten. Attenuation in the stopband.

Second Passband Edge Ripple in the second passband.

First Transition Width Width of the first transition region.
Measured between the -3 and -6 dB
points.

Second Transition Width Width of the second transition region.
Measured between the -6 and -3 dB
points.

Interpolator Filter Specification Description

First Passband Edge Location of the edge of the passband as
it enters transition.

3-dB Point Location of the -3 dB point on the
response curve.

6-dB Point Location of the -6 dB point on the
response curve.

Bandstop Filter Specification Description

measure

8-834

For reference, this is the specification object d that created the interpolator
specifications shown in the preceeding table.

d=fdesign.interpolator(6,'lowpass')

d =

 MultirateType: 'Interpolator'
 InterpolationFactor: 6
 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.133333333333333
 Fstop: 0.166666666666667
 Apass: 1
 Astop: 60

Examples For the first example, create a lowpass filter and check whether the actual
filter meets the specifications. For this case, use normalized frequency for Fs,
the default setting.

d2=fdesign.lowpass('Fp,Fst,Ap,Ast',0.45,0.55,0.1,80)

d2 =

 Response: 'Lowpass'

Stopband Edge Location of the edge of the transition
band as it enters the stopband.

Passband Ripple Ripple in the passband.

Stopband Atten. Attenuation in the stopband.

Transition Width Width of the transition between the
pass- and stopband, in normalized
frequency or absolute frequency.
Measured between Fpass and Fstop.

Interpolator Filter Specification Description

measure

8-835

 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 0.1
 Astop: 80

designmethods(d2)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

hd2=design(d2) % Use the default equiripple design method.

hd2 =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x68 double]
 PersistentMemory: false

measure(hd2)

ans =

Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.45
3-dB Point : 0.47794
6-dB Point : 0.48909

measure

8-836

Stopband Edge : 0.55
Passband Ripple : 0.09615 dB
Stopband Atten. : 80.2907 dB
Transition Width : 0.1

Stopband Edge, Passband Edge, Passband Ripple, and Stopband Atten. all
meet the specifications.

Now, using Fs in linear frequency, create a bandpass filter and measure the
magnitude response characteristics.

d=fdesign.bandpass

d =

 Response: 'Bandpass'
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fstop1: 0.35
 Fpass1: 0.45
 Fpass2: 0.55
 Fstop2: 0.65
 Astop1: 60
 Apass: 1
 Astop2: 60

normalizefreq(d,false,1.5e3) % Convert to linear freq.

hd=design(d,'cheby2');

measure(hd)

ans =

Sampling Frequency : 1.5 kHz
First Stopband Edge : 0.2625 kHz
First 6-dB Point : 0.31996 kHz
First 3-dB Point : 0.32497 kHz
First Passband Edge : 0.3375 kHz

measure

8-837

Second Passband Edge : 0.4125 kHz
Second 3-dB Point : 0.42503 kHz
Second 6-dB Point : 0.43004 kHz
Second Stopband Edge : 0.4875 kHz
First Stopband Atten. : 60 dB
Passband Ripple : 0.17985 dB
Second Stopband Atten. : 60 dB
First Transition Width : 0.075 kHz
Second Transition Width : 0.075 kHz

measure(hd) returns the actual response values, in the units you chose. In this
example, all frequencies appear in Hz because the sampling frequency is Hz.

See Also design, fdesign, normalizefreq

mfilt

8-838

8mfiltPurpose Construct multirate filter object

Syntax hm = mfilt.structure(input1,input2,)

Description hm = mfilt.structure(input1,input2,) returns the object hm of type
structure. As with dfilt and adaptfilt objects, you must include the
structure string to construct a multirate filter object. You can, however,
construct a default multirate filter object of a given structure by not including
input arguments in your calling syntax.

Multirate filters include decimators and interpolators, and fractional
decimators and fractional interpolators, meaning the resulting interpolation or
decimation factor is not an integer.

Structures
Each of the following multirate filter structures has a reference page of its own.

Filter Structure String Description of Resulting Multirate Filter

mfilt.cascade Cascade multirate filters to form another
filter

mfilt.cicdecim Cascaded integrator-comb decimator

mfilt.cicinterp Cascaded integrator-comb interpolator

mfilt.fftfirinterp Overlap-add FIR polyphase interpolator

mfilt.firdecim Direct-form FIR polyphase decimator

mfilt.firfracdecim Direct-form FIR polyphase fractional
decimator

mfilt.firfracinterp Direct-form FIR polyphase fractional
interpolator

mfilt.firinterp Direct-form FIR polyphase interpolator

mfilt.firsrc Direct-form FIR polyphase sample rate
converter

mfilt

8-839

Copying mfilt Objects
To create a copy of an mfilt object, use the copy method.

h2 = copy(hd)

Note The syntax hd2 = hd copies only the object handle. It does not create
a new object. hd2 and hd are not independent. If you change the property
value for one of the two, such as hd2, you are changing the property for both.

Examples Create an FIR decimator that uses a decimation factor equal to three. In this
case, the only input argument needed is m, the decimation factor. Other input
arguments are available to you—refer to the reference page for the structure
that interests you for more information.

m=3;

hm=mfilt.firdecim(m)

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Decimator'
 Numerator: [1x73 double]
 DecimationFactor: 3

mfilt.firtdecim Direct-form transposed FIR polyphase
decimator

mfilt.holdinterp FIR hold interpolator

mfilt.iirdecim IIR decimator

mfilt.iirinterp IIR interpolator

mfilt.linearinterp FIR Linear interpolator

mfilt.iirwdfdecim IIR wave digital filter decimator

mfilt.iirwdfinterp IIR wave digital filter interpolator

Filter Structure String Description of Resulting Multirate Filter

mfilt

8-840

 NumberOfSamplesProcessed: 0
 ResetStates: 'on'
 States: [72x1 double]

To demonstrate a few of the methods that apply to multirate filters, here are
two examples of using hm, your FIR decimator.

Use the Filter Visualization tool to review the magnitude response of your
decimator.

Now check to see if your filter is stable.

isstable(hm)

ans =

 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

mfilt

8-841

Finally, pass a signal through the filter to see if it indeed decimates by three.

m = 3; % Decimation factor
hm = mfilt.firdecim(m); % We use the default filter
fs = 44.1e3; % Original sample freq: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long

% signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 5120 samples, still 0.232 seconds
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1kHz
hold on % Plot decimated signal (22.05kHz) in red
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

Here is the stem plot that shows the result of the decimation process.

0 0.5 1 1.5

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

mfilt

8-842

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Decimator'
 Numerator: [1x73 double]
 DecimationFactor: 3
 PersistentMemory: 'on'
 States: [72x1 double]

The filter processes 10239 samples with 1 unprocessed sample whose value is
0.8963. One nonprocessed sample results from dividing the number of samples,
10240, by the decimation factor, 3, to get 3413 output samples and one left over.

See Also mfilt.firfracdecim, mfilt.firfracinterp, mfilt.firinterp,
mfilt.firsrc, mfilt.firtdecim

mfilt.cascade

8-843

8mfilt.cascadePurpose Cascade dfilt and mfilt object(s) into filter

Syntax hm = cascade(hm1,hm2,...,hmn)

Description hm = cascade(hm1,hm2,...,hmn) creates filter object hm by cascading
(connecting in series) the individual filter objects hm1, hm2, and so on to hmn.

In block diagram form, the cascade looks like this, with x as the input to the
filter hm and y the output from the cascade filter hm:

Examples Create a variety of mfilt objects and cascade them together.

hm(1) = mfilt.firdecim(12);
hm(2) = mfilt.firdecim(4);
h1 = mfilt.cascade(hm(1),hm(2));

hm(3) = mfilt.firinterp(4);
hm(4) = mfilt.firinterp(12);
h2 = mfilt.cascade(hm(3),hm(4));

Now cascade h1 and h2 together to get another multirate filter.

h3 = mfilt.cascade(h1,h2,9600);

See Also dfilt.cascade in your Signal Processing Toolbox documentation

hm1 hmnhm2 yx hm2 ...

mfilt.cicdecim

8-844

8mfilt.cicdecimPurpose Construct fixed-point cascaded integrator-comb (CIC) decimator filter object

Syntax hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps)

Description hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps) returns a cascaded
integrator-comb (CIC) decimation filter object. All of the input arguments are
optional. When you omit one or more input options, the object applies default
values for the omitted input argument as shown in the next table.

The following table describes the input arguments for creating hm.

Input Arguments Description

r Decimation factor applied to the input signal.
Sharpens the response curve to let you change
the shape of the response. Default value is 2.

m Differential delay. Changes both the shape and
number of nulls in the filter response. Also affects
the null locations. Increasing m increases the
number and sharpness of the nulls and response
between nulls. Generally, one or two work best as
values for m. Default is 1.

n Number of sections. Deepens the nulls in the
response curve. Note that this is the number of
either comb or integrator sections, not the total
section count. 2 is the default value.

iwl Word length of the input signal. Use any integer
number of bits. The default value is 16 bits.

mfilt.cicdecim

8-845

Constraints and Word Length Considerations
CIC decimators have the following constraint—the word lengths of the filter
section must be monotonically decreasing. The word length of each filter
section must be the same size as, or smaller than, the word length of the
previous filter section.

The formula for Bmax, the most significant bit at the filter output, is given in
the Hogenauer paper in the References below.

where Bin is the number of bits of the input.

The cast operations shown in the diagram in “Algorithm” on
page 8-859perform the changes between the word lengths of each section.
When you specify word lengths that do not follow the constraints above, the
constructor returns an error.

owl Word length of the output signal. It can be any
positive integer number of bits. By default, owl is
16 bits.

wlps Defines the number of bits per word in each filter
section while accumulating the data in the
integrator sections or while subtracting the data
during the comb sections (using 'wrap'
arithmetic). Enter wlps as a scalar or vector of
length 2*n, where n is the number of sections.
When wlps is a scalar, the scalar value is applied
to each filter section. The default is 16 for each
section in the decimator.

When you elect to specify wlps as an input
argument, the SectionWordLengthMode property
automatically switches from the default value of
MinWordLengths to SpecifyWordLengths.

Input Arguments Description

Bmax Nlog2RM Bin 1–+()=

mfilt.cicdecim

8-846

When you specify the word lengths correctly, the most significant bit Bmax
stays the same throughout the filter, while the word length of each section
either decreases or stays the same. This can cause the fraction length to change
throughout the filter as least significant bits are truncated to decrease the
word length, as shown in “Algorithm” on page 8-859.

Properties of the Object
Objects have properties that control the way the object behaves. This table lists
all the properties for the filter, with a description of each.

Name Values Default Description

Arithmetic fixed fixed Reports the kind of
arithmetic the filter uses.
CIC decimators are
always fixed-point filters.

DecimationFactor Any positive integer 2 Amount to reduce the
input sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay
for the filter. Usually a
value of one or two is
appropriate.

FilterStructure mfilt structure
string

None Reports the type of filter
object. You cannot set this
property—it is always
read only and results
from your choice of mfilt
objects.

FilterInternals FullPrecision,
MinWordLengths,
SpecifyPrecision,
SpecifyWordLengths

FullPrecision Set the usage mode for
the filter. Refer to “Usage
Modes” below for details.

mfilt.cicdecim

8-847

InputFracLength Any positive integer 15 The number of bits
applied to the fraction
length to interpret the
input data to the filter.

InputOffset 0 -> r. 0 Indicates the length of
the output signal given
the length of the input
signal. InputOffset
starts at zero and cycles
through the phases as
follows for each input
sample:
0->r->(r-1)->(r-2)->(r-p)->
0, where p = r-1.

InputWordLength Any positive integer 16 The number of bits
applied to the word
length to interpret the
input data to the filter.

NumberOfSections Any positive integer 2 Number of sections used
in the decimator.
Generally called n.
Reflects either the
number of decimator or
comb sections, not the
total number of sections
in the filter.

OutputFracLength Any positive integer 15 The number of bits
applied to the fraction
length to interpret the
output data from the
filter. Read-only.

Name Values Default Description

mfilt.cicdecim

8-848

OutputWordLength Any positive integer 16 The number of bits
applied to the word
length to interpret the
output data from the
filter.

PersistentMemory false or true false Determines whether the
filter states get restored
to their starting values
for each filtering
operation. The starting
values are the values in
place when you create the
filter if you have not
changed the filter since
you constructed it.
PersistentMemory
returns to zero any state
that the filter changes
during processing. States
that the filter does not
change are not affected.
When PersistentMemory
is false, you cannot
access the filter states.
Setting
PersistentMemory to
true reveals the States
property so you can
modify the filter states.

Name Values Default Description

mfilt.cicdecim

8-849

SectionWordLengths Any integer or a
vector of length 2*n.

16 Defines the bits per
section used while
accumulating the data in
the integrator sections or
while subtracting the
data during the comb
sections (using 'wrap'
arithmetic). Enter
SectionWordLengths as a
scalar or vector of length
2*n, where n is the
number of sections. When
SectionWordLengths is
a scalar, the scalar value
is applied to each filter
section. When
SectionWordLengths is a
vector of values, the
values apply to the
sections in order. The
default is 16 for each
section in the decimator.
Available when
SectionWordLengthMode
is SpecifyWordLengths.

Name Values Default Description

mfilt.cicdecim

8-850

SectionWordLengthMode MinWordLengths or
SpecifyWordLengths

MinWordLength Determines whether the
filter object sets the
section word lengths or
you provide the word
lengths explicitly. By
default, the filter uses the
input and output word
lengths in the command
to determine the optimal
word lengths for each
section, according to the
information in [1]. When
you choose
SpecifyWordLengths, you
provide the word length
for each section. In
addition, choosing
SpecifyWordLengths
exposes the
SectionWordLengths
property for you to modify
as needed.

Name Values Default Description

mfilt.cicdecim

8-851

Usage Modes
There are four modes of usage for this which are set using the
FilterInternals property

• FullPrecision—All word and fraction lengths set to Bmax + 1, called Baccum
by fred harris in [3]. Full Precision is the default setting.

• MinWordLengths—Automatically set the sections for minimum word lengths.

• SpecifyWordLengths—Specify the word lengths for each section.

• SpecifyPrecision—Specify precision by providing values for the word and
fraction lengths for each section.

States filtstates.cic
object

m+1-by-n
matrix of
zeros, after you
call function
int.

Stored conditions for the
filter, including values for
the integrator and comb
sections before and after
filtering. m is the
differential delay of the
comb section and n is the
number of sections in the
filter. The integrator
states are stored in the
first matrix row. States
for the comb section fill
the remaining rows in the
matrix. Available for
modification when
PersistentMemory is
true. Refer to the
filtstates object in the
Signal Processing
Toolbox for more general
information about the
filtstates object.

Name Values Default Description

mfilt.cicdecim

8-852

Full Precision
In full precision mode, the word lengths of all sections and the output are set
to Baccum as defined by

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the
input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

Minimum Wordlengths
In minimum word length mode, you control the output word length explicitly.
When the output word length is less than Baccum, roundoff noise is introduced
at the output of the filter. Hogenauer's bit pruning theory (refer to [1]) states
that one valid design criterion is to make the word lengths of the different
sections of the filter smaller than Baccum as well, so that the roundoff noise
introduced by all sections does not exceed the roundoff noise introduced at the
output.

In this mode, the design calculates the word lengths of each section to meet the
Hogenauer criterion. The algorithm subtracts the number of bits computed
using eq. 21 in Hogenauer's paper from Baccum to determine the word length
each section.

To compute the fraction lengths of the different sections, the algorithm notes
that the bits thrown out for this word length criterion are least significant bits
(LSB), therefore each bit thrown out at a particular section decrements the

Baccum ceil N ssec Log2 D M×()() InputWordLength+()=

mfilt.cicdecim

8-853

frection length of that section by one bit compared to the input fraction length.
Setting the output wordlength for the filter automatically sets the output
fraction length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify word lengths
In this mode, the design algorithm discards the LSBs, adjusting the fraction
length so that unrecoverable overflow does not occur, always producing
a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot
control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
2*(NumberOfSections), where each vector element represents the word length
for a section. If you specify a scalar, such as Baccum, the full-precision output
word length, the algorithm expands that scalar to a vector of the appropriate
size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are
monotonically decreasing. There are some cases where the word lengths are
not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

mfilt.cicdecim

8-854

which are valid CIC filters but the word lengths do not decrease monotonically
across the sections.

Here is the display looks like for the SpecifyWordLenghts mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify precision
In this mode, you have full control over the word length and fraction lengths of
all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length
2*(NumberOfSections) with elements that represent the word length for each
section. When you enter a scalar such as Baccum, mfilt.cicdecim expands that
scalar to a vector of the appropriate size and applies the scalar value to each
section and the output. The design does not check that this vector is
monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements
that represent the fraction length for each section as well. When you enter
a scalar such as Baccum, mfilt.cicdecim applies scalar expansion as done for
the word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1

mfilt.cicdecim

8-855

NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

About the States of the Filter
In the states property you find the states for both the integrator and comb
portions of the filter. states is a matrix of dimensions m+1-by-n, with the states
apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the
state matrix.

• States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, use int to assign the states to a variable in
MATLAB. As an example, here are the states for a CIC decimator hm before and
after filtering a data set.

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicdecim(2,1,2,16,16,16);
sts=int(hm.states)

sts =

 0 0
 0 0

set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)

mfilt.cicdecim

8-856

sts=int(hm.states)

sts =

 10 45
 28 13

STS is an integer matrix that int returns from the contents of the
filtstates.cic object in `.

Design Considerations
When you design your CIC decimation filter, remember the following general
points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of sections in the filter, determines the passband attenuation.
Increasing n improves the filter ability to reject aliasing and imaging, but it
also increases the droop (or rolloff) in the filter passband. Using an
appropriate FIR filter in series after the CIC decimation filter can help you
compensate for the induced droop.

• The DC gain for the filter is a function of the decimation factor. Raising the
decimation factor increases the DC gain.

Examples This example applies a decimation factor r equal to 8 to a 160-point impulse
signal. The signal output from the filter has 160/r, or 20, points or samples.
Choosing 10 bits for the word length represents a fairly common setting for
analog to digital converters. The plot shown after the code presents the stem
plot of the decimated signal, with 20 samples remaining after decimation:

m = 2; % Differential delays in the filter.
n = 4; % Filter sections
r = 8 % Decimation factor
x = int16(zeros(160,1)); x(1) = 1; % Create a 160-point

% impulse signal.
hm = mfilt.cicdecim(r,m,n); % Expects 16-bit input by default.
y = filter(hm,x);

mfilt.cicdecim

8-857

stem(double(y)); % Plot the output as ...
% a stem plot.

xlabel('Samples'); ylabel('Amplitude');
title('Decimated Signal');

The next example demonstrates one way to compute the filter frequency
response, using a 4-section decimation filter with the decimation factor set to 7:

hm = mfilt.cicdecim(7,1,4);
fvtool(hm)

FVTool provides ways for you to change the title and x labels to match the
figure shown. Here’s the frequency response plot for the filter. For details about
the transfer function used to produce the frequency response, refer to [1] in the
References section.

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Samples

A
m

pl
itu

de

Decimated Signal

mfilt.cicdecim

8-858

This final example demonstrates the decimator for converting from 44.1 kHz
audio to 22.05 kHz—decimation by two. To overlay the before and after signals,
scale the output and plot the signals on a stem plot.

r = 2; % Decimation factor.
hm = mfilt.cicdecim(r); % Use default NumberOfSections &

% DifferentialDelay property values.
fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n);% Original signal, sinusoid at 1kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.

% Scale the output to overlay the stem plots.
x = double(x);
y = double(y_fi);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−250

−200

−150

−100

−50

0

50

100

Normalized Frequency Relative to the High Sampling Rate (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Frequency Response for the Example CIC Decimation Filter

mfilt.cicdecim

8-859

y = y/max(abs(y));
stem(n(1:44)/fs,x(2:45)); hold on; % Plot original signal

% sampled at 44.1kHz.
stem(n(1:22)/(fs/r),y(3:24),'r','filled'); % Plot decimated

% signal (22.05kHz)
% in red.

xlabel('Time (seconds)');ylabel('Signal Value');

Algorithm To show how the CIC decimation filter is constructed, the following figure
presents a block diagram of the filter structure for a two-section CIC
decimation filter (n = 2). fs is the high sampling rate, the input to the
decimation process.

For details about the bits that are removed in the Comb section, refer to [1] in
References.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l v

al
ue

Original Signal
Decimated Signal

mfilt.cicdecim

8-860

mfilt.cicdecim calculates the fraction length at each section of the decimator
to avoid overflows at the output of the filter.

See Also mfilt, mfilt.cicinterp

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172

[3] harris, fredric j, Multirate Signal Processing for Communication Systems,
Prentice-Hall PTR, 2004 , pp. 343

Integrator Portion Comb Portion

OutputFormatInputFormat

1
Output

CastCast4Cast3Cast2Cast1 z
−1

z
−(M)

z
−1

z
−(M)

R1
Input

mfilt.cicinterp

8-861

8mfilt.cicinterpPurpose Construct fixed-point cascaded integrator-comb (CIC) interpolator filter object

Syntax hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps)

Description hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps) constructs a cascaded
integrator-comb (CIC) interpolation filter object that uses fixed-point
arithmetic. All of the input arguments are optional. When you omit one or more
input options, the omitted option applies default values shown in the table
below.

The following table describes the input arguments for creating hm.

Input Arguments Description

r Interpolation factor applied to the input signal.
Sharpens the response curve to let you change
the shape of the response. 2 is the default value.

m Differential delay. Changes both the shape and
number of nulls in the filter response. Also affects
the null locations. Increasing m increases the
number and sharpness of the nulls and response
between nulls. Generally, one or two work as
values for m. 1 is the default.

n Number of sections. Deepens the nulls in the
response curve. Note that this is the number of
either comb or integrator sections, not the total
section count. By default, the filter has two
sections.

iwl Word length of the input signal. Use any integer
number of bits. The default value is 16 bits.

mfilt.cicinterp

8-862

Constraints and Conversions
In Hogenauer [1], the author describes the constraints on CIC interpolator
filters. mfilt.cicinterp enforces a constraint—the word lengths of the filter
sections must be nondecreasing. That is, the word length of each filter section
must be the same size as, or greater than, the word length of the previous filter
section.

The formula for Wj, the minimum register width, is derived in [1]. The formula
for Wj is given by

where Gj, the maximum register growth up to the jth section, is given by

owl Word length of the output signal. It can be any
positive integer number of bits. By default, owl is
16 bits.

wlps Defines the number of bits per word in each filter
section while accumulating the data in the
integrator sections or while subtracting the data
during the comb sections (using 'wrap'
arithmetic). Enter wlps as a scalar or vector of
length 2*n, where n is the number of sections.
When wlps is a scalar, the scalar value is applied
to each filter section. The default is 16 for each
section in the integrator.

When you elect to specify wlps as an input
argument, the SectionWordLengthMode property
automatically switches from the default value of
MinWordLengths to SpecifyWordLengths.

Input Arguments Description

Wj ceil Bin log2Gj+()=

Gj

2j, j 1 2 ... N, , ,=

22N j– RM()j N–

R
-- j N 1+ ... 2N, ,=,

⎩
⎪
⎨
⎪
⎧

=

mfilt.cicinterp

8-863

When the differential delay, M, is 1, there is also a special condition for the
register width of the last comb, WN, that is given by

The conversions denoted by the cast blocks in the integrator diagrams in
“Algorithm” on page 8-874 perform the changes between the word lengths of
each section. When you specify word lengths that do not follow the constraints
described in this section, mfilt.cicinterp returns an error.

The fraction lengths and scalings of the filter sections do not change. At each
section the word length is either staying the same or increasing. The signal
scaling can change at the output after the final filter section if you choose the
output word length to be less than the word length of the final filter section.

Properties of the Object
Objects have properties that control the way the object behaves. This table lists
all the properties for the filter, with a description of each.

WN Bin N 1–+= if M 1=

Name Values Default Description

Arithmetic fixed fixed Reports the kind of
arithmetic the filter uses.
CIC interpolators are
always fixed-point filters.

InterpolationFactor Any positive integer 2 Amount to increase the
input sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay
for the filter. Usually
a value of one or two is
appropriate.

mfilt.cicinterp

8-864

FilterStructure mfilt structure
string

None Reports the type of filter
object, such as a
interpolator or fractional
integrator. You cannot set
this property—it is always
read only and results from
your choice of mfilt objects.

FilterInternals FullPrecision,
MinWordLengths,
SpecifyPrecision,
SpecifyWordLengths

FullPrecision Set the usage mode for the
filter. Refer to “Usage
Modes” below for details.

InputFracLength Any positive integer 16 The number of bits applied
as the fraction length to
interpret the input data to
the filter.

InputWordLength Any positive integer 16 The number of bits applied
to the word length to
interpret the input data to
the filter.

NumberOfSections Any positive integer 2 Number of sections used in
the interpolator. Generally
called n. Reflects either the
number of interpolator or
comb sections, not the total
number of sections in the
filter.

OutputFracLength Any positive integer 15 The number of bits applied
to the fraction length to
interpret the output data
from the filter. Read-only.

Name Values Default Description

mfilt.cicinterp

8-865

OutputWordLength Any positive integer 16 The number of bits applied
to the word length to
interpret the output data
from the filter.

PersistentMemory false or true false Determines whether the
filter states get restored to
their starting values for
each filtering operation.
The starting values are the
values in place when you
create the filter if you have
not changed the filter since
you constructed it.
PersistentMemory returns
to zero any state that the
filter changes during
processing. States that the
filter does not change are
not affected. When
PersistentMemory is
false, you cannot access
the filter states. Setting
PersistentMemory to true
reveals the States property
so you can modify the filter
states.

Name Values Default Description

mfilt.cicinterp

8-866

SectionWordLengths Any integer or a
vector of length 2*n.

16 Defines the bits per section
used while accumulating
the data in the integrator
sections or while
subtracting the data during
the comb sections (using
'wrap' arithmetic). Enter
SectionWordLengths as a
scalar or vector of length
2*n, where n is the number
of sections. When
SectionWordLengths is
a scalar, the scalar value is
applied to each filter
section. When
SectionWordLengths is a
vector of values, the values
apply to the sections in
order. The default is 16 for
each section in the
interpolator. Available
when
SectionWordLengthMode is
SpecifyWordLengths.

Name Values Default Description

mfilt.cicinterp

8-867

SectionWordLengthMode MinWordLengths,
SpecifyWordLengths

MinWordLength Determines whether the
filter object sets the section
word lengths or you provide
the word lengths explicitly.
By default, the filter uses
the input and output word
lengths in the command to
determine the proper word
lengths for each section,
according to the
information in [1]. When
you choose
SpecifyWordLengths, you
provide the word length for
each section. In addition,
choosing
SpecifyWordLengths
exposes the
SectionWordLengths
property for you to modify
as needed.

Name Values Default Description

mfilt.cicinterp

8-868

Usage Modes
There are four modes of usage for this which are set using the
FilterInternals property

• FullPrecision—All word and fraction lengths set to Bmax + 1, called Baccum
by fred harris in [3]. Full Precision is the default setting.

• MinWordLengths—Automatically set the sections for minimum word lengths.

• SpecifyWordLengths—Specify the word lengths for each section.

• SpecifyPrecision—Specify precision by providing values for the word and
fraction lengths for each section.

Full Precision
In full precision mode, the word lengths of all sections and the output are set
to Baccum as defined by

States filtstates.cic
object

m+1-by-n matrix
of zeros, after
you call
function int.

Stored conditions for the
filter, including values for
the integrator and comb
sections before and after
filtering. m is the
differential delay of the
comb section and n is the
number of sections in the
filter. The integrator states
are stored in the first
matrix row. States for the
comb section fill the
remaining rows in the
matrix. Available for
modification when
PersistentMemory is true.
Refer to the filtstates
object in the Signal
Processing Toolbox for more
general information about
the filtstates object.

Name Values Default Description

mfilt.cicinterp

8-869

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the
input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'FullPrecision'

Minimum Wordlengths
In minimum word length mode, you control the output word length explicitly.
When the output word length is less than Baccum, roundoff noise is introduced
at the output of the filter. Hogenauer's bit pruning theory (refer to [1]) states
that one valid design criterion is to make the word lengths of the different
sections of the filter smaller than Baccum as well, so that the roundoff noise
introduced by all sections does not exceed the roundoff noise introduced at the
output.

In this mode, the design calculates the word lengths of each section to meet the
Hogenauer criterion. The algorithm subtracts the number of bits computed
using eq. 21 in Hogenauer's paper from Baccum to determine the word length
each section.

To compute the fraction lengths of the different sections, the algorithm notes
that the bits thrown out for this word length criterion are least significant bits
(LSB), therefore each bit thrown out at a particular section decrements the
frection length of that section by one bit compared to the input fraction length.
Setting the output wordlength for the filter automatically sets the output
fraction length as well.

Baccum ceil N ssec Log2 D M×()() InputWordLength+()=

mfilt.cicinterp

8-870

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'MinWordLengths'

OutputWordLength: 16

Specify wordlengths
In this mode, the design algorith discards the LSBs, adjusting the fraction
length so that unrecoverable overflow does not occur, always producing
a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot
control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
2*(NumberOfSections), where each vector element represents the word length
for a section. If you specify a scalar, such as Baccum, the full-precision output
word length, the algorithm expands that scalar to a vector of the appropriate
size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are
monotonically decreasing. There are some cases where the word lengths are
not necessarily monotonically decreasing, for example

hcic=mfilt.cicinterp;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease monotonically
across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

mfilt.cicinterp

8-871

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyWordLengths'

SectionWordLengths: [19 18 18 17]

OutputWordLength: 16

Specify precision
In this mode, you have full control over the word length and fraction lengths of
all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length
2*(NumberOfSections) with elements that represent the word length for each
section. When you enter a scalar such as Baccum, mfilt.cicinterp expands
that scalar to a vector of the appropriate size and applies the scalar value to
each section and the output. The design does not check that this vector is
monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements
that represent the fraction length for each section as well. When you enter
a scalar such as Baccum, mfilt.cicinterp applies scalar expansion as done for
the word lengths.

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

mfilt.cicinterp

8-872

InputWordLength: 16
InputFracLength: 15

FilterInternals: 'SpecifyPrecision'

SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16
OutputFracLength: 11

About the States of the Filter
In the states property you find the states for both the integrator and comb
portions of the filter. states is a matrix of dimensions m+1-by-n, with the states
apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the
state matrix.

• States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, or any filter object states, use int to assign
the states to a variable in MATLAB. As an example, here are the states for
a CIC interpolator hm before and after filtering a data set.

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicinterp(2,1,2,16,16,16);
sts=int(hm.states)

sts =

 0 0
 0 0

set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)

sts=int(hm.states)

sts =

mfilt.cicinterp

8-873

 10 45
 28 13

Design Considerations
When you design your CIC interpolation filter, remember the following general
points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of sections in the filter, determines the passband attenuation.
Increasing n improves the filter ability to reject aliasing and imaging, but it
also increases the droop or rolloff in the filter passband. Using an
appropriate FIR filter in series after the CIC interpolation filter can help you
compensate for the induced droop.

• The DC gain for the filter is a function of the interpolation factor. Raising the
interpolation factor increases the DC gain.

Examples Demonstrate interpolation by a factor of two, in this case from 22.05 kHz to
44.1 kHz. Note the scaling required to see the results in the stem plot and to
use the full range of the int16 data type.

R = 2; % Interpolation factor.
hm = mfilt.cicinterp(R); % Use default NumberOfSections and

% DifferentialDelay property values.
fs = 22.05e3; % Original sample frequency:22.05 kHz.
n = 0:5119; % 5120 samples, .232 second long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.

% Scale the output to overlay stem plots correctly.
x = double(x);
y = double(y_fi);
y = y/max(abs(y));
stem(n(1:22)/fs,x(1:22),'filled'); % Plot original signal sampled

% at 22.05 kHz.
hold on;
stem(n(1:44)/(fs*R),y(4:47),'r'); % Plot interpolated signal

% (44.1 kHz) in red.

mfilt.cicinterp

8-874

xlabel('Time (sec)');ylabel('Signal Value');

As you expect, the plot shows that the interpolated signal matches the input
sine shape, with additional samples between each original sample.

Use the filter visualization tool (FVTool) to plot the response of the interpolator
object. For example, to plot the response of an interpolator with an
interpolation factor of 7, 4 sections, and 1 differential delay, do something like
the following:

hm = mfilt.cicinterp(7,1,4)
fvtool(hm)

Algorithm To show how the CIC interpolation filter is constructed, the following figure
presents a block diagram of the filter structure for a two-section CIC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l v

al
ue

Original Signal
Interpolated Signal

mfilt.cicinterp

8-875

interpolation filter (n = 2). fs is the high sampling rate, the output from the
interpolation process.

For details about the bits that are removed in the integrator section, refer to
[1] in References.

When you select MinWordLengths, the filter section word lengths are
automatically set to the minimum number of bits possible in a valid CIC
interpolator. mfilt.cicinterp computes the wordlength for each section so the
roundoff noise introduced by all sections is less than the roundoff noise
introduced by the quantization at the output.

References [1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation
and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, "Hogenauer CIC Filters," in Digital Signal Processing
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172

[3] harris, fredric j, Multirate Signal Processing for Communication Systems,
Prentice-Hall PTR, 2004 , pp. 343

InputFormat

Comb Portion Integrator Portion

OutputFormat

Cast1: [WLPS(1) inFL] Cast2: [WLPS(2) inFL]
Cast3: [WLPS(3) inFL] Cast4: [WLPS(4) inFL]

OutputFormat: [OutWL inFL+(OutWL−WLPS(2N))]

1
Output

R CastCast4Cast3Cast2Cast1 z
−1

z
−1

z
−(M)

z
−(M)

1
Input

mfilt.fftfirinterp

8-876

8mfilt.fftfirinterpPurpose Construct an overlap-add FIR polyphase interpolator filter object

Syntax hm = mfilt.fftfirinterp(l,num,bl)

Description hm = mfilt.fftfirinterp(l,num,bl) returns a discrete-time FIR filter
object that uses the overlap-add method for filtering input data.

The number of FFT points is given by [bl+ceil(length(num)/l)-1]. It is to
your advantage to choose bl such that the number of FFT points is a power of
two—using powers of two can improve the efficiency of the FFT and the
associated interpolation process.

Input Arguments
The following table describes the input arguments for creating hm.

mfilt.fftfirinterp Object Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for

Input Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must be
an integer. When you do not specify a value for l it
defaults to 2.

num Vector containing the coefficients of the FIR lowpass
filter used for interpolation. When num is not provided
as an input, fftfirinterp uses a lowpass Nyquist
filter with gain equal to l and cutoff frequency equal to
π/l by default.

bl Length of each block of input data used in the filtering.
bl must be an integer. When you omit input bl, it
defaults to 100

mfilt.fftfirinterp

8-877

creating mfilt.fftfirinterp objects. The next table describes each property
for an mfilt.fftfirinterp filter object.

Name Values Description

FilterStructure Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.

Numerator Vector containing the
coefficients of the FIR lowpass
filter used for interpolation.

InterpolationFactor Interpolation factor for the filter.
It specifies the amount to
increase the input sampling
rate. It must be an integer.

BlockLength Length of each block of input
data used in the filtering.

PersistentMemory false or
true

Determines whether the filter
states are restored to their
starting values for each filtering
operation. The starting values
are the values in place when you
create the filter if you have not
changed the filter since you
constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.

States Stored conditions for the filter,
including values for the
interpolator states.

mfilt.fftfirinterp

8-878

Examples Interpolation by a factor of 8. Notice that this object removes the spectral
replicas in the signal after interpolation.

l = 8; % Interpolation factor
hm = mfilt.fftfirinterp(l); % We use the default filter
n = 8192; % Number of points
hm.blocklength = n; % Set block length to number of points
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:n-1; % 0.1858 secs of data
x = sin(2*pi*n*22e3/fs); % Original signal, sinusoid at 22 kHz
y = filter(hm,x); % Interpolated sinusoid
xu = l*upsample(x,8); % Upsample to compare--the spectrum

% does not change
[px,f]=periodogram(xu,[],65536,l*fs);% Power spectrum of original

% signal
[py,f]=periodogram(y,[],65536,l*fs); % Power spectrum of

% interpolated signal
plot(f,10*log10(([fs*px,l*fs*py])))
legend('22 kHz sinusoid sampled at 44.1 kHz',...
'22 kHz sinusoid sampled at 352.8 kHz')
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');

To see the results of the example, look at this figure.

mfilt.fftfirinterp

8-879

See Also mfilt.firinterp, mfilt.holdinterp, mfilt.linearinterp,
mfilt.firfracinterp, mfilt.cicinterp

0 2 4 6 8 10 12 14 16 18

x 10
4

−60

−50

−40

−30

−20

−10

0

10

20

30

40

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

22 KHz sinusoid sampled at 44.1 KHz
22 KHz sinusoid sampled at 352.8 KHz

mfilt.firdecim

8-880

8mfilt.firdecimPurpose Construct direct-form FIR polyphase decimator filter

Syntax hm = mfilt.firdecim(m)
hm = mfilt.firdecim(m,num)

Description hm = mfilt.firdecim(m) returns a direct-form FIR polyphase decimator
object hm with a decimation factor of m. A lowpass Nyquist filter of gain 1 and
cutoff frequency of π/m is designed by default. This filter allows some aliasing
in the transition band but it very efficient because the first polyphase
component is a pure delay.

hm = mfilt.firdecim(m,num) uses the coefficients specified by num for the
decimation filter. This lets you specify more completely the FIR filter to use for
the decimator.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.

mfilt.firdecim

8-881

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.firdecim objects. The next table describes each property for an
mfilt.firdecim filter object.

Input Argument Description

m Decimation factor for the filter. m specifies the amount
to reduce the sampling rate of the input signal. It must
be an integer. When you do not specify a value for m it
defaults to 2.

num Vector containing the coefficients of the FIR lowpass
filter used for decimation. When num is not provided as
an input, mfilt.firdecim constructs a lowpass Nyquist
filter with gain of 1 and cutoff frequency equal to π/m
by default. The default length for the Nyquist filter is
24*m. Therefore, each polyphase filter component has
length 24.

Name Values Description

Arithmetic Double,
single,
fixed

Defines the arithmetic the filter
uses. Gives you the options
double, single, and fixed. In
short, this property defines the
operation mode for your filter.

DecimationFactor Integer Decimation factor for the filter.
m specifies the amount to reduce
the sampling rate of the input
signal. It must be an integer.

mfilt.firdecim

8-882

FilterStructure String Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.
Describes the signal flow for the
filter object.

InputOffset Integers Contains a value derived from
the number of input samples
and the decimation factor—
InputOffset = mod(length(nx),m)

where nx is the number of input
samples that have been
processed so far and m is the
decimation factor.

Numerator Vector Vector containing the
coefficients of the FIR lowpass
filter used for decimation.

PersistentMemory false, true Determines whether the filter
states get restored to zeros for
each filtering operation. The
starting values are the values in
place when you create the filter
if you have not changed the filter
since you constructed it.
PersistentMemory set to false
returns filter states to the
default values after filtering.
States that the filter does not
change are not affected. Setting
this to true allows you to modify
the States, InputOffset, and
PolyphaseAccum properties.

Name Values Description

mfilt.firdecim

8-883

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation
of the filter. You see one or more of these properties when you set Arithmetic
to fixed. Notice that some of the properties have different default values when
they refer fixed point filters. One example is the property PolyphaseAccum
which stores data as doubles when you use your filter in double-precision mode,
but stores a fi object in fixed-point mode.

Note The table lists all of the properties that a fixed-point filter can have.
Many of the properties listed are dynamic, meaning they exist only in
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

PolyphaseAccum 0 in
double,
single, or
fixed for
the
different
filter
arithmetic
settings.

Differentiates between the
adders in the filter that work in
full precision at all times
(PolyphaseAccum) and the
adders in the filter that the user
controls and that may introduce
quantization effects when
FilterInternals is set to
SpecifyPrecision.

States Double,
single, or
fi
matching
the filter
arithmetic
setting.

This property contains the filter
states before, during, and after
filter operations. States act as
filter memory between filtering
runs or sessions. Double is the
default setting for floating-point
filters in double arithmetic.

Name Values Description

mfilt.firdecim

8-884

For further information about the properties of this filter or any mfilt object,
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits
[32]

Specifies the fraction length used to
interpret data output by the accumulator.
This is a property of FIR filters.

AccumWordLength Any integer
number of bits [39]

Sets the word length used to store data in
the accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify
other filter properties to customize your
fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to
represent filter coefficients without
overflowing. Turning this off by setting the
value to false enables you to change the
NumFracLength property value to specify the
precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

mfilt.firdecim

8-885

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically
sets the output word and fraction lengths,
product word and fraction lengths, and the
accumulator word and fraction lengths to
maintain the best precision results during
filtering. The default value, FullPrecision,
sets automatic word and fraction length
determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so
you can set your own word and fraction
lengths for them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits[16]

Specifies the word length applied to
interpret input data.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the
filter output data. You can change the value
of OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the
output data. You make this property editable
by setting FilterInternals to
SpecifyPrecision.

Name Values Description

mfilt.firdecim

8-886

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose
from either saturate (limit the output to the
largest positive or negative representable
value) or wrap (set overflowing values to the
nearest representable value using modular
arithmetic.) The choice you make affects
only the accumulator and output arithmetic.
Coefficient and input arithmetic always
saturates. Finally, products never overflow—
they maintain full precision.

Name Values Description

mfilt.firdecim

8-887

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize
numeric values when the values lie between
representable values for the data format
(word and fraction lengths).

• convergent—Round up to the next
allowable quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if
the least significant bit (after rounding)
would be set to 1.

• fix—Round negative numbers up and
positive numbers down to the next
allowable quantized value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are
halfway between the two nearest allowable
quantized values are rounded up.

The choice you make affects only the
accumulator and output arithmetic.
Coefficient and input arithmetic always
round. Finally, products never overflow—
they maintain full precision.

Name Values Description

mfilt.firdecim

8-888

Filter Structure To provide decimation, mfilt.firdecim uses the following structure. At the
input you see a commutator that operates counterclockwise, moving from
position 0 to position 2, position 1, and back to position 0 as input samples enter
the filter.

The figure below details the signal flow for the direct form FIR filter
implemented by mfilt.firdecim.

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object This property contains the filter states
before, during, and after filter operations.
States act as filter memory between filtering
runs or sessions. Notice that the states use
fi objects, with the associated properties
from those objects. For details, refer to
fixed-point objects in your Fixed-Point
Toolbox documentation or in the online Help
system. For information about the ordering
of the states, refer to the filter structure
section.

Name Values Description

mfilt.firdecim

8-889

Notice the order of the states in the filter flow diagram. States 1 through 9
appear in the diagram above each delay element. State 1 applies to the first
delay element in phase 2. State 2 applies to the first delay element in phase 1.
State 3 applies to the first delay element in phase 0. State 4 applies to the
second delay in phase 2, and so on. When you provide the states for the filter
as a vector to the States property, the above description explains how the filter
assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:9];

Examples Convert an input signal from 44.1 kHz to 22.05 kHz using decimation by
a factor of 2. In the figure that appears after the example code, you see the
results of the decimation.

m = 2; % Decimation factor.
hm = mfilt.firdecim(m); % Use the default filter.
fs = 44.1e3; % Original sample freq: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long

% signal.

1

4
h(9)

3
h(8)

3
h(7)

3
h(6)

2
h(5)

2
h(4)

2
h(3)

1
h(2)

4
h(11)

4
h(10)

1
h(1)

1
h(0)

emu

Counterclockwise
commutator

intialized at phase 0

z
−1

9

z
−1

8

z
−1

7

z
−1

6

z
−1

5

z
−1

4

z
−1

3

z
−1

2

z
−1

1

1

Phase 0

Phase1

Phase2

PolyphaseAccum

PolyphaseAccum

mfilt.firdecim

8-890

x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1kHz.
y = filter(hm,x); % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.
hold on % Plot decimated signal (22.05 kHz)

% in red.
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

See Also mfilt.firtdecim, mfilt.firfracdecim, mfilt.cicdecim

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Decimated Signal

mfilt.firfracdecim

8-891

8mfilt.firfracdecimPurpose Construct direct-form FIR polyphase fractional decimator filter object

Syntax hm = mfilt.firfracdecim(l,m,num)

Description hm = mfilt.firfracdecim(l,m,num) returns a direct-form FIR polyphase
fractional decimator. Input argument l is the interpolation factor. l must be an
integer. When you omit l in the calling syntax, it defaults to 2. m is the
decimation factor. It must be an integer. If not specified, it defaults to l+1.

num is a vector containing the coefficients of the FIR lowpass filter used for
decimation. If omitted, a lowpass Nyquist filter of gain l and cutoff frequency
of π/max(l,m) is used by default.

By specifying both a decimation factor and an interpolation factor, you can
decimate your input signal by noninteger amounts. The fractional decimator
first interpolates the input, then decimates to result in an output signal whose
sample rate is l/m of the input rate. By default, the resulting decimation factor
is 3/2 when you do not provide l and m in the calling syntax. Specify l smaller
than m for proper decimation.

Input Arguments
The following table describes the input arguments for creating hm.

Input Argument Description

l Interpolation factor for the filter. It must be an integer.
When you do not specify a value for l it defaults to 2.

num Vector containing the coefficients of the FIR lowpass
filter used for interpolation. When num is not provided
as an input, firfracdecim uses a lowpass Nyquist
filter with gain equal to l and cutoff frequency equal to
π/max(l,m) by default.

m Decimation factor for the filter. m specifies the amount
to reduce the sampling rate of the input signal. It must
be an integer. When you do not specify a value for m it
defaults to l + 1.

mfilt.firfracdecim

8-892

mfilt.firfracdecim Object Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.firfracdecim objects. The next table describes each property
for an mfilt.firfracdecim filter object.

Name Values Description

FilterStructure String Reports the type of filter object,
such as a decimator or fractional
decimator. You cannot set this
property—it is always read only
and results from your choice of
mfilt object.

Numerator Vector Vector containing the
coefficients of the FIR lowpass
filter used for interpolation.

RateChangeFactors [l,m] Reports the decimation (m) and
interpolation (l) factors for the
filter object. Combining these
factors results in the final rate
change for the signal.

mfilt.firfracdecim

8-893

PersistentMemory false or
true

Determines whether the filter
states are restored to their
starting values for each filtering
operation. The starting values
are the values in place when you
create the filter if you have not
changed the filter since you
constructed it.
PersistentMemory returns to
zero any state that the filter
changes during processing.
States that the filter does not
change are not affected.

States Matrix Stored conditions for the delays
between each interpolator
phase, the filter states, and the
states at the output of each
phase in the filter.

The number of states is
(lh-1)*m+(l-1)*(lo+mo) where lh
is the length of each subfilter,
and l and m are the interpolation
and decimation factors. lo and
mo, the input and output delays
between each interpolation
phase, are integers from Euclid's
theorem such that lo*l-mo*m = -1
(refer to the reference for more
details). Use euclidfactors to
get lo and mo for an
mfilt.firfracdecim object

Name Values Description

mfilt.firfracdecim

8-894

Example To demonstrate firfracdecim, perform a fractional decimation by a factor of
2/3. This is one way to downsample a 48 kHz signal to 32 kHz, commonly done
in audio processing.

l = 2; m = 3; % Interpolation/decimation factors.
hm = mfilt.firfracdecim(l,m); % We use the default
fs = 48e3; % Original sample freq: 48 kHz.
n = 0:10239; % 10240 samples, 0.213 second long

% signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 9408 samples, still 0.213 seconds
stem(n(1:49)/fs,x(1:49)); hold on; % Plot original signal sampled

% at 48 kHz
stem(n(1:32)/(fs*l/m),y(13:44),'r','filled') % Plot decimated

% signal at 32 kHz
xlabel('Time (sec)');

As shown, the plot clearly demonstrates the reduced sampling frequency of 32
kHz.

mfilt.firfracdecim

8-895

See Also mfilt.firsrc, mfilt.firfracinterp, mfilt.firinterp, mfilt.firdecim

References Fliege, N.J., Multirate Digital Signal Processing, John Wiley & Sons, Ltd.,
1994

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

mfilt.firfracinterp

8-896

8mfilt.firfracinterpPurpose Construct direct-form FIR polyphase fractional interpolator filter object

Syntax hm = mfilt.firfracinterp(l,m,num)

Description hm = mfilt.firfracinterp(l,m,num) returns a direct-form FIR polyphase
fractional interpolator mfilt object. l is the interpolation factor. It must be an
integer. If not specified, l defaults to 3.

m is the decimation factor. Like l, it must be an integer. If you do not specify m
in the calling syntax, it defaults to 1. If you also do not specify a value for l, m
defaults to 2.

num is a vector containing the coefficients of the FIR lowpass filter used for
interpolation. If omitted, a lowpass Nyquist filter of gain l and cutoff frequency
of π/max(l,m) is used by default.

By specifying both a decimation factor and an interpolation factor, you can
interpolate your input signal by noninteger amounts. The fractional
interpolator first interpolates the input, then decimates to result in an output
signal whose sample rate is l/m of the input rate. For proper interpolation, you
specify l to be greater than m. By default, the resulting interpolation factor is
3/2 when you do not provide l and m in the calling syntax.

Input Arguments
The following table describes the input arguments for creating hm.

Input Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must be
an integer. When you do not specify a value for l it
defaults to 3.

mfilt.firfracinterp

8-897

mfilt.firfracinterp Object Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.firfracinterp objects. The next table describes each property
for an mfilt.firfracinterp filter object.

num Vector containing the coefficients of the FIR lowpass
filter used for interpolation. When num is not provided
as an input, firfracinterp uses a lowpass Nyquist
filter with gain equal to l and cutoff frequency equal to
π/max(l,m) by default.

m Decimation factor for the filter. m specifies the amount
to reduce the sampling rate of the input signal. It must
be an integer. When you do not specify a value for m it
defaults to 1. When you do not specify l as well, m
defaults to 2.

Name Values Description

FilterStructure Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.

Numerator Vector containing the
coefficients of the FIR lowpass
filter used for interpolation.

RateChangeFactors [l,m] Reports the decimation (m) and
interpolation (l) factors for the
filter object. Combining these
factors results in the final rate
change for the signal.

Input Argument Description

mfilt.firfracinterp

8-898

Examples To convert a signal from 32 kHz to 48 kHz requires fractional interpolation.
This example uses the mfilt.firfracinterp object to upsample an input
signal. Setting l = 3 and m = 2 returns the same mfilt object as the default
mfilt.firfracinterp object.

l = 3; m = 2; % Interpolation/decimation factors.
hm = mfilt.firfracinterp(l,m); % We use the default filter
fs = 32e3; % Original sample freq: 32 kHz.
n = 0:6799; % 6800 samples, 0.212 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10200 samples, still 0.212 seconds
stem(n(1:32)/fs,x(1:32),'filled') % Plot original sampled at

% 32 kHz
hold on;
% Plot fractionally interpolated signal (48 kHz) in red
stem(n(1:48)/(fs*l/m),y(20:67),'r')
xlabel('Time (sec)');ylabel('Signal Value')

PersistentMemory false or
true

Determines whether the filter
states are restored to their
starting values for each filtering
operation. The starting values
are the values in place when you
create the filter if you have not
changed the filter since you
constructed it.
PersistentMemory returns to
the default values any state that
the filter changes during
processing. States that the filter
does not change are not affected.

States Matrix Stored conditions for the filter,
including values for the
interpolator and comb states.

Name Values Description

mfilt.firfracinterp

8-899

Having the ability to interpolate by fractional amounts lets us raise the
sampling rate from 32 to 48 kHz, something you cannot do with integral
interpolators. Both signals appear in the following figure.

See Also mfilt.firsrc, mfilt.firfracdecim, mfilt.firinterp, mfilt.firdecim

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

mfilt.firinterp

8-900

8mfilt.firinterpPurpose Construct FIR filter-based interpolator

Syntax hm = mfilt.firinterp(l)
hm = mfilt.firinterp(l,num)

Description hm = mfilt.firinterp(l) returns an FIR-based interpolator object hm with
an interpolation factor of l. A lowpass Nyquist filter of gain l and cutoff
frequency of π/l is the default if you do not include l as an input.

hm = mfilt.firinterp(l,num) uses the coefficients specified by num for the
numerator coefficients of the interpolation filter.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.

Input Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must be
an integer. When you do not specify a value for l it
defaults to 2.

num Vector containing the coefficients of the FIR lowpass
filter used for interpolation. When num is not provided
as an input, firinterp uses a lowpass Nyquist filter
with gain equal to l and cutoff frequency equal to π/l
by default. The default length for the Nyquist filter is
24*l. Therefore, each polyphase filter component has
length 24.

mfilt.firinterp

8-901

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.firinterp objects. The next table describes each property for
an mfilt.firinterp filter object.

Name Values Description

Arithmetic Double,
single,
fixed

Defines the arithmetic the filter
uses. Gives you the options
double, single, and fixed. In
short, this property defines the
operation mode for your filter.

FilterStructure String Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.

Describes the signal flow for the
filter object.

InterpolationFactor Integer Interpolation factor for the filter.
l specifies the amount to
increase the sampling rate of the
input signal. It must be an
integer.

Numerator Vector Vector containing the
coefficients of the FIR lowpass
filter used for decimation.

mfilt.firinterp

8-902

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation
of the mfilt.firinterp filter.

Note The table lists all of the properties that a fixed-point filter can have.
Many of the properties listed are dynamic, meaning they exist only in
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

PersistentMemory [false],
true

Determines whether the filter
states get restored to zeros for
each filtering operation. The
starting values are the values in
place when you create the filter
if you have not changed the filter
since you constructed it.
PersistentMemory set to false
returns filter states to the
default values after filtering.
States that the filter does not
change are not affected. Setting
this to true allows you to modify
the States property.

States Double,
single,
matching
the filter
arithmetic
setting.

Contains the filter states before,
during, and after filter
operations. States act as filter
memory between filtering runs
or sessions.

Name Values Description

mfilt.firinterp

8-903

For further information about the properties of this filter or any mfilt object,
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits.
[32]

Specifies the fraction length used to interpret
data output by the accumulator. This is a
property of FIR filters and lattice filters. IIR
filters have two similar properties—
DenAccumFracLength and
NumAccumFracLength—that let you set the
precision for numerator and denominator
operations separately.

AccumWordLength Any integer
number of bits[39]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

mfilt.firinterp

8-904

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

mfilt.firinterp

8-905

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic.)
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

Name Values Description

mfilt.firinterp

8-906

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

mfilt.firinterp

8-907

Filter Structure To provide interpolation, mfilt.firinterp uses the following structure.

The figure below details the signal flow for the direct form FIR filter
implemented by mfilt.firinterp. In the figure, the delay line updates happen
at the lower input rate. The remainder of the filter— the sums and
coefficients—operate at the higher output rate.

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object to match
the filter
arithmetic setting.

Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system.

Name Values Description

mfilt.firinterp

8-908

Examples This example uses mfilt.firinterp to double the sample rate of a 22.05 kHz
input signal. The output signal ends up at 44.1 kHz. Although l is set explicitly
to 2, this represents the default interpolation value for mfilt.firinterp
objects.

l = 2; % Interpolation factor.
hm = mfilt.firinterp(l); % Use the default filter.
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % 5120 samples, 0.232s long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.
y = filter(hm,x); % 10240 samples, still 0.232s.
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at

% 22.05 kHz.
hold on;

1

High Output Rate

K

b(7):b(8):b(9)

K

b(4):b(5):b(6)

K

b(10):b(11):b(12)

K

b(1):b(2):b(3)

z
−1

z
−1

z
−1

1

Low Input Rate

mfilt.firinterp

8-909

% Plot interpolated signal (44.1 kHz) in red
stem(n(1:44)/(fs*l),y(25:68),'r')
xlabel('Time (sec)');ylabel('Signal Value')

With interpolation by 2, the resulting signal perfectly matches the original, but
with twice as many samples—one between each original sample, as shown in
the following figure.

See Also mfilt.holdinterp, mfilt.linearinterp, mfilt.fftfirinterp,
mfilt.firfracinterp, mfilt.cicinterp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.5

0

0.5

1

1.5

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Interpolated Signal

mfilt.firsrc

8-910

8mfilt.firsrcPurpose Construct direct-form FIR polyphase sample rate converters

Syntax hm = mfilt.firsrc(l,m,num)

Description hm = mfilt.firsrc(l,m,num) returns a direct-form FIR polyphase sample
rate converter. l specifies the interpolation factor. It must be an integer and
when omitted in the calling syntax, it defaults to 2.

m is the decimation factor. It must be an integer. If not specified, m defaults to 1.
If l is also not specified, m defaults to 3 and the overall rate change factor is 2/3.

You specify the coefficients of the FIR lowpass filter used for sample rate
conversion in num. If omitted, a lowpass Nyquist filter with gain l and cutoff
frequency of π/max(l,m) is the default.

Combining an interpolation factor and a decimation factor lets you use
mfilt.firsrc to perform fractional interpolation or decimation on an input
signal. Using an mfilt.firsrc object applies a rate change factor defined by
l/m to the input signal. For proper rate changing to occur, l and m must be
relatively prime—meaning the ratio l/m cannot be reduced to a ratio of smaller
integers.

When you are doing sample-rate conversion with large values of l or m, such as
l or m greater than 20, using the mfilt.firsrc structure is the most effective
approach. Other possible fractional rate change structures, such as
mfilt.firfracinterp (where l > m) or mfilt.firfracdecim (where l < m)
may have prohibitively large memory requirements for applications that
require large rate changes.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

mfilt.firsrc

8-911

Input Arguments
The following table describes the input arguments for creating hm.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.firsrc objects. The next table describes each property for an
mfilt.firsrc filter object.

Input Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must be
an integer. When you do not specify a value for l, it
defaults to 2.

num Vector containing the coefficients of the FIR lowpass
filter used for interpolation. When num is not provided
as an input, mfilt.firsrc uses a lowpass Nyquist
filter with gain equal to l and cutoff frequency equal to
π/max(l,m) by default. The default length for the
Nyquist filter is 24*m. Therefore, each polyphase filter
component has length 24.

m Decimation factor for the filter. m specifies the amount
to reduce the sampling rate of the input signal. It must
be an integer. When you do not specify a value for m, it
defaults to 1. When l is unspecified as well, m defaults
to 3.

mfilt.firsrc

8-912

Name Values Description

Arithmetic [Double],
single,
fixed

Defines the arithmetic the filter
uses. Gives you the options
double, single, and fixed. In
short, this property defines the
operation mode for your filter.

FilterStructure String Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.
Describes the signal flow for the
filter object.

InputOffset Integers Contains a value derived from
the number of input samples
and the decimation factor—
InputOffset = mod(length(nx),m)

where nx is the number of input
samples and m is the decimation
factor.

Numerator Vector Vector containing the
coefficients of the FIR lowpass
filter used for decimation.

mfilt.firsrc

8-913

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation
of the mfilt.firsrc filter.

Note The table lists all of the properties that a fixed-point filter can have.
Many of the properties listed are dynamic, meaning they exist only in
response to the settings of other properties.

PersistentMemory false, true Determines whether the filter
states get restored to zeros for
each filtering operation. The
starting values are the values in
place when you create the filter
if you have not changed the filter
since you constructed it.
PersistentMemory set to false
returns filter states to the
default values after filtering.
States that the filter does not
change are not affected. Setting
this to true allows you to modify
the States, InputOffset, and
PolyphaseAccum properties.

RateChangeFactors Positive
integers.
[2 3]

Specifies the interpolation and
decimation factors [l m] (the
rate change factors) for
changing the input sample rate
by nonintegral amounts.

States Double,
single,
matching
the filter
arithmetic
setting.

Contains the filter states before,
during, and after filter
operations. States act as filter
memory between filtering runs
or sessions.

Name Values Description

mfilt.firsrc

8-914

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object,
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits.
[32]

Specifies the fraction length used to interpret
data output by the accumulator. This is a
property of FIR filters.

AccumWordLength Any integer
number of bits [39]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

mfilt.firsrc

8-915

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

mfilt.firsrc

8-916

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic.)
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

RateChangeFactors Positive integers
[2 3]

Specifies the interpolation and decimation
factors [l m] (the rate change factors) for
changing the input sample rate by nonintegral
amounts.

Name Values Description

mfilt.firsrc

8-917

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

mfilt.firsrc

8-918

Examples This is an example of a common audio rate change process—changing the
sample rate of a high end audio (48 kHz) signal to the compact disc sample rate
(44.1 kHz). This conversion requires a rate change factor of 0.91875, or l = 147
and m = 160.

l = 147; m = 160; % Interpolation/decimation factors.
hm = mfilt.firsrc(l,m); % Use the default FIR filter.
fs = 48e3; % Original sample freq: 48 kHz.
n = 0:10239; % 10240 samples, 0.213 seconds long.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.
y = filter(hm,x); % 9408 samples, still 0.213 seconds.
stem(n(1:49)/fs,x(1:49)) % Plot original sampled at 48 kHz.
hold on

% Plot fractionally decimated signal (44.1 kHz) in red
stem(n(1:45)/(fs*l/m),y(13:57),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

Fractional decimation provides you the flexibility to pick and choose the
sample rates you want by carefully selecting l and m, the interpolation and
decimation factors, that result in the final fractional decimation. The following
figure shows the signal after applying the rate change filter hm to the original
signal.

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system. For information about the
ordering of the states, refer to the filter structure
section.

Name Values Description

mfilt.firsrc

8-919

See Also mfilt.firfracinterp, mfilt.firfracdecim, mfilt.firinterp,
mfilt.firdecim

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Signal After Rate Change

mfilt.firtdecim

8-920

8mfilt.firtdecimPurpose Construct direct-form transposed FIR filter

Syntax hm = mfilt.firtdecim(m)
hm = mfilt.firtdecim(m,num)

Description hm = mfilt.firtdecim(m) returns a polyphase decimator mfilt object hm
based on a direct-form transposed FIR structure with a decimation factor of m.
A lowpass Nyquist filter of gain 1 and cutoff frequency of π/m is the default.

hm = mfilt.firtdecim(m,num) uses the coefficients specified by num for the
decimation filter. num is a vector containing the coefficients of the transposed
FIR lowpass filter used for decimation. If omitted, a lowpass Nyquist filter with
gain of 1 and cutoff frequency of π/m is the default.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.

mfilt.firtdecim

8-921

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.firtdecim objects. The next table describes each property for
an mfilt.firtdecim filter object.

Input Argument Description

num Vector containing the coefficients of the FIR lowpass
filter used for interpolation. When num is not provided
as an input, firtdecim uses a lowpass Nyquist filter
with gain equal to l and cutoff frequency equal to π/m
by default. The default length for the Nyquist filter is
24*m. Therefore, each polyphase filter component has
length 24.

m Decimation factor for the filter. m specifies the amount
to reduce the sampling rate of the input signal. It must
be an integer. When you do not specify a value for m it
defaults to 2.

Name Values Description

Arithmetic Double,
single,
fixed

Specifies the arithmetic the
filter uses to process data while
filtering.

DecimationFactor Integer Decimation factor for the filter.
m specifies the amount to reduce
the sampling rate of the input
signal. It must be an integer.

mfilt.firtdecim

8-922

FilterStructure String Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.
Also describes the signal flow for
the filter object.

InputOffset Integers Contains a value derived from
the number of input samples
and the decimation factor—
InputOffset = mod(length(nx),m)

where nx is the number of input
samples that have been
processed so far and m is the
decimation factor.

Numerator Vector Vector containing the
coefficients of the FIR lowpass
filter used for decimation.

PersistentMemory [false],
true

Determines whether the filter
states get restored to zeros for
each filtering operation. The
starting values are the values in
place when you create the filter
if you have not changed the filter
since you constructed it.
PersistentMemory set to false
returns filter states to the
default values after filtering.
States that the filter does not
change are not affected. Setting
this to true allows you to modify
the States, InputOffset, and
PolyphaseAccum properties.

Name Values Description

mfilt.firtdecim

8-923

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation
of the mfilt.firtdecim filter.

Note The table lists all of the properties that a fixed-point filter can have.
Many of the properties listed are dynamic, meaning they exist only in
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

PolyphaseAccum Double,
single [0]

The idea behind having both
PolyphaseAccum and Accum is to
differentiate between the adders
in the filter that work in full
precision at all times
(PolyphaseAccum) from the
adders in the filter that the user
controls and that may introduce
quantization effects when
FilterInternals is set to
SpecifyPrecision.

States Double,
single
matching
the filter
arithmetic
setting.

Contains the filter states before,
during, and after filter
operations. States act as filter
memory between filtering runs
or sessions.

Name Values Description

mfilt.firtdecim

8-924

For further information about the properties of this filter or any mfilt object,
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits.
[32]

Specifies the fraction length used to interpret
data output by the accumulator. This is a
property of FIR filters and lattice filters. IIR
filters have two similar properties—
DenAccumFracLength and NumAccumFracLength—
that let you set the precision for numerator and
denominator operations separately.

AccumWordLength Any integer
number of bits [39]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

mfilt.firtdecim

8-925

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[32]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[39]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

mfilt.firtdecim

8-926

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic.))
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

PolyphaseAccum fi object with zeros
to start

Differentiates between the adders in the filter
that work in full precision at all times
(PolyphaseAccum) and the adders in the filter
that the user controls and that may introduce
quantization effects when FilterInternals is
set to SpecifyPrecision.

Name Values Description

mfilt.firtdecim

8-927

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

mfilt.firtdecim

8-928

Filter Structure To provide sample rate changes, mfilt.firtdecim uses the following
structure. At the input you see a commutator that operates counterclockwise,
moving from position 0 to position 2, position 1, and back to position 0 as input
samples enter the filter. To keep track of the position of the commutator, the
mfilt object uses the property InputOffset which reports the current position
of the commutator in the filter.

The figure below details the signal flow for the direct form FIR filter
implemented by mfilt.firtdecim.

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system. For information about the
ordering of the states, refer to the filter structure
section.

Name Values Description

mfilt.firtdecim

8-929

Notice the order of the states in the filter flow diagram. States 1 through 3
appear in the diagram below each delay element. State 1 applies to the third
delay element in phase 2. State 2 applies to the second delay element in phase
2. State 3 applies to the first delay element in phase 2. When you provide the
states for the filter as a vector to the States property, the above description
explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:3];

Examples Demonstrate decimating an input signal by a factor of 2, in this case converting
from 44.1 kHz down to 22.05 kHz. In the figure shown following the code, you
see the results of decimating the signal.

m = 2; % Decimation factor.
hm = mfilt.firtdecim(m); % Use the default filter coeffs.
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1 kHz.
y = filter(hm,x); % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.
hold on % Plot decimated signal (22.05 kHz) in red

1

k
h(9)

k
h(8)

k
h(7)

k
h(6)

k
h(5)

k
h(4)

k
h(3)

k
h(2)

k
h(11)

k
h(10)

k
h(1)

k
h(0)

Counterclockwise
commutator

Intialized at phase 0

z
−1

3

z
−1

2

z
−1

1

1

Phase 0

Phase 1

Phase 2

PolyphaseAccum

PolyphaseAccum PolyphaseAccum PolyphaseAccum

mfilt.firtdecim

8-930

stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

See Also mfilt.firdecim, mfilt.firfracdecim, mfilt.cicdecim

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

Original Signal
Interpolated Signal

mfilt.holdinterp

8-931

8mfilt.holdinterpPurpose Construct FIR hold interpolator

Syntax hm = mfilt.holdinterp(l)

Description hm = mfilt.holdinterp(l) returns the object hm that represents a hold
interpolator with the interpolation factor l. To work, l must be an integer.
When you do not include l in the calling syntax, it defaults to 2. To perform
interpolation by noninteger amounts, use one of the fractional interpolator
objects, such as mfilt.firsrc or mfilt.firfracinterp.

When you use this hold interpolator, each sample added to the input signal
between existing samples has the value of the most recent sample from the
original signal. Thus you see something like a staircase profile where the
interpolated samples form a plateau between the previous and next original
samples. The example demonstrates this profile clearly. Compare this to the
interpolation process for other interpolators in the toolbox, such as
mfilt.linearinterp.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Input Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must be
an integer. When you do not specify a value for l it
defaults to 2.

mfilt.holdinterp

8-932

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.holdinterp objects. The next table describes each property for
an mfilt.interp filter object.

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation
of the mfilt.holdinterp filter.

Name Values Description

Arithmetic Double,
single,
fixed

Specifies the arithmetic the
filter uses to process data while
filtering.

FilterStructure String Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.

InterpolationFactor Integer Interpolation factor for the filter.
l specifies the amount to
increase the input sampling
rate. It must be an integer.

PersistentMemory 'false' or
'true'

Determines whether the filter
states are restored to zero for
each filtering operation.

States Double or
single
array

Filter states. states defaults to
a vector of zeros that has length
equal to nstates(hm). Always
available, but visible in the
display only when
PersistentMemory is true.

mfilt.holdinterp

8-933

Note The table lists all of the properties that a fixed-point filter can have.
Many of the properties listed are dynamic, meaning they exist only in
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object,
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

Arithmetic Double,
single,
fixed

Specifies the arithmetic the
filter uses to process data while
filtering.

FilterStructure String Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.

InputFracLength Any
positive or
negative
integer
number of
bits [15]

Specifies the fraction length the
filter uses to interpret input
data.

InputWordLength Any
integer
number of
bits [16]

Specifies the word length
applied to interpret input data.

mfilt.holdinterp

8-934

Filter Structure Hold interpolators do not have structures or filter coefficients.

Examples To see the effects of hold-based interpolation, interpolate an input sine wave
from 22.05 to 44.1 kHz. Note that each added sample retains the value of the
most recent original sample.

l = 2; % Interpolation factor
hm = mfilt.holdinterp(l);
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at

% 22.05 kHz

InterpolationFactor Integer Interpolation factor for the filter.
l specifies the amount to
increase the input sampling
rate. It must be an integer.

PersistentMemory 'false' or
'true'

Determine whether the filter
states get restored to zero for
each filtering operation

States fi object Contains the filter states before,
during, and after filter
operations. For hold
interpolators, the states are
always empty—hold
interpolators do not have states.
Notice that the states use fi
objects, with the associated
properties from those objects.
For details, refer to fixed-point
objects in your Fixed-Point
Toolbox documentation or in the
online Help system.

Name Values Description

mfilt.holdinterp

8-935

hold on % Plot interpolated signal (44.1 kHz)
in red
stem(n(1:44)/(fs*l),y(1:44),'r')
xlabel('Time (sec)');ylabel('Signal Value')

The following figure shows clearly the step nature of the signal that comes from
interpolating the signal using the hold algorithm approach. Compare the
output to the linear interpolation used in mfilt.linearinterp.

See Also mfilt.linearinterp, mfilt.firinterp, mfilt.firfracinterp,
mfilt.cicinterp

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

mfilt.iirdecim

8-936

8mfilt.iirdecimPurpose Construct IIR decimator filter object

Syntax hm = mfilt.iirdecim(c1,c2,...)

Description hm = mfilt.iirdecim(c1,c2,...) constructs an IIR decimator filter given
the coefficients specified in the cell arrays c1, c2, and so on. The resulting IIR
decimator is a polyphase IIR filter where each phase is a cascade allpass IIR
filter.

Each cell array ci contains a set of vectors representing a cascade of allpass
sections. Each element in one cell array is one section. For more information
about the contents of each cell array, refer to dfilt.cascadeallpass. The
contents of the cell arrays are the same for both filter constructors and
mfilt.iirdecim interprets them same way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell array—if
one of the cell arrays ci contains only one vector, and that vector comprises
a series of 0s and one element equal to 1, that cell array represents
a dfilt.delay section with latency equal to the number of zeros, rather than
a dfilt.cascadeallpass section. This exception case occurs with quasi-linear
phase IIR decimators.

Usually you do not construct IIR decimators explicitly. Instead, you obtain an
IIR decimator filter as a result of designing a halfband decimator. The first
example below illustrates this case.

Examples Design an elliptic halfband decimator with a decimation factor of 2. Notice that
the example specifies the optional sampling frequency argument.

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 80; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

d contains the specifications for a decimator defined by tw, ast, m, and fs.

Use the specification object d to perform an actual filter design. hm is an
mfilt.iirdecim filter object.

hm = design(d,'ellip','filterstructure','iirdecim');
realizemdl(hm) % Requires Simulink to build model for filter.

mfilt.iirdecim

8-937

Designing a linear phase decimator is similar to the previous example. In this
case, design a halfband linear phase decimator with decimation factor of 2.

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 60; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.

Create a specification object for the decimator.

d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Finally, design the actual filter hm. As designed, hm is an mfilt.iirdecim filter
object.

hm = design(d,'iirlinphase','filterstructure','iirdecim');
realizemdl(hm) % Requires Simulink to visualize the structure.

The filter implementation appears in this model, generated by realizemdl and
Simulink.

Given the design specifications shown here

hm =

 FilterStructure: 'IIR Polyphase Decimator'

 Polyphase: Phase1: Section1: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

 Phase2: Section1: [1.14740498857167 0.409481636102326]

 Section2: [0.751016281415127 0.36048597074495]
 Section3: [0.272921271612044 0.343931116911137]
 Section4: [-0.244601181956782 0.33691092991289]
 Section5: [-0.711317191438094 0.333590883744604]
 Section6: [-1.03562723857273 0.332039064718955]
 Section7: 0.893704991634848
 Section8: -0.575824830892574
 DecimationFactor: 2
PersistentMemory: false

the first phase is a delay section with 0s and a 1 for coefficients and the second
phase is a linear phase decimator, shown in the next models.

mfilt.iirdecim

8-938

Phase 1 model

Phase 2 model

1

Output
z
−141

Input

1

output

−K−

gain2(6)(6)

−K−

gain2(5)(5)

−K−

gain2(4)(4)

−K−

gain2(3)(3)

−K−

gain2(2)(2)

−K−

gain2(1)(1)

−K−

gain1(8)(8)

−K−

gain1(7)(7)

−K−

gain1(6)(6)

−K−

gain1(5)(5)

−K−

gain1(4)(4)

−K−

gain1(3)(3)

−K−

gain1(2)(2)

−K−

gain1(1)(1)

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−11

input

mfilt.iirdecim

8-939

Overall model

See Also dfilt.cascadeallpass, mfilt, mfilt.iirinterp, mfilt.iirwdfdecim

1

Output

input output

Phase2

Input Output

Phase1

0.5

Gain

input

utput1

utput2

DecimCommutator

1

Input

mfilt.iirinterp

8-940

8mfilt.iirinterpPurpose Construct IIR interpolator filter object

Syntax hm = mfilt.iirinterp(c1,c2,...)

Description hm = mfilt.iirinterp(c1,c2,...) constructs an IIR interpolator filter
given the coefficients specified in the cell arrays C1, C2, etc.

The IIR interpolator is a polyphase IIR filter where each phase is a cascade
allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass
sections. Each element in one cell array is one section. For more information
about the contents of each cell array, refer to dfilt.cascadeallpass. The
contents of the cell arrays are the same for both filter constructors and
mfilt.iirdecim interprets them same way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell array—if
one of the cell arrays ci contains only one vector, and that vector comprises
a series of 0s and a unique element equal to 1, that cell array represents
a dfilt.delay section with latency equal to the number of zeros, rather than
a dfilt.cascadeallpass section. This exception case occurs with quasi-linear
phase IIR interpolators.

Usually you do not construct IIR interpolators explicitly. Instead, you obtain an
IIR interpolator filter as a result of designing a halfband interpolator. The first
example below illustrates this case.

Examples Design an elliptic halfband interpolator with a interpolation factor of 2.

tw = 100; % Transition width of filter to design, 100 hz.
ast = 80; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

Specification object d stores the interpolator design specifics. With the details
in d, design the filter, returning hm, an mfilt.iirinterp object. Use hm to
realize the filter if you have Simulink installed.

hm = design(d,'ellip','filterstructure','iirinterp');
realizemdl(hm) % Requires Simulink to build model for filter.

mfilt.iirinterp

8-941

Designing a linear phase halfband interpolator follows the same pattern.

tw = 100; % Transition width of filter to design, 100 Hz.
ast= 60; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

fdesign.interpolator returns a specification object that stores the design
features for an interpolator.

Now perform the actual design that results in an mfilt.iirinterp filter, hm.

hm = design(d,'iirlinphase','filterstructure','iirinterp');
realizemdl(hm)

The toolbox creates a Simulink model for hm, shown here. Phase1, Phase2, and
InterpCommutator are all subsystem blocks.

See Also dfilt.cascadeallpass, mfilt, mfilt.iirdecim, mfilt.iirwdfinterp

1

Output

input output

Phase2

Input Output

Phase1 input1

input2

output

InterpCommutator

1

Input

mfilt.iirwdfdecim

8-942

8mfilt.iirwdfdecimPurpose Construct IIR wave digital filter decimator object

Syntax hm = mfilt.iirwdfdecim(c1,c2,...)

Description hm = mfilt.iirwdfdecim(c1,c2,...) constructs an IIR wave digital
decimator given the coefficients specified in the cell arrays c1, c2, and so on.
The IIR decimator hm is a polyphase IIR filter where each phase is a cascade
wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass
sections. Each element in one cell array is one section. For more information
about the contents of each cell array, refer to dfilt.cascadewdfallpass. The
contents of the cell arrays are the same for both filter constructors and
mfilt.iirwdfdecim interprets them same way as mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell array—if
one of the cell arrays ci contains only one vector, and that vector comprises
a series of 0s and one element equal to 1, that cell array represents
a dfilt.delay section with latency equal to the number of zeros, rather than
a dfilt.cascadewdfallpass section. This exception occurs with quasi-linear
phase IIR decimators.

Usually you do not construct IIR wave digital filter decimators explicitly.
Instead, you obtain an IIR wave digital filter decimator as a result of designing
a halfband decimator. The first example below illustrates this case.

Examples Design an elliptic halfband decimator with a decimation factor equal to 2. Both
examples use the iirwdfdecim filter structure (an input argument to the
design method) to design the final decimator.

The first portion of this example generates a filter specification object d that
stores the specifications for the decimator.

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 80; % Stopband attenuation of filter 80 dB.
fs = 2000; % Sampling frequency of the input signal.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Now perform the actual design using d. Filter object hm is an
mfilt.iirwdfdecim filter.

mfilt.iirwdfdecim

8-943

Hm = design(d,'ellip','FilterStructure','iirwdfdecim');
realizemdl(hm) % Requires Simulink to build and visualize the
structure.

Design a linear phase halfband decimator for decimating a signal by a factor
of 2.

tw = 100; % Transition width of filter, 100 Hz.
ast = 60; % Filter stopband attenuation = 80 dB
fs = 2000; % Input signal sampling frequency.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Use d to design the final filter hm, an mfilt.iirwdfdecim object.

hm = design(d,'iirlinphase','filterstructure','iirwdfdecim');
realizemdl(hm) % Requires Simulink to be able to build model.

The models that realizemdl returns for each example appear below. At this
level, the realizations of the filters are identical. The differences appear in the
subsystem blocks Phase1 and Phase2.

1

Output

input output

Phase2

input output

Phase1

0.5

Gain

input

output1

output2

DecimCommutator

1

Input

mfilt.iirwdfdecim

8-944

This is the Phase1 subsystem from the halfband model.

1

Output

input output

Phase2

Input Output

Phase1

0.5

Gain

input

output1

output2

DecimCommutator

1

Input

mfilt.iirwdfdecim

8-945

Phase1 subsystem from the linear phase model is less revealing—an allpass
filter.

1

output

−K−

gain(1)(3)

−K−

gain(1)(2)

−K−

gain(1)(1)

z
−1

z
−1

z
−1

1

input

mfilt.iirwdfdecim

8-946

See Also dfilt.cascadewdfallpass, mfilt, mfilt.iirdecim, mfilt.iirwdfinterp

1

Output
z
−141

Input

mfilt.iirwdfinterp

8-947

8mfilt.iirwdfinterpPurpose Construct IIR wave digital interpolator filter

Syntax hm = iirwdfinterp(c1,c2,...)

Description hm = mfilt.iirwdfinterp(c1,c2,...) constructs an IIR wave digital
interpolator filter given the coefficients specified in the cell arrays C1, C2,
etc.

hm = mfilt.iirwdfinterp(c1,c2,...) constructs an IIR wave digital
interpolator given the coefficients specified in the cell arrays c1, c2, and so on.
The IIR interpolator hm is a polyphase IIR filter where each phase is a cascade
wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass
sections. Each element in one cell array is one section. For more information
about the contents of each cell array, refer to dfilt.cascadewdfallpass. The
contents of the cell arrays are the same for both filter constructors and
mfilt.iirwdfinterp interprets them same way as
mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell array—if
one of the cell arrays ci contains only one vector, and that vector comprises
a series of 0s and one element equal to 1, that cell array represents
a dfilt.delay section with latency equal to the number of zeros, rather than
a dfilt.cascadewdfallpass section. This exception occurs with quasi-linear
phase IIR interpolators.

Usually you do not construct IIR wave digital filter interpolators explicitly.
Rather, you obtain an IIR wave digital interpolator as a result of designing
a halfband interpolator. The first example below illustrates this case.

Examples Design an elliptic halfband interpolator with interpolation factor equal to 2. At
the end of the design process, hm is an IIR wave digital filter interpolator.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency of signal after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

mfilt.iirwdfinterp

8-948

The specification object d stores the interpolator design requirements. Now
use d to design the actual filter hm.

hm = design(d,'ellip','filterstructure','iirwdfinterp');

If you have Simulink installed, you can realize your filter as a model built from
blocks in the Signal Processing Blockset.

realizemdl(hm) % Requires Simulink to build model for filter.

For variety, design a linear phase halfband interpolator with an interpolation
factor of 2.

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency of signal after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

Now perform the actual design process with d. Filter hm is an IIR wave digital
filter interpolator. As in the previous example, realizemdl returns a Simulink
model of the filter if you have Simulink installed.

hm = design(d,'iirlinphase','filterstructure','iirwdfinterp');
realizemdl(hm) % Requires Simulink to visualize the signal flow.

See Also dfilt.cascadewdfallpass, mfilt.iirinterp, mfilt.iirwdfdecim

mfilt.linearinterp

8-949

8mfilt.linearinterpPurpose Construct linear interpolator filter

Syntax hm = mfilt.linearinterp(l)

Description hm = mfilt.linearinterp(l) returns an FIR linear interpolator hm with an
integer interpolation factor l. Provide l as a positive integer. The default value
for the interpolation factor is 2 when you do not include the input argument l.

When you use this linear interpolator, the samples added to the input signal
have values between the values of adjacent samples in the original signal. Thus
you see something like a smooth profile where the interpolated samples
continue a line between the previous and next original samples. The example
demonstrates this smooth profile clearly. Compare this to the interpolation
process for mfilt.holdinterp, which creates a stairstep profile.

Make this filter a fixed-point or single-precision filter by changing the value of
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input argument for mfilt.linearinterp.

Object
Properties

This section describes the properties for both floating-point filters
(double-precision and single-precision) and fixed-point filters.

Input Argument Description

l Interpolation factor for the filter. l specifies the
amount to increase the input sampling rate. It must be
an integer. When you do not specify a value for l it
defaults to 2.

mfilt.linearinterp

8-950

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves
when you use it. Note that many of the properties are also input arguments for
creating mfilt.linearinterp objects. The next table describes each property
for an mfilt.linearinterp filter object.

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation
of the mfilt.holdinterp filter.

Name Values Description

Arithmetic Double,
single,
fixed

Specifies the arithmetic the
filter uses to process data while
filtering.

FilterStructure String Reports the type of filter object.
You cannot set this property—it
is always read only and results
from your choice of mfilt object.

InterpolationFactor Integer Interpolation factor for the filter.
l specifies the amount to
increase the input sampling
rate. It must be an integer.

PersistentMemory 'false' or
'true'

Determine whether the filter
states get restored to zero for
each filtering operation

States Double or
single
array

Filter states. states defaults to
a vector of zeros that has length
equal to nstates(hm). Always
available, but visible in the
display only when
PersistentMemory is true.

mfilt.linearinterp

8-951

Note The table lists all of the properties that a fixed-point filter can have.
Many of the properties listed are dynamic, meaning they exist only in
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object,
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or
negative integer
number of bits.
Depends on L.
[29 when L=2]

Specifies the fraction length used to interpret
data output by the accumulator.

AccumWordLength Any integer
number of bits [33]

Sets the word length used to store data in the
accumulator.

Arithmetic fixed for
fixed-point filters

Setting this to fixed allows you to modify other
filter properties to customize your fixed-point
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically
chooses the proper fraction length to represent
filter coefficients without overflowing. Turning
this off by setting the value to false enables you
to change the NumFracLength property value to
specify the precision used.

CoeffWordLength Any integer
number of bits
[16]

Specifies the word length to apply to filter
coefficients.

mfilt.linearinterp

8-952

FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets
the output word and fraction lengths, product
word and fraction lengths, and the accumulator
word and fraction lengths to maintain the best
precision results during filtering. The default
value, FullPrecision, sets automatic word and
fraction length determination by the filter.
SpecifyPrecision makes the output and
accumulator-related properties available so you
can set your own word and fraction lengths for
them.

InputFracLength Any positive or
negative integer
number of bits
[15]

Specifies the fraction length the filter uses to
interpret input data.

InputWordLength Any integer
number of bits
[16]

Specifies the word length applied to interpret
input data.

NumFracLength Any positive or
negative integer
number of bits [14]

Sets the fraction length used to interpret the
numerator coefficients.

OutputFracLength Any positive or
negative integer
number of bits
[29]

Determines how the filter interprets the filter
output data. You can change the value of
OutputFracLength when you set
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer
number of bits
[33]

Determines the word length used for the output
data. You make this property editable by setting
FilterInternals to SpecifyPrecision.

Name Values Description

mfilt.linearinterp

8-953

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow
conditions in fixed-point arithmetic. Choose from
either saturate (limit the output to the largest
positive or negative representable value) or wrap
(set overflowing values to the nearest
representable value using modular arithmetic.))
The choice you make affects only the
accumulator and output arithmetic. Coefficient
and input arithmetic always saturates. Finally,
products never overflow—they maintain full
precision.

Name Values Description

mfilt.linearinterp

8-954

RoundMode [convergent],
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric
values when the values lie between
representable values for the data format (word
and fraction lengths).

• convergent—Round up to the next allowable
quantized value.

• ceil—Round to the nearest allowable
quantized value. Numbers that are exactly
halfway between the two nearest allowable
quantized values are rounded up only if the
least significant bit (after rounding) would be
set to 1.

• fix—Round negative numbers up and positive
numbers down to the next allowable quantized
value.

• floor—Round down to the next allowable
quantized value.

• round—Round to the nearest allowable
quantized value. Numbers that are halfway
between the two nearest allowable quantized
values are rounded up.

The choice you make affects only the accumulator
and output arithmetic. Coefficient and input
arithmetic always round. Finally, products never
overflow—they maintain full precision.

Name Values Description

mfilt.linearinterp

8-955

Filter Structure Linear interpolator structures depend on the FIR filter you use to implement
the filter. By default, the structure is direct-form FIR.

Signed [true], false Specifies whether the filter uses signed or
unsigned fixed-point coefficients. Only
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and
after filter operations. States act as filter
memory between filtering runs or sessions.
Notice that the states use fi objects, with the
associated properties from those objects. For
details, refer to fixed-point objects in your
Fixed-Point Toolbox documentation or in the
online Help system. For information about the
ordering of the states, refer to the filter structure
below.

Name Values Description

mfilt.linearinterp

8-956

Examples Interpolation by a factor of 2 (used to convert the input signal sampling rate
from 22.05 kHz to 44.1 kHz).

l = 2; % Interpolation factor
hm = mfilt.linearinterp(l);
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at

% 22.05 kHz
hold on % Plot interpolated signal (44.1

% kHz) in red
stem(n(1:44)/(fs*l),y(2:45),'r')
xlabel('Time (s)');ylabel('Signal Value')

Using linear interpolation, as compared to the hold approach of
mfilt.holdinterp, provides greater fidelity to the original signal.

1

High Output Rate

K

b(7):b(8):b(9)

K

b(4):b(5):b(6)

K

b(10):b(11):b(12)

K

b(1):b(2):b(3)

z
−1

z
−1

z
−1

1

Low Input Rate

mfilt.linearinterp

8-957

See Also mfilt.holdinterp, mfilt.firinterp, mfilt.firfracinterp,
mfilt.cicinterp

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

S
ig

na
l V

al
ue

msepred

8-958

8msepredPurpose Calculate predicted mean-squared error for selected adaptive filter

Syntax [mmse,emse] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d,m)

Description [mmse,emse] = msepred(ha,x,d) predicts the steady-state values at
convergence of the minimum mean-squared error (mmse) and the excess
mean-squared error (emse) given the input and desired response signal
sequences in x and d and the property values in the adaptfilt object ha.

[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d) calculates three
sequences corresponding to the analytical behavior of the LMS adaptive filter
defined by ha:

• meanw—contains the sequence of coefficient vector means. The columns of
matrix meanw contain predictions of the mean values of the LMS adaptive
filter coefficients at each time instant. The dimensions of meanw are
(size(x,1))-by-(ha.length).

• mse—contains the sequence of mean-square errors. This column vector
contains predictions of the mean-square error of the LMS adaptive filter at
each time instant. The length of mse is equal to size(x,1).

• tracek—contains the sequence of total coefficient error powers. This column
vector contains predictions of the total coefficient error power of the LMS
adaptive filter at each time instant. The length of tracek is equal to
size(x,1).

[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d,m) specifies an optional
input argument m that is the decimation factor for computing meanw, mse, and
tracek. When m > 1, msepred saves every mth predicted value of each of these
sequences. When you omit the optional argument m, it defaults to one.

Note msepred is available for the following adaptive filters only:
—adaptfilt.blms
—adaptfilt.blmsfft
—adaptfilt.lms
—adaptfilt.nlms

msepred

8-959

—adaptfilt.se

Using msepred is the same for any adaptfilt object constructed by the
supported filters.

Examples Analyze and simulate a 32-coefficient adaptive filter using 25 trials of 2000
iterations each.

x = zeros(2000,25); d = x; % Initialize variables
ha = fir1(31,0.5); % FIR system to be identified
x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x))));
n = 0.1*randn(size(x)); % observation noise signal
d = filter(ha,1,x)+n; % desired signal
l = 32; % Filter length
mu = 0.008; % LMS step size.
m = 5; % Decimation factor for analysis

% and simulation results
ha = adaptfilt.lms(l,mu);
[mmse,emse,meanW,mse,traceK] = msepred(ha,x,d,m);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);
subplot(2,1,1);
plot(nn,meanWsim(:,12),'b',nn,meanW(:,12),'r',nn,...
meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r');
title('Average Coefficient Trajectories for W(12), W(13),...
 W(14) and W(15)');
legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)...
(emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse]);
title('Mean-Square Error Performance');
axis([0 size(x,1) 0.001 10]);
legend('MSE (Sim.)','Final MSE','MSE','Min. MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim,nn,traceK,'r');
title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)...
0.0001 1]);

msepred

8-960

legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Squared Error Value');

Viewing the plots in this figure you see the various error values plotted in both
simulation and theory. Each subplot reveals more information about the
results as the simulation converges with the theoretical performance.

See Also filter, maxstep, msesim

msesim

8-961

8msesimPurpose Calculate and return measured mean-squared error for adaptive filter

Syntax mse = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d,m)

Description mse = msesim(ha,x,d) returns the sequence of mean-square errors in column
vector mse. The vector contains estimates of the mean-square error of the
adaptive filter at each time instant during adaptation. The length of mse is
equal to size(x,1). The columns of matrix x contain individual input signal
sequences, and the columns of the matrix d contain corresponding desired
response signal sequences.

[mse,meanw,w,tracek] = msesim(ha,x,d) calculates three parameters that
correspond to the simulated behavior of the adaptive filter defined by ha:

• meanw—sequence of coefficient vector means. The columns of this matrix
contain estimates of the mean values of the LMS adaptive filter coefficients
at each time instant. The dimensions of meanw are
(size(x,1))-by-(ha.length).

• w—estimate of the final values of the adaptive filter coefficients for the
algorithm corresponding to ha.

• tracek—sequence of total coefficient error powers. This column vector
contains estimates of the total coefficient error power of the LMS adaptive
filter at each time instant. The length of tracek is equal to size(X,1).

[mse,meanw,w,tracek] = msesim(ha,x,d,m) specifies an optional input
argument m that is the decimation factor for computing meanw, mse, and tracek.
When m > 1, msepsim saves every mth predicted value of each of these sequences.
When you omit the optional argument m, it defaults to one.

Examples Simulation of a 32-coefficient FIR filter using 25 trials, each trial having 2000
iterations of the adaptation process.

x = zeros(2000,25); d = x; % Initialize variables
ha = fir1(31,0.5); % FIR system to be identified
x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x))));
n = 0.1*randn(size(x)); % Observation noise signal
d = filter(ha,1,x)+n; % Desired signal

msesim

8-962

l = 32; % Filter length
mu = 0.008; % LMS Step size.
m = 5; % Decimation factor for analysis

% and simulation results
ha = adaptfilt.lms(l,mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);
subplot(2,1,1);
plot(nn,meanWsim(:,12),'b',nn,meanWsim(:,13:15),'b');
title('Average Coefficient Trajectories for W(12), W(13),
W(14) and W(15)');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse);
title('Mean-Square Error Performance'); axis([0 size(x,1) 0.001
10]);
legend('Measured MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim);
title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)
0.0001 1]);
xlabel('Time Index'); ylabel('Squared Error Value');

Calculating the mean squared error for an adaptive filter is one measure of the
performance of the adapting algorithm. In this figure, you see a variety of
measures of the filter, including the error values.

msesim

8-963

See Also filter, msepred

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Average Coefficient Trajectories for W(12), W(13), W(14) and W(15)

Time Index

C
oe

ffi
ci

en
t V

al
ue

0 500 1000 1500 2000
10

−3

10
−2

10
−1

10
0

10
1

Mean−Square Error Performance

Time Index

S
qu

ar
ed

 E
rr

or
 V

al
ue

Measured MSE

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

Sum−of−Squared Coefficient Errors

Time Index

S
qu

ar
ed

 E
rr

or
 V

al
ue

multistage

8-964

8multistagePurpose Design multistage filter from filter specification object

Syntax hd = design(d,'multistage')
hd = design(...,'filterstructure',structure)
hd = design(...,'nstages',nstages)
hd = design(...,'usehalfbands',hb)

Description hd = design(d,'multistage') designs a multistage filter whose repsonse you
specified by the filter specification object d.

hd = design(...,'filterstructure',structure) returns a filter with the
structure specified by structure. Input argument structure is dffir by
default and can also be one of the following strings.

In short, multistage design applies to all lowpass filter specifications objects
and to decimators and interpolators that use either lowpass or Nyquist
responses.

hd = design(...,'nstages',nstages) specifies nstages, the number of
stages to be used in the design. nstages must be an integer or the string auto.
To allow the design algorithm to use the optimal number of stages while
minimizing the cost of using the resulting filter, nstages is auto by default.
When you specify an integer for nstages, the design algorithm minimizes the
cost for the number of stages you specify.

hd = design(...,'usehalfbands',hb) uses halfband filters when you set hb
to true. The default value for hb is false.

structure String Valid with These Responses

firdecim Lowpass or Nyquist response

firtdecim Lowpass or Nyquist response

firinterp Lowpass or Nyquist response

lowpass All lowpass responses

multistage

8-965

Examples Design a minimum-order, multistage Nyquist interpolator. Use the
FilterStructure property to specify the Nyquist response.

l = 15; % Interpolation factor. Also the Nyquist band.
tw = 0.05; % Normalized transition width
ast = 40; % Minimum stopband attenuation in dB
d = fdesign.interpolator(l,'filterstructure','nyquist',l,tw,ast);
hm = design(d,'multistage');
fvtool(hm);

Design a multistage lowpass interpolator with an interpolation factor of 8.

m = 8; % Interpolation factor;
d = fdesign.interpolator(m,'lowpass');
hm = design(d,'multistage','Usehalfbands',true); % Use halfband filters

% if possible.
fvtool(hm);

This figure shows the response for hm.

multistage

8-966

See Also design, designopts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

noisepsd

8-967

8noisepsdPurpose Compute power spectral density (PSD) of filter output caused by roundoff noise
during quantization

Syntax hpsd = noisepsd(hd,l);
hpsd = noisepsd(hd,l, propertyname1, propertyvalue1,

propertyname2,propertyvalue2,);
hpsd = noisepsd(hd,l,opts);

Description hpsd = noisepsd(hd,l) computes the power spectral density (PSD) at the
output of filter hd due to roundoff noise produced by quantization errors within
the filter. l is the number of trials used to compute the average. The PSD is
computed from the average over the l trials. The more trials you specify, the
better the estimate, but at the expense of longer computation time. When you
do not explicitly set l, it defaults to 10 trials.

hpsd is a psd data object.To extract the PSD vector (the data from the PSD)
from hpsd, enter

get(hpsd,'data')

at the prompt. Plot the PSD data with plot(hpsd). The average power of the
output noise (the integral of the PSD) can be computed with avgpower, a
method of dspdata objects:

avgpwr = avgpower(hpsd).

noisepsd

8-968

hpsd = noisepsd(hd,l,p1,v1,p2,v2,...) specifies optional parameters via
propertyname/propertyvalue pairs. The properties of the psd object, and the
valid entries are:

Property Name Default Value Description and Valid Entries

Nfft 512 Specifies the number of FFT
points to use to calculate the
PSD.

NormalizedFrequency true Determines whether to use
normalized frequency. Enter one
of the logical true or false. Note
that you do not use single
quotations around this property
value because it is a logical, not
a string.

Fs normalized Specifies the sampling frequency
to use when you set
NormalizedFrequency to false.
Any integer value greater than 1
works. Enter the value in Hz.

noisepsd

8-969

SpectrumType onesided Tells noisepsd whether to
generate a one-sided PSD or
two-sided. Options are onesided
or twosided. If you choose a
two-sided computation, you can
also choose centerdc = true.
Otherwise, centerdc must be
false.

• onesided converts the
spectrum to a spectrum
calculated over half the
Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

• twosided converts the
spectrum to a spectrum
calculated over the whole
Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

Property Name Default Value Description and Valid Entries

noisepsd

8-970

Note If the spectrum data you specify is calculated over half the Nyquist
interval and you do not specify a corresponding frequency vector, the default
frequency vector assumes that the number of points in the whole FFT was
even. Also, the plot option to convert to a whole or two-sided spectrum
assumes the original whole FFT length was even.

noisepsd(hd,l,opts) uses an options object opts to specify the optional input
arguments instead of specifying property-value pairs in the command. Use
opts = noisepsdopts(hd) to create the object. opts then has the noisepsd
settings from hd. After creating opts, you change the property values before
calling noisepsd:

set(opts,'fs',48e3); % Set Fs to 48 kHz.

Examples Compute the PSD of the output noise caused by the quantization processes in
a fixed-point, direct form FIR filter.

CenterDC false Shifts the zero-frequency
component to the center of a
two-sided spectrum.

• When you set SpectrumType to
onesided, it is changed to
twosided and the data is
converted to a two-sided
spectrum.

• Setting CenterDC to false
shifts the data and the
frequency values in the object
so that DC is in the left edge of
the spectrum. This operation
does not effect the
SpectrumType property
setting.

Property Name Default Value Description and Valid Entries

noisepsd

8-971

b = firgr(27,[0 .4 .6 1],[1 1 0 0]);
h = dfilt.dffir(b); % Create the filter object.
h.arithmetic = 'fixed'; % Quantize the filter to fixed-point.
hpsd = noisepsd(h);
plot(hpsd)

hpsd looks like this—the data resulting from the noise PSD calculation. You
can review the data in hpsd.data'.

Here is the specification for hpsd.

hpsd =

 Name: 'Power Spectral Density'
 Data: [257x1 double]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−130

−125

−120

−115

−110

−105

−100

Normalized Frequency (×π rad/sample)

P
ow

er
/fr

eq
ue

nc
y

(d
B

/r
ad

/s
am

pl
e)

Power Spectral Density

noisepsd

8-972

 SpectrumType: 'Onesided'
 Frequencies: [257x1 double]
 NormalizedFrequency: true
 Fs: 'Normalized'

See Also filter, noisepsdopts, norm, reorder, scale

spectrum.welch in the Signal Processing Toolbox

References McClellan, et al., Computer-Based Exercises for Signal Processing Using
MATLAB 5, Prentice-Hall, 1998.

noisepsdopts

8-973

8noisepsdoptsPurpose Create object containing options for running output noise power spectral
density (PSD) computation noisepsd on filter

Syntax opts = noisepsdopts(hd)

Description opts = noisepsdopts(hd) uses the current settings in the filter hd to create
an options object opts that contains specified options for computing the output
noise PSD for a filter hd. You can pass opts to the scale method as an input
argument to apply scaling settings to a second-order filter.

Within opts, the noisepsd options object returned by noisepsdopts, you can
set the following properties:

Property Name Default Value Description and Valid Entries

Nfft 512 Specifies the number of FFT
points to use to calculate the
PSD.

NormalizedFrequency true Determines whether to use
normalized frequency. Enter one
of the logical true or false. Note
that you do not use single
quotations around this property
value because it is a logical
value, not a string.

Fs normalized Specifies the sampling frequency
to use when you set
NormalizedFrequency to false.
Any integer value greater than 1
works. Enter the value in Hz.

noisepsdopts

8-974

SpectrumType onesided Tells noisepsd whether to
generate a one-sided PSD or
two-sided. Options are onesided
or twosided. If you choose a
two-sided computation, you can
also choose centerdc = true.
Otherwise, centerdc must be
false.

• onesided converts the
spectrum to a spectrum
calculated over half the
Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

• twosided converts the
spectrum to a spectrum
calculated over the whole
Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

Property Name Default Value Description and Valid Entries

noisepsdopts

8-975

SpectrumType onesided Tells noisepsd whether to
generate a one-sided PSD or
two-sided. Options are onesided
or twosided. If you choose a
two-sided computation, you can
also choose centerdc = true.
Otherwise, centerdc must be
false.

• onesided converts the
spectrum to a spectrum
calculated over half the
Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

• twosided converts the
spectrum to a spectrum
calculated over the whole
Nyquist interval. All
properties affected by the new
frequency range are adjusted
automatically.

Property Name Default Value Description and Valid Entries

noisepsdopts

8-976

See Also noisepsd

CenterDC false Shifts the zero-frequency
component to the center of a
two-sided spectrum.

• When you set SpectrumType to
onesided, it is changed to
twosided and the data is
converted to a two-sided
spectrum.

• Setting CenterDC to false
shifts the data and the
frequency values in the object
so that DC is in the left edge of
the spectrum. This operation
does not effect the
SpectrumType property
setting.

Property Name Default Value Description and Valid Entries

norm

8-977

8normPurpose P-norm of adaptfilt, dfilt, or mfilt objects

Syntax l = norm(ha)
l = norm(ha,pnorm)
l = norm(hd)
l = norm(hd,pnorm)
l = norm(hd,'L2',tol)
l = norm(hm)
l = norm(hm,pnorm)

Description All of the variants of norm return the filter p-norm for the object in the syntax,
either an adaptive filter, a digital filter, or a multirate filter. When you omit
the pnorm argument, norm returns the L2-norm for the object.

Note that by Parseval’s theorem, the L2-norm of a filter is equal to the l2 norm.
This equality is not true for the other norm variants.

For adaptfilt Objects
l = norm(ha)returns the L2-norm of an adaptive filter.

l = norm(ha,pnorm) adds the input argument pnorm to let you specify the
norm returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

For dfilt Objects

l = norm(hd) returns the L2-norm of a discrete-time filter.

l = norm(hd,pnorm) includes input argument pnorm that lets you specify the
norm returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

By Parseval’s theorem, the L2-norm of a filter is equal to the l2 norm. This
equality is not true for the other norm variants.

norm

8-978

IIR filters respond slightly differently to norm. When you compute the l2, linf,
L1, and L2 norms for an IIR filter, norm(...,L2,tol) lets you specify the
tolerance for the accuracy in the computation. For l1, l2, L2, and linf, norm uses
the tolerance to truncate the infinite impulse response that it uses to calculate
the norm. For L1, norm passes the tolerance to the numerical integration
algorithm. Refer to Examples to see this in use. You cannot specify Linf for the
norm and include the tol option.

For mfilt Objects

l = norm(hm) returns the L2-norm of a multirate filter.

l = norm(hm,pnorm) includes argument pnorm to let you specify the norm
returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

Note that, by Parseval’s theorem, the L2-norm of a filter is equal to the l2 norm.
This equality is not true for the other norm variants.

Examples Adaptfilt Objects
For the adaptive filter example, compute the 2-norm of an adaptfilt object,
here an LMS-based adaptive filter.

ha = adaptfilt.lms; % norm(ha) is zero because all coeffs are zero
% Create some data to filter to generate filter coeffs
x = randn(100,1);
d = x + randn(100,1);
[y,e] = filter(ha,x,d);
l2 = norm(ha); % Now norm(ha) is nonzero
l2 =

 1.1231

Dfilt Objects
To demonstrate the tolerance option used with an IIR filter (dfilt object),
compute the 2-norm of filter hd with a tolerance of 1e-10.

d=fdesign.lowpass('n,fc',5,0.4)

norm

8-979

d =

 Response: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 5
 Fcutoff: 0.4000

hd = butter(d);
l2=norm(hd,'l2',1e-10)

l2 =

 0.6336

Mfilt Objects
In this example, compute the infinity norm of an FIR interpolator, which is an
mfilt object.

hm = mfilt.firinterp;
linf = norm(hm,inf);
linf =

 2.0002

 See Also reorder, scale, scalecheck

normalize

8-980

8normalizePurpose Normalize filter numerator or feed-forward coefficients to values between -1
and 1

Syntax normalize(hq)
g = normalize(hq)

Description normalize(hq) normalizes the filter numerator coefficients for a quantized
filter to have values between -1 and 1. Notice that the coefficients of hq
change—normalize does not copy hq and return the copy. To restore the
coefficients of hq to the original values, use denormalize.

Note that for lattice filters, the feed-forward coefficients stored in the property
lattice are normalized.

g = normalize(hd) normalizes the numerator coefficients for the filter hq to
between -1 and 1 and returns the gain g due to the normalization operation.
Calling normalize again does not change the coefficients. g always returns the
gain returned by the first call to normalize the filter.

Examples Create a direct form II quantized filter that uses second-order sections. Then
use normalize to maximize the use of the range of representable coefficients.

d=fdesign.lowpass('n,fp,ap,ast',8,.5,2,40);

hd=ellip(d);

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 PersistentMemory: 'on'
 States: [2x4 double]

hd.arithmetic='fixed'

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'

normalize

8-981

 Arithmetic: 'fixed'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 PersistentMemory: 'on'
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 StageInputWordLength: 16
 StageInputAutoScale: true

 StageOutputWordLength: 16
 StageOutputAutoScale: true

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 StateWordLength: 16
 StateFracLength: 15

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

 InheritSettings: false

Check the filter coefficients to see that some of them are greater than 1.

hd.sosMatrix

normalize

8-982

ans =

 1.0000 1.5132 1.0000 1.0000 -0.9207 0.4373
 1.0000 0.3867 1.0000 1.0000 -0.2779 0.8242
 1.0000 0.0929 1.0000 1.0000 -0.0514 0.9610
 1.0000 0.0339 1.0000 1.0000 -0.0020 0.9934

Use normalize to modify the coefficients into the range between -1 and 1.
A quick check of the SOS matrix shows all of the numerator coefficients now
within the limits. You see that g contains the gains applied to each section of
the SOS filter.

g = normalize(hd)

g =

 1.5132
 1.0000
 1.0000
 1.0000

hd.sosMatrix

ans =

 0.6608 1.0000 0.6608 1.0000 -0.9207 0.4373
 1.0000 0.3867 1.0000 1.0000 -0.2779 0.8242
 1.0000 0.0929 1.0000 1.0000 -0.0514 0.9610
 1.0000 0.0339 1.0000 1.0000 -0.0020 0.9934

Notice that none of the numerator coefficients exceed -1 or 1.

See Also denormalize

normalizefreq

8-983

8normalizefreqPurpose Switch filter specification object between normalized frequency specification
and absolute frequency specification

Syntax normalizefreq(d)
normalizefreq(d,flag)
normalizefreq(d,false,fs)

Description normalizefreq(d) normalizes the frequency specifications in filter
specifications object d. By default, the NormalizedFrequency property is set to
true when you create a design object. You provide the design specifications in
normalized frequency units. normalizefreq does not affect filters that already
use normalized frequency.

If you use this syntax when d does not use normalized frequency specifications,
all of the frequency specifications are normalized by fs/2 so they lie between 0
and 1, where fs is specified in the object. Included in the normalization are the
filter properties that define the filter pass and stopband edge locations by
frequency:

• F3dB—Used by IIR filter specifications objects to describe the passband
cutoff frequency

• Fcutoff—Used by FIR filter specifications objects to describe the passband
cutoff frequency

• Fpass—Describes the passband edges
• Fstop—Describes the stopband edges

In this syntax, normalizefreq(d) assumes you specified fs when you created d
or changed d to use absolute frequency specifications.

normalizefreq(d,flag) where flag is either true or false, specifies whether
the NormalizedFrequency property value is true or false and therefore
whether the filter normalizes the sampling frequency fs and other related
frequency specifications. fs defaults to 1 for this syntax.

When you do not provide the input argument flag, it defaults to true. If you
set flag to false, affected frequency specifications are multiplied by fs/2 to
remove the normalization. Use this syntax to switch your filter between using
normalized frequency specifications and not using normalized frequency
specifications.

normalizefreq

8-984

normalizefreq(d,false,fs) lets you specify a new sampling frequency fs
when you set the NormalizedFrequency property to false.

Examples These examples demonstrate using normalizefreq in both of the major syntax
applications—setting the design object frequency specifications to use absolute
frequency (normalizefreq(hd,false,fs)) and resetting a design object to
using normalized frequencies (normalizefreq(d)).

Construct a highpass filter specifications object by specifying the pass- and
stopband edges and the desired attenuations in the bands. By default, provide
the frequency specifications in normalized values between 0 and 1.

d=fdesign.highpass(0.35, 0.45, 60, 40)

d =

 Response: 'Highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fstop: 0.35
 Fpass: 0.45
 Astop: 60
 Apass: 40

Fstop and Fpass are in normalized form, and the property
NormalizedFrequency is true.

Now use normalizedfreq to convert to absolute frequency specifications, with
a sampling frequency of 1000 Hz.

normalizefreq(d,false,1e3)
d

d =

 Response: 'Highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: false
 Fs: 1000

normalizefreq

8-985

 Fstop: 175
 Fpass: 225
 Astop: 60
 Apass: 40

Both of the attenuation specifications remain the same. The passband and
stopband edge definitions now appear in Hz, where the new value represents
the normalized values multiplied by Fs/2, or 500 Hz.

Converting to using normalized frequencies consists of using normalizefreq
with the design object d.

normalizefreq(d)
d

d =

 Response: 'Highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fstop: 0.35
 Fpass: 0.45
 Astop: 60
 Apass: 40

For bandstop, bandpass, and multiple band filter specifications objects,
normalizefreq works the same way for all band edge definitions. When you do
not provide the sampling frequency Fs as an input argument and you are
converting to absolute frequency specifications, normalizefreq sets Fs to 1, as
shown in this example.

d=fdesign.bandstop(0.25,0.35,0.55,0.65,50,60)

d =

 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fpass1: 0.25

normalizefreq

8-986

 Fstop1: 0.35
 Fstop2: 0.55
 Fpass2: 0.65
 Apass1: 50
 Astop: 60
 Apass2: 50

normalizefreq(d,false)
d

d =

 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: false
 Fs: 1
 Fpass1: 0.125
 Fstop1: 0.175
 Fstop2: 0.275
 Fpass2: 0.325
 Apass1: 50
 Astop: 60
 Apass2: 50

See Also fdesign.lowpass, fdesign.halfband, fdesign.highpass,
fdesign.interpolator

nstates

8-987

8nstatesPurpose Number of filter states in discrete-time or multirate filter

Syntax n = nstates(hd)
n = nstates(hm)

Description Discrete-Time Filters

n = nstates(hd) returns the number of states n in the discrete-time filter hd.
The number of states depends on the filter structure and the coefficients.

Multirate Filters

n = nstates(hm) returns the number of states n in the multirate filter hm. The
number of states depends on the filter structure and the coefficients.

Examples Check the number of states for two different filters, one a direct form FIR filter,
the other a multirate filter.

h=firls(30,[0 .1 .2 .5]*2,[1 1 0 0])

hd=dfilt.dffir(h)

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x31 double]
 PersistentMemory: 'on'
 States: [30x1 double]

n=nstates(hd)

n =

 30

hm=mfilt.firfracdecim(2,3)

hm =

nstates

8-988

 FilterStructure: [1x46 char]
 Numerator: [1x72 double]
 RateChangeFactors: [2 3]
 PersistentMemory: false
 States: [35x1 double]

n=nstates(hm)

n =

 35

See Also mfilt

order

8-989

8orderPurpose Order of quantized filter

Syntax n=order(hq)

Description n = order(hq) returns the order n of the quantized filter hq. When hq is a
single-section filter, n is the number of delays required for a minimum
realization of the filter.

When hq has more than one section, n is the number of delays required for a
minimum realization of the overall filter.

Examples Create a discrete-time filter. Quantize the filter and convert to second-order
section form. Then use order to check the order of the filter.

[b,a] = ellip(4,3,20,.6); % Create the reference filter.
hq = dfilt.df2(b,a);
% Quantize the filter and convert to second-order sections.
set(hq,'arithmetic','fixed');

n=order(hq) % Check the order of the overall filter.
n = 4

phasedelay

8-990

8phasedelayPurpose Phase delay of discrete-time or multirate filter

Syntax phasedelay(hd)
[phi,w] = phasedelay(hd,n)
[phi,w] = phasedelay(...,f)

phasedelay(hm)
[phi,w] = phasedelay(hm,n)

[phi,w] = phasedelay(...,f)

[phi,w] = phasedelay(...,fs)

Description The following sections describe phasedelay operation for discrete-time filters
and multirate filters. For more information about optional input arguments for
phasedelay, refer to phasez in the Signal Processing Toolbox.

Discrete-Time Filters

phasedelay(hd) displays the phase delay response of hd in the Filter
Visualization Tool (FVTool).

[phi,w]=phasedelay(hd,n) returns vectors phi and w containing the
instantaneous phase delay response of the adaptive filter hd, and the
frequencies in radians at which it is evaluated. The response is evaluated at n
points equally spaced around the upper half of the unit circle. When you do not
specify n, it defaults to 8192.

If hd is a vector of filter objects, phasedelay returns phi as a matrix. Each
column of phi corresponds to one filter in the vector. If you provide a row vector
of frequency points f as an input argument, each row of phi corresponds to each
filter in the vector. You can provide fs, the sampling frequency, as an input as
well. phasedelay uses fs to calculate the delay response and plots the response
to fs/2.

 Multirate Filters

phasedelay(hm) displays the phase response of hm in the Filter Visualization
Tool (FVTool).

phasedelay

8-991

[phi,w]=phasedelay(hm,n) returns vectors phi and w containing the
instantaneous phase delay response of the adaptive filter hm, and the
frequencies in radians at which it is evaluated. The response is evaluated at n
points equally spaced around the upper half of the unit circle. When you do not
specify n, it defaults to 8192.

If hm is a vector of filter objects, phasedelay returns phi as a matrix. Each
column of phi corresponds to one filter in the vector. If you provide a row vector
of frequency points f as an input argument, each row of phi corresponds to each
filter in the vector.

Note that the multirate filter delay response is computed relative to the rate at
which the filter is running. When you specify fs (the sampling rate) as an input
argument, phasedelay assumes the filter is running at that rate.

For multistage cascades, phasedelay forms a single-stage multirate filter that
is equivalent to the cascade and computes the response relative to the rate at
which the equivalent filter is running. phasedelay does not support all
multistage cascades. Only cascades for which it is possible to derive an
equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an
interpolation factor of 2 and the second stage has an interpolation factor of 4.
An equivalent single-stage filter with an overall interpolation factor of 8 can be
found. phasedelay uses the equivalent filter for the analysis. If a sampling
frequency fs is specified as an input argument to phasedelay, the function
interprets fs as the rate at which the equivalent filter is running.

See Also freqz, grpdelay, phasez, zerophase, zplane

freqz, fvtool, phasez, zerophase in the Signal Processing Toolbox
documentation

phasez

8-992

8phasezPurpose Unwrapped phase response for filter

Syntax phasez(ha)
[phi,w] = phasez(ha,n)
[phi,w] = phasez(...,f)

phasez(hd)
[phi,w] = phasez(hd,n)
[phi,w] = phasez(...,f)

phasez(hm)
[phi,w] = phasez(hm,n)

[phi,w] = phasez(...,f)

[phi,w] = phasez(...,fs)

Description The following sections describe phasez operation for adaptive filters,
discrete-time filters, and multirate filters. For more information about optional
input arguments for phasez, refer to phasez in the Signal Processing Toolbox.

Adaptive Filters
For adaptive filters, phasez returns the instantaneous unwrapped phase
response based on the current filter coefficients.

phasez(ha) displays the phase response of ha in the Filter Visualization Tool
(FVTool).

[phi,w]=phasez(ha,n) returns vectors phi and w containing the
instantaneous phase response of the adaptive filter ha, and the frequencies in
radians at which it is evaluated. The phase response is evaluated at n points
equally spaced around the upper half of the unit circle. When you do not specify
n, it defaults to 8192.

If ha is a vector of filter objects, phasez returns phi as a matrix. Each column
of phi corresponds to one filter in the vector. If you provide a row vector of
frequency points f as an input argument, each row of phi corresponds to each
filter in the vector.

phasez

8-993

Discrete-Time Filters

phasez(hd) displays the phase response of hd in the Filter Visualization Tool
(FVTool).

[phi,w]=phasez(hd,n) returns vectors phi and w containing the
instantaneous phase response of the adaptive filter hd, and the frequencies in
radians at which it is evaluated. The phase response is evaluated at n points
equally spaced around the upper half of the unit circle. When you do not specify
n, it defaults to 8192.

If hd is a vector of filter objects, phasez returns phi as a matrix. Each column
of phi corresponds to one filter in the vector. If you provide a row vector of
frequency points f as an input argument, each row of phi corresponds to each
filter in the vector.

 Multirate Filters

phasez(hm) displays the phase response of hm in the Filter Visualization Tool
(FVTool).

[phi,w]=phasez(hm,n) returns vectors phi and w containing the
instantaneous phase response of the adaptive filter hm, and the frequencies in
radians at which it is evaluated. The phase response is evaluated at n points
equally spaced around the upper half of the unit circle. When you do not specify
n, it defaults to 8192.

If hm is a vector of filter objects, phasez returns phi as a matrix. Each column
of phi corresponds to one filter in the vector. If you provide a row vector of
frequency points f as an input argument, each row of phi corresponds to each
filter in the vector.

Note that the multirate filter response is computed relative to the rate at which
the filter is running. When you specify fs (the sampling rate) as an input
argument, phasez assumes the filter is running at that rate.

For multistage cascades, phasez forms a single-stage multirate filter that is
equivalent to the cascade and computes the response relative to the rate at
which the equivalent filter is running. phasez does not support all multistage
cascades. Only cascades for which it is possible to derive an equivalent
single-stage filter are allowed for analysis.

phasez

8-994

As an example, consider a 2-stage interpolator where the first stage has an
interpolation factor of 2 and the second stage has an interpolation factor of 4.
An equivalent single-stage filter with an overall interpolation factor of 8 can be
found. phasez uses the equivalent filter for the analysis. If a sampling
frequency fs is specified as an input argument to phasez, the function
interprets fs as the rate at which the equivalent filter is running.

See Also freqz, grpdelay, phasedelay, zerophase, zplane

freqz, fvtool, phasez in the Signal Processing Toolbox documentation

polyphase

8-995

8polyphasePurpose Polyphase decomposition of multirate filter

Syntax p = polyphase(hm)
polyphase(hm)

Description p = polyphase(hm) returns the polyphase matrix p of the multirate filter hm.
Each row in the matrix represents one subfilter of the multirate filter. The first
row of matrix p represents the first subfilter, the second row the second
subfilter, and so on to the last subfilter.

polyphase(hm) called with no output argument launches the Filter
Visualization Tool (FVTool) with all the polyphase subfilters to allow you to
analyze each component subfilter individually.

Examples When you create a multirate filter that uses polyphase decomposition,
polyphase lets you analyze the component filters indiviually by returning the
components as rows in a matrix.

This example creates an interpolate by eight filter.

hm=mfilt.firinterp(8)

hm =

 FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
 Numerator: [1x192 double]
 InterpolationFactor: 8
 PersistentMemory: false
 States: [23x1 double]

In this syntax, the matrix p contains all of the subfilters for hm, one filter per
matrix row.

p=polyphase(hm)

p =

 Columns 1 through 8

 0 0 0 0 0 0 0 0
 -0.0000 0.0002 -0.0006 0.0013 -0.0026 0.0048 -0.0081 0.0133
 -0.0001 0.0004 -0.0012 0.0026 -0.0052 0.0094 -0.0160 0.0261
 -0.0001 0.0006 -0.0017 0.0038 -0.0074 0.0132 -0.0223 0.0361

polyphase

8-996

 -0.0002 0.0008 -0.0020 0.0045 -0.0086 0.0153 -0.0257 0.0415
 -0.0002 0.0008 -0.0021 0.0045 -0.0086 0.0151 -0.0252 0.0406
 -0.0002 0.0007 -0.0018 0.0038 -0.0071 0.0124 -0.0205 0.0330
 -0.0001 0.0004 -0.0011 0.0022 -0.0041 0.0072 -0.0118 0.0189

 Columns 9 through 16

 0 0 0 0 1.0000 0 0 0
 -0.0212 0.0342 -0.0594 0.1365 0.9741 -0.1048 0.0511 -0.0303
 -0.0416 0.0673 -0.1189 0.2958 0.8989 -0.1730 0.0878 -0.0527
 -0.0576 0.0938 -0.1691 0.4659 0.7814 -0.2038 0.1071 -0.0648
 -0.0661 0.1084 -0.2003 0.6326 0.6326 -0.2003 0.1084 -0.0661
 -0.0648 0.1071 -0.2038 0.7814 0.4659 -0.1691 0.0938 -0.0576
 -0.0527 0.0878 -0.1730 0.8989 0.2958 -0.1189 0.0673 -0.0416
 -0.0303 0.0511 -0.1048 0.9741 0.1365 -0.0594 0.0342 -0.0212

 Columns 17 through 24

 0 0 0 0 0 0 0 0
 0.0189 -0.0118 0.0072 -0.0041 0.0022 -0.0011 0.0004 -0.0001
 0.0330 -0.0205 0.0124 -0.0071 0.0038 -0.0018 0.0007 -0.0002
 0.0406 -0.0252 0.0151 -0.0086 0.0045 -0.0021 0.0008 -0.0002
 0.0415 -0.0257 0.0153 -0.0086 0.0045 -0.0020 0.0008 -0.0002
 0.0361 -0.0223 0.0132 -0.0074 0.0038 -0.0017 0.0006 -0.0001
 0.0261 -0.0160 0.0094 -0.0052 0.0026 -0.0012 0.0004 -0.0001

0.0133 -0.0081 0.0048 -0.0026 0.0013 -0.0006 0.0002 -0.0000

Finally, using polyphase without an output argument opens the Filter
Visualization Tool, ready for you to use the analysis capabilities of the tool to
investigate the interpolator hm.

polyphase(hm)

In this figure, we switch FVTool to show the magnitude responses for the
subfilters.

polyphase

8-997

See Also mfilt

qreport

8-998

8qreportPurpose Results of most recent fixed-point filtering operation

Syntax rlog = qreport(h)

Description rlog = qreport(h) returns the logging report stored in the filter object h in
the object rlog. The ability to log features of the filtering operation is
integrated in the fixed-point filter object and the filter method.

Each time you filter a signal with h, new log data overwrites the results in the
filter from the previous filtering operation. To save the log from a filtering
simulation, change the name of the output argument for the operation before
subsequent filtering runs.

Note qreport requires the Fixed-Point Toolbox and that filter h is
a fixed-point filter.

Data logging for fi operations is a preference you set for each MATLAB
session. To learn more about logging, LoggingMode, and fi object preferences,
refer to fipref in the documentation for the Fixed-Point Toolbox in the online
Help system.

Enable logging during filtering by setting LoggingMode to on for fi objects for
your MATLAB session. Trigger logging by setting the Arithmetic property for
h to fixed, making h a fixed-point filter and filtering an input signal.

Using Fixed-Point Filtering Logging
Filter operation logging with qreport requires some preparation in MATLAB.
Complete these steps before you use qreport.

1 Set the fixed-point object preference for LoggingMode to on for your
MATLAB session. This setting enables data logging.`
fipref('LoggingMode','on')

2 Create your fixed-point filter.

3 Filter a signal with the filter.

4 Use qreport to return the filtering information stored in the filter object.

qreport

8-999

qreport provides a way to instrument your fixed-point filters and the resulting
data log offers insight into how the filter responds to a particular input data
signal.

Report object rlog contains a filter-structure-specific list of internal signals for
the filter. Each signal contains

• Minimum and maximum values that were recorded during the last
simulation. Minimum and maximum values correspond to values before
quantization.

• Representable numerical range of the word length and fraction length
format

• Number of overflows during filtering for that signal.

Examples qreport depends on the LoggingMode preference for fixed-point objects. This
example demonstrates the process for enabling and using qreport to log the
results of filtering with a fixed-point filter. hd is a fixed-point direct-form FIR
filter.

f = fipref('loggingmode','on');
hd = design(fdesign.lowpass,'equiripple');
hd.arithmetic = 'fixed';
fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
y = filter(hd,x);
rlog = qreport(hd)

qreport

8-1000

View the logging report of a direct-form II, second-order sections IIR filter the
same way. While this example sets loggingmode to on, you do that only once
for a MATLAB session, unless you reset the mode to off during the session.

fipref('loggingmode', 'on');
hd = design(fdesign.lowpass, 'ellip');
hd. arithmetic = 'fixed';
rand('state', 0);
y = filter(hd, rand(100,1));
rlog = qreport(hd)

 See Also dfilt, mfilt

realizemdl

8-1001

8realizemdlPurpose Realize Simulink subsystem block for quantized filter

Syntax realizemdl(hq)
realizemdl(hq, propertyname1, propertyvalue1,...)

Description realizemdl(hq) generates a model of filter hq in a Simulink subsystem block
using sum, gain, and delay blocks from Simulink. The properties and values of
hq define the resulting subsystem block parameters.

realizemdl requires Simulink. To accurately realize models of quantized
filters, use Simulink Fixed-Point.

realizemdl(hq,propertyname1,propertyvalue1,...) generates the model
or hq with the associated propertyname/propertyvalue pairs, and any other
values you set in hq.

Note Subsystem filter blocks that you use realizemdl to create support
sample-based input and output only. You cannot input or output frame-based
signals with the block.

Using the optional propertyname/propertyvalue pairs lets you control more
fully the way the block subsystem model gets built, such as where the block
goes, what the name is, or how to optimize the block structure. Valid properties
and values for realizemdl are listed in this table, with the default value noted
and descriptions of what the properties do.

Property Name Property Values Description

Destination 'current' (default)
or 'new'

Specify whether to add the block to your
current Simulink model or create a new
model to contain the block.

Blockname 'filter' (default) Provides the name for the new subsystem
block. By default the block is named
'filter'. To enter a name for the block, use
the propertyvalue set to a string
'blockname'.

realizemdl

8-1002

Examples To demonstrate how realizemdl works to create models, these two examples
show the default and optional syntaxes in use. Both examples begin from
a quantized filter designed by butter in the Signal Processing Toolbox.

[b,a] = butter(4,.5);
hq = dfilt.df1(b,a);

Example 1—Using the default syntax to realize a model of your quantized filter
hq. When you use this syntax, realizemdl uses blocks from Simulink and
Simulink Fixed-Point to realize the subsystem in your current Simulink model.

realizemdl(hq);

Look at the figure to see the model as realized by realizemdl.

OverwriteBlock 'off' or 'on' Specify whether to overwrite an existing
block with the same name or create a new
block.

OptimizeZeros 'off' (default) or
'on'

Specify whether to remove zero-gain blocks.

OptimizeOnes 'off' (default) or
'on'

Specify whether to replace unity-gain blocks
with direct connections.

OptimizeNegOnes 'off' (default) or
'on'

Specify whether to replace negative
unity-gain blocks with a sign change at the
nearest sum block.

OptimizeDelayChains 'off' (default) or
'on'

Specify whether to replace cascaded chains
of delay blocks with a single integer delay
block to provide an equivalent delay.

Property Name Property Values Description

realizemdl

8-1003

Example 2—Using propertyname/propertyvalue pairs to specify the features of
the subsystem block model created by realizemdl.

First, convert the filter to fixed-point arithmetic to ensure a few zero valued
coefficients:

hq.arithmetic = 'fixed';

Your filter has two zero value denominators, a(2) and a(4):

FilterStructure: 'Direct-Form I'
 Arithmetic: 'fixed'
 Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
 Denominator: [1 0 0.4860 0 0.0176]
 PersistentMemory: false
 States: Numerator: [4x1 fi]
 Denominator:[4x1 fi]

Now realize the model implementation.

realizemdl(hq,'optimizezeros','on',...
'blockname','newfiltermodel');

1

Output

−K−

b(5)

−K−

b(4)

−K−

b(3)

−K−

b(2)

−K−

b(1)

−K−

a(5)

−K−

a(4)

−K−

a(3)

−K−

a(2)

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

1

Input

realizemdl

8-1004

Since this example uses the optional property name optimizezeros, set to 'on',
the resulting block subsystem is slightly different—the zero-gain blocks for
coefficients a(2) and a(4) are not included in the subsystem.

See Also realizemdl under the methods for dfilt in the Signal Processing Toolbox

1

Output

−K−

b(5)

−K−

b(4)

−K−

b(3)

−K−

b(2)

−K−

b(1)

−K−

a(5)

−K−

a(3)

ConvertConvert

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

1

Input

reffilter

8-1005

8reffilterPurpose Double-precision floating-point reference filter that corresponds to fixed-point
or single-precision floating-point filter

Syntax href = reffilter(hd)

Description href = reffilter(hd) returns a new filter href that has the same structure
as hd, but uses the reference coefficients and has its arithmetic property set to
double. Note that hd can be either a fixed-point filter (arithmetic property set
to 'fixed', or a single-precision floating-point filter whose arithmetic property
is 'single').

reffilter(hd) differs from double(hd) in that

• the filter href returned by reffilter has the reference coefficients of hd.

• double(hd) returns the quantized coefficients of hd represented in
double-precision.

To check the performance of your fixed-point filter, use href = reffilter(hd)
to quickly have the floating-point, double-precision version of hd available for
comparison.

Examples Compare several fixed-point quantizations of a filter with the same
double-precision floating-point version of the filter.

h = dfilt.dffir(firceqrip(87,.5,[1e-3,1e-6])); % Lowpass filter.
h1 = copy(h); h2 = copy(h); % Create copies of h.
h.arithmetic = 'fixed'; % Set h to filter using fixed-point

% arithmetic.
h1.arithmetic = 'fixed'; % Same for h1.
h2.arithmetic = 'fixed'; % Same for h2.
h.CoeffWordLength = 16; % Use 16 bits to represent the

% coefficients.
h1.CoeffWordLength = 12; % Use 12 bits to represent the

% coefficients.
h2.CoeffWordLength = 8; % Use 8 bits to represent the

% coefficients.
href = reffilter(h);
hfvt = fvtool(href,h,h1,h2);
set(hfvt,'ShowReference','off'); % Reference displayed once

% already.

reffilter

8-1006

legend(hfvt,'Reference filter','16-bits','12-bits','8-bits');

The following plot, taken from FVTool, shows href, the reference filter, and the
effects of using three different word lengths to represent the coefficients.

As expected, the fidelity of the fixed-point filters suffers as you change the
representation of the coefficients. With href available, it is easy to see just how
the fixed-point filter compares to the ideal.

See Also double

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)
Reference Filter
16−bit Filter
12−bit Filter
8−bit Filter

reorder

8-1007

8reorderPurpose Rearrange sections in second-order sections (SOS) filter

Syntax reorder(hd,order)
reorder(hd,numorder,denorder)
reorder(hd,numorder,denorder,svorder)
reorder(hd,filter_type)
reorder(hd,dir_flag)
reorder(hd,dir_flag,sv))

Description reorder(hd,order) rearranges the sections of filter hd using the vector of
indices provided in order.

order does not need to contain all of the indices of the filter. Omitting one or
more filter section indices removes the omitted sections from the filter. You can
use a logical array to remove sections from the filter, but not to reorder it (refer
to the Examples to see this done).

reorder(hd,numorder,denorder) reorders the numerator and denominator
separately using the vectors of indices in numorder and denorder. These two
vectors must be the same length.

reorder(hd,numorder,denorder,svorder) the scale values can be
independently reordered. When svorder is not specified, the scale values are
reordered with the numerator. The output scale value always remains on the
end when you use the argument numorder to reorder the scale values.

reorder(hd,filter_type) where filter_type is one of auto, lowpass,
highpass, bandpass, or bandstop, reorders hd in a way suitable for the filter
type you specify by filter_type. This reordering mode can be especially
helpful for fixed-point implementations where the order of the filter sections
can significantly affect your filter performance.

The auto option and automatic ordering only apply to filters that you used
fdesign to create.With the auto option as an input argument, reorder
automatically rearranges the filter sections depending on the specification
response type of the design, such as lowpass, or bandstop. This technique
appears in the first example.

reorder(hd,dir_flag) if dir_flag is up, the first filter section contains the
poles closest to the origin, and the last section contains the poles closest to the

reorder

8-1008

unit circle. When dir_flag is down, the sections are ordered in the opposite
direction. reorder always pairs zeros with the poles closest to them.

reorder(hd,dir_flag,sv) sv is either the string poles or zeros and describes
how to reorder the scale values. By default the scale values are not reordered
when you use the dir_flag option.

Examples Being able to rearrange the order of the sections in a filter can be a powerful
tool for controlling the filter process. This example uses reorder to change the
sections of a df2sos filter. Let reorder do the reordering automatically in the
first example. In the second, use reorder to specify the new order for the
sections.

First use the automatic reordering option on a lowpass filter.

d = fdesign.lowpass('n,f3db',15,0.75)
hd = design(d,'butter');
d =

 Response: 'Lowpass'
 Specification: 'N,F3dB'
 Description: {'Filter Order';'3dB Frequency'}
 NormalizedFrequency: true
 FilterOrder: 15
 F3dB: 0.75

reorder(hd,'auto')
hd

hd =

 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [8x6 double]
 ScaleValues: [9x1 double]
 PersistentMemory: false

The SOS matrices show the reordering.

hd.sosMatrix

reorder

8-1009

ans =

 1.0000 2.0000 1.0000 1.0000 1.3169 0.8623
 1.0000 2.0000 1.0000 1.0000 1.1606 0.6414
 1.0000 2.0000 1.0000 1.0000 1.0448 0.4776
 1.0000 2.0000 1.0000 1.0000 0.9600 0.3576
 1.0000 2.0000 1.0000 1.0000 0.8996 0.2722
 1.0000 2.0000 1.0000 1.0000 0.8592 0.2151
 1.0000 2.0000 1.0000 1.0000 0.8360 0.1823
 1.0000 1.0000 0 1.0000 0.4142 0

hdreorder.sosMatrix

ans =

 1.0000 2.0000 1.0000 1.0000 1.0448 0.4776
 1.0000 2.0000 1.0000 1.0000 0.8360 0.1823
 1.0000 2.0000 1.0000 1.0000 0.8996 0.2722
 1.0000 2.0000 1.0000 1.0000 1.3169 0.8623
 1.0000 2.0000 1.0000 1.0000 0.9600 0.3576
 1.0000 1.0000 0 1.0000 0.4142 0
 1.0000 2.0000 1.0000 1.0000 0.8592 0.2151
 1.0000 2.0000 1.0000 1.0000 1.1606 0.6414

For another example of using reorder, create an SOS filter in the direct form II
implementation.

[z,p,k] = butter(15,.5);
[sos, g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);

Reorder the sections by moving the second section to be between the seventh
and eighth sections.

 reorder(hd, [1 3:7 2 8]);
 hfvt = fvtool(hd, 'analysis', 'coefficients');

Remove the third, fourth and seventh sections.

 hd1 = copy(hd);
 reorder(hd1, logical([1 1 0 0 1 1 0 1]));
 setfilter(hfvt, hd1);

reorder

8-1010

 Move the first filter to the end and remove the eighth section

 hd2 = copy(hd);
 reorder(hd2, [2:7 1]);
 setfilter(hfvt, hd2);

 Move the numerator and denominator independently.

 hd3 = copy(hd);
 reorder(hd3, [1 3:8 2], [1:8]);
 setfilter(hfvt, hd3);

See Also cumsec, scale, scaleopts

Reference Schlichthärle, Dietrich, Digital Filters Basics and Design, Springer-Verlag
Berlin Heidelberg, 2000.

reset

8-1011

8resetPurpose Reset filter properties to initial conditions

Syntax reset(ha)
reset(hd)
reset(hm)

Description reset(ha) resets all the properties of the adaptive filter ha that are updated
when filtering to the value specified at construction. If you do not specify
a value for any particular property when you construct an adaptive filter, the
property value for that property is reset to the default value for the property.

reset(hd) resets all the properties of the discrete-time filter hd to their factory
values that are modifed when you run the filter. In particular, the States
property is reset to zero.

reset(hm) resets all the properties of the multirate filter hm to their factory
value that are modifed when the filter is run. In particular, the States
property is reset to zero when hm is a decimator. Additionally, the filter
internal properties are also reset to their factory values.

Examples Denoise a sinusoid and reset the filter after filtering with it.

h = adaptfilt.lms(5,.05,1,[0.5,0.5,0.5,0.5,0.5]);
n = filter(1,[1 1/2 1/3],.2*randn(1,2000));
d = sin((0:1999)*2*pi*0.005) + n; % Noisy sinusoid
x = n;
[y,e]= filter(h,x,d); % e has denoised signal
disp(h)
reset(h); % Reset the coefficients and states.
disp(h)

See Also quantizer, set

scale

8-1012

8scalePurpose Scale sections of second-order sections (SOS) filter

Syntax scale(hd)
scale(hd,pnorm)
scale(hd,pnorm,p1v,p2,v2,)
scale(hd,pnorm,opts)

Description scale(hd) scales the second-order section filter hd using peak magnitude
response scaling (L-infinity, Linf), to reduce the possibility of overflows when
your filter hd operates in fixed-point arithmetic mode.

scale(hd,pnorm) specifies the norm used to scale the filter. pnorm can be
either a discrete-time-domain norm or a frequency-domain norm.

Valid time-domain norm values for pnorm are l1, l2, and linf. Valid
frequency-domain norm values are L1, L2, and Linf. Note that L2 norm is equal
to l2 norm (by Parseval's theorem) but this is not true for other norms—l1 is
not the same as L1 and Linf is not the same as linf.

Filter norms can be ordered in terms of how stringent they are, as follows from
most stringent to least:

l1 >= Linf >= L2 = l2 >= L1 >= linf

Using l1, the most stringent scaling, produces a filter that is least likely to
overflow, but has the worst signal-to-noise ratio performance. Linf scaling, the
least stringent, and the default scaling, is the most commonly used scaling
norm.

scale

8-1013

scale(hd,pnorm,p1,v1,p2,v2,...) uses parameter name/parameter value
pair input arguments to specify optional scaling parameters. Valid parameter
names and options values appear in the table.

Parameter Default Description and Valid Value

MaxNumerator 2 Maximum allowed value for
numerator coefficients.

MaxScaleValue Not Used Maximum allowed scale values.
The filter applies the
MaxScaleValue limit only when
you set ScaleValueConstraint to
a value other than unit (the
default setting). Setting
MaxScaleValue to any numerical
value automatically changes the
ScaleValueConstraint setting to
none.

NumeratorConstraint none Specifies whether and how to
constrain numerator coefficient
values. Options are none,
normalize, po2, and unit

OverflowMode wrap Sets the way the filter handles
arithmetic overflow situations
during scaling. Choose from wrap,
saturate or satall.

scale

8-1014

If your device does not have guard bits available and you are using saturation
arithmetic for filtering, use the satall setting for OverFlowMode instead of
saturate.

With the Arithmetic property of hd set to double or single, the filter uses the
default values for all options that you do not specify explicitly. When you set
Arithmetic to fixed, the values used for the scaling options are set according
to the settings in filter hd. However, if you specify a scaling option different
from the settings in hd, the filter uses your explicit option selection for scaling
purposes, but does not change the property setting in hd.

scale(hd,pnorm,opts) uses an input scale options object opts to specify the
optional scaling parameters in lieu of specifying parameter-value pairs. You
can create the opts object using

opts = scaleopts(hd)

For more information about scaling objects, refer to scaleopts in the Help
system.

Examples Demonstrate the Linf-norm scaling of a lowpass elliptic filter with
second-order sections. Start by creating a lowpass elliptical filter in zero, pole,
gain (z,p,k) form.

ScaleValueConstraint unit Specify whether to constrain the
filter scale values, and how to
constrain them. Valid options are
none, po2, and unit. Choosing
unit for the constraint disables
the MaxScaleValue property
setting. po2 constrains the scale
values to be powers of 2, while
none removes any constraint on
the scale values.

sosReorder auto Reorder filter sections prior to
applying scaling. Select one of
auto, none, up, or down.

Parameter Default Description and Valid Value

scale

8-1015

[z,p,k] = ellip(5,1,50,.3);
[sos,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);
scale(hd,'linf','scalevalueconstraint','none','maxscalevalue',2)

See Also cumsec, norm, reorder, scalecheck, scaleopts

scalecheck

8-1016

8scalecheckPurpose Check scaling of a second-order sections (SOS) filter

Syntax s = scalecheck(hd,pnorm)

Description For df1sos and df2tsos Filters

s = scalecheck(hd,pnorm) returns a row vector s that reports the p-norm of
the filter computed from the filter input to the output of each second-order
section. Therefore, the number of elements in s is one less than the number of
sections in the filter. Note that this p-norm computation does not include the
trailing scale value of the filter (which you can find by entering

hd.scalevalue(end)

at the MATLAB prompt.

pnorm can be either frequency-domain norms specified by L1, L2, or Linf or
discrete-time-domain norms—l1, l2, linf. Note that the L2-norm of a filter is
equal to the l2-norm (Parseval's theorem). This is not true for other norms.

For df2sos and df1tsos Filters

s = scalecheck(hd,pnorm) returns s, a row vector whose elements contain
the p-norm from the filter input to the input of the recursive part of each
second-order section. This computation of the p-norm corresponds to the input
to the multipliers in these filter structures, and are the locations in the signal
flow where overflow should be avoided.

When hd has nontrivial scale values, that is, if any scale values are not equal
to one, s is a two-row matrix, rather than a vector. The first row elements of
s report the p-norm of the filter computed from the filter input to the output of
each second-order section. The elements of the second row of s contain the
p-norm computed from the input of the filter to the input of each scale value
between the sections. Note that for df2sos and df1tsos filter structures, the
last numerator and the trailing scale value for the filter are not included when
scalecheck checks the scale.

For a given p-norm, an optimally scaled filter has partial norms equal to one,
so matrix s contain all ones.

Examples Check the Linf-norm scaling of a filter.

scalecheck

8-1017

hs = fdesign.lowpass; % Create a filter design specifications
object.
hd = ellip(hs); % Design an elliptic sos filter
scale(hd,'Linf');
s = scalecheck(hd,'Linf')

Or, in another form:

[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)

hd =

 FilterStructure: 'Direct-Form I, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [5x6 double]
 ScaleValues: [6x1 double]
 PersistentMemory: false
 States: [1x1 filtstates.dfiir]

1x1 struct array with no fields.

scalecheck(hd,'Linf')

ans =

 0.7631 0.9627 0.9952 0.9994 1.0000

See Also norm, reorder, scale, scaleopts

scaleopts

8-1018

8scaleoptsPurpose Create object containing scaling options for second-order sections (SOS) scaling

Syntax opts = scaleopts(hd)

Description opts = scaleopts(hd) uses the current settings in the filter hd to create an
options object opts that contains specified scaling options for second-order
section scaling. You can pass opts to the scale method as an input argument
to apply scaling settings to a second-order filter.

Within opts, the scaling options object returned by scaleopts, you can set the
following properties:

Parameter Default Description and Valid Value

MaxNumerator 2 Maximum allowed value for
numerator coefficients.

MaxScaleValue No default
value

Maximum allowed scale values.
The filter applies the
MaxScaleValue limit only when
you set ScaleValueConstraint
to a value other than unit.
Setting MaxScaleValue to
a numerical value
automatically changes the
ScaleValueConstraint setting
to none.

NumeratorConstraint none Specifies whether and how to
constrain numerator coefficient
values. Options are none,
normalize, po2, and unit,

scaleopts

8-1019

When you set the properties of opts and then use opts as an input argument
to scale(hd,opts), scale applies the settings in opts to scale hd.

Examples From a filter hd, you can create an options scaling object that contains the
scaling options settings you require.

[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)
opts=scaleopts(hd)

opts =

 MaxNumerator: 2
 NumeratorConstraint: 'none'
 OverflowMode: 'wrap'
 ScaleValueConstraint: 'unit'
 MaxScaleValue: 'Not used'

See Also cumsec, norm, reorder, scale, scalecheck

OverflowMode wrap Sets the way the filter handles
arithmetic overflow situations
during scaling. Choose either
wrap or saturate

ScaleValueConstraint unit Specify whether to constrain
the filter scale values, and how
to constrain them. Valid options
are none, po2, and unit

Parameter (Continued) Default Description and Valid Value

set2int

8-1020

8set2intPurpose Configure single-rate and multirate filters for integer filtering

Syntax set2int(h)
set2int(h,coeffwl)
set2int(...,inwl)
g = set2int(...)

Description These sections apply to both discrete-time (dfilt) and multirate (mfilt) filters.

set2int(h) scales the filter coefficients to integer values and sets the filter
coefficient and input fraction lengths to zero.

set2int(h,coeffwl) uses the number of bits specified by coeffwl as the word
length it uses to represent the filter coefficients.

set2int(...,inwl) uses the number of bits specified by coeffwl as the word
length it uses to represent the filter coefficients and the number of bits
specified by inwl as the word length to represent the input data.

g = set2int(...) returns the gain g introduced into the filter by scaling the
filter coefficients to integers. g is always calculated to be a power of 2.

Note set2int does not work with CIC decimators or interpolators because
they do not have coefficients.

 Examples These examples demonstrate some uses and ideas behind set2int.

The second parts of both examples depend on the following—after you filter
a set of data, the input data and output data cover the same range of values,
unless the filter process introduces gain in the output. Converting your filter
object to integer form, and then filtering a set of data, does introduce gain into
the system. When the examples refer to resetting the output to the same range
as the input, the examples are accounting for this added gain feature.

Discrete-Time Filter Example
Two parts comprise this example. Part 1 compares the step response of an FIR
filter in both the fractional and integer filter modes. Fractional mode filtering

set2int

8-1021

is essentially the opposite of integer mode. Integer mode uses a filter which has
coefficients represented by integers. Fractional mode filters have coefficients
represented in fractional form (nonzero fraction length).

b = firrcos(100,.25,.25,2,'rolloff','sqrt');
hd = dfilt.dffir(b);
hd.Arithmetic = 'fixed';
hd.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hd,x); % Fractional mode output.
g = set2int(hd); % Convert to integer coefficients.
yint = filter(hd,x); % Integer mode output.

Note that yint and yfrac are fi objects. Later in this example, you use the fi
object properties WordLength and FractionLength to work with the output
data.

Now use the gain g to rescale the output from the integer mode filter operation.

yints = double(yint)/g;

Verify that the scaled integer output is equal to the fractional output.

 max(abs(yints-double(yfrac)))

In part 2 , the example reinterprets the output binary data, putting the input
and the output on the same scale by weighting the most significant bits in the
input and output data equally.

WL = yint.WordLength;
FL = yint.Fractionlength + log2(g);
yints2 = fi(zeros(size(yint)),true,WL,FL);
yints2.bin = yint.bin;
max(abs(double(yints2)-double(yfrac)))

Multirate Filter Example
This two-part example starts by comparing the step response of a multirate
filter in both fractional and integer modes. Fractional mode filtering is
essentially the opposite of integer mode. Integer mode uses a filter which has
coefficients represented by integers. Fractional mode filters have coefficients in
fractional form with nonzero fraction lengths.

hm = mfilt.firinterp;

set2int

8-1022

hm.Arithmetic = 'fixed';
hm.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hm,x); % Fractional mode output.
g = set2int(hm); %Convert to integer coefficients.
yint = filter(hm,x); % Integer mode output.

Note that yint and yfrac are fi objects. In part 2 of this example, you use the
fi object properties WordLength and FractionLength to work with the output
data.

Now use the gain g to rescale the output from the integer mode filter operation.

yints = double(yint)/g;

Verify that the scaled integer output is equal to the fractional output.

max(abs(yints-double(yfrac)))

Part 2 demonstrates reinterpreting the output binary data by using the
properties of yint to create a scaled version of yint named yints2. This process
puts yint and yints2 on the same scale by weighing the most significant bits
of each object equally.

wl = yint.wordlength;
fl = yint.fractionlength + log2(g);
yints2 = fi(zeros(size(yint)),true,wl,fl);
yints2.bin = yint.bin;
max(abs(double(yints2)-double(yfrac)))

See Also mfilt

setspecs

8-1023

8setspecsPurpose Set specifications for filter specification object

Syntax setspecs(d,specvalue1,specvalue2,...)
setspecs(d,Specification,specvalue1,specvalue2,...)
setspecs(...,fs)
setspecs(...,inputunits)

Description setspecs(d,specvalue1,specvalue2,...) Set the specifications in the order
that they appear in the Specification property for the design object d.

setspecs(d,Specification,specvalue1,specvalue2,...) lets you change
the specifications for the object and set values for the new specifiers. When you
already have a filter specifications object, this syntax lets you change the
Specification string and the associated specification values for the object,
rather than recreating the object to change it.

setspecs(...fs) Set the fs. If you choose to specify the fs, it must be
immediately after you provide all of the specifications for the current
Specification. Refer to Examples to see this being used.

setspecs(...,inputunits) Specifying the inputunits option allows you to
specify your filter magnitude specification values in different units.
inputunits can be either of these strings:

• 'linear'—to indicate that your input specification values represent linear
units, such as decimal values for the filter feature locations when you select
normalized sampling frequency.

• 'squared'—indicating that your input specification values represent squared
magnitude values, usually dB. This is the default value. When you omit the
inputunits argument, setspecs assumes all specification values are in
square magnitude form.

You are not required to provide fs, the sampling frequency, as an input when
you use the inputunits option. As you see from the syntax options, the
inputunits option must be the rightmost input argument in the syntax—
inputunits must be passed as the final input.

Examples To demonstrate using setspecs, the following examples show how to use
various syntax forms to set the values in filter specifications objects.

setspecs

8-1024

Example 1
Create a lowpass design object d using filter order and a cutoff value for the
location of the edge of the passband. Then change the cutoff and order
specifications of d.

d = fdesign.lowpass('n,fc')

d =

 ResponseType: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 10
 Fcutoff: 0.5000

setspecs(d, 20, .4);

d =

 ResponseType: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 20
 Fcutoff: 0.4000

Example 2
Now specify a sampling frequency after you make d.

d = fdesign.lowpass('n,fc')

d =

 ResponseType: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true

setspecs

8-1025

 Fs: 'Normalized'
 FilterOrder: 10
 Fcutoff: 0.5000

setspecs(d, 20, 4, 20);

d

d =

 ResponseType: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: false
 Fs: 20
 FilterOrder: 20
 Fcutoff: 4

Example 3
This example uses the inputunits argument to change from the default setting
of square to linear unit. Start with the default lowpass design object that
specifies the edge locations for the passband and stopband, and the desired
attenuation in the pass- and stopbands.

d=fdesign.lowpass

d =

 ResponseType: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60

setspecs

8-1026

Convert to linear input values and reset the filter spec for d at the same time.
With the linear argument included, the inputs for the response features now
need to be in linear units.

setspecs(d,.4,.5,.1,.05,'linear')
d

d =

 ResponseType: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass: 0.4000
 Fstop: 0.5000
 Apass: 1.7430
 Astop: 26.0206

Example 4
Finally, use setspecs to change the Specification string and apply new filter
specifications to d.

d=fdesign.decim(3)

d =

 ResponseType: 'Minimum-order nyquist'
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 DecimationFactor: 3
 NormalizedFrequency: true
 Fs: 'Normalized'
 TransitionWidth: 0.1000
 Astop: 80

setspecs(d,'n,ast',16,70)
d

d =

 ResponseType: 'Nyquist with filter order and stopband attenuation'
 Specification: 'N,Ast'
 Description: {2x1 cell}
 DecimationFactor: 3

setspecs

8-1027

 NormalizedFrequency: true
 Fs: 'Normalized'
 PolyphaseLength: 16
 Astop: 70

See Also designmethods, fdesign.bandpass, fdesign.bandstop, fdesign.decimator,
fdesign.halfband, fdesign.highpass, fdesign.interpolator,
fdesign.lowpass, fdesign.nyquist, fdesign.rsrc

sos

8-1028

8sosPurpose Convert quantized filter to second-order sections (SOS) form, order, and scaling

Syntax Hq2 = sos(Hq)
Hq2 = sos(Hq, order)
Hq2 = sos(Hq, order, scale)

Description Hq2 = sos(Hq) returns a quantized filter Hq2 that has second-order sections
and the dft2 structure. Use the same optional arguments used in tf2sos.

Hq2 = sos(Hq, order) specifies the order of the sections in Hq2, where order
is either of the following strings:

• 'down' — to order the sections so the first section of Hq2 contains the poles
closest to the unit circle (L∞ norm scaling)

• 'up' — to order the sections so the first section of Hq2 contains the poles
farthest from the unit circle (L2 norm scaling and the default)

Hq2 = sos(Hq, order, scale) also specifies the desired scaling of the gain
and numerator coefficients of all second-order sections, where scale is one of
the following strings:

• 'none' — to apply no scaling (default)

• 'inf' — to apply infinity-norm scaling

• 'two' — to apply 2-norm scaling

Use infinity-norm scaling in conjunction with up-ordering to minimize the
probability of overflow in the filter realization. Consider using 2-norm scaling
in conjunction with down-ordering to minimize the peak round-off noise.

When Hq is a fixed-point filter, the filter coefficients are normalized so that the
magnitude of the maximum coefficient in each section is 1. The gain of the filter
is applied to the first scale value of Hq2.

sos uses the direct form II transposed (dft2) structure to implement second-
order section filters.

Examples [b,a]=butter(8,.5);
Hq = dfilt.df2t(b,a);
Hq.arithmetic = 'fixed';
Hq1 = sos(Hq)

sos

8-1029

See Also convert, dfilt

tf2sos in your Signal Processing Toolbox documentation

specifyall

8-1030

8specifyallPurpose Access fixed-point scaling modes and features in direct-form FIR filter object

Syntax specifyall(hd)
specifyall(hd,false)
specifyall(hd,true)

Description specifyall sets all of the autoscale property values of direct-form FIR filters
to false and all *modes of the filters to SpecifyPrecision. In this table, you
see the results of using specifyall with direct-form FIR filters.

specifyall(hd) gives you maximum control over all settings in a filter hd by
setting all of the autoscale options that are true to false, turning off all
autoscaling and resetting all modes—OutputMode, ProductMode, and
AccumMode—to SpecifyPrecision. After you use specifyall, you must supply
the property values for the mode- and scaling related properties.

specifyall provides an alternative to changing all these properties
individually. Do note that specifyall changes all of the settings; to set some
but not all of the modes, set each property as you require.

specifyall(hd,false) performs the opposite operation of specifyall(hd) by
setting all of the autoscale options to true; all of the modes to their default
values; and hiding the fraction length properties in the display, meaning you
cannot access them to set them or view them.

specifyall(hd,true) is equivalent to specifyall(hd).

Property Name Default Setting After Applying
specifyall

CoeffAutoScale true false

OutputMode AvoidOverflow SpecifyPrecision

ProductMode FullPrecision SpecifyPrecision

AccumMode KeepMSB SpecifyPrecision

RoundMode convergent convergent

OverflowMode wrap wrap

specifyall

8-1031

Examples This examples demonstrates using specifyall to provide access to all of the
fixed-point settings of an FIR filter implemented with the direct-form
structure. Notice the displayed property values shown after you change the
filter to fixed-point arithmetic, then after you use specifyall to disable all of
the automatic filter scaling and reset the mode values.

b = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2], {'w' 'c'});
hd = dfilt.dffir(b);
hd.arithmetic = 'fixed'
hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [1x13 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: 'true'
 Signed: 'on'

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'

 ProductMode: 'FullPrecision'

 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: 'on'

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

 InheritSettings: 'off'

specifyall(hd)
hd

specifyall

8-1032

hd =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [1x13 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]

 CoeffWordLength: 16
 CoeffAutoScale: false
 NumFracLength: 16
 Signed: true

 InputWordLength: 16
 InputFracLength: 15

 OutputWordLength: 16
 OutputMode: 'SpecifyPrecision'
 OutputFracLength: 11

 ProductMode: 'SpecifyPrecision'
 ProductWordLength: 32
 ProductFracLength: 31

 AccumMode: 'SpecifyPrecision'
 AccumWordLength: 40
 AccumFracLength: 31
 CastBeforeSum: true

 RoundMode: 'convergent'
 OverflowMode: 'wrap'

 InheritSettings: false

The mode properties InputMode, ProductMode, and AccumMode now have the
value SpecifyPrecision and the fraction length properties appear in the
display. Now you use the properties (InputFracLength, ProdFracLength,
AccumFracLength) to set the precision the filter applies to the input, product,
and accumulator operations. CoeffAutoScale switches to false, meaning

specifyall

8-1033

autoscaling of the filter coefficients will not be done to prevent overflows. None
of the other filter properties change when you apply specifyall.

See Also double, reffilter
fi, fimath in the Fixed-Point Toolbox

stepz

8-1034

8stepzPurpose Step response for filter

Syntax [h,t] = stepz(ha)
stepz(ha)
[h,t] = stepz(hm)
stepz(hm)

Description The next sections describe common stepz operation with adaptive and
multirate filters. For more input options and for information about using stepz
with discrete-time filters, refer to stepz in the Signal Processing Toolbox.

Adaptive Filters
For adaptive filters, stepz returns the instantaneous zero-phase response
based on the current filter coefficients.

[h,t] = stepz(ha) returns the step response h of the multirate filter ha. The
length of column vector h is the length of the impulse response of ha. Returned
vector t contains the time samples at which stepz evaluated the step response.
stepz returns h as a matrix when ha is a vector of filters. Each column of the
matrix corresponds to one filter in the vector.

stepz(ha) displays the filter step response in the Filter Visualization Tool
(FVTool).

Multirate Filters

[h,t] = stepz(hm) returns the step response h of the multirate filter hm. The
length of column vector h is the length of the impulse response of hm. The
vector t contains the time samples at which stepz evaluated the step response.
stepz returns h as a matrix when hm is a vector of filters. Each column of the
matrix corresponds to one filter in the vector.

stepz(hm) displays the step response in the Filter Visualization Tool
(FVTool).

Note that the response is computed relative to the rate at which the filter is
running. If a sampling frequency is specified, it is assumed that the filter is
running at that rate.

stepz

8-1035

Note that the multirate filter delay response is computed relative to the rate at
which the filter is running. When you specify fs (the sampling rate) as an input
argument, stepz assumes the filter is running at that rate.

For multistage cascades, stepz forms a single-stage multirate filter that is
equivalent to the cascade and computes the response relative to the rate at
which the equivalent filter is running. stepz does not support all multistage
cascades. Only cascades for which it is possible to derive an equivalent
single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an
interpolation factor of 2 and the second stage has an interpolation factor of 4.
An equivalent single-stage filter with an overall interpolation factor of 8 can be
found. stepz uses the equivalent filter for the analysis. If you specify
a sampling frequency fs as an input argument to stepz, the function
interprets fs as the rate at which the equivalent filter is running.

See Also freqz, impz

tf2ca

8-1036

8tf2caPurpose Convert transfer function to coupled allpass

Syntax [d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a)
[d1,d2,beta] = tf2ca(b,a)

Description [d1,d2] = tf2ca(b,a) where b is a real, symmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, returns real vectors d1 and d2 containing the
denominator coefficients of the allpass filters H1(z) and H2(z) such that

representing a coupled allpass decomposition.

[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, returns real vectors d1 and d2 containing the
denominator coefficients of the allpass filters H1(z) and H2(z) such that

In some cases, the decomposition is not possible with real H1(z) and H2(z). In
those cases a generalized coupled allpass decomposition may be possible,
whose syntax is

[d1,d2,beta] = tf2ca(b,a)

to return complex vectors d1 and d2 containing the denominator coefficients of
the allpass filters H1(z) and H2(z), and a complex scalar beta, satisfying
|beta| = 1, such that

representing the generalized allpass decomposition.

H z() B z()
A z()
------------ 1

2 H1 z() H2 z()+[]
--= =

H z() B z()
A z()
------------ 1

2
---⎝ ⎠
⎛ ⎞ H1 z() H2 z()–[]= =

H z() B z()
A z()
------------ 1

2
---⎝ ⎠
⎛ ⎞ β H1 z()• β H2 z()•+[]= =

tf2ca

8-1037

In the above equations, H1(z) and H2(z) are real or complex allpass IIR filters
given by

where D1(z) and D2(z) are polynomials whose coefficients are given by d1 and
d2.

Note A coupled allpass decomposition is not always possible. Nevertheless,
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be
factored in this manner. For details, refer to Signal Processing Toolbox User's
Guide.

Examples [b,a]=cheby1(9,.5,.4);
[d1,d2]=tf2ca(b,a); % TF2CA returns denominators of the allpass.
num = 0.5*conv(fliplr(d1),d2)+0.5*conv(fliplr(d2),d1);
den = conv(d1,d2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2latc

H1 z() fliplr D1 z()()()
D1 z()

--= H2 1() z() fliplr D2 1() z()()()
D2 1() z()

--=,

tf2cl

8-1038

8tf2clPurpose Convert transfer function to coupled allpass lattice

Syntax [k1,k2] = tf2cl(b,a)

[k1,k2] = tf2cl(b,a)

Description [k1,k2] = tf2cl(b,a) where b is a real, symmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, will perform the coupled allpass decomposition

of a stable IIR filter H(z) and convert the allpass transfer functions H1(z) and
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1
and k2.

[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of numerator
coefficients and a is a real vector of denominator coefficients, corresponding to
a stable digital filter, performs the coupled allpass decomposition

of a stable IIR filter H(z) and converts the allpass transfer functions H1(z) and
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1
and k2.

In some cases, the decomposition is not possible with real H1(z) and H2(z). In
those cases, a generalized coupled allpass decomposition may be possible, using
the command syntax

 [k1,k2,beta] = tf2cl(b,a)

to perform the generalized allpass decomposition of a stable IIR filter H(z) and
convert the complex allpass transfer functions H1(z) and H2(z) to
corresponding lattice allpass filters

where beta is a complex scalar of magnitude equal to 1.

H z() B z()
A z()
------------ 1

2 H1 z() H2 z()+[]
--= =

H z() B z()
A z()
------------ 1

2
---⎝ ⎠
⎛ ⎞ H1 z() H2 z()–[]= =

H z() B z()
A z()
------------ 1

2
---⎝ ⎠
⎛ ⎞ β H1 z()• β H2 z()•+[]= =

tf2cl

8-1039

Note Coupled allpass decomposition is not always possible. Nevertheless,
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be
factored in this manner. For details, refer to Signal Processing Toolbox User's
Guide.

Examples [b,a]=cheby1(9,.5,.4);
[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.
[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice
[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.
num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);
den = conv(den1,den2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp
latc2tf, tf2ca, tf2latc in Signal Processing Toolbox

window

8-1040

8windowPurpose Design FIR filter using windowed impulse response method

Syntax h = window(d,fcnhndl,fcnarg)
h = window(d, win)

description h = window(d,fcnhndl,fcnarg) designs an FIR filter using the specifications
in filter specification object d. Depending on the specification type of d, the
returned filter is either a single-rate digital filter—a dfilt, or a multirate
digital filter—an mfilt.

fcnhndl is a handle to a filter design function that returns a window vector,
such as the hamming or blackman functions. fcnarg is an optional argument
that returns a window. You pass the function to window. Refer to example 1
below to see the function argument used to design the filter.

h = window(d,win) designs a filter using the vector you supply in win. The
length of vector win must be the same as the impulse response of the filter,
which is equal to the filter order plus one. Example 2 shows this being done.

Examples These examples design filters using the two design techniques of specifying
a function handle or passing a window vector as an input argument.

Example 1
Use a function handle and optional input arguments to design a multirate
filter. We use a function handle to the function Kaiser to provide the window.
Since this example creates a decimating filter specifications object, window
returns a multirate filter.

d = fdesign.decim(4,'pl',14);
hm = window(d,@kaiser,2.5);
fvtool(hm)

window

8-1041

Example 2
Use a window vector provided by the hamming window design function. For this
example, the design object is a Nyquist filter, thus window returns hd as
a discrete-time filter.

d = fdesign.nyquist(5,'n',150);
hd = window(d,hamming(151));
fvtool(hd)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

window

8-1042

See Also firls, kaiserwin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

zerophase

8-1043

8zerophasePurpose Zero-phase response for filter

Syntax zerophase(ha)
[hr,w] = zerophase(ha,n)
[hr,w] = zerophase(...,f)
zerophase(hd)
[hr,w] = zerophase(hd,n)
[hr,w] = zerophase(...,f)
zerophase(hm)
[hr,w] = zerophase(hm,n)
[hr,w] = zerophase(...,f)
[hr,w] = zerophase(...,fs)

Description The next sections describe common zerophase operation with adaptive,
discrete-time, and multirate filters. For more input options, refer to zerophase
in the Signal Processing Toolbox.

Adaptive Filters
For adaptive filters, zerophase returns the instantaneous zero-phase response
based on the current filter coefficients.

zerophase(ha) displays the zero-phase response of ha in the Filter
Visualization Tool (FVTool).

[hr,w] = zerophase(ha,n) returns length n vectors hr and w containing the
instantaneous zero-phase response of the adaptive filter ha, and the
frequencies in radians at which zerophase evaluated the response. The
zero-phase response is evaluated at n points equally spaced around the upper
half of the unit circle. For an FIR filter where n is a power of two, the
computation is done faster using FFTs. If n is not specified, it defaults to 8192.

[hr,w] = zerophase(ha) returns a matrix hr if ha is a vector of filters. Each
column of the matrix corresponds to each filter in the vector. If you provide
a row vector of frequency points f as an input argument, each row of hr
corresponds to one filter in the vector.

zerophase

8-1044

Discrete-Time Filters

zerophase(hd) displays the zero-phase response of hd in the Filter
Visualization Tool (FVTool).

[hr,w] = zerophase(hd,n) returns length n vectors hr and w containing the
instantaneous zero-phase response of the adaptive filter hd, and the
frequencies in radians at which zerophase evaluated the response. The
zero-phase response is evaluated at n points equally spaced around the upper
half of the unit circle. For an FIR filter where n is a power of two, the
computation is done faster using FFTs. If n is not specified, it defaults to 8192.

[hr,w] = zerophase(hd) returns a matrix hr if hd is a vector of filters. Each
column of the matrix corresponds to each filter in the vector. If you provide
a row vector of frequency points f as an input argument, each row of hr
corresponds to one filter in the vector.

Multirate Filters

zerophase(hm) displays the zero-phase response of hd in the Filter
Visualization Tool (FVTool).

[hr,w] = zerophase(hm,n) returns length n vectors hr and w containing the
instantaneous zero-phase response of the adaptive filter hm, and the
frequencies in radians at which zerophase evaluated the response. The
zero-phase response is evaluated at n points equally spaced around the upper
half of the unit circle. For an FIR filter where n is a power of two, the
computation is done faster using FFTs. If n is not specified, it defaults to 8192.

[hr,w] = zerophase(hm) returns a matrix hr if hm is a vector of filters. Each
column of the matrix corresponds to each filter in the vector. If you provide
a row vector of frequency points f as an input argument, each row of hr
corresponds to one filter in the vector.

Note that the response is computed relative to the rate at which the filter is
running. If a sampling frequency is specified, it is assumed that the filter is
running at that rate.

zerophase

8-1045

Note that the multirate filter delay response is computed relative to the rate at
which the filter is running. When you specify fs (the sampling rate) as an input
argument, zerophase assumes the filter is running at that rate.

For multistage cascades, zerophase forms a single-stage multirate filter that
is equivalent to the cascade and computes the response relative to the rate at
which the equivalent filter is running. zerophase does not support all
multistage cascades. Only cascades for which it is possible to derive an
equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an
interpolation factor of 2 and the second stage has an interpolation factor of 4.
An equivalent single-stage filter with an overall interpolation factor of 8 can be
found. zerophase uses the equivalent filter for the analysis. If a sampling
frequency fs is specified as an input argument to zerophase, the function
interprets fs as the rate at which the equivalent filter is running.

See Also freqz, fvtool, grpdelay, impz, mfilt, phasez, zerophase, zplane

zpkbpc2bpc

8-1046

8zpkbpc2bpcPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
complex bandpass prototype by applying a first-order complex bandpass to
complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The original lowpass filter is given with zeros, Z,
poles, P, and gain factor, K.

This transformation effectively places two features of an original filter, located
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and
Wt2 respectively. It is assumed that Wt2 is greater than Wt1. In most of the cases
the features selected for the transformation are the band edges of the filter
passbands. In general it is possible to select any feature; e.g., the stopband
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., complex notch filters or resonators can be repositioned at two distinct
desired frequencies at any place around the unit circle; e.g., in the adaptive
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z, p, k, [0.25, 0.75], [-0.75, -0.25]);

zpkbpc2bpc

8-1047

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Comparing the filters in FVTool shows the example results. Use the features
in FVTool to check the filter coefficients, or other filter analyses.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter with Complex Passband

zpkbpc2bpc

8-1048

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpassbpc2bpc, iirbpc2bpc

zpkftransf

8-1049

8zpkftransfPurpose Zero-pole-gain frequency transformation of digital filter

Syntax [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)

Description [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns zeros,
Z2, poles, P2, and gain factor, K2, of the transformed lowpass digital filter. The
prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K. If
AllpassDen is not specified it will default to 1. If neither AllpassNum nor
AllpassDen is specified, then the function returns the input filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[z2, p2, k2] = zpkftransf(roots(b),roots(a),b(1),AlpNum,AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

After transforming the filter, you get the response shown in the figure, where
the passband has been shifted towards zero.

zpkftransf

8-1050

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

Z2
Zeros of the target filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype IIR Filter
Transformed Filter

zpkftransf

8-1051

P2
Poles of the target filter

K2
Gain factor of the target filter

See Also iirftransf

zpklp2bp

8-1052

8zpklp2bpPurpose Zero-pole-gain lowpass to bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a second-order real lowpass to real
bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “DC Mobility,” which
means that the Nyquist feature stays at Nyquist, but the DC feature moves to
a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming
other types of filters; e.g., real notch filters or resonators can be easily doubled
and positioned at two distinct, desired frequencies.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

zpklp2bp

8-1053

[z2,p2,k2] = zpklp2bp(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2bp, iirlp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

zpklp2bp

8-1054

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

zpklp2bpc

8-1055

8zpklp2bpcPurpose Zero-pole-gain lowpass to complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to complex
bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators. This transformation can be
used for designing bandpass filters for radio receivers from the high-quality
prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);

zpklp2bpc

8-1056

k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bpc, iirlp2bpc

zpklp2bs

8-1057

8zpklp2bsPurpose Zero-pole-gain lowpass to bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a second-order real lowpass to real
bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. This transformation implements the “Nyquist Mobility,”
which means that the DC feature stays at DC, but the Nyquist feature moves
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

zpklp2bs

8-1058

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2bs, iirlp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

zpklp2bs

8-1059

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE
Proceedings, vol. 1, pp. 1129-1231, June 1969.

zpklp2bsc

8-1060

8zpklp2bscPurpose Zero-pole-gain lowpass to complex bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to complex
bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency -Wo, at the required target frequency location, Wt1, and the second
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is
greater than Wt1. Additionally the transformation swaps passbands with
stopbands in the target filter.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not
restricted only to the cutoff frequency of an original lowpass filter. In general
it is possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other
types of filters; e.g., real notch filters or resonators can be doubled and
positioned at two distinct desired frequencies at any place around the unit
circle forming a pair of complex notches/resonators.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

zpklp2bsc

8-1061

[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bsc, iirlp2bsc

zpklp2hp

8-1062

8zpklp2hpPurpose Zero-pole-gain lowpass to highpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to real highpass
frequency mapping. This transformation effectively places one feature of an
original filter, located at frequency Wo, at the required target frequency
location, Wt, at the same time rotating the whole frequency response by half of
the sampling frequency. Result is that the DC and Nyquist features swap
places.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and the gain factor, K.

Relative positions of other features of an original filter change in the target
filter. This means that it is possible to select two features of an original filter,
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede
F1 in the target filter. However, the distance between F1 and F2 will not be the
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, or the deep
minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

zpklp2hp

8-1063

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2hp, iirlp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

zpklp2hp

8-1064

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

zpklp2lp

8-1065

8zpklp2lpPurpose Zero-pole-gain lowpass to lowpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order real lowpass to real lowpass
frequency mapping. This transformation effectively places one feature of an
original filter, located at frequency Wo, at the required target frequency
location, Wt.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not
restricted to the cutoff frequency of an original lowpass filter. In general it is
possible to select any feature; e.g., the stopband edge, the DC, the deep
minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming other
types of filters; e.g., notch filters or resonators can change their position in a
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

zpklp2lp

8-1066

Using zpklp2lp creates the desired half band IIR filter with the transformed
features that you specify in the transformation function. This figure shows the
results.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter (b,a)
Target Filter Transformed (z,p,k)

zpklp2lp

8-1067

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2lp, iirlp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer
function parameters in the discrete-time frequency transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,”
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

zpklp2mb

8-1068

8zpklp2mbPurpose Zero-pole-gain lowpass to M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Mth-order real lowpass to real
multibandpass frequency mapping. By default the DC feature is kept at its
original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)
allows you to specify an additional parameter, Pass, which chooses between
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the
Nyquist feature stays at its original location and the DC feature is free to move.
In the second case the DC feature is kept at an original frequency and the
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

zpklp2mb

8-1069

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

The resulting multiband filter that replicates features from the prototype
appears in the figure shown. Note the accuracy of the replication process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

zpklp2mb

8-1070

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2mb, iirlp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering,
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and
frequency transformation problem,” Proceedings 20th Asilomar Conference on

zpklp2mb

8-1071

Signals, Systems and Computers, Pacific Grove, California, pp. 164-168,
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7,
Reading, Massachusetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm
for frequency transformations, Linear Circuits, Systems and Signal Processing:
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

zpklp2mbc

8-1072

8zpklp2mbcPurpose Zero-pole-gain lowpass to complex M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Mth-order real lowpass to complex
multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature, for example, the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

This transformation can also be used for transforming other types of filters;
e.g., to replicate notch filters and resonators at any required location.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

zpklp2mbc

8-1073

You could review the coefficients to compare the filters, but the graphical
comparison shown here is quicker and easier.

However, looking at the coefficients in FVTool shows the complex nature
desired.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

zpklp2mbc

8-1074

Wo
Frequency value to be transformed from the prototype filter. It should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2mbc, iirlp2mbc

zpklp2xc

8-1075

8zpklp2xcPurpose Zero-pole-gain lowpass to complex N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Nth-order real lowpass to complex
multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation effectively
places N features of an original filter, located at frequencies Wo1,...,WoN, at the
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);

zpklp2xc

8-1076

z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Plotting the filters on the same axes lets you compare the results graphically,
shown here.

Arguments Z
Zeros of the prototype lowpass filter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

zpklp2xc

8-1077

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be
normalized to be between -1 and 1, with 1 corresponding to half the sample
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also zpkftransf, allpasslp2xc, iirlp2xc

zpklp2xn

8-1078

8zpklp2xnPurpose Zero-pole-gain lowpass to N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying an Nth-order real lowpass to real multipoint
frequency transformation, where N is the number of features being mapped. By
default the DC feature is kept at its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)
allows you to specify an additional parameter, Pass, which chooses between
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the
Nyquist feature stays at its original location and the DC feature is free to move.
In the second case the DC feature is kept at an original frequency and the
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created
around the unit circle after the transformation. This transformation effectively
places N features of an original filter, located at frequencies Wo1,...,WoN, at the
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the
target filter for the Nyquist mobility and are reversed for the DC mobility. For
the Nyquist mobility this means that it is possible to select two features of an
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2
after the transformation. However, the distance between F1 and F2 will not be
the same before and after the transformation. For DC mobility feature F2 will
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the
cutoff frequency of an original lowpass filter. In general it is possible to select
any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones. The only condition is that the features must be

zpklp2xn

8-1079

selected in such a way that when creating N bands around the unit circle, there
will be no band overlap.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

zpklp2xn

8-1080

As demonstrated by the figure, the target filter has the desired response shape
and values replicated from the prototype.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

zpklp2xn

8-1081

Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpasslp2xn, iirlp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for
Flexible IIR Filter Design,” VII European Signal Processing Conference
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order
frequency transformations for IIR filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

zpkrateup

8-1082

8zpkrateupPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N) returns zeros,
Z2, poles, P2, and gain factor, K2, of the target filter being transformed from any
prototype by applying an Nth-order rateup frequency transformation, where N
is the upsample ratio. Transformation creates N equal replicas of the prototype
filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The original lowpass filter is given with zeros, Z,
poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Upsample the prototype filter four times:

[z2,p2,k2] = zpkrateup(z, p, k, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Applying the upsample process creates a bandpass filter, as shown here.

zpkrateup

8-1083

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

N
Integer upsampling ratio

Z2
Zeros of the target filter

P2
Poles of the target filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

zpkrateup

8-1084

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also zpkrateup, allpassrateup, iirrateup

zpkshift

8-1085

8zpkshiftPurpose Zero-pole-gain real shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a second-order real shift frequency
mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass
mapping filter, AllpassDen. The prototype lowpass filter is given with zeros, Z,
poles, P, and gain factor, K.

This transformation places one selected feature of an original filter, located at
frequency Wo, at the required target frequency location, Wt. This transformation
implements the “DC Mobility,” which means that the Nyquist feature stays at
Nyquist, but the DC feature moves to a location dependent on the selection of
Wo and Wt.

Relative positions of other features of an original filter do not change in the
target filter. This means that it is possible to select two features of an original
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the
transformation. However, the distance between F1 and F2 will not be the same
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to
the cutoff frequency of an original lowpass filter. In general it is possible to
select any feature; e.g., the stopband edge, the DC, the deep minimum in the
stopband, or other ones.

This transformation can also be used for transforming other types of filters;
e.g., notch filters or resonators can change their position in a simple way
without the need to design them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkshift(z, p, k, 0.5, 0.25);

zpkshift

8-1086

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

It is clear from the following figure that the shift process has taken the
response value at 0.5 in the prototype and replicated it in the target at 0.25, as
specified.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

zpkshift

8-1087

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2

Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpassshift, iirshift

zpkshiftc

8-1088

8zpkshiftcPurpose Zero-pole-gain complex shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt) returns
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the
real lowpass prototype by applying a first-order complex frequency shift
transformation. This transformation rotates all the features of an original
filter by the same amount specified by the location of the selected feature of the
prototype filter, originally at Wo, placed at Wt in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen,
of the allpass mapping filter. The prototype lowpass filter is given with zeros,
Z, poles, P, and the gain factor, K.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5) performs
the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an
original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5) performs
the inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an
original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Example 1: Rotation by -0.25:

[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 2: Hilbert transform:

[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 3: Inverse Hilbert transform:

zpkshiftc

8-1089

[z2,p2,k2] = zpkshiftc(z, p, k, 0, -0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Result of Example 1
After performing the rotation, the resulting filter shows the features desired.

Result of Example 2
Similar to the first example, performing the Hilbert transformation generates
the desired target filter, shown here.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter After Rotation by −0.25

zpkshiftc

8-1090

Result of Example 3
Finally, using the inverse Hilbert transformation creates yet a third filter,
as the figure shows.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Target Filter After HIlbert Transformation

zpkshiftc

8-1091

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Prototype Filter
Filter Resulting From Inverse Hilbert Transformation

zpkshiftc

8-1092

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding
to half the sample rate.

See Also zpkftransf, allpassshiftc, iirshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert
transformers, and half-band low-pass filters,” IEEE Transactions on
Education, vol. 32, pp. 314-318, August 1989.

zplane

8-1093

8zplanePurpose Compute zero-pole plot for quantized filter

Syntax zplane(Hq)
zplane(Hq,'plotoption')
zplane(Hq,'plotoption','plotoption2')
[zq,pq,kq] = zplane(Hq)
[zq,pq,kq,zr,pr,kr] = zplane(Hq)

Description This function displays the poles and zeros of quantized filters, as well as the
poles and zeros of the associated unquantized reference filter.

zplane(Hq) plots the zeros and poles of a quantized filter Hq in the current
figure window. The poles and zeros of the quantized and unquantized filters
are plotted by default. The symbol o represents a zero of the unquantized
reference filter, and the symbol x represents a pole of that filter. The symbols

 and + are used to plot the zeros and poles of the quantized filter Hq. The plot
includes the unit circle for reference.

zplane(Hq,'plotoption') plots the poles and zeros associated with the
quantized filter Hq according to one specified plot option. The string
'plotoption' can be either of the following reference filter display options:

• 'on' to display the poles and zeros of both the quantized filter and the
associated reference filter (default)

• 'off' to display the poles and zeros of only the quantized filter

zplane(Hq,'plotoption','plotoption2') plots the poles and zeros
associated with the quantized filter Hq according to two specified plot options.
The string 'plotoption' can be selected from the reference filter display
options listed in the previous syntax. The string 'plotoption2' can be selected
from the section-by-section plotting style options described below:

• 'individual' to display the poles and zeros of each section of the filter in a
separate figure window

• 'overlay' to display the poles and zeros of all sections of the filter on the
same plot

• 'tile' to display the poles and zeros of each section of the filter in a separate
plot in the same figure window

zplane

8-1094

[zq,pq,kq] = zplane(Hq) returns the vectors of zeros zq, poles pq, and gains
kq. If Hq has n sections, zq, pq, and kq are returned as 1-by-n cell arrays. If
there are no zeros (or no poles), zq (or pq) is set to the empty matrix [].

[zq,pq,kq,zr,pr,kr] = zplane(Hq) returns the vectors of zeros zr, poles pr,
and gains kr of the reference filter associated with the quantized filter Hq, and
returns the vectors of zeros zq, poles pq, and gains kq for the quantized filter Hq.

Examples Create a quantized filter Hq from a fourth-order digital filter with cutoff
frequency of 0.6. Scale the transfer function parameters to avoid overflows due
to coefficient quantization. Plot the quantized and unquantized poles and zeros
associated with this quantized filter.

[b,a] = ellip(4,.5,20,.6);
Hq = dfilt.df2(b/2 a/2);
Hq.arithmetic = 'fixed';
zplane(Hq);

See Also freqz, impz

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real part

Im
ag

in
ar

y
pa

rt

Quantized zeros
Quantized poles
Reference zeros
Reference poles

A

Bibliography

Advanced Filters (p. A-2) Suggested reading and sources for advanced filter design
topics

Adaptive Filters (p. A-2) Suggested reading and sources for adaptive filter topics

Multirate Filters (p. A-3) Suggested reading and sources about multirate filters

Frequency Transformations (p. A-3) Suggested reading and sources for information about
filter frequency transformations

A Bibliography

A-2

Advanced Filters
[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second
Edition, McGraw-Hill, Inc., 1993.

[2] Chirlian, P.M., Signals and Filters, Van Nostrand Reinhold, 1994.

[3] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons,
1994.

[4] Jackson, L., Digital Filtering and Signal Processing with MATLAB
Exercises, Third edition, Kluwer Academic Publishers, 1996.

[5] Lapsley, P., J. Bier, A. Sholam, and E.A. Lee, DSP Processor
Fundamentals: Architectures and Features, IEEE Press, 1997.

[6] McClellan, J.H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W. Schafer,
and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using
MATLAB 5, Prentice-Hall, 1998.

[7] Mayer-Baese, U., Digital Signal Processing with Field Programmable
Gate Arrays, Springer, 2001, refer to the BiQuad block diagram on pp. 126
and the IIR Butterworth example on pp. 140.

[8] Moler, C., “Floating points: IEEE Standard unifies arithmetic model,”
Cleve’s Corner, The MathWorks, Inc., 1996. See
http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf.

[9] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

[10] Shajaan, M., and J. Sorensen, “Time-Area Efficient Multiplier-Free
Recursive Filter Architectures for FPGA Implementation,” IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1996,
pp. 3269-3272.

Adaptive Filters
[11] Hayes, M.H., Statistical Digital Signal Processing and Modeling, John
Wiley and Sons, 1996.

[12] Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc.,
1996.

A-3

Multirate Filters
[13] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons,
1994.

[14] harris, fredric j, Multirate Signal Processing for Communication
Systems, Prentice Hall PTR, 2004.

[15] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.

[16] Lyons, Richard G., Understanding Digital Signal Processing, Prentice
Hall PTR, 2004

[17] Mitra, S.K., Digital Signal Processing, McGraw-Hill, 1998.

[18] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Inc.,
1996.

Frequency Transformations
[19] Constantinides, A.G., “Spectral Transformations for Digital Filters,”
IEEE Proceedings, Vol. 117, No. 8, pp. 1585-1590, August 1970.

[20] Nowrouzian, B., and A.G. Constantinides, “Prototype Reference Transfer
Function Parameters in the Discrete-Time Frequency Transformations,”
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,
Canada, Vol. 2, pp. 1078-1082, August 1990.

[21] Feyh, G., J.C. Franchitti, and C.T. Mullis, “Allpass Filter Interpolation
and Frequency Transformation Problem,” Proceedings 20th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, California, pp.
164-168, November 1986.

[22] Krukowski, A., G.D. Cain, and I. Kale, “Custom Designed High-Order
Frequency Transformations for IIR Filters,” 38th Midwest Symposium on
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

A Bibliography

A-4

Index-1

Index

A
AccumFracLength 7-20
AccumWordLength 7-20
adaptfilt

about 8-22
copying 8-30

adaptfilt object
apply to data 4-25

adaptfilt object properties
Algorithm 7-110
AvgFactor 7-110
BkwdPredErrorPower 7-110
BkwdPrediction 7-110
Blocklength 7-112
Coefficients 7-112
ConversionFactor 7-112
Delay 7-112
DesiredSignalStates 7-113
EpsilonStates 7-113
ErrorStates 7-113
FFTCoefficients 7-113
FFTStates 7-113
FilteredInputStates 7-113
FilterLength 7-113
ForgettingFactor 7-113
FwdPredErrorPower 7-114
FwdPrediction 7-114
InitFactor 7-114
InvCov 7-114
KalmanGain 7-114
KalmanGainStates 7-114
Leakage 7-114
Offset 7-114
OffsetCov 7-114
Power 7-115
ProjectionOrder 7-115
ReflectionCoeffsStep 7-115

ResetBeforeFiltering 7-115
SecondaryPathCoeffs 7-115
SecondaryPathEstimate 7-115
SecondaryPathStates 7-116
SqrtInvCov 7-116
States 7-116
StepSize 7-116
SwBlockLength 7-116

adaptive filter object
 See adaptfilt object

adaptive filter properties
SqrtCov 7-116

addstages method 8-292
Algorithm 7-110
antisymmetricfir 7-54
arithmetic

about fixed-point 7-20
arithmetic property

double 7-21
fixed 7-23
single 7-22

AvgFactor 7-110

B
binary point 2-46

interpretation 2-46
bits

definition 2-45
BkwdPredErrorPower 7-110
BkwdPrediction 7-110
block method 8-292
Blocklength 7-112
Bmax

See CIC filter 3-28

Index

Index-2

C
cascade method 8-292
CastBeforeSum 2-42
changing quantized filter properties in FDATool

6-22
CIC filter

Bmax 3-28
MSB 3-28

CoeffAutoScale 7-36
CoeffFracLength 7-40
Coefficients 7-112
coefficients method 8-292
CoeffWordLength 7-41
context-sensitive help 6-89
controls

FDATool 6-10
ConversionFactor 7-112
convert filters 7-68
convert method 8-292
converting filter structures in FDATool 6-28

D
data format

about 2-46
Delay 7-112
DenAccumFracLength 7-41
DenFracLength 7-41
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-42
DenStateWordLength 7-43
designing fixed-point multirate filters 6-81
designing multirate filters 6-81
DesiredSignalStates 7-113
df1 7-47
df1t 7-48

df2 7-49
df2t 7-52
dfilt

cascade 8-311
df1 8-321
df1sos 8-331
df1t 8-6, 8-343
df1tsos 8-6, 8-354
df2 8-6, 8-366
df2sos 8-6, 8-376
df2t 8-7, 8-389
df2tsos 8-7, 8-400
direct-form antisymmetric FIR 8-7, 8-413
direct-form FIR transposed 8-7, 8-432
direct-form II transposed (df2t) 8-7, 8-389
direct-form IIR 8-7, 8-423
direct-form symmetric FIR 8-7, 8-442
lattice allpass 8-7, 8-453
lattice autoregressive 8-7, 8-463
lattice moving-average maximum 8-7, 8-483
lattice moving-average minimum 8-7, 8-492
parallel 8-7, 8-502
scalar 8-7, 8-503
See Signal Processing Toolbox documentation

dfilt function 8-286
convert structures 8-299
copying 8-299
methods 8-291
structures 8-286

dfilt objects
See also quantized filters

dfilt properties
arithmetic 7-20

dfilt.cascade 8-311
dfilt.df1 8-321
dfilt.df1sos 8-331
dfilt.df1t 8-343

Index

Index-3

dfilt.df1tsos 8-354
dfilt.df2 8-366
dfilt.df2sos 8-376
dfilt.df2t 8-389
dfilt.df2tsos 8-400
dfilt.dffir 8-423
dfilt.dffirt 8-432
dfilt.dfsymfir 8-442
dfilt.latticeallpass 8-453
dfilt.latticear 8-463
dfilt.latticemamax 8-483
dfilt.latticemamin 8-492
dfilt.parallel 8-502
dfilt.scalar 8-503
direct-form I 7-48

transposed 7-48
direct-form II 7-49

transposed 7-52
double

property value 7-21
dynamic properties 7-6
dynamic range

fixed-point 2-49

E
EpsilonStates 7-113
ErrorStates 7-113
exporting quantized filters in FDATool 6-55

F
fcfwrite method 8-293
FDATool

about 6-3
about importing and exporting filters 6-53
about quantization mode 6-8

apply option 6-11
changing quantized filter properties 6-22
context-sensitive help 6-89
controls 6-10
convert structure option 6-28
converting filter structures 6-28
exporting quantized filters 6-55
frequency point to transform 6-63
getting help 6-89
import filter dialog 6-54
importable filter structures 6-53
importing filters 6-54
original filter type 6-60
quantized filter properties 6-12
quantizing filters 6-12
quantizing reference filters 6-21
set quantization parameters dialog 6-12
setting properties 6-12
specify desired frequency location 6-64
switching to quantization mode 6-8
transform filters in FDATool 6-64
transformed filter type 6-64
user options 6-10

FFTCoefficients 7-113
fftcoeffs method 8-293
FFTStates 7-113
filter

initial conditions 8-30
states 8-30

filter conversions 7-69
filter design

adaptive 4-1
multirate 8-10

Filter Design and Analysis Tool
See FDATool

filter design GUI
context-sensitive help 6-89

Index

Index-4

help about 6-89
filter method 8-293
filter sections

specifying 7-69
filter structures

about 7-43
all-pass lattice 7-60
direct-form antisymmetric FIR 7-54
direct-form FIR 7-57
direct-form I 7-47
direct-form I SOS IIR 7-48
direct-form I transposed 7-48
direct-form I transposed IIR 7-48
direct-form II 7-49
direct-form II IIR 7-49
direct-form II SOS IIR 7-51
direct-form II transposed 7-52
direct-form II transposed IIR 7-52
direct-form symmetric FIR 7-66
direct-form transposed FIR 7-58
FIR transposed 7-58
fixed-point 7-46
lattice allpass 7-60
lattice AR 7-62
lattice ARMA 7-64
lattice autoregressive moving average 7-64
lattice moving average maximum phase 7-61
lattice moving average minimum phase 7-63

filter, fixed-point 2-29
filter,quantized 2-29
FilteredInputStates 7-113
filterinternals

fixed-point filter 7-43
multirate filter 7-122

FilterLength 7-113
filters

converting 7-68

direct-form 2-32
exporting as MAT-file 6-57
exporting as text file 6-56
exporting from FDATool 6-55
FIR 7-43
getting filter coefficients after exporting 6-56
importing and exporting 6-53
importing into FDATool 6-54
impulse response 8-795
initial conditions using dfilt 8-299
lattice 7-43
objects 8-286
states 8-299
state-space 7-43
test if filter coefficients are real 8-17
testing for allpass structure 8-17
testing for FIR structure 8-17
testing for linear phase sections 8-17
testing for maximum phase design 8-17
testing for minimum phase design 8-17
testing for purely real coefficients 8-17
testing for second-order sections 8-18
testing for stability 8-18

FilterStructure property 7-43
finite impulse response

antisymmetric 7-54
symmetric 7-66

fir 7-57
FIR filters 7-43
firt 7-58
firtype method 8-293
fixed

arithmetic property value 7-23
fixed-point 2-45

sign bit 2-45
fixed-point filter 2-29
fixed-point filter properties

Index

Index-5

AccumFracLength 7-20
AccumWordLength 7-20
Arithmetic 7-20
CastBeforeSum 7-33
CoeffAutoScale 7-36
CoeffFracLength 7-40
CoeffWordLength 7-41
DenAccumFracLength 7-41
DenFracLength 7-41
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-42
DenStateWordLength 7-43
FilterStructure 7-43

fixed-point filter states 7-96
fixed-point filter structures 7-46
fixed-point filters

dynamic properties 7-6
fixed-point format 2-46
fixed-point multirate filters 6-81
fixed-point numbers

scaling 2-50
ForgettingFactor 7-113
format 2-46
format for numeric data 2-46
fraction length 2-47

about 7-30
negative number of bits 7-30

frequency point to transform 6-63
frequency response 8-13, 8-708
freqz 8-13, 8-708
freqz method 8-293
function for opening FDATool 6-8
FwdPredErrorPower 7-114
FwdPrediction 7-114

G
getting filter coefficients after exporting 6-56
getting started 1-4
getting started example 1-4
grpdelay method 8-293

I
import filter dialog in FDATool 6-54
import filter dialog options 6-54

discrete-time filter 6-54
frequency units 6-54

import/export filters in FDATool 6-53
importing filters 6-54
importing quantized filters in FDATool 6-54
impz method 8-293
impzlength method 8-293
info method

dfilt function 8-293
InitFactor 7-114
initial conditions 8-30

using dfilt states 8-299
InvCov 7-114
isallpass 8-17
isallpass method 8-293
iscascade method 8-294
isfir 8-17
isfir method 8-294
islinphase 8-17
islinphase method 8-294
ismaxphase 8-17
ismaxphase method 8-294
isminphase 8-17
isminphase method 8-294
isparallel method 8-294
isreal 8-17
isreal method 8-294

Index

Index-6

isscalar method 8-294
issos 8-18
issos method 8-294
isstable 8-18
isstable method 8-294

K
KalmanGain 7-114
KalmanGainStates 7-114

L
latcallpass 7-60
latcmax 7-61
lattice filters

allpass 7-60
AR 7-62
ARMA 7-64
autoregressive 7-62
MA 7-63
moving average maximum phase 7-61
moving average minimum phase 7-63

latticear 7-62
latticearma 7-64
latticeca 7-61
latticema 7-63
Leakage 7-114
least significant bit 2-46
LSB 2-46

M
mfilt object 8-838
mfilt objects 8-10
most significant bit 2-45
MSB 2-45

multiple sections
specifying 7-69

multirate filter functions 8-10
multirate filter states 7-131
multirate filters

designing 6-81
multirate object

See mfilt

N
negative fraction length

interpret 7-30
normalize 2-50
nsections method 8-294
nstages method 8-294
nstate method 8-294

O
object

adaptfilt 8-22
changing properties 8-30, 8-299
filter 8-286
mfilt 8-838
viewing parameters 8-29
viewing properties 8-298

object properties
AccumWordLength 7-20

Offset 7-114
OffsetCov 7-114
opening FDATool

function for 6-8
options

FDATool 6-10
order method 8-295
original filter type 6-60

Index

Index-7

P
parallel method 8-295
phasez method 8-295
plots

zero-pole, command for 8-1093
pole-zero plots 8-1093
polyphase filters

See multirate filter functions 8-10
Power 7-115
precision 7-31

fixed-point 2-49
See fraction length 2-46

ProjectionOrder 7-115
properties

dynamic 7-6
FilterStructure 7-43
ScaleValues 7-86

Q
quantization 2-29
quantization mode in FDATool 6-8
quantized 2-29
quantized filter 2-29
quantized filter properties

changing in FDATool 6-22
FilterStructure 2-32

quantized filters
architecture 7-43
constructing 2-28
direct-form FIR 7-57
direct-form FIR transposed 7-58
direct-form symmetric FIR 7-66
filtering data 8-649, 8-651
finite impulse response 7-58
frequency response 8-13, 8-708
lattice allpass 7-60

lattice AR 7-62
lattice ARMA 7-64
lattice coupled-allpass 7-60
lattice MA maximum phase 7-61
lattice MA minimum phase 7-63
reference filter 7-67
scaling 7-86
specifying 7-67
specifying coefficients for multiple sections

7-69
structures 7-43
symmetric FIR 7-54
zero-pole plots 8-1093

quantized filters properties
ScaleValues 7-86

quantizing filters in FDATool 6-21

R
range

fixed-point 2-49
realizemdl method 8-296
reference coefficients

specifying 7-67
ReflectionCoeffs 7-115
ReflectionCoeffsStep 7-115
removestage method 8-297
represent numeric data 7-30
ResetBeforeFiltering 7-115

S
ScaleValues property 7-86

interpreting 7-87
scaling

implementing for quantized filters 7-87
quantized filters 7-86

Index

Index-8

SecondaryPathCoeffs 7-115
SecondaryPathEstimate 7-115
SecondaryPathStates 7-116
second-order sections

normalizing 7-69
set quantization parameters dialog 6-12
setstage method 8-297
setting filter properties in FDATool 6-12
single

property value 7-22
sos method 8-297
specifying desired frequency location 6-64
SqrtCov 7-116
SqrtInvCov 7-116
ss method 8-297
starting FDATool 6-8
States 7-116
states, fixed-point filter 7-96
states, multirate filter 7-131
StepSize 7-116
stepz method 8-298
SwBlockLength 7-116
symmetricfir 7-66

T
tf method 8-298
toolbox

getting started 1-4
transform filter

frequency point to transform 6-63
original filter type 6-60
specify desired frequency location 6-64
transformed filter type 6-64

transformed filter type 6-64
two’s complement arithmetic 2-45

U
using adaptfilt objects 4-25
using FDATool 6-54

W
word length

about 7-30

Z
zerophase method 8-298
zero-pole plots 8-1093
zpk method 8-298
zplane 8-1093

plotting options 8-1093
zplane method 8-298

	What Is Filter Design Toolbox?
	Introducing the Filter Design Toolbox
	Key Features

	Getting Started with the Toolbox
	Using Specification Objects to Design Filters
	Getting General Filter Specification Object Help
	Creating a Filter Specification Object
	Changing Specifications for Specification Objects
	Setting Design Parameters
	Normalizing Frequency Specifications
	Designing Filters From Filter Specification Objects
	Using Design Time Options
	Comparing Designs
	Example—Creating a Fixed-Point IIR Filter

	Selected Bibliography

	Designing Fixed-Point Filters
	Designing Fixed-Point Filters
	The Filter Design Process
	Designing a Filter With Floating-Point Coefficients
	Converting the Filter to Fixed-Point
	Quantizing Filter Coefficients with Automatic Scaling
	Scaling Filter Coefficients Manually
	Specifying Arithmetic Rules

	Working with Fixed-Point Direct-Form FIR Filters
	Obtaining the Filter
	Creating the Direct-Form FIR Fixed-Point Filter
	Comparing Quantized Coefficients to Nonquantized Coefficients
	Determining the Number of Bits being Used
	Determining the Proper Coefficient Word Length
	Fixed-Point Filtering
	Generating a Baseline Output for Comparison
	Computing the Fixed-Point Filter Output
	Reducing Filter Output Quantization
	The Advantages of Guard Bits
	Avoiding Overflow Without Guard Bits

	Constructing Fixed-Point Filters
	Defining Quantized and Fixed-Point Filters
	Constructors for Fixed-Point Filters
	Constructing a Quantized Filter from a Filter Specification Object
	Copying Filters to Inherit Properties
	Fixed-Point Arithmetic Filter Structures

	Data Type Handling in Discrete-Time Filters
	Filter Input Signals, Coefficients, and States
	The CastBeforeSum Filter Property

	Introduction to Fixed-Point Arithmetic
	Binary Point Interpretation
	Precision and Dynamic Range
	Overflows and Scaling

	Designing Multirate Filters
	Introducing Multirate Filters
	Getting Started—Designing Multirate Filters
	Creating Multirate Filters
	Getting and Setting Filter Coefficients
	Analyzing Multirate and Multistage Filters
	Filtering with Multirate Filters
	Specifying Initial Conditions to the Filter
	Streaming Data to the Filter
	Filtering Multichannel Signals
	Generating Simulink Blocks
	Getting Help About Multirate Filters

	FIR Decimation—Filtering with FIR Decimators
	Creating FIR Decimators
	Understanding Input Sample Processing and the InputOffset Property
	Filtering with FIR Decimators

	CIC Filter Example—Using CIC Decimation Filters
	Creating CIC Decimator filters
	Analyzing CIC Decimation Filters
	About the MSB at the Filter Output
	Working with Section Word Lengths
	CIC Filter States
	Filter Implementation—Signal Flow Graph
	Reference

	Analyzing Multirate and Multistage Filters
	Analyzing Single-Stage Multirate Filters
	Comparing Interpolators
	Performing Multistage Filter Analysis
	Analyzing Multistage Interpolators
	Analyzing a Multistage Sample-Rate Converter
	Analyzing Other Multistage Configurations

	Audio Example—Audio Sample Rate Conversion
	Creating the Multirate Filters
	Decreasing the Sample Rate by a Fractional Factor
	Constructing the Fractional Decimator
	Filtering to Change the Sample Rate
	Comparing the Resampled Signals
	Increasing the Sample Rate by a Fractional Factor
	Plotting the Original Signal and the Reconverted Signal
	Converting from 48 kHz to 44.1 kHz
	Plotting the 48 kHz Signal and the 44.1 kHz Signal

	Designing Adaptive Filters
	Introducing Adaptive Filtering
	Getting Started with Adaptive Filters
	Tutorial Contents
	Create the Signals for Adaptation
	Construct Two Adaptive Filters
	Choose the Step Size
	Set the Adapting Filter Step Size
	Filter with the Adaptive Filters
	Compute the Optimal Solution
	Plot the Results
	Compare the Final Coefficients
	Reset the Filter Before Filtering
	Investigate Convergence Through Learning Curves

	Overview of Adaptive Filters and Applications
	Choosing an Adaptive Filter
	System Identification
	Inverse System Identification
	Noise Cancellation (or Interference Cancellation)
	Prediction

	Adaptive Filters in the Filter Design Toolbox
	Algorithms
	Using Adaptive Filter Objects

	Examples of Adaptive Filters That Use LMS Algorithms
	adaptfilt.lms Example—System Identification
	adaptfilt.nlms Example—System Identification
	adaptfilt.sd Example—Noise Cancellation
	adaptfilt.se Example—Noise Cancellation
	adaptfilt.ss Example—Noise Cancellation

	Example of Adaptive Filter That Uses RLS Algorithm
	adaptfilt.rls Example—Inverse System Identification

	Selected Bibliography

	Digital Frequency Transformations
	Introduction
	Definition of the Problem
	Selecting Features Subject to Transformation
	Mapping from Prototype Filter to Target Filter
	Summary of Frequency Transformations

	Frequency Transformations for Real Filters
	Real Frequency Shift
	Real Lowpass to Real Lowpass
	Real Lowpass to Real Highpass
	Real Lowpass to Real Bandpass
	Real Lowpass to Real Bandstop
	Real Lowpass to Real Multiband
	Real Lowpass to Real Multipoint

	Frequency Transformations for Complex Filters
	Complex Frequency Shift
	Real Lowpass to Complex Bandpass
	Real Lowpass to Complex Bandstop
	Real Lowpass to Complex Multiband
	Real Lowpass to Complex Multipoint
	Complex Bandpass to Complex Bandpass

	Using FDATool with the Filter Design Toolbox
	Designing Advanced Filters in FDATool
	Switching FDATool to Quantization Mode
	Quantizing Filters in the Filter Design and Analysis Tool
	Coefficients Options
	Input/Output Options
	Filter Internals Options
	Filter Internals Options for CIC Filters

	Analyzing Filters with a Noise-Based Method
	Using the Magnitude Response Estimate Method
	Comparing the Estimated and Theoretical Magnitude Responses
	Choosing Quantized Filter Structures
	Converting the Structure of a Quantized Filter
	Converting Filters to Second-Order Sections Form

	Scaling Second-Order Section Filters
	Reordering the Sections of Second-Order Section Filters
	Switching FDATool to Reorder Filters

	Viewing SOS Filter Sections
	Importing and Exporting Quantized Filters
	To Export Quantized Filters

	Importing XILINX Coefficient (.COE) Files
	Transforming Filters
	Original Filter Type
	Frequency Point to Transform
	Transformed Filter Type
	Specify Desired Frequency Location

	Designing Multirate Filters in FDATool
	Switching FDATool to Multirate Filter Design Mode
	Controls on the Multirate Design Panel
	Quantizing Multirate Filters

	Realizing Filters as Simulink Subsystem Blocks
	About the Realize Model Panel in FDATool

	Getting Help for FDATool
	The What’s This? Option
	Additional Help for FDATool

	Reference for the Properties of Filter Objects
	Overview
	Fixed-Point Filter Properties
	Fixed-Point Objects and Filters
	Summary—Fixed-Point Filter Properties
	Property Details for Fixed-Point Filters
	AccumFracLength
	AccumWordLength
	Arithmetic
	CastBeforeSum
	CoeffAutoScale
	CoeffFracLength
	CoeffWordLength
	DenAccumFracLength
	DenFracLength
	Denominator
	DenProdFracLength
	DenStateFracLength
	DenStateWordLength
	FilterInternals
	FilterStructure
	Gain
	InputFracLength
	InputWordLength
	Ladder
	LadderAccumFracLength
	LadderFracLength
	Lattice
	LatticeAccumFracLength
	LatticeFracLength
	MultiplicandFracLength
	MultiplicandWordLength
	NumAccumFracLength
	Numerator
	NumFracLength
	NumProdFracLength
	NumStateFracLength
	NumStateWordLength
	OutputFracLength
	OutputMode
	OutputWordLength
	OverflowMode
	ProductFracLength
	ProductMode
	ProductWordLength
	PersistentMemory
	RoundMode
	ScaleValueFracLength
	ScaleValues
	Signed
	SosMatrix
	SectionInputAutoScale
	SectionInputFracLength
	SectionInputWordLength
	SectionOutputAutoScale
	SectionOutputFracLength
	SectionOutputWordLength
	StateAutoScale
	StateFracLength
	States
	StateWordLength
	TapSumFracLength
	TapSumMode
	TapSumWordLength

	Adaptive Filter Properties
	Multirate Filter Properties
	BitsPerSection
	BlockLength
	DecimationFactor
	DifferentialDelay
	FilterInternals
	FilterStructure
	InputOffset
	InterpolationFactor
	NumberOfSections
	OverflowMode
	PolyphaseAccum
	PersistentMemory
	RateChangeFactors
	States

	Function Reference
	Functions — By Category
	Adaptive Filter Constructors
	Discrete-Time Filter Constructors
	Filter Specification Objects — Response Types
	Filter Specification Objects — Design Methods
	Multirate Filter Constructors
	Filter Analysis Methods
	Fixed-Point Filter Construction and Property Functions
	Quantized Filter Analysis Functions
	SOS Conversion Functions
	Filter Design Functions
	Filter Conversion Functions

	Functions — Alphabetical List
	adaptfilt
	adaptfilt.adjlms
	adaptfilt.ap
	adaptfilt.apru
	adaptfilt.bap
	adaptfilt.blms
	adaptfilt.blmsfft
	adaptfilt.dlms
	adaptfilt.fdaf
	adaptfilt.filtxlms
	adaptfilt.ftf
	adaptfilt.gal
	adaptfilt.hrls
	adaptfilt.hswrls
	adaptfilt.lms
	adaptfilt.lsl
	adaptfilt.nlms
	adaptfilt.pbfdaf
	adaptfilt.pbufdaf
	adaptfilt.qrdlsl
	adaptfilt.qrdrls
	adaptfilt.rls
	adaptfilt.sd
	adaptfilt.se
	adaptfilt.ss
	adaptfilt.swftf
	adaptfilt.swrls
	adaptfilt.tdafdct
	adaptfilt.tdafdft
	adaptfilt.ufdaf
	allpassbpc2bpc
	allpasslp2bp
	allpasslp2bpc
	allpasslp2bs
	allpasslp2bsc
	allpasslp2hp
	allpasslp2lp
	allpasslp2mb
	allpasslp2mbc
	allpasslp2xc
	allpasslp2xn
	allpassrateup
	allpassshift
	allpassshiftc
	block
	butter
	ca2tf
	cheby1
	cheby2
	cl2tf
	coefficients
	coeread
	coewrite
	convert
	cost
	cumsec
	denormalize
	design
	designmethods
	designopts
	dfilt
	dfilt.allpass
	dfilt.calattice
	dfilt.calatticepc
	dfilt.cascade
	dfilt.cascadeallpass
	dfilt.cascadewdfallpass
	dfilt.df1
	dfilt.df1sos
	dfilt.df1t
	dfilt.df1tsos
	dfilt.df2
	dfilt.df2sos
	dfilt.df2t
	dfilt.df2tsos
	dfilt.dfasymfir
	dfilt.dffir
	dfilt.dffirt
	dfilt.dfsymfir
	dfilt.latticeallpass
	dfilt.latticear
	dfilt.latticearma
	dfilt.latticemamax
	dfilt.latticemamin
	dfilt.parallel
	dfilt.scalar
	dfilt.wdfallpass
	disp
	double
	ellip
	euclidfactors
	equiripple
	farrow
	fcfwrite
	fdatool
	fdesign
	fdesign.arbmag
	fdesign.arbmagnphase
	fdesign.bandpass
	fdesign.bandstop
	fdesign.ciccomp
	fdesign.decimator
	fdesign.differentiator
	fdesign.halfband
	fdesign.highpass
	fdesign.hilbert
	iirlinphase
	fdesign.interpolator
	fdesign.isinclp
	fdesign.lowpass
	fdesign.nyquist
	fdesign.rsrc
	fftcoeffs
	filter
	filtmsb
	filtstates.cic
	fircband
	fireqint
	firceqrip
	firgr
	firhalfband
	firlp2lp
	firlp2hp
	firlpnorm
	firls
	firminphase
	firnyquist
	firpr2chfb
	firtype
	freqsamp
	freqz
	gain
	grpdelay
	help
	ifir
	iirbpc2bpc
	iircomb
	iirftransf
	iirgrpdelay
	iirlp2bp
	iirlp2bpc
	iirlp2bs
	iirlp2bsc
	iirlp2hp
	iirlp2lp
	iirlp2mb
	iirlp2mbc
	iirlp2xc
	iirlp2xn
	iirlpnorm
	iirlpnormc
	iirls
	iirnotch
	iirpeak
	iirpowcomp
	iirrateup
	iirshift
	iirshiftc
	impz
	info
	int
	isallpass
	isfir
	islinphase
	ismaxphase
	isminphase
	isreal
	issos
	isstable
	kaiserwin
	limitcycle
	maxstep
	measure
	mfilt
	mfilt.cascade
	mfilt.cicdecim
	mfilt.cicinterp
	mfilt.fftfirinterp
	mfilt.firdecim
	mfilt.firfracdecim
	mfilt.firfracinterp
	mfilt.firinterp
	mfilt.firsrc
	mfilt.firtdecim
	mfilt.holdinterp
	mfilt.iirdecim
	mfilt.iirinterp
	mfilt.iirwdfdecim
	mfilt.iirwdfinterp
	mfilt.linearinterp
	msepred
	msesim
	multistage
	noisepsd
	noisepsdopts
	norm
	normalize
	normalizefreq
	nstates
	order
	phasedelay
	phasez
	polyphase
	qreport
	realizemdl
	reffilter
	reorder
	reset
	scale
	scalecheck
	scaleopts
	set2int
	setspecs
	sos
	specifyall
	stepz
	tf2ca
	tf2cl
	window
	zerophase
	zpkbpc2bpc
	zpkftransf
	zpklp2bp
	zpklp2bpc
	zpklp2bs
	zpklp2bsc
	zpklp2hp
	zpklp2lp
	zpklp2mb
	zpklp2mbc
	zpklp2xc
	zpklp2xn
	zpkrateup
	zpkshift
	zpkshiftc
	zplane

	Bibliography
	Advanced Filters
	Adaptive Filters
	Multirate Filters
	Frequency Transformations

	Index

