Filter Design Toolbox

For Use with MATLAB ${ }^{\circledR}$

Computation

Visualization

- Programming

How to Contact The MathWorks:

$\begin{array}{ll}\text { www.mathworks.com } & \text { Web } \\ \text { comp.soft-sys.matlab } & \text { Newsgroup } \\ \text { www.mathworks.com/contact_TS.html } & \text { Technical support }\end{array}$
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Product enhancement suggestions
Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Filter Design Toolbox User's Guide

© COPYRIGHT 2000-2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

March 2000
September 2000
June 2001
July 2002
November 2002
June 2004
October 2004
March 2005
September 2005
March 2006

Online only First printing Online only Online only

New for Version 1.0
Revised for Vesion 2.0 (Release 12)
Revised for Version 2.1 (Release 12.1)
Revised for Version 2.2 (Release 13)
Revised for Version 2.5
Revised for Version 3.0 (Release 14)
Revised for Version 3.1 (Release 14SP1)
Revised for Version 3.2 (Release 14SP2)
Revised for Version 3.3 (Release 14SP3)
Revised for Version 3.4 (Release 2006a)

What Is Filter Design Toolbox?

1
Introducing the Filter Design Toolbox 1-2
Key Features 1-2
Getting Started with the Toolbox 1-4
Using Specification Objects to Design Filters 1-4
Getting General Filter Specification Object Help 1-5
Creating a Filter Specification Object 1-5
Changing Specifications for Specification Objects 1-6
Setting Design Parameters 1-7
Normalizing Frequency Specifications 1-10
Designing Filters From Filter Specification Objects 1-11
Using Design Time Options 1-12
Comparing Designs 1-13
Example-Creating a Fixed-Point IIR Filter 1-14
Selected Bibliography 1-24
Designing Fixed-Point Filters
2
Designing Fixed-Point Filters 2-3
The Filter Design Process 2-3
Designing a Filter With Floating-Point Coefficients 2-6
Converting the Filter to Fixed-Point 2-7
Quantizing Filter Coefficients with Automatic Scaling 2-9
Scaling Filter Coefficients Manually 2-10
Specifying Arithmetic Rules 2-12
Working with Fixed-Point Direct-Form FIR Filters 2-14
Obtaining the Filter 2-14
Creating the Direct-Form FIR Fixed-Point Filter 2-15
Comparing Quantized Coefficients to Nonquantized Coefficients 2-15
Determining the Number of Bits being Used 2-16
Determining the Proper Coefficient Word Length 2-17
Fixed-Point Filtering 2-18
Generating a Baseline Output for Comparison 2-20
Computing the Fixed-Point Filter Output 2-21
Reducing Filter Output Quantization 2-21
The Advantages of Guard Bits 2-22
Avoiding Overflow Without Guard Bits 2-26
Constructing Fixed-Point Filters 2-28
Defining Quantized and Fixed-Point Filters 2-28
Constructors for Fixed-Point Filters 2-29
Constructing a Quantized Filter from a Filter Specification Object 2-30
Copying Filters to Inherit Properties 2-31
Fixed-Point Arithmetic Filter Structures 2-32
Data Type Handling in Discrete-Time Filters 2-36
Filter Input Signals, Coefficients, and States 2-36
The CastBeforeSum Filter Property 2-42
Introduction to Fixed-Point Arithmetic 2-45
Binary Point Interpretation 2-46
Precision and Dynamic Range 2-49
Overflows and Scaling 2-50
Designing Multirate Filters
3
Introducing Multirate Filters 3-2
Getting Started-Designing Multirate Filters 3-4
Creating Multirate Filters 3-4
Getting and Setting Filter Coefficients 3-6
Analyzing Multirate and Multistage Filters 3-8
Filtering with Multirate Filters 3-9
Specifying Initial Conditions to the Filter 3-11
Streaming Data to the Filter 3-12
Filtering Multichannel Signals 3-13
Generating Simulink Blocks 3-15
Getting Help About Multirate Filters 3-15
FIR Decimation-Filtering with FIR Decimators 3-18
Creating FIR Decimators 3-18
Understanding Input Sample Processing and the InputOffset Property 3-19
Filtering with FIR Decimators 3-21
CIC Filter Example-Using CIC Decimation Filters 3-24
Creating CIC Decimator filters 3-24
Analyzing CIC Decimation Filters 3-26
About the MSB at the Filter Output 3-27
Working with Section Word Lengths 3-28
CIC Filter States 3-31
Filter Implementation-Signal Flow Graph 3-33
Reference 3-35
Analyzing Multirate and Multistage Filters 3-36
Analyzing Single-Stage Multirate Filters 3-37
Comparing Interpolators 3-38
Performing Multistage Filter Analysis 3-40
Analyzing Multistage Interpolators 3-42
Analyzing a Multistage Sample-Rate Converter 3-43
Analyzing Other Multistage Configurations 3-45
Audio Example-Audio Sample Rate Conversion 3-47
Creating the Multirate Filters 3-47
Decreasing the Sample Rate by a Fractional Factor 3-48
Constructing the Fractional Decimator 3-48
Filtering to Change the Sample Rate 3-49
Comparing the Resampled Signals 3-49
Increasing the Sample Rate by a Fractional Factor 3-51
Plotting the Original Signal and the Reconverted Signal 3-52
Converting from 48 kHz to 44.1 kHz 3-53
Plotting the 48 kHz Signal and the 44.1 kHz Signal 3-54

Designing Adaptive Filters

4

Introducing Adaptive Filtering 4-2
Getting Started with Adaptive Filters 4-4
Tutorial Contents 4-4
Create the Signals for Adaptation 4-4
Construct Two Adaptive Filters 4-5
Choose the Step Size 4-6
Set the Adapting Filter Step Size 4-7
Filter with the Adaptive Filters 4-7
Compute the Optimal Solution 4-8
Plot the Results 4-8
Compare the Final Coefficients 4-9
Reset the Filter Before Filtering 4-10
Investigate Convergence Through Learning Curves 4-10
Overview of Adaptive Filters and Applications 4-14
Choosing an Adaptive Filter 4-16
System Identification 4-17
Inverse System Identification 4-18
Noise Cancellation (or Interference Cancellation) 4-18
Prediction 4-19
Adaptive Filters in the Filter Design Toolbox 4-21
Algorithms 4-21
Using Adaptive Filter Objects 4-25
Examples of Adaptive Filters That Use LMS Algorithms 4-26
adaptfilt.lms Example-System Identification 4-27
adaptfilt.nlms Example-System Identification 4-31
adaptfilt.sd Example-Noise Cancellation 4-34
adaptfilt.se Example-Noise Cancellation 4-38
adaptfilt.ss Example-Noise Cancellation 4-42
Example of Adaptive Filter That Uses RLS Algorithm 4-47
adaptfilt.rls Example-Inverse System Identification 4-48
Selected Bibliography 4-52
Digital Frequency Transformations
Introduction 5-2
Definition of the Problem 5-3
Selecting Features Subject to Transformation 5-6
Mapping from Prototype Filter to Target Filter 5-8
Summary of Frequency Transformations 5-9
Frequency Transformations for Real Filters 5-11
Real Frequency Shift 5-12
Real Lowpass to Real Lowpass 5-13
Real Lowpass to Real Highpass 5-15
Real Lowpass to Real Bandpass 5-17
Real Lowpass to Real Bandstop 5-19
Real Lowpass to Real Multiband 5-21
Real Lowpass to Real Multipoint 5-23
Frequency Transformations for Complex Filters 5-26
Complex Frequency Shift 5-26
Real Lowpass to Complex Bandpass 5-28
Real Lowpass to Complex Bandstop 5-29
Real Lowpass to Complex Multiband 5-31
Real Lowpass to Complex Multipoint 5-33
Complex Bandpass to Complex Bandpass 5-35

Using FDATool with the Filter Design Toolbox

6

Designing Advanced Filters in FDATool 6-5
Switching FDATool to Quantization Mode 6-8
Quantizing Filters in the Filter Design and Analysis Tool 6-12
Coefficients Options 6-13
Input/Output Options 6-14
Filter Internals Options 6-17
Filter Internals Options for CIC Filters 6-21
Analyzing Filters with a Noise-Based Method 6-23
Using the Magnitude Response Estimate Method 6-23
Comparing the Estimated and Theoretical Magnitude Responses 6-28
Choosing Quantized Filter Structures 6-28
Converting the Structure of a Quantized Filter 6-28
Converting Filters to Second-Order Sections Form 6-29
Scaling Second-Order Section Filters 6-30
Reordering the Sections of Second-Order Section Filters 6-38
Switching FDATool to Reorder Filters 6-38
Viewing SOS Filter Sections 6-46
Importing and Exporting Quantized Filters 6-53
To Export Quantized Filters 6-55
Importing XILINX Coefficient (.COE) Files 6-58
Transforming Filters 6-59
Original Filter Type 6-60
Frequency Point to Transform 6-63
Transformed Filter Type 6-64
Specify Desired Frequency Location 6-64
Designing Multirate Filters in FDATool 6-70
Switching FDATool to Multirate Filter Design Mode 6-70
Controls on the Multirate Design Panel 6-71
Quantizing Multirate Filters 6-81
Realizing Filters as Simulink Subsystem Blocks 6-84
About the Realize Model Panel in FDATool 6-84
Getting Help for FDATool 6-89
The What's This? Option 6-89
Additional Help for FDATool 6-89
Reference for the Properties of Filter Objects
7
Overview 7-2
Fixed-Point Filter Properties 7-3
Adaptive Filter Properties 7-103
Multirate Filter Properties 7-117
Function Reference
8
Functions - By Category 8-2
Adaptive Filter Constructors 8-3
Discrete-Time Filter Constructors 8-6
Filter Specification Objects - Response Types 8-8
Filter Specification Objects - Design Methods 8-9
Multirate Filter Constructors 8-10
Filter Analysis Methods 8-12
Fixed-Point Filter Construction and Property Functions 8-17
Quantized Filter Analysis Functions 8-17
SOS Conversion Functions 8-19
Filter Design Functions 8-19
Filter Conversion Functions 8-20
Functions - Alphabetical List 8-21
Bibliography
A
Advanced Filters A-2
Adaptive Filters A-2
Multirate Filters A-3
Frequency Transformations A-3
Index

What Is Filter Design Toolbox?

Introducing the Filter Design Tool
(p. 1-2)
Getting Started with the Toolbox
(p. 1-4)
Selected Bibliography (p. 1-24)

Describes the toolbox briefly

Introduces filter design in the toolbox by presenting two demonstrations

Lists some books that offer details about digital filtering and digital signal processing

Introducing the Filter Design Toolbox

The Filter Design Toolbox is a collection of tools that provides advanced techniques for designing, simulating, and analyzing digital filters. It extends the capabilities of the Signal Processing Toolbox with filter architectures and design methods for complex real-time DSP applications, including adaptive filtering and multirate filtering, as well as filter transformations.

Used with the Fixed-Point Toolbox, the Filter Design Toolbox provides functions that simplify the design of fixed-point filters and the analysis of quantization effects. When used with the Filter Design HDL Coder, the Filter Design Toolbox lets you generate VHDL and Verilog code for fixed-point filters.

Key Features

- FIR filter design, including minimum-order, minimum-phase, constrained-ripple, halfband, Nyquist, interpolated FIR, and nonlinear phase
- IIR filter design, including arbitrary magnitude and phase, group-delay equalizers, constrained-pole radius, peaking, notching, and comb filters
- Multirate filter design, analysis, and implementation, including cascaded integrator-comb (CIC) fixed-point multirate filters and compensators
- Farrow filter design
- Multirate, multistage filter design
- Wave digital filter design
- IIR filters implemented in second-order sections, including design, scaling, and section reordering
- Analysis and implementation of digital filters in single-precision floating-point and fixed-point arithmetic
- Perfect reconstruction and two-channel FIR filter bank design
- Round-off noise analysis for filters implemented in single-precision floating point or fixed point
- FIR and IIR filter transformations, including lowpass to lowpass, lowpass to highpass, and lowpass to multiband
- Adaptive filter design, analysis, and implementation, including LMS-based, RLS-based, lattice-based, frequency-domain, fast transversal, and affine projection adaptive filters
- C code header file generation from filter designs in FDATool. The header file includes the filter coefficients and information about the filter design
- VHDL and Verilog code generation for fixed-point filters with the Filter Design HDL Coder

Getting Started with the Toolbox

This section provides an example to get you started using Filter Design Toolbox. You can run the code in this example from the Help browser (select the code, right-click the selection, and choose Evaluate Selection from the context menu) or you can enter the code on the command line. This exercise also introduces Filter Design and Analysis Tool (FDATool). You use it to design and analyze filters, and to quantize filters.

As you follow the example, you are introduced to some of the basic tasks of designing a filter and using FDATool. You will engage some of the quantization capabilities of the toolbox, and a few of the filter analyses provided as well.
Before you begin this example, start MATLAB ${ }^{\circledR}$ and verify that you have installed Signal Processing and Filter Design Toolboxes (type ver at the command prompt). You should see Filter Design Toolbox, Signal Processing Toolbox, and Fixed-Point Toolbox (to do fixed-point filter design and analysis) among others, in the list of installed products.

Using Specification Objects to Design Filters

The filter specification (fdesign) objectslet you design many single rate, multirate, and multistage filters, such as lowpass, highpass, bandpass, and bandstop IIR and FIR using a range of design algorithms. and many other types of filters with a variety of constraints. The design process computes the filter coefficients using the various algorithms available in the Signal Processing and Filter Design Toolboxes and associates a particular filter structure to those coefficients.

This tutorial review of filter design contains the following sections:

- "Getting General Filter Specification Object Help" on page 1-5
- "Creating a Filter Specification Object" on page 1-5
- "Changing Specifications for Specification Objects" on page 1-6
- "Setting Design Parameters" on page 1-7
- "Normalizing Frequency Specifications" on page 1-10
- "Using Design Time Options" on page 1-12
- "Comparing Designs" on page 1-13

Getting General Filter Specification Object Help

Entering help fdesign in the command window opens the help for filter specification objects. Various hyperlinks in the help enable you to navigate to all of the help for the filter specification objects.

You can also enter

```
help responses
help fdesign/responses
```

at the command prompt for information about the response types you can specify for filter specification objects. Both forms return the same information.

Creating a Filter Specification Object

To create a filter specification object, you need to select the response to be used. For example, to create a lowpass filter you would type:

```
d = fdesign.lowpass
d =
Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'
Description: {'Passband Frequency';'Stopband...
Frequency';'Passband Ripple (dB)';'Stopband Attenuation (dB)'}
NormalizedFrequency: true
Fpass: 0.45
Fstop: 0.55
Apass: 1
Astop: 60
```

Notice that each specification is listed as an abbreviation. Fp is the abbreviation for Fpass (the passband frequency edge) and Fst is the abbreviation for Fstop (the stopband frequency edge).

The Description property provides a full description of the properties that are added by the Specification.

```
get(d, 'description')
ans =
    'Passband Frequency'
```

```
'Passband Ripple (dB)'
'Stopband Attenuation (dB)'
```


Changing Specifications for Specification Objects

The Specification property allows you to select different design parameters. This is a string which lists the specifications that will be used for the design. To see all valid specifications type:

```
set(d, 'Specification')
ans =
    'Fp,Fst,Ap,Ast'
    'N,F3dB'
    'N,F3dB,Ap'
    'N,F3dB,Ap,Ast'
    'N,F3dB,Ast'
    'N,F3dB,Fst'
    'N,Fc'
    'N,Fc,Ap,Ast'
    'N,Fp,Ap'
    'N,Fp,Ap,Ast'
    'N,Fp,F3dB'
    'N,Fp,Fst'
    'N,Fp,Fst,Ap'
    'N,Fp,Fst,Ast'
    'N,Fst,Ap,Ast'
    'N,Fst,Ast'
    'Nb,Na,Fp,Fst'
```

Changing the Specification changes which the properties for the the object:

```
set(d, 'Specification', 'N,Fc');
d
d =
                            Response: 'Lowpass'
            Specification: 'N,Fc'
            Description: {'Filter Order';'Cutoff Frequency'}
        NormalizedFrequency: true
            FilterOrder: 10
```

```
Fcutoff: 0.5
```


Setting Design Parameters

You can set design parameters after creating your specification object, or you can pass the specifications when you construct your object.

For example:

```
specs = 'N,Fp,Fst';
d = fdesign.lowpass(specs)
d =
    Response: 'Lowpass'
    Specification: 'N,Fp,Fst'
    Description:{'Filter Order';'Passband Frequency';'Stopband...
    Frequency'}
    NormalizedFrequency: true
    FilterOrder: 10
    Fpass: 0.45
    Fstop: 0.55
```

After specifying the specification to use, then specify he values for those specifications.

```
N = 40; % Filter Order.
Fpass = .33; % Passband Frequency Edge.
Fstop = .4; % Stopband Frequency Edge.
d = fdesign.lowpass(specs, N, Fpass, Fstop)
d =
    Response: 'Lowpass'
    Specification: 'N,Fp,Fst'
    Description: {'Filter Order';'Passband Frequency';'Stopband
    Frequency'}
    NormalizedFrequency: true
    FilterOrder: 40
    Fpass: 0.33
    Fstop: 0.4
```

You can also specify a sampling frequency after all of the specifications have been entered.

```
Fpass = 1.3;
```

```
Fstop = 1.6;
Fs = 4.5; % Sampling Frequency
d = fdesign.lowpass(specs, N, Fpass, Fstop, Fs)
d =
    Response: 'Lowpass'
    Specification: 'N,Fp,Fst'
    Description: {'Filter Order';'Passband Frequency';'Stopband
    Frequency'}
    NormalizedFrequency: false
    Fs: 4.5
    FilterOrder: 40
    Fpass: 1.3
    Fstop: 1.6
```

Amplitude specifications can be given in linear or squared units by providing a flag to the fdesign method. However, the specificationas are always stored in dB.

```
Apass = .0575;
specs = 'N,Fp,Ap';
d = fdesign.lowpass(specs, N, Fpass, Apass, Fs, 'linear')
d =
    Response: 'Lowpass'
    Specification: 'N,Fp,Ap'
    Description: {'Filter Order';'Passband Frequency';'Passband
    Ripple (dB)'}
    NormalizedFrequency: false
    Fs: 4.5
    FilterOrder: 40
    Fpass: 1.3
    Apass: 0.999980343384991
    Apass = .95;
d = fdesign.lowpass(specs, N, Fpass, Apass, Fs, 'squared')
d =
    Response: 'Lowpass'
    Specification: 'N,Fp,Ap'
    Description: {'Filter Order';'Passband Frequency';'Passband
    Ripple (dB)'}
```

```
NormalizedFrequency: false
Fs: 4.5
FilterOrder: 40
Fpass: 1.3
Apass: 0.222763947111522
```

An alternative way of changing specifications is by using setspecs. Work with setspecs the same way as the design function.

```
specs = 'N,F3dB,Ap';
F3dB = .9;
Apass = 1;
Fs = 2.5;
setspecs(d, specs, N, F3dB, Apass, Fs);
d
d =
    Response: 'Lowpass'
    Specification: 'N,F3dB,Ap'
    Description:{'Filter Order';'3dB Frequency';...
    'Passband Ripple (dB)'}
    NormalizedFrequency: false
    Fs: 2.5
    FilterOrder: 40
    F3dB: 0.9
    Apass: 1
```

If your object is already set to the correct Specification you can omit that input argument from your setspecs command.

```
F3dB = 1.1;
Apass = .5;
Fs = 3;
setspecs(d, N, F3dB, Apass, Fs);
d
d =
    Response: 'Lowpass'
    Specification: 'N,F3dB,Ap'
    Description: {'Filter Order';'3dB Frequency';...
'Passband Ripple (dB)'}
```

```
NormalizedFrequency: false
Fs: 3
FilterOrder: 40
F3dB: 1.1
Apass: 0.5
```


Normalizing Frequency Specifications

To normalize your frequency specifications, use normalizefreq with the filter specification object.

```
normalizefreq(d);
d
d =
    Response: 'Lowpass'
    Specification: 'N,F3dB,Ap'
    Description: {'Filter Order';'3dB Frequency';...
'Passband Ripple (dB)'}
    NormalizedFrequency: true
    FilterOrder: 40
    F3dB: 0.733333333333333
    Apass: 0.5
```

normalizefreq also unnormalizes the frequency specifications.
newFs = 3.1;
normalizefreq(d, false, newFs);
d
d $=$
Response: 'Lowpass'
Specification: 'N,F3dB,Ap'
Description: \{'Filter Order';'3dB Frequency';...
'Passband Ripple (dB)'\}
NormalizedFrequency: false
Fs: 3.1
FilterOrder: 40
F3dB: 1.1366666666667
Apass: 0.5

Designing Filters From Filter Specification Objects

To design filters you use design.

```
d = fdesign.lowpass;
Hd = design(d)
Hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x43 double]
PersistentMemory: false
```

With no additional (or optional) inputs this syntax for design uses the default filter design method to design the default filter. To determine which method was used, use the designmethods method with the 'default' flag.

```
designmethods(d, 'default')
Default Design Method for class fdesign.lowpass (Fp,Fst,Ap,Ast):
equiripple
```

Specifying the command without outputs launches FVTool.

```
design(d)
```

For a complete list of design methods that apply to d, use designmethods without additional input arguments.

```
designmethods(d)
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage
```

To get a better description of each design method use the full input argument to return the full names for the design methods.

```
designmethods(d, 'full')
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
Butterworth
Chebyshev Type I
Chebyshev Type II
Elliptic
Equiripple
Interpolated FIR
Kaiser Window
Multistage Equiripple
```

designmethods also accepts fir or iir flags to return only FIR algorithms or IIR algorithms.

To design a filter with a specific algorithm, specify the design algorithm at design time.

```
design(d, 'kaiserwin')
```


Using Design Time Options

Many methods have options that are method-specific. For help on these design options, use help and pass the desired algorithm name as an input argument.

```
help(d, 'ellip')
DESIGN Design a Elliptic iir filter.
HD = DESIGN(D, 'ellip') designs a Elliptic filter specified by the
FDESIGN object D.
HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter
with the structure STRUCTURE. STRUCTURE is 'df2sos' by default
and can be any of the following.
    'df1sos'
    'df2sos'
    'df1tsos'
    'df2tsos'
HD = DESIGN(..., 'MatchExactly', MATCH) designs an Elliptic filter
and matches the frequency and magnitude specification for the band
```

MATCH exactly. The other band will exceed the specification. MATCH can be 'stopband', 'passband' or 'both', and is 'both' by default.

```
% Example #1 - Compare passband and stopband MatchExactly.
    d = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
    Hd = design(d, 'ellip', 'MatchExactly', 'passband');
    Hd(2) = design(d, 'ellip', 'MatchExactly', 'stopband');
```

```
% Compare the passband edges in FVTool.
fvtool(Hd);
axis([.09 .11 -2 0]);
```

You specify the design options as parameter name/parameter value pairs when you design the filter.

```
design(d,'ellip','MatchExactly','passband')
```

If you wish, you can provide these parameters in a structure. The designopts method returns a valid structure for your object and specified algorithm with the default values. Here is an example that uses designopts and a structure do. The example starts by getting the default design-time options.

```
do = designopts(d, 'ellip');
```

Now use the MatchExactly option for the stopband.
do.MatchExactly = 'stopband';
design(d, 'ellip',do);

Comparing Designs

design can also help you investigate various designs simultaneously, by adding an optional input argument that specifies the kinds of filter to design.

Adding the input argument allfir directs design to return all of the FIR filters the available design methods can create. Begin by designing all of the FIR filters.

```
design(d, 'allfir');
```

The following code returns all of the IIR filters available.

```
design(d, 'alliir');
```


Example-Creating a Fixed-Point IIR Filter

Example Background. To introduce you to designing fixed-point filters in the toolbox, this example uses Filter Design and Analysis Tool (FDATool) to design an IIR filter. In this case, use the Chebyshev I filter design method to begin the design process.

During the example, you have the chance to export filters to your MATLAB workspace, filter some data with the filter, and use the scaling features in FDATool to improve the filter performance.

One of the salient points in this example is, while second-order section (SOS) implementations are generally good starting points for fixed-point filter design, you might find that without scaling your SOS filter, the SOS implementation may not meet your needs, as this example shows.

To Create a Fixed-Point Filter in FDATool

Filter Design and Analysis Tool (FDATool) is one tool this toolbox provides to help you design and analyze filters. From the various design panels in the tool, such as the filter design panel or the multirate filter design panel, you can design FIR and IIR filters, import or export filters, analyze filters, and more.

As an introduction to using the toolbox, this tutorial takes you through designing, quantizing, and scaling a filter in FDATool.

1 Open Filter Design and Analysis Tool by entering fdatool
at the MATLAB command prompt. FDATool opens to show you the following dialog.

2 Under Design Method in the bottom pane, select Chebyshev Type I from the IIR list and click Design Filter.

FDATool designs a double-precision lowpass filter using the Chebyshev I design method and displays the filter magnitude response in the FDATool analysis area. Your new uses seven second-order sections. In the Current Filter Information area in FDATool, reproduced in the next figure, you see your filter described by various filter parameters including the filter order (13) and the structure (direct-form II using second-order sections).

In the figure, next to the current filter information, the curve presents the filter magnitude response. As intended, it shows a lowpass filter with the end of the passband at about 9600 Hz .

Now export this filter to your workspace so you can use it to filter some data.
3 On the FDATool menu bar, select File \rightarrow Export to open the Export dialog.
4 To export the filter to your workspace as a filter object, select Workspace from Export To and select Objects for Export As. The export dialog looks like this after you make your selections.

5 Click Export to export the filter with the variable name shown in the Export dialog. When you return to your workspace in MATLAB, you see the new object. In this case, the new object is named Hd.

6 In MATLAB, create a vector of random data (with values between 0 and 1) and filter the data with Hd .

```
x=rand(1000,1);
y = filter(Hd,x);
```

Now y contains the data filtered by running x through the filter Hd .
7 Back in FDATool, click 四 on the side bar to switch FDATool to quantization mode.

8 With the quantization pane displayed in FDATool, switch Filter arithmetic to fixed-point. Now you see the quantization pane in FDATool, as shown in this figure.

In the analysis area, FDATool shows the magnitude responses for two filters-your fixed-point (quantized) filter and the reference filter that accompanies the fixed-point version. Turn on the filter legend (select ViewLegend from the menu bar) to help you identify which response belongs to each filter.

Zooming in on the curves shows that the two filter responses are very similar. Note that your fixed-point filter used the default settings in the
quantization pane-16-bit coefficients and fraction lengths selected to ensure the best precision.

9 Now export the quantized filter to your workspace as an object. Since you are going to use the same variable name Hd for the quantized filter in your workspace, select Overwrite variables in the Export dialog.

10 Back in MATLAB, perform the filter process again, using the quantized filter Hd and the signal x .
$y q=$ filter (Hd,x);
11 This is the important step. Plot y and yq to see how the filtering process results differed between the double-precision filter Hd and the fixed-point filter Hd .
plot([y,yq]) \% The results are not close to matching.
A look at the plot reveals that the results of filtering the same data (x) with each filter were very different. Recall that the magnitude responses seemed to be the same. So quantizing the filter affected the filtering performance in a way that the magnitude response curve does not show. The answer is that the arithmetic performed by the filter after quantization is very different from the double-precision filter before quantization.

Again, return to FDATool, which should still be open on your desktop. You are going to fix the discrepancy between y and yq by reordering the sections of the fixed-point filter and scaling the filter to improve the performance after quantization.

1 To access the scaling and SOS filter reordering capability in FDATool, select Edit->Reorder and Scale Second-Order Sections from the menu bar. The Reordering and Scaling of Second-Order Sections dialog opens, shown below. Note the default settings:

- No reordering option is selected.
- Scaling is not selected.

2 Review the settings. Set Reordering to Auto.
3 Select Scale in the Scaling area. Review the default settings to be sure Maximum Numerator is 4 and Overflow Mode is Wrap.

4 Click OK to close the dialog and scale and reorder the filter.
5 One more time, export the now-scaled quantized filter to your workspace as Hd.

6 Filter the data x again, using the latest Hd filter-now reordered and scaled. yqs = filter(Hd,x);

7 Finally, plot y and yqs to see if the filtering performance matches now.

```
plot([y,yqs]) % y and yqs are identical.
```

Here is the plot showing the results. Scaling and reordering the fixed-point filter restores the filtering performance to match the double-precision filter performance. The results demonstrate the power of scaling and reordering SOS filters.

Selected Bibliography

For further information about the algorithms and computer models used to design filters and apply quantization in the toolbox, refer to one or more of the following references.

Digital Filters

[1] Antoniou, Andreas, Digital Filters, Second Edition, McGraw-Hill, Inc., 1993.
[2] Mitra, Sanjit K., Digital Signal Processing: A Computer-Based Approach, McGraw-Hill, Inc., 1998.
[3] Oppenheim, Alan V., R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Inc., 1989.

Quantization and Signal Processing

[4] Lapsley, Phil, J. Bier, A. Shoham, and E.A. Lee, DSP Processor Fundamentals, IEEE Press, 1997.
[5] McClellan, James H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W.
Schafer, and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall, Inc., 1998.
[6] Roberts, Richard A. and C.T. Mullis, Digital Signal Processing, Addison-Wesley Publishing Company, 1987.
[7] Van Loan, Charles, Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia, 1992.

Designing Fixed-Point Filters

Designing Fixed-Point Filters (p. 2-3) Introduces fixed-point filters to get you started using your own filters
Working with Fixed-Point Direct-Form FIR Filters (p. 2-14)
Constructing Fixed-Point Filters (p. 2-28)
Data Type Handling in Discrete-Time Filters (p. 2-36)
Introduction to Fixed-Point Arithmetic (p. 2-45)
Uses the direct-form FIR filter to introduce some analytical approaches from the toolbox and fixed-point filters
Describes how you construct quantized filters in the toolbox
Provides details about how discrete-time filters handle different data types as input, coefficients, and states
Introduces the concepts underlying fixed-point arithmetic that relate to fixed-point filters

In the Filter Design Toolbox you can implement and analyze single-input single-output filters either as fixed-point filters, or as single-precision or double-precision floating-point filters. Both the single-precision floating-point and fixed-point filters are referred to as quantized filters.
You can create a quantized filter from a reference filter, that is, a filter whose coefficients and arithmetic operations you want to quantize in some fashion.

When you apply a quantized filter to data, not only are the filter coefficients quantized to your specification, but so are

- The data that you filter, both input and output
- The results of any arithmetic operations that occur during filtering

Refer to "Bibliography" for a list of relevant references on quantized filtering.
This chapter covers what you need to know to construct and use quantized filters:

- Getting Started with fixed-point filters
- Constructing quantized and fixed-point filters
- Fixed-point filter properties
- Filtering data with fixed-point filters
- Transformation functions for fixed-point filter coefficients
- Working with fixed-point direct-form FIR filters

Most of the filters you create in this toolbox are objects with properties. You can find much of the basic information you need to know about setting and retrieving property values in your MATLAB documentation by reading about the set and get functions.

Designing Fixed-Point Filters

As filter designers begin to use digital filters in applications where power limitations and size constraints drive the filter design, they move from double-precision, floating-point filters to fixed-point filters. This tutorial shows you how to analyze the quantization effects introduced by such a conversion using discrete-time filter objects (dfilt objects).

This exercise covers the following filter development and analysis processes:

- "Designing a Filter With Floating-Point Coefficients" on page 2-6
- "Converting the Filter to Fixed-Point" on page 2-7
- "Quantizing Filter Coefficients with Automatic Scaling" on page 2-9
- "Scaling Filter Coefficients Manually" on page 2-10
- "Specifying Arithmetic Rules" on page 2-12

Each section builds on the contents and filters from preceding sections, so progressing through the tutorial from the start is most effective. Otherwise, code examples that depend on earlier tutorial sections might not work properly.

The Filter Design Process

The toolbox uses a three step process to design filters.
1 Use fdesign.response to create a filter specifications object. For example, use fdesign. bandpass or fdesign.decimator.

2 Use designmethods to find out which design methods apply to your filter specification object.

3 Use one of the design methods from step 2 to design your filter from your specification object. Two of the design methods might be ellip or cheby2.

Now you have your filter and you can analyze it, test it, filter with it, or create other filters from your specification object to compare to the first filter.
Here is one example that design two highpass filters using different design methods, followed by a plot that shows both filter magnitude responses.

Notice that the example specifies multiple filter response features in the specification string argument.

- fp1-cutoff of the first passband
- fst1-first edge of the stopband
- fst2-second edge of the stopband
- fp2-edge of the second passband
- ap1—attenuation in the first passband
- ast-attenuation in the stopband
- ap2-attenuation in the second passband

```
d=fdesign.bandstop('fp1,fst1,fst2,fp2,ap1,ast,ap2',0.35,0.40,0.55,\ldots
0.60,1,50,1)
    d =
                    Response: 'Bandstop'
                Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
                    Description: {7x1 cell}
            NormalizedFrequency: true
                        Fpass1: 0.35
                        Fstop1: 0.4
                            Fstop2: 0.55
                            Fpass2: 0.6
                            Apass1: 1
                                    Astop: 50
                    Apass2: 1
designmethods(d)
Design Methods for class fdesign.bandstop
(Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):
butter
cheby1
cheby2
ellip
equiripple
kaiserwin
hd(1)=design(d,'butter','filterstructure','df1sos');
hd(2)=design(d,'ellip','filterstructure','df1sos');
```

```
hd(1)
ans =
            FilterStructure: 'Direct-Form I, Second-Order Sections'
            Arithmetic: 'double'
                sosMatrix: [13\times6 double]
            ScaleValues: [14\times1 double]
            PersistentMemory: false
hd(2)
ans =
    FilterStructure: 'Direct-Form I, Second-Order Sections'
        Arithmetic: 'double'
            sosMatrix: [5x6 double]
        ScaleValues: [6x1 double]
    PersistentMemory: false
fvtool(hd)
```


Designing a Filter With Floating-Point Coefficients

Begin this tutorial by designing a lowpass filter specifications object d, specifying the filter values Fp, Fc, Ap, and Ast. Then use the kaiserwin method to design a direct-form FIR filter from d.

```
d=fdesign.lowpass(0.40,0.54,0.05,50)
d =
    Response: 'Lowpass'
    Specification: 'Fp,Fst,Ap,Ast'
        Description: {4x1 cell}
NormalizedFrequency: true
    Fpass: 0.4
```

Fstop: 0.54
Apass: 0.05
Astop: 50
d contains the specifications for a lowpass filter.
Design the filter from d by applying the kaiserwin design method and specify the direct-form FIR filter structure.

```
hd=design(d,'kaiserwin','filterstructure','dffir')
hd =
    FilterStructure: 'Direct-Form FIR'
    Arithmetic: 'double'
        Numerator: [1x44 double]
PersistentMemory: false
```


Converting the Filter to Fixed-Point

dfilt objects in the Filter Design Toolbox include a property Arithmetic that provides the capability to analyze the filter in double-precision floating-point arithmetic, single-precision floating-point arithmetic, and fixed-point arithmetic.

With the Fixed-Point Toolbox installed, you can set the Arithmetic property of the dfilt object hd to fixed to turn quantization on and implement filters that perform fixed-point arithmetic.

The examples in this section discuss fixed-point filters and assume that you have installed the Fixed Point Toolbox.

Fixed-Point Filter Properties

Setting the Arithmetic property to fixed adds filter properties to the dfilt object. The default display of the filter object properties enhances the readability of the properties by grouping them together in a logical manner.

```
hd.Arithmetic='fixed'
hd =
```

 FilterStructure: 'Direct-Form FIR'
    ```
    Arithmetic: 'fixed'
    Numerator: [1x44 double]
PersistentMemory: false
    CoeffWordLength: 16
    CoeffAutoScale: true
        Signed: true
    InputWordLength: 16
    InputFracLength: 15
    FilterInternals: 'FullPrecision'
```

Notice that only writable properties show in the Command Window listing.
Some filter properties, such as CoeffAutoScale, control the display of other properties. CoeffAutoScale controls the display of NumFracLength and whether you can write (change) the property value for NumFracLength.

In contrast to the property display that the filter handle hd generates, the get function returns the complete collection of properties and property values for the filter, whether you can change the property value or not.

```
get(hd)
    PersistentMemory: 0
    FilterStructure: 'Direct-Form FIR'
                            States: [43x1 embedded.fi]
            Numerator: [1x44 double]
            Arithmetic: 'fixed'
    CoeffWordLength: 16
        CoeffAutoScale: 1
            Signed: 1
                RoundMode: 'convergent'
            OverflowMode: 'wrap'
    InputWordLength: 16
    InputFracLength: 15
        NumFracLength: 16
    FilterInternals: 'FullPrecision'
OutputWordLength: 33
OutputFracLength: 31
ProductWordLength: 31
ProductFracLength: 31
```

AccumWordLength: 33
AccumFracLength: 31

Quantizing Filter Coefficients with Automatic Scaling

To determine the number of bits the filter is using to represent the filter coefficients, you look at the value of the CoeffWordlength property.
hd.CoeffWordLength
ans =
16
To determine how the coefficients are being scaled, look at the NumFracLength property.
hd. NumFracLength
ans =
16
This tells you that the filter coefficients are 16 bits long (the word length), and the least significant bit (LSB) is weighted by 2^{-16} (the fraction length). The section "Notes About Fraction Length, Word Length, and Precision" on page 2-46 provides more information about interpreting the fraction length in the data format.

16 bits is the default value the filters use for coefficient word lengths. To understand the scaling, look at the CoeffAutoScale setting.

```
hd.CoeffAutoScale % Returns a logical true = 1.
ans =
```

 1
 When the CoeffAutoScale property is true (=1), the filter adjusts the coefficient fraction length to avoid overflow each time you change the coefficient word length. Verify this automatic scaling by changing the number of bits used to quantize the coefficients from 16 bits to 24 bits.

```
hd.CoeffWordLength = 24;
```

```
hd.NumFracLength
ans =
```

24

The 2^{-24} weight has been computed automatically to represent the coefficients with the best precision possible while using the round-to-nearest value round for the filter property RoundMode . "RoundMode" on page 7-85 provides further information about RoundMode.

Scaling Filter Coefficients Manually

Setting the CoeffAutoScale property to false turns the NumFracLength property writable and visible in the display.

```
h1 = copy(hd); % Keep a copy of the original object for...
    % latter comparison
h1.CoeffAutoScale = false
h1 =
```

```
    FilterStructure: 'Direct-Form FIR'
            Arithmetic: 'fixed'
            Numerator: [1x102 double]
PersistentMemory: false
                States: [1x1 embedded.fi]
                    CoeffWordLength: 24
                        CoeffAutoScale: false
            NumFracLength: 24
                Signed: true
                    InputWordLength: 16
                    InputFracLength: 15
                    OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            ProductMode: 'FullPrecision'
            AccumWordLength: 40
            CastBeforeSum: true
```


RoundMode: 'convergent'
 OverflowMode: 'wrap'

The quantized coefficients are always rounded to the nearest value and saturated when overflow occurs.

Because the scaling process chose the fraction length to avoid overflow, increasing the fraction length saturates the quantized coefficients, introducing severe distortion in the magnitude response of the filter. Try increasing the numerator fraction length to 25 bits.

```
h1.NumFracLength = 25;
```

This is more clear when you plot the magnitude response to show the effect of saturating the coefficients. Here is the code to display the response.

```
href = reffilter(hd); % Get the reference double-precision...
    % floating-point filter.
hfvt = fvtool(href,hd,h1);
set(hfvt,'ShowReference','off'); % Reference already displayed.
legend(hfvt, 'Reference filter', '24 bits - no saturation',...
'24 bits - saturation')
```

Saturating the coefficients compromises the filter cutoff performance considerably, shown in the figure.

Specifying Arithmetic Rules

After you quantize the coefficients, you need to pay attention to the filter internal settings that govern how arithmetic is done inside the filter. For the remainder of this tutorial, you use a classic 16 -bit word length filter.

```
hd.CoeffWordLength = 16;
```

One property—ProductMode—helps you simulate different filter arithmetic scenarios in the multipliers and adders of the filter.

Setting these properties to specify full precision (set the property values to FullPrecision) allows you to determine the minimum resources required to avoid losing precision during filtering.

```
hd.ProductMode = 'FullPrecision'; % (default)
[hd.ProductWordLength hd.ProductFracLength]
ans =
    32 31
[hd.AccumWordLength hd.AccumFracLength]
ans =
39
3 1
```

Given an input format of [16 15] and coefficients format of [16 16]-the current settings for hd-these responses indicate that you need

- a product register twice the size of the coefficients (or twice the size of the input).
- an accumulator register with seven guard bits to allow for bit growth during the accumulation process.

They also tell you the position of the binary point in those registers- the AccumFraclength and ProductFracLength property values.

Starting from this scenario that allows your filter to perform most accurately, you can introduce constraints on the product or the accumulator register or both. The KeepMSB option for the fraction length properties sets the fraction lengths automatically to avoid overflows while the KeepLSB option sets the fraction lengths automatically to avoid underflows.

Finally, the SpecifyPrecision option give you full control of the settings. You need to run your filter to see the effect of these settings on the output.

For further discussion about product and accumulator settings, refer to the tutorial "Working with Fixed-Point Direct-Form FIR Filters" on page 2-14.

Working with Fixed-Point Direct-Form FIR Filters

This chapter ends with a tutorial that illustrates various aspects of working with direct-form FIR filters using fixed-point arithmetic.

As you follow this example, you learn about these topics:

- "Obtaining the Filter" on page 2-14
- "Creating the Direct-Form FIR Fixed-Point Filter" on page 2-15
- "Comparing Quantized Coefficients to Nonquantized Coefficients" on page 2-15
- "Determining the Number of Bits being Used" on page 2-16
- "Determining the Proper Coefficient Word Length" on page 2-17
- "Fixed-Point Filtering" on page 2-18
- "Generating a Baseline Output for Comparison" on page 2-20
- "Computing the Fixed-Point Filter Output" on page 2-21
- "Reducing Filter Output Quantization" on page 2-21
- "The Advantages of Guard Bits" on page 2-22
- "Avoiding Overflow Without Guard Bits" on page 2-26

Each section builds on the contents and filters from preceding sections. Progressing through the tutorial from the start is most effective. Otherwise, code examples that depend on earlier tutorial sections may not work properly.

Obtaining the Filter

For this tutorial, the FIR filter is not critical. Given the importance of direct-form FIR filters, use the direct-form structure here-it does not even need to have linear phase. This demonstration uses a firls design method to obtain the filter.

To display the filter, pass the filter object to the Filter Visualization Tool (FVTool).

```
d = fdesign.lowpass('N,Fp,Fst',80,.11,.19); % Order, and cutoff
    % cutoff freqs.
hd = design(d,'firls','Wpass',1,'Wstop',100);
hfvt = fvtool(hd);
```

Here is the magnitude response for hd as shown by FVTool.

Creating the Direct-Form FIR Fixed-Point Filter

To create the fixed-point direct-form FIR filter, change the Arithmetic property setting for hd to fixed-point arithmetic.
set(hd,'Arithmetic','fixed');

Comparing Quantized Coefficients to Nonquantized Coefficients

There are several parameters for a fixed-point direct-form FIR filter. To start with, concentrate on the coefficient word length and fraction length (scaling).

Use the Filter Visualization Tool to compare the quantized coefficients filter to the nonquantized (reference) coefficient filter.

```
hfvt=fvtool(hd,'Legend', 'on');
```

FVTool returns the plot of the magnitude responses for both filters-the quantized filter and the corresponding reference filter.

Determining the Number of Bits being Used

To determine the number of bits being used in the fixed-point filter hd, look at the CoeffWordlength property value. Check the CoeffAutoScale setting to determine how the filter is scaling the coefficients.

```
get(hd,'CoeffWordLength')
get(hd,'NumFracLength')
```

These values tells us that hd uses 16 bits to represent the coefficients, and the least significant bit (LSB) is weighted by $2^{-17} .16$ bits is the default coefficient word length the filter uses for coefficients, but the 2^{-17} weight has been computed automatically to represent the coefficients with the best possible precision, given the CoeffWordLength value.

You control this scaling through the CoeffAutoScale property. Set CoeffAutoScale to false to give yourself manual control of the coefficient scaling. The next command verifies that autoscaling is enabled in filter hd.

```
get(hd,'CoeffAutoScale') % Returns a logical true.
ans =
```

1

Determining the Proper Coefficient Word Length

Make several copies of the filter to try different word lengths. Allow the coefficient autoscaling process to determine the best precision in each case.

In the figure that follows the code presented here, you see the magnitude responses for the various version of hd (h1, h2, and the reference filter) so you can compare the effects of changing the coefficient word length.

```
h1 = copy(hd);
set(h1,'CoeffWordLength',12); % Use 12 bits.
h2 = copy(hd);
set(h2,'CoeffWordLength',24); % Use 24 bits.
href = reffilter(hd);
set(hfvt, 'Filters', [href, h1, hd, h2],'ShowReference','off');
legend(hfvt,'Reference filter','12 bits','16 bits (original...
CoeffWordLength','24 bits');
```


12 bits (filter h1) is not enough to represent this filter accurately. 16 bits is enough for many applications.

The remaining sections of this tutorial use 16 bits to represent the filter coefficients.

As a rule of thumb, expect an attainable attenuation in the stop band of about 5 dB per bit of coefficient length-16-bit coefficients provide about 80 dB attenuation.

Fixed-Point Filtering

The main purpose of this tutorial is to evaluate the accuracy of the fixed-point filter when compared to a double-precision floating-point version of the same filter.

Through the sections to come you see that representing the filter coefficients so the magnitude response of the fixed-point filter is close to the double-precision filter does not ensure the performance of the fixed-point filter during filtering.

Generating Random Test Input Data

To evaluate the accuracy of the fixed-point filter, filter some random data with both filters. Create 1000 data points with range of $[-1,1$) to generate random, uniformly distributed white-noise data using 16 bits of word length.

```
rand('state',0); % Make results reproducible by initializing the
    % random generator.
x = (rand(1000,1)*2-1); % 1000 Data points in the range [-1,1).
xin = fi(x,true,16,15);
```

Now xin is an array of integers with 1000 members, represented as a fixed-point object (a fi object).

```
get(xin)
DataTypeMode: 'Fixed-point: binary point scaling'
            DataType: 'Fixed'
                        Scaling: 'BinaryPoint'
                        Signed: 1
            WordLength: 16
        FractionLength: 15
        FixedExponent: -15
            Slope: 3.0518e-005
        SlopeAdjustmentFactor: 1
                    Bias: 0
            RoundMode: 'round'
            OverflowMode: 'saturate'
            ProductMode: 'FullPrecision'
        ProductWordLength: 32
    MaxProductWordLength: }12
    ProductFractionLength: 30
            SumMode: 'FullPrecision'
            SumWordLength: 32
        MaxSumWordLength: 128
        SumFractionLength: 30
            CastBeforeSum: 1
```

Your Fixed-Point Toolbox documentation provides more information about fi objects.

Generating a Baseline Output for Comparison

When you evaluate the accuracy of fixed-point filtering, consider three quantities for comparing between the quantized filter and the reference filter:

1 The ideal filtered output-this is the goal. Compute it using the reference coefficients and double-precision floating-point arithmetic.

2 The best-you-can-hope-for filtered output-this is the best you can hope to achieve. Compute this using the quantized coefficients and double-precision floating-point arithmetic.

3 The filtered output you can actually attain with the quantized filter-this is the output you compute using the quantized coefficients and fixed-point arithmetic (compare this to number 2).

Compare what you can actually attain (number 3) to the best you can hope for (number 2). To compute the best-you-can-hope-for, cast the fixed-point filter to double-precision and filter with double-precision floating-point arithmetic, provided by filter hdouble.

```
xdouble = double(xin); % Cast the input data to doubles.
hdouble = double(hd); % Convert hd to double-precision.
ydouble = filter(hdouble,xdouble);
```

Notice that you had to cast the input data xin to double format to use it with the double-precision filter hdouble. Double-precision filters require double-precision input values.

For completeness, this is how you compute the ideal output (number 1 in the preceding list). Then you can see how much quantizing just the filter coefficients affects the filter output.

```
yideal = filter(href,xdouble); % Reference filter, double data.
norm(yideal-ydouble) % Total error.
ans =
```

3.4887e-004

```
norm(yideal-ydouble,inf) % Maximum deviation.
ans =
```

3.7218e-005

Computing the Fixed-Point Filter Output

Now perform the actual fixed-point filtering. Again, the best you can hope to achieve is to have an output identical to ydouble.

```
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    0.0
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
```

0.0

The error between the filtered results is exactly zero. The accumulator is not introducing any quantization error. The results of products are represented with full precision, the default setting.

From that fact we know that no quantization errors are occurring there either. Finally, the output and accumulator share the same specification for word and fraction length which eliminates errors induced by quantization at the output.

Reducing Filter Output Quantization

To isolate any other quantization errors that are being introduced in the filter, you can eliminate quantization error at the output completely by setting the output format to have the same specifications as the accumulator. Think of this as being able to look inside the accumulator.

```
set(hd,'FilterInternals','SpecifyPrecision');
set(hd,'AccumWordLength',get(hd,'ProductWordLength'));
```

```
set(hd,'OutputWordLength',get(hd,'AccumWordLength'));
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    8.0623
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
0.5000
```

The errors are exactly zero, indicating that the accumulator is not adding further quantization to the output. The arithmetic products (multiplies) are set by default to use full precision, so you know that no errors are occurring in multiplication operations.

Usually it is not possible to have a full 40-bit output of the filter, so you must expect some difference between y and ydouble. Nevertheless, you have verified that in this filtering case, the difference between the ideal filter and the quantized filter is due to output quantization. This is not always the case-in some cases bits get lost in the accumulator. In fact overflow can occur in the accumulator.

The Advantages of Guard Bits

If you compare the product word and fraction lengths with the accumulator word and fraction lengths, by looking at the filter properties ProductWordLength, ProductFracLength, AccumWordLength, and AccumFracLength, as shown here

```
get(hd,'ProductWordLength')
ans =
    3 1
get(hd,'ProductFracLength')
ans =
```

```
get(hd,'AccumWordLength')
ans =
    35
get(hd,'AccumFracLength')
ans =
```

 33
 You see that the accumulator has 4 extra bits available (AccumWordLength is 35 bits). Having extra accumulator bits is typical of many fixed-point DSP processors. The extra bits are usually referred to as guard bits. They provide a safety valve for overflows that occur during filtering calculations.
Using info provides the same information in one display.

```
info(hd)
Discrete-Time FIR Filter (real)
Filter Structure : Direct-Form FIR
Filter Length : 81
Stable : Yes
Linear Phase : Yes (Type 1)
Arithmetic : fixed
Numerator : s16,18 -> [-1.250000e-001 1.250000e-001)
Input : s16,15 -> [-1 1)
Filter Internals : Full Precision
    Output : s35,33 -> [-2 2) (auto determined)
    Product : s31,33 -> [-1.250000e-001 1.250000e-001) (auto determined)
    Accumulator: : s35,33 -> [-2 2) (auto determined)
    Round Mode : No rounding
    Overflow Mode : No overflow
Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.064538
3-dB Point : 0.10001
6-dB Point : 0.11
Stopband Edge : 0.15183
Passband Ripple : 0.01 dB
Stopband Atten. : 60 dB
Transition Width : 0.087288
```

The easiest way of appreciating the value of guard bits is to remove them and see what happens (adjust the output settings accordingly).

```
set(hd,'FilterInternals','SpecifyPrecision');
set(hd,'AccumWordLength',get(hd,'ProductWordLength'));
set(hd,'OutputWordLength',get(hd,'AccumWordLength'));
hd
hd =
    FilterStructure: 'Direct-Form FIR'
                Arithmetic: 'fixed'
                Numerator: [1x81 double]
    PersistentMemory: false
    CoeffWordLength: 16
            CoeffAutoScale: true
                Signed: true
            InputWordLength: 16
            InputFracLength: 15
            FilterInternals: 'SpecifyPrecision'
            OutputWordLength: 31
            OutputFracLength: 32
            ProductWordLength: 31
            ProductFracLength: 32
            AccumWordLength: 31
            AccumFracLength: 32
            RoundMode: 'convergent'
            OverflowMode: 'wrap'
```

Now the accumulator word length matches the product word length of 31 bits, and the output word length matches the accumulator word length, 32 bits. Now use hd to filter some data, and plot the results.

```
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    3.4641
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
    1
plot([ydouble,double(y)])
xlabel('Samples'); ylabel('Amplitude')
legend('ydouble','y')
```


The total error is large because overflow occurred during filtering. The representable range for the accumulator and output formats [32 32] is -0.5 to 0.5 .

In the plot, one of the values around sample 800 is larger than 0.5 , indicating an overflow. Recall that you set the output settings equal to the accumulator settings. You removed the guard bits by setting the accumulator word length to 32 bits. So the overflow is occurring in the accumulator itself.

Avoiding Overflow Without Guard Bits

It is possible not to have overflow even when guard bits are not available in the accumulator.

```
set(hd,'OutputFracLength',get(hd,'AccumFracLength'));
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
```

 2.4442e-006
 ans =
2.5332e-007

If the filter uses 16 bits for the output word length and sets the output mode to maintain the best precision for this word length, the resulting error is much larger-almost two orders of magnitude.

```
set(hd,'OutputWordLength',16);
set(hd,'OutputMode','BestPrecision');
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
ans =
    2.7627e-004
norm(double(y)-ydouble,inf) % Maximum deviation.
```

```
ans =
    1.5400e-005
```

From the earlier plots of y and ydouble, you might have realized that one extra bit was all that would have been required to avoid overflow in those examples.

You can improve the results slightly with this one bit change, but remember that this is specific to the filter coefficients and input signal in this tutorial.

Reducing the accumulator fraction length from 32 bits to 31 bits provides one more bit in the integer part of the accumulator word and reduces the filtering error.

```
set(hd,'AccumFracLength',31);
y = filter(hd,xin);
norm(double(y)-ydouble) % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =
    2.7623e-004
ans =
    1.5251e-005
```

The errors are the same as when the filter used 39 bits for the accumulator and 2^{-32} to scale the least-significant bit. This indicates that the errors in filtering are due to quantization effects between the accumulator and the output.

Constructing Fixed-Point Filters

You construct filters by

- Using an fdesign.response object combined with a filter design method such as butter
- Using the appropriate filter constructor function dfilt.structure, where structure is the filter topology to implement
- Using FDATool design features
- Copying an existing filter

All filter characteristics are stored as properties that you can set or retrieve. These filter characteristics include

- Filter structure
- Reference filter coefficients
- Filter topology (single section or cascaded second-order sections)
- Fixed-point filter data format parameters such as
- Quantization parameters (word lengths, fraction lengths, and precisions).
- Data type (signed or unsigned fixed-point, double-precision or single-precision floating-point, and signed or unsigned integers)
- Rounding method used in quantization
- Overflow method used in quantization
- Scaling factors for each section of a second-order section filter

You can specify quantized filter properties by creating a quantized filter with default property values and then changing some or all of these property values later.

Defining Quantized and Fixed-Point Filters

With the dfilt objects in this toolbox you can create quantized and fixed-point filter objects that you use to filter signals or data.

In this user's guide, we distinguish between fixed-point and quantized filters only very rarely-mostly we use the terms interchangeably. There is a difference between them that is worth recalling when you work with the filter objects in this toolbox.

Quantized means using limited precision arithmetic, either fixed-point or floating-point. Underlying all the filters in this toolbox, including the floating-point filters, is quantized arithmetic.

Roughly explained, quantizing is the act of reducing the precision with which you represent numeric quantities.

With this in mind, we approximate ideal arithmetic (arithmetic with infinite precision) using double-precision, floating-point arithmetic and we refer to floating-point filters as nonquantized, or reference, filters.

Fixed-point arithmetic is a subset of quantized arithmetic, and fixed-point filters are thus a subset of quantized filters. In fixed-point arithmetic, the word length and fraction length you use limit the precision of your results. Arithmetic operations occur without moving the binary, or radix, point. Hence the name fixed-point or fixed binary-point arithmetic.

In summary, quantized filters use limited precision arithmetic and data representations. Fixed-point filters use limited precision representations and fixed-point arithmetic where the binary point location does not change.

Constructors for Fixed-Point Filters

The most direct way to create a fixed-point arithmetic filter (a fixed-point dfilt object) is to create one with the default properties. Fixed-point filter object construction requires these steps:

- Create a default double-precision lowpass filter hd by entering something like this command pair. First create a filter specifications object, and then design the filter.

```
d = fdesign.lowpass;
hd = design(d,'equiripple');
```

- Change the Arithmetic property setting for filter object hd to fixed.

```
set(hd,'arithmetic','fixed')
```

MATLAB displays a listing of all of the properties of the filter hd you created, along with the associated property values. All properties are set to defaults when you construct a fixed-point filter this way.

Constructing a Quantized Filter from a Filter Specification Object

You construct quantized filters by constructing default filters or filters with specified filter coefficients. Begin with a set of nonquantized filter coefficients to implement in a quantized filter.

For this example, start with a filter specification object that defines the response of the filter to design. This code specifies the filter order, cutoff frequency, and attenuations for the filter design.

```
d = fdesign.lowpass('n,fp,fst,ap',3,0.5,0.6,3);
```

To implement d as a quantized filter, use one of the design methods in the toolbox to design the filter and then change the value of the Arithmetic property to fixed:

```
hd=design(d,'ellip')
hd =
    FilterStructure: 'Direct-Form II, Second-Order Sections'
        Arithmetic: 'double'
            sosMatrix: [2x6 double]
        ScaleValues: [0.187365400536859;0.860421232522936;1]
        PersistentMemory: false
set(hd,'arithmetic','fixed'); % Convert to quantized filter.
```

Because filters designed with second-order section topologies are more robust against quantization errors than those composed of higher-order transfer functions, ellip constructs the dfilt object as an SOS filter.

Constructing a Fixed-Point Filter in Second-Order Sections

By default, many of the filter design functions in the toolbox return filters that use second-order sections. In most cases, this is a desirable feature when you are using fixed-point arithmetic because SOS filters tend to resist errors caused by quantization.

```
hs = fdesign.bandpass(.3, .4, .6, .7, 80, .5, 60); % Specify the
            passband edges and attentuations.
designmethods(hs) % Find an appropriate design method.
Design Methods for class fdesign.bandpass:
butter
cheby1
cheby2
ellip
equiripple
kaiserwin
hd=design(hs,'butter') % Design the filter.
hd =
```

```
FilterStructure: 'Direct-Form II, Second-Order Sections'
            Arithmetic: 'double'
            sosMatrix: [13x6 double]
    ScaleValues: [14\times1 double]
PersistentMemory: false
```


Copying Filters to Inherit Properties

When you have a quantized filter hd with the property values set the way you want them, you can create a new quantized filter hd2 with the same property values as hd by entering

```
hd2 = copy(hd)
```

This function is convenient to use when you are changing a small number of properties on a set of filters.

For example, create a 16 -bit precision filter hd2 from an FIR reference filter with

```
hd = design((fdesign.lowpass('N,fc,ap,ast',80,0.5,.05,50)),...
'equiripple') % Reference filter with double-precision coeffs.;
hd2 = hd;
```

hd2 inherits the property values for hd, but is an independent object that you can change without affecting hd.

Fixed-Point Arithmetic Filter Structures

When you construct filter objects, the FilterStructure property value is returned containing one of the strings shown in the following table. Property FilterStructure indicates the filter architecture and comes from the constructor you use to create the filter.
After you create a filter object you cannot change the FilterStructure property value. To make filters that use different structures you construct new filters using the appropriate object constructors. In some instances, function convert allows you to change the structure of an existing filter object.

You specify the filter structure by selecting the appropriate dfilt.structure method to construct your filter. For information about setting properties for fixed-point filter objects, refer to the reference information for dfilt in your Signal Processing Toolbox documentation and in this user's guide, and get and set in your MATLAB documentation.

The figures included in the reference page for each filter structure, such as dfilt.dfasymfir, act as aids to help you determine how to enter your filter coefficients for each filter structure and how the filter performs quantizations in the filter signal flow. Each reference page also contains an example for constructing a filter of the given structure.

| Filter Constructor Name | FilterStructure Property String and Filter Type |
| :--- | :--- |
| dfilt.dfasymfir | Antisymmetric finite impulse response (FIR) |
| dfilt.df1 | Direct form I |
| dfilt.df1sos | Direct form I filter implemented using
 second-order sections |
| dfilt.df1t | Direct form I transposed |
| dfilt.df2 | Direct form II |
| dfilt.df2sos | Direct form II filter implemented using second
 order sections |

| Filter Constructor Name | FilterStructure Property String and Filter Type |
| :--- | :--- |
| dfilt.df2t | Direct form II transposed. |
| dfilt.dffir | Direct form FIR |
| dfilt.dffirt | Direct form FIR transposed |
| dfilt.latticear | Lattice autoregressive (AR) |
| dfilt.latticemamin | Lattice moving average (MA) minimum phase |
| dfilt.latticemamax | Lattice moving average (MA) maximum phase |
| dfilt.latticearma | Lattice ARMA |
| dfilt.dfsymfir | Symmetric FIR. Even and odd forms |
| dfilt.scalar | Scalar |

Fixed-Point Arithmetic Filter Structure Diagrams

To help you understand where quantizations occur in filter structures like those provided in the toolbox, the next figure presents the structure for a direct-form 2 filter, including the quantizations that the quantized filter incorporates. You see that one or more quantizations accompany each filter element, such as a delay, coefficient, or summation element. The input to or output from each element reflects the result of applying the associated quantization.

Wherever a particular filter element appears in a filter structure, recall the quantization that accompanies the element. For example, a product quantization, either numerator or denominator, follows every coefficient element. A sum quantization, also either numerator or denominator, follows each sum element.

In this figure, you see the structure for a direct-form 2 IIR filter, with the arithmetic property value set to 'fixed'.

Note To set the Arithmetic property of an IIR filter to fixed, the leading denominator coefficient a(1) must one.

Fixed-Point Arithmetic Filter Structures

You choose among several filter structures when you create quantized filters. You can also specify filters with single or multiple cascaded sections of the same type. Because quantization is a nonlinear process, different quantized filter structures produce different results.

About the Filter Structure Diagrams

In the diagrams that appear on each filter structure reference page, you see the active operators that define the filter, such as sums and gains, and the word length and fraction length formats that control the processing in the filter. Notice also that the coefficients are labeled in the figure, to tell you the order in which the filter processes the coefficients.

While the meaning of the block elements is straightforward, the labels for the quantizers that form part of the filter are less clear.

Each figure includes text in the form labelformat that represents the existence of a quantization operation at that point in the structure. format stands for word length and fraction length applied at that point in the filter flow, and label specifies the data that the quantization process affects.

For example, in the dfilt.df2 filter shown in earlier, the labels InputFormat and OutputFormat are the quantizations applied to the filter input and output
data at the labeled location in the filter. InputFormat refers to the InputWordLength and InputFracLength filter properties and OutputFormat refers to the OutputWordLength and OutputFracLength filter properties.

Property names like CoeffWordLength and DenFracLength define the properties that control filter operations with coefficients or denominator coefficients at that point in the structure and are properties of the filter.

Data Type Handling in Discrete-Time Filters

In this section you learn how discrete-time filters (dfilt objects) handle different data types in significant filtering areas:

- Different data types as input data to your filter
- Different data types to represent your filter coefficients
- Different data types representing the states of your filter
- Reference filter coefficients

How these varied filter areas respond is driven primarily by the value you set for the Arithmetic property of the filter object. The next sections cover each of the areas noted above, discussing how each responds when you set the value for the Arithmetic property.
Property Arithmetic accepts one of three valid entries:

- Double
- Single
- Fixed

Each option affects how the filter handles the states, coefficients, input and output data, and filter arithmetic. And what you use as input to the filter object.

Filter Input Signals, Coefficients, and States

Filter object properties and their values directly affect how and in what form your filter works with input data, the filter coefficients, and the states of the filter.

In many cases, fixed-point filters use fixed-point objects to handle fixed-point values such as coefficients, input, or filter states. The Fixed-Point Toolbox documentation provides details about the fixed-point, or fi, object that dfilt objects use.

Input Data and the Arithmetic Property Setting

The Arithmetic property setting controls the handling and quantization of input to the filter. All arithmetic property settings-double, single, fixedsupport the same input data types:

- Double-precision floating-point
- Single-precision floating-point
- int*
- uint*
- fi objects

Each Arithmetic property value refines how the filter accepts input data. When you specify one of the following values for Arithmetic, this is what happens in the filter.

- double

The filter casts the input data to double-precision format. The filter states and output are double data type as well. This is the default value for the filter Arithmetic property. The resulting filter is considered double-precision and floating-point.

- single

The filter casts the input data to single-precision format. Both the filter states and the output from the filter are in single data type. This is a quantized filter that uses single-precision floating-point data format.

- fixed

The filter casts the input data to fixed-point (fi) objects to use fixed-point formats defined by the filter properties [InputWordLength InputFracLength], adds properties to the filter object for configuring the filter, and switches the filter to using fixed-point arithmetic. The added properties let you determine the data formats (the word length and fraction length) the filter uses for all filter operations and data.

Filter Coefficients and the Arithmetic Property Setting

Changing the arithmetic mode controls the format the filter uses to represent coefficients. Discrete-time filters accepts coefficients in any of the following formats:

- double-precision floating-point
- single-precision floating-point
- int*
- uint*
- fi objects

Depending on the setting for Arithmetic, whether double, single, or fixed, the filter handles the coefficients in the following manner:

- double

The filter casts the coefficients to double data type. Reference coefficients for the filter are stored in the data type in which you provide them. In this case, the quantized and reference coefficients for the filter are identical.

- single

The filter casts the coefficients to singles. single data type coefficients are unchanged. Reference coefficients for the filter are stored in the data type that you use to provide them.

- fixed

The filter casts the coefficients to fixed-point (fi) objects, using the [InputWordLength InputFracLength] filter properties to format the coefficients. The resulting fixed-point filter stores the reference filter coefficients in the data type that you supply. When you use reffilter, you get back a reference filter whose coefficients are double-precision approximations to the actual reference coefficients.

Arithmetic Property Setting and Filter States

How the filter stores and operates on filter states depends on the setting of the Arithmetic property. You can provide the states in any of the following formats:

- double-precision floating-point
- single-precision floating-point
- int*
- uint*
- fixed-point (fi) objects

When you set the Arithmetic property value you change how the filter responds to the state values.

- double

The filter casts the states to double-precision data type.

- single

The filter casts the filter states to single-precision data type.

- fixed

The filter casts the states to fixed-point objects, using the [InputWordLength InputFracLength] filter properties to format the states as

- Fixed-point objects
- Double

Other data types return an error in MATLAB.
When you set PersistentMemory to true, the word length and fraction length settings for the filter states must be the same as the filter input word length and fraction length. If these settings do not match, you receive an error.

Note that the filter does not store reference values for the states.
Disabling the autoscaling filter properties such as CoeffAutoScale, InputAutoScale, and OutputAutoScale results in all the additional fraction length properties becoming available in the filter. To make disabling the automatic scaling for a filter easier, use specifyall. When you use

```
specifyall(hd)
```

all of the automatic control properties of hd are set to SpecifyPrecision:

- ProductMode
- OutputMode
specifyall also disables the automatic scaling provided by
- CoeffAutoScale
- All other *AutoScale properties for the filter, since this varies from structure to structure

With autoscaling disabled you have access to the fraction length properties for coefficients, the accumulator, products, and output values, which lets you set the precision yourself.
specifyall also helps you return your filter to the default automatic modes. Use the syntax

```
specifyall(hd,false)
```

to reset filter hd to the default automatic mode settings.

You may want more information about filter states after you read this review. Refer to filtstates in your Signal Processing Toolbox documentation for detail about filter states and the filtstates object the filters use.

Reference Filter Coefficients for Fixed-Point Filters

Quantized or fixed-point filters in the toolbox have both quantized coefficients (or fixed-point coefficients) that result from changing the Arithmetic property to fixed or single, and reference coefficients. You can access both sets from the command line.

How the toolbox stores the reference coefficients for a filter depends on the data type you use to specify the coefficients-reference filter coefficients are stored in the data type you specified when you constructed the filter. Retaining the specified data type prevents the memory for storing the coefficients from growing unnecessarily.
When you view the fixed-point filter coefficients, you see double-precision approximations to the actual fixed-point or quantized coefficients used for filtering. In many cases, the approximation is exact, including when your filter uses single or double arithmetic.

When the Arithmetic property value is fixed, the approximation is exact if the software can store the fixed-point values exactly as a double data type value. Otherwise, you see the double data type approximation of the value.
Returning the double-precision approximations enables the software to represent the leading denominator coefficient of an IIR filter exactly as a 1, even if you are working in a fractional mode, such as Q15.

You use the function reffilter to return a filter that has the reference coefficients that accompany any fixed-point filter. For example, create a fixed-point direct form filter hd with

```
d=fdesign.lowpass('n,fc,ap,ast',5,0.45,0.1,50); % Order, cutoff,
    % and filter attenuations in dB.
hd = design(d);
hd.arithmetic='fixed';
which has fixed point coefficients
```

```
hd.numerator
```

hd.numerator
ans =

```
```

-0.0122 0.1192 0.3959 0.3959 0.1192 -0.0122

```

Now change the word length the filter uses to represent the numerator coefficients.
```

hd.coeffautoScale=false
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [1x6 double]
PersistentMemory: false
CoeffWordLength: 16
CoeffAutoScale: false
NumFracLength: 16
Signed: true
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'FullPrecision'
set(hd,'coeffWordLength',14');
hd.numerator
ans =

| -0.0122 | 0.1192 | 0.1250 | 0.1250 | 0.1192 | -0.0122 |
| :--- | :--- | :--- | :--- | :--- | :--- |

```

Using reffilter returns a filter object with reference coefficients, as follows:
hdref=reffilter(hd)
hdref \(=\)
    FilterStructure: 'Direct-Form FIR'
            Arithmetic: 'double'
            Numerator: [1x6 double]
    PersistentMemory: false
hdref.Numerator
ans \(=\)
\[
\begin{array}{llllll}
-0.0122 & 0.1192 & 0.3959 & 0.3959 & 0.1192 & -0.0122
\end{array}
\]
hdref has the original filter coefficients and is a double-precision filter. The reference filter coefficients match the original set of fixed-point coefficients for hd, but not the coefficients as represented by 14 bits.

\section*{Fixed-Point Filters and Second-Order Sections}

Listed within the dfilt methods for creating quantized filters you find methods that return second-order section (SOS) versions of the direct-form IIR filters-df1sos, df1tsos, df2sos, and df2tsos.

The following figure shows how the second-order sections combine to form a filter, in this case a direct-form II SOS filter. This diagram (or a similar one) appears with each SOS filter structure as well.


Combining this figure with the structures and signal flows for each SOS filter helps you work out the details about quantization in the SOS filter.

Using second-order sections is not the same as cascading the filters, as the dfilt.cascade or dfilt. parallel methods in the Signal Processing Toolbox allow you to do with any dfilt objects.

\section*{The CastBeforeSum Filter Property}

Setting the CastBeforeSum property determines how the filter handles the input values to sum operations in the filter.

After you set the filter Arithmetic property value to fixed, you have the option of using CastBeforeSum to control the data type of some inputs (addends) to summations in your filter.

To determine which addends reflect the CastBeforeSum property setting, refer to the reference page for the signal flow diagram for the specific filter structure.

CastBeforeSum specifies whether to cast selected inputs to summations in the filter to the summation output format before performing the addition.

\section*{Setting CastBeforeSum to True}

When you specify true for the property value, the results of the affected sum operations match most closely the results found on most digital signal processors. Performing the cast operation before the summation adds one or two additional quantization operations that can add errors to your filter results.

\section*{Setting CastBeforeSum to False}

Specifying CastBeforeSum to be false prevents the addends from being cast to the output format before the addition operation. Choose this setting to get the most accurate results from summations without considering the hardware your filter might use.

Notice that the output format for every sum operation reflects the value of the output property specified in the filter structure diagram. Which input property CastBeforeSum refers to depends on the structure.
\begin{tabular}{ll}
\hline Property Value & Description \\
\hline false & \begin{tabular}{l} 
Configures filter summation operations to retain \\
the addends in the format carried from the \\
previous operation.
\end{tabular} \\
\hline true & \begin{tabular}{l} 
Configures filter summation operations to convert \\
the input format of the addends to match the \\
summation output format before performing the \\
summation operation. Usually this generates \\
results from the summation that more closely \\
match those found from digital signal processors
\end{tabular} \\
\hline
\end{tabular}

\section*{Diagrams of CastBeforeSum Settings}

When CastBeforeSum is false, sum elements in filter signal flow diagrams look like this:

showing that the input data to the sum operations (the addends) retain their format word length and fraction length from previous operations. The addition process uses the existing input formats and then casts the output to the format defined by AccumFormat.

Thus the output data has the word length and fraction length defined by AccumWordLength and AccumFracLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look like this:

showing that the input data gets cast to the accumulator format word length and fraction length (AccumFormat) before the sum operation occurs. The data output by the addition operation has the word length and fraction length defined by AccumWordLength and AccumFracLength.

\section*{Introduction to Fixed-Point Arithmetic}

You specify how numbers are quantized using fixed-point arithmetic in this toolbox with two quantities:
- Word length in bits
- Fraction length in bits

This toolbox does bit-true fixed-point arithmetic for all word lengths. It properly handles overflows and the results are bit-true when the numbers are scaled properly. For example, (small numbers + small numbers) works correctly and (large numbers + large numbers) are right as well.

Fraction lengths used to represent numeric values can be any positive or negative integer, including integers larger than the associated word length for the value.

A general representation for a signed two's-complement binary fixed-point number is

where
- \(b_{i}\) are the binary digits (bits, 0s or 1 s ).
- The word length in bits is given by \(w\).
- The most significant bit (MSB) is the leftmost bit. It is represented by the location \(b_{w-1}\). In Filter Design Toolbox, this value represents the sign bit; a 1 indicates the number is negative, and a 0 indicates it is nonnegative.
- The least significant bit (LSB) is the rightmost bit, represented by the location \(b_{0}\).
- The binary point is shown four places to the left of the LSB for this example.
- The fraction length \(f\) is the distance from the LSB to the binary point.

\section*{Binary Point Interpretation}

Where you place the binary point determines how fixed-point numbers are interpreted in two's complement arithmetic. For example, the 5 -bit binary number
- 10110 represents the integer \(-2^{4}+2^{2}+2=-10\).
- 10.110 represents \(-2+2^{-1}+2^{-2}=-1.25\).
- 1.0110 represents \(-2^{-0}+2^{-2}+2^{-3}=-0.625\).

\section*{Notes About Fraction Length, Word Length, and Precision}

Word length and fraction length combine to make the format for a fixed-point number, where word length is the number of bits used to represent the value and fraction length specifies, in bits, the location of the binary point in the fixed-point representation. Therein lies a problem-fraction length, which you specify in bits, can be larger than the word length, or a negative number of bits. This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to be used in this user's guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the binary point) is true only when the fraction length is positive and less than or equal to the word length. In MATLAB, the format notation is [word length fraction length].

For example, for the format [16 16], the second 16 (the fraction length) is the number of fractional bits or bits to the right of the binary point. In this example, all 16 bits are to the right of the binary point.

It is also possible to have fixed-point formats of [16 18] or [16-45]. In these cases the fraction length can no longer be the number of bits to the right of the binary point since the format says the word length is 16 -there cannot be 18 fraction length bits on the right. And how can there be a negative number of bits for the fraction length, such as [16-45]?

A better way to think about fixed-point format [word length fraction length] and what it means is that the representation of a fixed-point number is a weighted sum of powers of two driven by the fraction length, or the two's complement representation of the fixed-point number.
Consider the format [ \(B L\) ], where the fraction length \(L\) can be positive, negative, 0, greater than B (the word length) or less than B. (B and L are always integers and \(B\) is always positive.)

Given a binary string \(b(1) b(2) b(3) \ldots b(B)\), to determine the two's complement value of the string in the format described by [BL], use the value of the individual bits in the binary string in the following formula, where \(b(1)\) is the first binary bit (and most significant bit, MSB), \(\mathrm{b}(2)\) is the second, and on up to \(b(B)\).

The decimal numeric value that those bits represent is given by
```

value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+···+ b (B)*2^(-L)

```

L , the fraction length, represents the negative of the weight of the last, or least significant bit (LSB). L is also the step size or the precision provided by a given fraction length.
For related information about scaling filters, refer to "Quantizing Filter Coefficients with Automatic Scaling" on page 2-9, which provides a discussion of how the toolbox scales filters automatically and how you can scale them yourself.

\section*{Precision}

Here is how precision works.
When all of the bits of a binary string are 0 except for the LSB (which is therefore equal to 1 ), the value represented by the bit string is given by \(2^{(-\mathrm{L})}\). If L is negative, for example \(\mathrm{L}=-16\), the value is \(2^{16}\).
The smallest step between numbers that can be represented in a format where \(\mathrm{L}=-16\) is given by \(1 \times 2^{16}\) (the rightmost term in the formula above), which is 65536. Note that the precision does not depend on the word length.

Look at another example. When the word length is set to 8 bits, the decimal value of 12 is represented in binary by 00001100 . That the decimal value 12 is equivalent to binary 00001100 indicates that the data format [ 80 ] is being used-the word length is 8 bits and fraction length 0 bits, and the precision (the smallest difference between two adjacent values in the format [80], is \(2^{0}=1\).

Suppose you plan to keep only the upper 5 bits and discard the other 3 . The resulting precision after removing the right-most 3 bits comes from the weight of the lowest remaining bit, the fifth bit from the left, which is \(2^{3}=8\), so the format would be [5-3].

In this format the precision is 8 . The [5-3] format cannot represent numbers that are between multiples of 8 .

In MATLAB, with the Fixed-Point Toolbox installed
```

x=8;
q=quantizer([8 0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq
binxq =

```
00001000
binxq1
binxq1 =
00001

But notice that in [5-3] format, 00001 is the two's complement representation for 8 , not for \(1 ; q=\) quantizer ([80]) and q1 \(=\) quantizer ([5-3]) are not the same. They cover about the same range-range (q) \(>\) range (q1) -but their quantization step is different-eps \((q)=8\), and eps \((q 1)=1\).

Look at one more example. When you construct a quantizer q,
```

q = quantizer([a,b])

```
the first element in [ \(a, b\) ] is \(a\), the word length used for quantization. \(b\), second element in the expression, is related to the quantization step-the numerical difference between the two closest values that the quantizer can represent. This is also related to the weight given to the LSB. Note that \(2^{\wedge}(-b)=e p s(q)\).

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let q2 use the format [16, -16].
```

q1 = quantizer([32 0])
q2 = quantizer([16 -16])

```

Quantizers q1 and q2 cover the same range (they have the same word length), but q2 has less precision. It covers the range in steps of \(2^{16}\), while q covers the range in steps of 1.

This lost precision is due to (or can be used to model) throwing out 16 least significant bits.

An important point is that by setting the format for the output from the sum or product operation in dfilt objects and filtering, you control which bits are carried from the filter sum and product operations to the filter output.

For instance, if you use [16 0] as the output format for a 32 -bit result from a sum operation when the original format is [320], you are taking the lower 16 bits from the result. If you use [16-16], you are taking the higher 16 bits of the original 32 bits. You could even take 16 bits somewhere in between the 32 bits by choosing something like [16-8].

\section*{Precision and Dynamic Range}

A fixed-point quantization scheme determines the dynamic range of the numbers that can be applied to it. Numbers outside this range are always mapped to fixed-point numbers within the range when you quantize them.

Precision is the distance between successive numbers occurring within the dynamic range in a fixed-point representation. The dynamic range and precision depend on the word length and the fraction length.
For a signed fixed-point number with word length \(w\) and fraction length \(f\), the range is from \(-2^{w-f-1}\) to \(2^{w-f-1}-2^{-f}\).

For an unsigned fixed-point number with word length \(w\) and fraction length \(f\), the range is from 0 to \(2^{w-f}-2^{-f}\).
In both cases the precision is \(2^{-f}\).

\section*{Overflows and Scaling}

When you quantize a number outside of the dynamic range for your specified format, overflows occur. Overflows occur more frequently with fixed-point quantization than with floating-point, because the dynamic range of fixed-point numbers is much less than that of floating-point numbers with equivalent word lengths.

Overflows can occur when you create a fixed-point quantized filter from an arbitrary floating-point design. You can normalize your fixed-point filter coefficients and introduce a corresponding scaling factor for filtering to avoid overflows in the coefficients.

In this toolbox you can specify how you want overflows to be handled:
- Saturate on the overflow
- Wrap on the overflow

For more about scaling and filters with fraction lengths that exceed the word length, refer to "Quantizing Filter Coefficients with Automatic Scaling" on page 2-9, which provides a discussion of how the toolbox scales filters automatically and how you can scale them yourself.

\title{
Designing Multirate Filters
}

Introducing Multirate Filters (p. 3-2)

Getting Started-Designing Multirate Filters (p. 3-4)

FIR Decimation-Filtering with FIR Decimators (p. 3-18)

CIC Filter Example-Using CIC
Decimation Filters (p. 3-24)
Analyzing Multirate and Multistage Filters (p. 3-36)

Audio Example-Audio Sample Rate Conversion (p. 3-47)

Introduces multirate filters and discusses uses, specifications, and definitions

Provides a tutorial to show you how to design multirate filters

Designs an FIR decimator and uses it to filter a signal

Develops, explains, and uses cascaded integrator-comb decimators

Provides information about using the toolbox analytical capabilities to analyze multirate filters

Demonstrates sample rate decimations of a 48 kHz signal to 32 kHz (broadcast audio rate) and 44.1 kHz (CD audio rate)

\section*{Introducing Multirate Filters}

Over the last few years, developments in multirate filter design and implementation have brought rapid growth in applying multirate filtering to signals in digital signal processing. Improved processors and development tools allow system designers to use multirate filters in a broad range of application areas, such as:
- POTS audio encryption-encrypts voice sent over plain old telephone systems (POTS).
- Digital audio-sound handled in digital rather than analog form. Enncompasses various signal compression schemes, analog-to-digital conversion techniques, and the opposite conversions, signal reproduction, and audio improvements.
- Subband speech and image coding-uses the techniques of separating a signal or image into subbands that each containing only a portion of the original signal. Then processing the subbands through filters before reconstructing the original signal from the processed subbands.
Polyphase filters-filters that separate an input signal into constituent bands that are easier to process, and can then be either recombined or used after processing-represent one way to accomplish signal separation. Filter performance depends on the phase differences between the input signals.
- Transmultiplexer design—uses filters to convert time division multiplexing (TDM) signals to frequency division multiplexing (FDM) format, and the reverse. FDM combines numerous signals for transmission on a single communications line or channel. Each signal is assigned a different frequency (subchannel) within the main channel. TDM puts multiple data streams in a single signal by separating the signal into many segments, each having a very short duration. Based on the timing of the signals, each individual data stream is reassembled at the receiving end.

These represent a few of the growing number of areas in which systems designers use multirate filters.

Listed below are the examples in this chapter that introduce multirate filters. Each example includes a tutorial that uses toolbox features to demonstrate how you work with multirate filters:

\footnotetext{
- "Getting Started—Designing Multirate Filters" on page 3-4
}
- "Audio Example-Audio Sample Rate Conversion" on page 3-47
- "CIC Filter Example—Using CIC Decimation Filters" on page 3-24
- "Audio Example-Audio Sample Rate Conversion" on page 3-47

\section*{Getting Started-Designing Multirate Filters}

This section demonstrates how to use the multirate filter (mfilt) objects available in the toolbox. By following these procedures you get introduced to multirate filter development. This tutorial covers the following tasks:
- "Creating Multirate Filters" on page 3-4
- "Getting and Setting Filter Coefficients" on page 3-6
- "Analyzing Multirate and Multistage Filters" on page 3-8
- "Specifying Initial Conditions to the Filter" on page 3-11
- "Streaming Data to the Filter" on page 3-12
- "Filtering Multichannel Signals" on page 3-13
- "Generating Simulink Blocks" on page 3-15
- "Getting Help About Multirate Filters" on page 3-15

\section*{Creating Multirate Filters}

To develop a multirate filter (mfilt) object, you select the filter structure to be used by selecting the constructor function, such as mfilt.firdecim or mfilt.firinterp.

Entering helpwin mfilt at the prompt gives you a list of all supported structures and constructor functions.

Most multirate filter constructors take the coefficients of the filter as an optional final right-hand input argument. If you do not specify the coefficients, the toolbox functions design a default filter according to the interpolation or decimation factor(s) you provide as input for L or M in the calling syntax, or both in the case of fractional rate changer filters.

Here is an example that creates an interpolating filter with order of three interpolation and a decimating filter that decimates by two.
```

l = 3; % Interpolation factor
m = 2; % Decimation factor
hm1 = mfilt.firinterp(l);
hm2 = mfilt.firtdecim(m);

```

Both filter constructors return direct-form FIR polyphase Nyquist filters by default. Nyquist filters tend to be well-suited for decimation and interpolation work, because the form is computationally efficient due to the zero-valued
coefficients inherent in the design. Used as interpolators, Nyquist filters preserve the nonzero samples of the upsampled output of the interpolator.
```

hm1

```
hm1 =
    FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
                        Arithmetic: 'double'
            Numerator: [1x72 double]
    InterpolationFactor: 3
        PersistentMemory: false
hm2
hm2 =
    FilterStructure: 'Direct-Form Transposed FIR Polyphase
Decimator'
            Arithmetic: 'double'
            Numerator: [1×48 double]
    DecimationFactor: 2
    PersistentMemory: false

Filter hm1 is a direct-form FIR polyphase interpolator filter with the cutoff frequency of \(\pi / 1\) and gain of \(1 . \mathrm{hm} 2\) is a direct-form transposed FIR polyphase decimator with a cutoff frequency of \(\pi / \mathrm{m}\) and a gain of 1 .

For confirmation, here is the frequency response displayed by the Filter Visualization Tool (FVTool).

hm 1 and hm 2 are filters and mfilt objects. As objects, they work with a range of functions (methods) such as filter, freqz, and tf, or display.

\section*{Getting and Setting Filter Coefficients}

To access and manipulate the coefficients of a filter as a regular MATLAB vector, you use the common object functions set and get or dot notation. You can always get the coefficients from the mfilt object (filter). To modify the coefficients of an existing mfilt object, you set new ones. Direct-form FIR structures like those of hm1 and hm2 have numerator coefficients only-also known as the filter weights.

Here are the filter coefficients for hm2.
```

b = get(hm2,'numerator') % Could use command hm2.numerator as well. Assign the
% coefficients to vector b.
b =
Columns 1 through 8
0
Columns 9 through 16
0
Columns 17 through 24
0
Columns 25 through 32

| 0.5000 | 0.3163 | 0 | -0.1002 | 0 | 0.0542 | 0 | -0.0331 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 Columns 33 through 40
    ```

```

 Columns 41 through 48
    ```

After you get the coefficients, create a new Nyquist FIR filter bmod and set the coefficients of hm2 to the coefficients from bmod.
```

bmod = firnyquist(8,m,kaiser(9,0.1102*(80-8.71)));
set(hm2,'Numerator',bmod); % Set the modified coefficients.
hm2.numerator
ans =

```

Columns 1 through 6
\(0 \quad-0.0092\)
\(0 \quad 0.2522\)
0.5000
0.2522

Columns 7 through 9
\(\begin{array}{lll}0 & -0.0092 & 0\end{array}\)
You do not have to use a Nyquist filter to get new filter coefficients; other FIR filter design techniques in the toolbox work as well.

\section*{Analyzing Multirate and Multistage Filters}

Analyzing multirate or multistage filter objects is similar to analyzing discrete-time filter (dfilt) objects. Many if not all of the analysis functions for dfilt objects apply to mfilt objects equally. In particular, the Filter Visualization Tool (FVTool) provides most of the filter analysis tools you need.
```

h = fvtool(hm1,hm2);

```


But one difference is very important. In analyzing multirate and multistage filters, the filter sample rates become important. The toolbox and tools let you specify sample rates for all of your analyses.

Additionally, polyphase for mfilt objects provides a tool for analyzing the polyphase components of mfilt objects. Calling the polyphase method without
output arguments (as shown here using filter hm1) starts an FVTool session with the polyphase subfilters ready for you to analyze.
```

polyphase(hm1)

```

polyphase ( hm ) lets you analyze your filter in more detail, such as checking that the group delay of each filter phase is flat, the desirable state.

\section*{Filtering with Multirate Filters}

By default, multirate filters begin with zero-valued filter states. Furthermore the PersistentMemory property is set to false, meaning that the filter object properties, such as the filter states, are reset before each filter run. This built-in reset process allows you to filter the same sequence input data sequence twice and produce the same output. For example:
```

x = 1:6;
y1 = filter(hm2,x) % First run
y1 =
0-0.0184 0.9676

```

At this point, you can verify that the filter hm2 holds nonzero final conditions in the filter states.
```

zf1 = hm2.States
zf1 =
3.0133
3.4904
-0.0369
0

```

Run the filter again using the same input data \(x\).
```

y2 = filter(hm2,x) % Second run
y2 =
0 -0.0184 0.9676
zf2 = hm2.States
zf2 =
3.0133
3.4904
-0.0369

```

After the second run, the states of the filter are the same as they were after the first run. With PersistentMemory property set to false, the filter states were reinitialized to zeros before the second run.

\section*{Specifying Initial Conditions to the Filter}

You make it possible to specify the initial conditions for your filter by setting both of the following:
- The PersistentMemory property to true
- The States property to your initial conditions (ICs)

Setting the PersistentMemory property to true is essential in the process of specifying initial conditions. If you set your filter ICs to specific values but you do not enable the filter memory, when you use the filter with input data the ICs get reset to zeros before the filter runs. As a result you lose your desired ICs and the results of filtering are not correct, or not what you might anticipate.

When you set the ICs, if you provide a scalar, that value is expanded to the correct number of states. If you specify a vector of values, its length must be equal to the number of states for the filter.

For example, using hm2 as the filter, experiment with setting the filter states before filtering an input data set.
```

hm2.persistentmemory='true'
hm2.States=zf1
hm2 =
FilterStructure: 'Direct-Form Transposed FIR Polyphase Decimator'
Arithmetic: 'double'
Numerator: [1x9 double]
DecimationFactor: 2
PersistentMemory: false
y3=filter(hm2,x)
y3 =
2.9580
4 . 9 8 5 3
2.4440
zf3=hm2.states
zf3 =
2.9580

```
3.4904
-0.0369
As you might have anticipated, the filter output and the filter states are different now than they were after the first run.

\section*{Streaming Data to the Filter}

Setting the filter property PersistentMemory to true is a valuable feature when you are filtering streaming data. Since breaking a signal into sections and filtering the sections in a loop is equivalent to filtering the entire signal at once, this example simulates filtering streaming data by using the filter hm 2 in a loop.
```

reset(hm2); % Clear history of the filter by resetting all states.
xsec = reshape(x(:),2,3); % Break the input signal into
% three sections.
yloop = zeros(1,3); % Preallocate memory for storing
% intermediate results.
for i=1:3,
yloop(i)=filter(hm2,xsec(:,i));
end
yloop
yloop =
0 -0.0184 0.9676
y1
y1 =
0 -0.0184 0.9676

```

You have verified that yloop (the signal filtered by three sections) is equal to y1 (entire signal filtered at once). Without changing the property value for PersistentMemory, this test does not work.

Note that sample mode is a special case where you feed your input data to your filter one sample at a time. In this operating mode, debugging and cosimulation might be easier to do.

\section*{Filtering Multichannel Signals}

Up to this point you have only done single channel filtering, entering a vector of data \(x\) for the filter. When the input signal \(x\) is a matrix, the filter interprets each column of \(x\) as an independent input channel. Thus an 11-by- 4 matrix provides 4 channels of input data where each channel contains 11 samples.

As was true for the streaming data case, sample-by-sample filtering is a special case. In sample mode operation, you have to provide a third input argument to filter that defines the input matrix dimension, in this case one dimension:
```

y = filter(hm,2,1)

```

Before you can continue this tutorial and experiment with multichannel filtering, you must either reset your filter to the initial states, or set the PersistentMemory property to false. The toolbox does not let you switch between single channel and multichannel filtering unless PersistentMemory is false or you reset the filter manually. If you forget to do this step, MATLAB returns an error message to tell you to reset your filter.

This example begins by resetting hm2 and defining some data to filter.
```

reset(hm2);
x = randn(10,3); % Three channel signal; each channel providing
% ten samples.
y = filter(hm2,x)
y =

| 0 | 0 | 0 |
| ---: | ---: | ---: |
| -0.0094 | 0.0095 | -0.0022 |
| 0.0794 | 0.3678 | 0.5956 |
| 0.0440 | -0.2253 | 1.1980 |
| 0.6913 | 0.3884 | 0.3812 |

zf = hm2.States
zf =

| 0.9268 | -0.0027 | 0.4663 |
| ---: | ---: | ---: |
| -0.5359 | -0.6960 | 0.3092 |
| 0.0066 | 0.0123 | -0.0029 |

```

Notice that the filter object stores the final conditions for each channel separately. Each column of the States property corresponds to one input channel or column in the input matrix \(x\).

\section*{Filtering Multichannel Data in Loops}

When x is a matrix, the filter treats each matrix column as an independent channel. When you are filtering multichannel data, dim lets you specify which dimension of the input matrix to filter along-whether a row represents a channel or a column represents a channel. To filter multichannel data in a loop environment, you must use the dim input argument to set the processing dimension.

You specify the initial conditions for each channel individually, when needed, by setting hm.states to a matrix of nstates ( hm ) rows (each individual row containing the states for one channel of input data) and size ( \(x, 2\) ) columns (one column containing the filter states for each channel).

Here is an example that uses the dim input argument to filter the multichannel input data matrix \(x\).
```

Fs = 44.1e3; % Original sampling frequency 44.1kHz
n = [0:10239].'; % 10240 samples, 0.232s signal.
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
M = 2; % Decimation factor.
Hm = mfilt.firdecim(M); % We use the default filter.
% No initial conditions
y1 = filter(Hm,x); % PersistentMemory is false.
zf = Hm.States; % Final conditions.
% Non-zero initial conditions.
Hm.PersistentMemory = true;
Hm.States = 1; % Uses scalar expansion.
y2 = filter(Hm,x);
stem([y1(1:60) y2(1:60)])% Different sequences at the
% beginning.
% Streaming data
reset(Hm); % Clear filter history.
y3 = filter(Hm,x); % Filter the entire signal in one
% block.

```
```

reset(Hm); % Clear filter history.
yloop = [];
xblock = reshape(x,[2048 5]);
% Filtering the signal section by section is equivalent to
% filtering the entire signal at once.
for i=1:5,
yloop = [yloop; filter(Hm,xblock(:,i))];
end

```

\section*{Generating Simulink Blocks}

When the Signal Processing Blockset is installed, you can generate a Simulink \({ }^{\circledR}\) block of the mfilt object if the Signal Processing Blockset supports the filter structure. For example hm1, the direct-form FIR polyphase interpolator that you have been using throughout these examples, can be rendered as a Simulink block.
```

block(hm1,'destination','new','blockname','FIR Interp');

```

This figure shows the block as generated by the toolbox from the filter hm1.


\section*{Getting Help About Multirate Filters}

Entering helpwin mfilt in the MATLAB Command Window returns a list of multirate structures that the toolbox supports, as well as functions that operate on mfilt objects. For further information about a particular structure or function, enter helpwin mfilt.functionname, which returns the help information about functionname in a formatted HTML view, or enter help mfilt.functionname that returns the help information as plain text. For example:
```

help mfilt.firinterp % Help on the FIRINTERP structure

```
returns the following text in the Command Window.
```

FIRINTERP Direct-Form FIR Polyphase Interpolator.

```
```

Hm = mfilt.FIRINTERP(L,NUM) returns a direct-form FIR polyphase
interpolator Hm.
L is the interpolation factor. It must be an integer. If not
specified, it defaults to 2.
NUM is a vector containing the coefficients of the FIR lowpass filter
used for interpolation. If omitted, a low-pass Nyquist filter of gain
L
EXAMPLE: Interpolation by a factor of 2 (used to convert from
22.05kHz to 44.1kHz)
L = 2; % Interpolation factor.
Hm = mfilt.firinterp(L); % We use the default filter.
Fs = 22.05e3; % Original sampling frequency: 22.05kHz.
n = 0:5119; % 5120 samples, 0.232 second long
signal.
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
y = filter(Hm,x); % 10240 samples, still 0.232 seconds.
stem(n(1:22)/Fs,x(1:22),'filled') % Plot original sampled at
% 22.05kHz.
hold on %Plot interpolated signal (44.1kHz) in
% red.
stem(n(1:44)/(Fs*L),y(25:68), 'r')
xlabel('Time (sec)');
ylabel('Signal value')
See also mfilt/HOLDINTERP, mfilt/LINEARINTERP, mfilt/FFTFIRINTERP,
mfilt/FIRFRACINTERP, mfilt/CICINTERP, mfilt/CICINTERPZEROLAT,
FDESIGN/INTERP, FDESIGN/SRC.
You can also enter
help mfilt.polyphase
at the MATLAB prompt to return this information about polyphase.
POLYPHASE Polyphase decomposition of multirate filters.
$\mathrm{P}=\mathrm{POLYPHASE}(\mathrm{Hm})$ returns the polyphase matrix of the multirate filter Hm. The ith row of the matrix P represents the ith subfilter.

```

POLYPHASE(Hm) called with no outputs launches the Filter Visualization Tool (FVTool) with all the polyphase subfilters to allow analysis of each component individually.

To use the online help system, use the doc function instead of help.
doc mfilt
opens the Help browser and displays the general help text for multirate filter objects.

To obtain information about CIC decimation filter objects, enter one of the following commands:
help mfilt.cicdecim
doc mfilt.cicdecim
at the command prompt, depending on which structure you need to know about.

For a complete list of the multirate filters that are available in the toolbox, enter help mfilt.

\section*{FIR Decimation - Filtering with FIR Decimators}

This section demonstrates how you can decrease the sampling rate of a signal using FIR decimators from the toolbox. To show you how this works, this section takes you through the following tasks:
- "Creating FIR Decimators" on page 3-18
- "Understanding Input Sample Processing and the InputOffset Property" on page 3-19
- "Filtering with FIR Decimators" on page 3-21

\section*{Creating FIR Decimators}

The Filter Design Toolbox supports different structures to perform decimation including different FIR-based structures and cascaded integrator-comb (CIC) structures. Entering helpwin mfilt at the prompt gives you a list of all supported structures.

Start by defining the filter decimation factor for your FIR decimator.
```

m = 3; % Specify the decimation factor as m.

```

Because the toolbox uses objects to implement multirate filters, you use the same methods to create most decimators. First you specify the decimation factor and then the FIR filter coefficients. If you do not include filter coefficients when you construct the filter, the toolbox filter constructor returns a lowpass filter with a cutoff frequency of ( \(\pi /\) decimation factor) and a gain of 1 . This example uses mfilt.firdecim to create a direct-form polyphase FIR decimator. After constructing the filter, you can change the filter coefficients that are stored in the Numerator property.

Begin by designing an FIR decimator with the decimation factor set to 3 .
```

hm1 = mfilt.firdecim(m); % Default decimator filter

```
mfilt.firdecim produces filters that decimate signals by integer factors. To change the sampling rate of a signal by a fractional factor, you might use a direct-form FIR polyphase sample rate converter. One way to create such a rate-changing filter is mfilt.firsrc. This structure uses L polyphase subfilters where \(L\) is the interpolation factor. Sample rate convertors use both a decimation factor and interpolation factor to perform fractional rate changing.
```

l = 2; % Set the interpolation factor.
hm2 = mfilt.firsrc(l,m); % Create the rate changing filter.

```

Here is the configuration information about hm2.
```

hm2 =
FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
Numerator: [1\times72 double]
RateChangeFactors: [2 3]
PersistentMemory: false
States: [35x1 double]

```

\section*{Understanding Input Sample Processing and the InputOffset Property}

When you decimate signals whose length is not a multiple of the decimation factor \(M\), the last samples- \((n M+1)\) to \([(n+1)(M)-1]\), where \(n\) is an integerare processed and used to track where the filter stopped processing input data and when to expect the next output sample. If you think of the filtering process as generating an output for a block of input data, where each block has M elements, every complete input data block yields one output sample. Incomplete blocks of data (one or more input samples up to one less than the decimation factor) increment the InputOffset property by one for each sample in the incomplete block.

Note InputOffset applies only when you set PersistentMemory to true. Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:
1 The input signal is a multiple of the filter decimation factor. In this case, the filter processes the input samples and generates output samples for all inputs as determined by the decimation factor. For example, processing 99 input samples with a filter that decimates by three returns 33 output samples.

2 The input signal is not a multiple of the decimation factor. When this occurs, the filter processes all of the input samples, generates output samples as
determined by the decimation factor, and has one or more input samples that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has decimation factor of 3 , you get 33 output samples, and 1 sample that did not generate an output. In this case, InputOffset stores the value 1 after the filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into blocks of data with length equal to your filter decimation factor, the filter processed one sample from a new block of data. Subsequent inputs to the filter are concatenated with this single sample to form the next block of length m.

One way to define the value stored in InputOffset is
```

InputOffset = mod(length(nx),m)

```
where \(n x\) is the number of input samples in the data set and \(m\) is the decimation factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any point and start over from there (provided that the PersistentMemory property is set to true). Being able to resume filtering after stopping a signal lets you break large data sets in to smalller pieces for filtering. With PersistentMemory set to true and the InputOffset property in the filter, breaking a signal into sections of arbitrary length and filtering the sections is equivalent to filtering the entire signal at once.
```

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =
0
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]
ysec =
0

```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

All of the preceding discussion applies to interpolation filters as well, with appropriate changes from decimation to interpolation.

\section*{Filtering with FIR Decimators}

After creating your decimator, you are ready to filter data. Rather than use random data, as you did earlier, this example uses a more realistic data set.

For this example, define the input signal x as a 1 kHz sinusoid sampled at 44.1 kHz . Here is one way to create \(\mathrm{x}[\mathrm{n}]\).
```

N = 159;
fs = 44.1e3;
n = 0:N-1;
x = sin(2*pi*n*1e3/fs); % Signal as required. 159 data points.

```

Now you can use filter hm1 you designed earlier to try decimating x .

\section*{Filtering with the Direct-Form FIR Polyphase Decimator hm 1}

You have data and a decimator in your workspace. Applying the filter to the data takes two steps-reset the filter and use filter to apply the decimator to x .
```

reset(hm1) % Reset the filter history and states to zeros.
y1 = filter(hm1,x);

```

Two stem plots give a sense of the decimation.

y1 contains 53 samples-one-third of the number in \(x\). Filter hm1 decimated x by two-thirds. Since multirate filters support sample-by-sample processing, all input samples passed through the filter.
For further information about filtering options in general and specifying initial conditions for filters in particular, refer to "Getting Started-Designing Multirate Filters" on page 3-4.

The previous stem plot shows a feature of the filter-a delay of a number of samples before the filter starts to output the decimated input signal. Called the transient response, the length of the transient response of the decimator is equal to half the order of a polyphase subfilter. For hm1, the subfilter order is 24 , so the transient response should be 12 samples. This is also the group delay of the filter.

From the plot, it appears that the transient response is about 12 samples long. The next plot makes this more clear by plotting the decimated signal with a delayed version of the input \(x\).
```

delay = mean(grpdelay(hm1)); % Constant group delay equal to its
% mean.
tx = delay+[1:length(x)];
ty = 1:m:m*length(y1);

```

Plot the output of the direct-form FIR polyphase decimator hm1 and overlay a shifted version of the original signal using \(t x\) and ty.
```

stem(tx,x,'k');hold on;stem(ty,y1,'filled');

```

Using the delayed signals makes the transient response clear.


\section*{CIC Filter Example-Using CIC Decimation Filters}

This demonstration shows how to use multirate cascaded integrator-comb (CIC) decimation filters in the Filter Design Toolbox. CIC filters are efficient, multiplierless structures that are often used in high-decimation ratio or high-interpolation ratio systems.

Digital down convertors and digital up convertors commonly use CIC filters. Refer to the demonstration program "Design of a Digital Down-Converter for GSM (Group Speciale Mobile)" in the Filter Design Toolbox demos for an example that uses a CIC decimator for digital down-conversion processing of a signal.

To help you understand what CIC filters do and how, this example includes the following sections:
- "Creating CIC Decimator filters" on page 3-24
- "Analyzing CIC Decimation Filters" on page 3-26
- "Working with Section Word Lengths" on page 3-28
- "CIC Filter States" on page 3-31
- "Filter Implementation-Signal Flow Graph" on page 3-33
- "Reference" on page 3-35

\section*{Creating CIC Decimator filters}

The Filter Design Toolbox provides a CIC decimating filter structure-the Cascaded Integrator-Comb Decimator. As you see in the figure below, the structure is optimized for pipelined implementations such as might be used on field-programmable gate arrays (FPGAs). The following Simulink model provides a signal-flow graph of the structure.


With the Fixed-Point Toolbox installed (required for you to use CIC filters), you create a default cascaded integrator-comb decimator object with this command
```

hm = mfilt.cicdecim

```
at the prompt. MATLAB returns the CIC filter with the specifications shown here.
hm =
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 2
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
SectionWordLengthMode: 'MinWordLengths'
OutputWordLength: 16
The CIC decimation filter comprises three portions-an integrator portion, a rate change factor, and a comb portion. Similarly, you can completely specify a CIC decimation filter with three parameters-a decimation factor \(r\), the number of individual integrator or comb sections \(n\), and the differential delay of the comb section \(m\).

The display of the multirate filter object (mfilt) in the Command Window groups the filter properties together in a logical manner, making the filter specification more clear.

Only the writable properties appear in the display by default. Changing a filter property, such as resetting PersistentMemory from false to true reveals more properties as they become writable-in this case the States property appears when PersistentMemory is true.

Unlike other multirate filters and discrete-time objects, CIC filter objects allow only fixed-point arithmetic (the Arithmetic property is always set to fixed) since these filters are inherently fixed-point filters. Check the value of the Arithmetic property
```

set(hm,'arithmetic')
ans =
'fixed'

```
to see that fixed is the only option. As with all filter objects, and all objects in general, the get function returns the complete set of properties (read-only and writable) for the filter and object.
```

get(hm)

```

\section*{Analyzing CIC Decimation Filters}

Analyzing CIC filters is the same as analyzing any multirate filter object in the Filter Design Toolbox. The Filter Visualization Tool (FVTool) provides graphical access to all analyses.
```

hm = mfilt.cicdecim(8,1,4);
hfvt=fvtool(hm);
hfvt.showreference='off';

```

FVTool returns the magnitude response for hm, shown here. As hm is a fixed-point filter, we suppress the reference filter in the display by setting the ShowReference property in FVTool to off.


After you have the filter displayed in FVTool, you can use any of the filter analysis capabilities provided to learn more about hm. To perform an analysis, select one of the analytical options, such as Impulse Response or Round-off Noise Power Spectrum from Analysis on the FVTool menu bar.

\section*{About the MSB at the Filter Output}

A significant consideration in CIC filters is the size (number of bits) of data that can pass through the filter without loss. The most significant bit (MSB) of the filter represents the maximum number of bits that can be propagated through the filter while maintaining the integrity of the data.

Parameters R, M, N and the InputWordLength specify the MSB of the filter output. Since the output of the integrator sections of the filter can grow without bounds, the MSB at the filter output is also the MSB for all filter sections.

Called \(\mathrm{B}_{\text {max }}\) in the reference, the maximum word length in the filter, or most significant bit (MSB), is both the maximum word length for all of the filter sections as well as the MSB at the filter output.

Hogenauer defines \(\mathrm{B}_{\max }\), the MSB at the filter output, as follows:
\(B_{\text {max }}=\left[N \log _{2} R M+B_{\text {in }}-1\right]\)
with
- N is the number of filter sections
- M is the comb portion differential delay
- R is the decimation factor
- \(\mathrm{B}_{\mathrm{in}}\) is the input word length in bits

\section*{Working with Section Word Lengths}

CIC filters include a property that defines how you specify the section word and fraction lengths for the filter. Called SectionWordLengthMode, this property specifies the specific data format (word length and fraction length) the filter uses when accumulating data in the integrator sections or subtracting data in the comb sections. SectionWordLengthMode can take one of two values:
- MinWordLengths-the filter calculates the optimal section word lengths given the filter parameters R (the rate change factor), M (the differential delay), N (the number of filter sections), and the input and output word lengths.
- SpecifyWordLengths-you specify the word lengths for the sections by entering a scalar or a vector of length \(2 * \mathrm{~N}\). When you provide a scalar, the filter method expands the scalar into a vector with \(2 * \mathrm{~N}\) elements, applying the same word length to all sections. If you specify a vector, it must meet these requirements:
- It must contain \(2^{*} \mathrm{~N}\) elements.
- The values of the vector elements must be monotonically decreasing.

When you construct a new CIC decimating filter, SectionWordLengthMode is set to MinWordLength by default.
Using hm as an example, here is the SectionWordLengthMode.
```

set(hm,'SectionWordLengthMode')

```
```

ans =
'MinWordLengths'
'SpecifyWordLengths'

```

In the reference provided later in this section ([1] on page 3-35), Hogenauer shows that during filtering you can discard least significant bits (LSBs) from each section (refer to Equation 21 of the reference) of the filter so long as the error introduced by removing the LSBs is acceptable at the filter output. In this case, the section word lengths reported by the filter are computed by subtracting the LSBs from the maximum word lengths in the filter (refer to Equation 11 in the reference for details).

To help connect the CIC filter designs in the toolbox to the analysis by Hogenauer, the next example designs a CIC decimator that matches the design on page 159 of the Hogenauer paper.
```

m=1; % Set the differential delay to one.
n=4; % Specify the number of sections.
r=25; % Set the rate change factor.
inwl=16; % Set the word length at the filter input.
outwl=16; % Set the filter output word length.
% With the specifications prepared, design the CIC decimator.
hm=mfilt.cicdecim(r,m,n,inwl,outwl);

```
hm reproduces the referenced filter exactly. To see the correspondence, check that the word lengths applied to each filter section match those developed in the reference example, where the MSB is 34 bits.
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Filter \\
Section
\end{tabular} & \begin{tabular}{l} 
Number of LSBs \\
Discarded
\end{tabular} & \begin{tabular}{l} 
Word Length Calculated in \\
[1] on page 3-35 \\
(MSB-Discarded LSBs)
\end{tabular} \\
\hline 1 & 1 & \(33(34-1)\) \\
\hline 2 & 6 & \(28(34-6)\) \\
\hline 3 & 9 & \(25(34-9)\) \\
\hline 4 & 13 & \(21(34-13)\) \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Filter \\
Section
\end{tabular} & \begin{tabular}{l} 
Number of LSBs \\
Discarded
\end{tabular} & \begin{tabular}{l} 
Word Length Calculated in \\
[1] on page 3-35 \\
(MSB-Discarded LSBs)
\end{tabular} \\
\hline 5 & 14 & \(20(34-14)\) \\
\hline 6 & 15 & \(19(34-15)\) \\
\hline 7 & 16 & \(18(34-16)\) \\
\hline 8 & 17 & \(17(34-17)\) \\
\hline
\end{tabular}

In the referenced paper by Hogenauer, [1] on page 3-35, the MSB is also called \(B_{\text {max }}\). Use get to verify the match.
get(hm,'sectionwordlengths')
ans =
\(\begin{array}{llllllll}33 & 28 & 25 & 21 & 20 & 19 & 18 & 17\end{array}\)
For cases where you enter the word lengths explicitly when you construct the filter, rather than letting the mfilt constructor determine them, by setting SectionWordLengthMode to SpecifyWordLengths, you enter the word lengths to use as either a scalar or a vector of length \(2 *\) n. Recall from earlier that the input vector containing the section word lengths must meet two criteria-the number of elements must be twice the number of filter sections \(n\), and the element values must be monotonically decreasing.

As you see in this example, when you enter the word length as a scalar, the filter constructor expands the scalar to apply it as the section word length for all of the filter sections.
```

set(hm,'sectionWordLengthMode','SpecifyWordLengths');
hm.sectionWordLengths=32;
get(hm,'sectionWordLengths')
ans =
32

```

\section*{CIC Filter States}

The States property of CIC decimation filters contains an objectfiltstates.cic. This object represents or stores the initial conditions of the filter before filtering and the final conditions after filtering. filtstates.cic has two properties, Integrator and Comb, that correspond to their respective portions of the filter. When you construct a CIC filter, the states contain zeros. After you filter data with the filter, the states contain the values stored in the filter delay elements. To demonstrate the filter states, the following example creates a decimator, and then applies the filter to a set of fixed-point input data.
```

% Construct the input data set for filter filter some fixed-point
% ones.
x = fi(ones(1,10),true, 16,0);
% Construct a decimator to use to filter x.
hm = mfilt.cicdecim(2,1,2,16,16,16);

```

Take a look at x and hm to see what you have.
```

X
X =
1
DataTypeMode: Fixed-point: binary point scaling
Signed: true
WordLength: 16
FractionLength: 0
RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true
hm
hm =

```
```

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 2
 PersistentMemory: false
 InputWordLength: 16
 InputFracLength: 15
 SectionWordLengthMode: 'SpecifyWordLengths'
SectionWordLengths: [16 16 16 16]
OutputWordLength: 16
get(hm,'states')
ans =
Integrator: [2x1 States]
Comb: [2x1 States]

```

At this point, the states for the filter are zeros. That changes after you filter a set of data.
hm.inputfraclength \(=0 ; \%\) Set the input to use integer data. \(y=\) filter (hm,x);

You can extract the final states by using the int function and assigning the output to a variable.
```

sts = int(Hm.states)
stS =
10 45
28 13

```

As you see, the states now contain nonzero values related to the filtering operation.

This states matrix has dimensions \(\mathrm{M}+1\)-by- N , where M is the differential delay of the comb section and N is the number of sections. Filter hm stores the integrator sections states (hm.states.integrator) in the first row of the states matrix and stores the states for the comb portion in the remaining rows in the matrix.

You might have noticed that the States property is not displayed by the default filter display. When PersistentMemory is set to false, you do not see the states property in the default listing in MATLAB.
```

hm % Generate the default filter display.
hm =
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 2
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
SectionWordLengthMode: 'MinWordLengths'
OutputWordLength: 16

```

Setting PersistentMemory to true reveals the States property in the filter display. However, when you use get to review the properties, you see the States property listed in all instances.

For more information about the fi object used in \(x\) above, refer to the Fixed-Point Toolbox documentation in the online Help system.

\section*{Filter Implementation-Signal Flow Graph}

The toolbox implements a structure that differs slightly from the one in the referenced paper by [1] on page 3-35. The difference lies in the location of the delays in the integrator portion of the filter. We made this change to optimize the filter for pipelining on hardware such as field-programmable gate arrays (FPGAs). The following figure shows the flow graph as implemented by
mfilt.cicdecim. After the table following the figure, is a short example that should help interpret the entries in the figure.


The word length and fraction length at each stage of the decimator are shown in the following table. Either you specify the word length for each filter stage in the SectionWordLengths property as a vector of integers, or you let the filter constructor set the word lengths by making MinWordLengths the value for SectionWordLengthMode. The calculation for each fraction length is shown below:

\section*{Decimator Word Lengths and Fraction Lengths}
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Position in the \\
Signal Flow
\end{tabular} & Word Length & \multicolumn{1}{c}{ Fraction Length } \\
\hline Filter Input & InputWL & InputFL \\
\hline \(1^{\text {st }}\) Section Output & SectionOneWL & InputFL \\
\hline \(2^{\text {nd }}\) Section Output & SectionTwoWL & InputFL (SectionTwoWL - SectionOneWL) \\
\hline \(3^{\text {rd }}\) Section Output & SectionThreeWL & SectionTwoFL + (SectionThreeWL - SectionTwoWL) \\
\hline \(4^{\text {th }}\) Section Output & SectionFourWL & \begin{tabular}{l} 
SectionThreeFL + (SectionFourWL - \\
SectionThreeWL)
\end{tabular} \\
\hline \(\mathrm{N}^{\text {th }}\) Section Output & Section(N)WL & \begin{tabular}{l} 
Section(N-1)FL + (Section(N)WL - \\
Section(N-1)WL)
\end{tabular} \\
\hline Filter Output & OutputWL & FinalSectionFL + (OutputWL - FinalSectionWL) \\
\hline
\end{tabular}

\section*{Reference}

The following paper formed the basis for developing the CIC filters in the Filter Design Toolbox. Many more details of the CIC multirate filters are discussed in this reference.
[1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.

\section*{Analyzing Multirate and Multistage Filters}

Multirate filter analysis presents some differences from analyzing single-rate discrete-time filters. While most of the same analytical tools apply, the primary difference is the filter sample rate-what the sample rate is, how it is defined, and where. Filter sample rate, called Fs in the toolbox, changes depending on the type of multirate filter you are using. Or more precisely, how the sample rate is defined changes according to the multirate filter under discussion.

Generally, filter sample rate refers to the rate at which the filter is running:
- For decimators, the filter sample rate equals the sample rate at the filter input, prior to decimating the input.
- For interpolators, the filter sample rate is equal to the sample rate at the output of the filter, after interpolation.
- For sample rate change filters, Fs is the input rate multiplied by the interpolation factor. The decimation factor does not apply to define the sample rate.

When you provide a sampling frequency for the analysis, the analytical tool, such as FVTool, assume that the rate specified is the sampling frequency at which the filter is operating.

Another feature of analyzing multirate filters that have more than one stage is that the analysis process applies to a filter that is the overall equivalent of the multistage filter under consideration. Recognizing that the analytical tool you choose first computes an equivalent filter makes understanding the analytical process somewhat easier.

For example, a multistage filter that included
- Multiple interpolators
- Multiple decimators
might be reduced to an equivalent filter with
- One equivalent interpolation filter
- One equivalent decimation stage

For more about how the tools develop the equivalent filter they use to analyze your filter, refer to "Performing Multistage Filter Analysis" on page 3-40.

A pair of definitions will help as you read this section:
- Multirate filters consist of sections.
- Multistage filters are the result of using cascade or parallel (refer to dfilt in the Signal Processing Toolbox documentation for more information about parallel and cascade filter design) to create filters by combining other filters. Each filter that composes the multistage filter is called a stage.

This tutorial demonstrates how to perform analysis on single-stage and multistage multirate filters by presenting the following topics:
- "Analyzing Single-Stage Multirate Filters" on page 3-37
- "Comparing Interpolators" on page 3-38
- "Performing Multistage Filter Analysis" on page 3-40
- "Analyzing Multistage Interpolators" on page 3-42
- "Analyzing a Multistage Sample-Rate Converter" on page 3-43
- "Analyzing Other Multistage Configurations" on page 3-45

\section*{Analyzing Single-Stage Multirate Filters}

You analyze single-stage multirate filters at the rate the filter is operating. As mentioned in the introduction to this tutorial section, the sample rate you use depends on the filter your are analyzing.

The following plot overlays the magnitude response of a sample-rate converter, an interpolator, and a decimator. For the first filter, the input sampling frequency is \(1000 / 5\) and the output sampling frequency is \(1000 / 3\). For the interpolator, the input fs is 1000/4 and the output fs is 1000 . Finally, for the decimator, the input fs is 1000 and the output fs is \(1000 / 3\).

Here are the commands to create the three filters to analyze.
```

h1 = mfilt.firsrc(5,3); % Use a default filter.
h2 = mfilt.firinterp(4); % Use a default filter.
h3 = mfilt.firdecim(3); % Use a default filter.

```

Now you need to specify the sampling rate and the number of points in the FFT used.
```

fs = 1000; nfft = 8192;

```

With the filters in your workspace and the sampling frequency set, use FVTool to visualize the filters using a common sampling rate.
```

fvtool(h1,h2,h3,'fs',fs);

```


\section*{Comparing Interpolators}

Interpolators and decimators exhibit a lowpass magnitude response. Simple interpolators, like the CIC interpolator and the hold or linear interpolators, have a poor lowpass response. However, they are easy to implement and, except for the linear interpolator, they do not require the filter to perform multiplications in real-time while filtering data. The following plot compares the lowpass response of four different interpolators:
- An FIR interpolator (mfilt.firinterp)
- A linear interpolator (mfilt.linearinterp)
- A hold interpolator (mfilt.holdinterp)
- A CIC interpolator (mfilt.cicinterp)

They each have an interpolation factor of 4 . You can see that the quality of the lowpass filter, such as the sharpness of the lowpass cutoff, depends on which type of interpolator you use. By design, the CIC interpolator has more gain than the other interpolators. For the purposes of this analysis, we include a scalar in cascade with the CIC filter to normalize its gain. Normalizing the gain makes comparing the different filters easier.
```

h(1) = mfilt.firinterp(4); % Use the default filter.
h(2) = mfilt.linearinterp(4);
h(3) = mfilt.holdinterp(4);
hcic = mfilt.cicinterp(4,1,3); % 3-section CIC with
% differential delay = 1.
hscalar = dfilt.scalar(1/gain(hcic));
h(4) = cascade(hscalar,hcic); % Add a gain correction...
% filter in cascade.

```

Use FVTool to see the results of the four filters. An interesting trick you might notice-naming the filters as indexes of the variable \(h\) lets you plot all four interpolators by passing h to FVTool.
```

fvtool(h);

```


\section*{Performing Multistage Filter Analysis}

Using the tools provided in the toolbox, either from the command line or in FVtool, you can analyze multirate filters of the following form.


In a multirate filter, any of the blue, red, or green sections is optional. Since that is true, you can perform analysis on multistage interpolators, multistage decimators, or multistage sample-rate converters.

When you choose to perform the analysis, the analysis tool computes an equivalent overall filter for the interpolation section and/or the decimation section as shown in the next figure, and performs the requested analysis on the equivalent filter.


In the equivalent filter shown in the figure, the following conversions apply.
- Upsample block \(\mathrm{L}=\mathrm{Lo}{ }^{*} \mathrm{~L} 1 * \mathrm{~L} 2 * \ldots * \mathrm{Lm}\); (convolved interpolators)
- Downsample block \(\mathrm{M}=\mathrm{Mo}{ }^{*} \mathrm{M} 1 * \mathrm{M} 2 *\)... \({ }^{*} \mathrm{Mn}\); (convolved decimators)
- Interpolator transfer function
\[
\mathrm{H}(\mathrm{z})=\mathrm{H} 1\left(\mathrm{z}^{\wedge}\left(\mathrm{Lo}{ }^{*} \mathrm{~L} 1 * \ldots \mathrm{Lm}\right)\right)^{\mathrm{H}} 2\left(\mathrm{z}^{\wedge}\left(\mathrm{Lo}{ }^{*} \mathrm{~L} 2 \ldots \mathrm{Lm}\right)\right) \ldots \mathrm{Hm}\left(\mathrm{z}^{\wedge}(\mathrm{Lo})\right) ;
\]
- Decimator transfer function
\[
\mathrm{G}(\mathrm{z})=\mathrm{G} 1\left(\mathrm{z}^{\wedge}\left(\mathrm{Mo}^{*} \mathrm{M}^{*} \ldots \mathrm{Mn}\right)\right)^{*} \mathrm{G} 2\left(\mathrm{z}^{\wedge}(\mathrm{Mo} * \mathrm{M} 2 \ldots \mathrm{Mn})\right) \ldots \mathrm{Gn}\left(\mathrm{z}^{\wedge}(\mathrm{Mo})\right)
\]

Finally, filters \(\mathrm{H}(\mathrm{z}), \mathrm{G}(\mathrm{z})\), and \(\mathrm{Ho}(\mathrm{z})\) are all operating at the same rate and can be combined into a single filter on which to perform the analysis. If you specify
a sampling frequency as an input to the analytical tool, the analysis assumes that the single overall filter (equivalent to the subfilters that have been combined) is operating at the rate you specified.

\section*{Analyzing Multistage Interpolators}

Here is an example of how you might analyze a multistage interpolator. Refer to the demo "Design of a Digital Down-Converter for GSM" in the Filter Design Toolbox demos for an example in which the Global System for Mobile Communications (GSM) uses a multistage decimator.
This section cascades four interpolators to form a four stage filter. The fourth interpolator is a CIC filter. In this case, the sampling frequency specified for the filter corresponds to the output of the four stage interpolator because this is the rate at which the equivalent filter operates.
```

h(1) = mfilt.firinterp(4);
h(2) = mfilt.firinterp(2);
h(3) = mfilt.firinterp(2);
h(4) = mfilt.cicinterp(16);
hc = cascade(h);
hc
hc =
FilterStructure: Cascade
Stage(1): Direct-Form FIR Polyphase Interpolator
Stage(2): Direct-Form FIR Polyphase Interpolator
Stage(3): Direct-Form FIR Polyphase Interpolator
Stage(4): Cascaded Integrator-Comb Interpolator
PersistentMemory: false

```

To perform the analysis on hc, compute the frequency response between 0 and 200 Hz . set the sampling frequency Fs to 1000 Hz .
```

[hf,f] = freqz(hc,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))

```
freqz returns the transfer function for the cascaded filter at the sampling frequency you entered as an input argument.


\section*{Analyzing a Multistage Sample-Rate Converter}

To demonstrate working with multistage sample rate convertors, add some decimation stages to filter hc to form a multistage sample-rate converter. Again, the sampling frequency fs you specify as input to freqz once again represents and is assumed to be the rate of the equivalent filter. And this is the rate at which the frequency response of hc2 is analyzed. This fs is the fastest rate in the entire system in this case.
```

h(5) = mfilt.firsrc(2,3);
h(6) = mfilt.cicdecim(13);
h(7) = mfilt.firdecim(5);
hc2 = cascade(h)

```
```

hc2 =
FilterStructure: Cascade
Stage(1): Direct-Form FIR Polyphase Interpolator
Stage(2): Direct-Form FIR Polyphase Interpolator
Stage(3): Direct-Form FIR Polyphase Interpolator
Stage(4): Cascaded Integrator-Comb Interpolator
Stage(5): Direct-Form FIR Polyphase Sample-Rate Converter
Stage(6): Cascaded Integrator-Comb Decimator
Stage(7): Direct-Form FIR Polyphase Decimator
PersistentMemory: false

```

As you did in the preceding section, compute the frequency response between 0 and 200 Hz using Fs equal to 1000 Hz .
```

[hf,f] = freqz(hc2,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))

```

The figure show the frequency response of hc2, the result of adding decimators and a rate changing filter to hc.


\section*{Analyzing Other Multistage Configurations}

In addition to the multistage filters hc and hc2 shown, the toolbox lets you analyze multistage filters where decimation occurs prior to interpolation, provided the overall filter interpolation and decimation factors are the same. Notice that this does not necessarily mean that there is an equal number of decimation and interpolation stages.

One multistage structure that you could analyze in the toolbox is this one:


In this case, the analysis tools develop two equivalent filters as shown in the next figure, where \(\mathrm{M}=\mathrm{M} 1 * \mathrm{M} 2^{*} . . . \mathrm{Mn}=\mathrm{L} 1 * \mathrm{~L} 2^{*} . . \mathrm{Lm}=\mathrm{L}\).


Because the overall interpolation factor \(L\) is equal to the overall decimation factor M , the equivalent filters are operating at the same rate.

As before, when you provide a sampling frequency for the analysis, the tools assume that the supplied rate is the rate at which both filters are operating. For this case, this would also be equal to the input and output rate for these filters.

To see a demonstration about this type of analysis, where you are analyzing multistage, multirate filters, refer to "Multirate Multistage FIR Filter Design" in the Filter Design Toolbox demos.

\section*{Audio Example-Audio Sample Rate Conversion}

For a more concrete application of multirate filters, this section illustrates multirate filters that you might use to perform sample rate conversion on different audio formats. During this section, you create each of the following:
- FIR sample rate conversion filter
- FIR fractional interpolator
- FIR fractional decimator

To do these tasks, this section contains the following topics:
- "Creating the Multirate Filters" on page 3-47
- "Decreasing the Sample Rate by a Fractional Factor" on page 3-48
- "Constructing the Fractional Decimator" on page 3-48
- "Filtering to Change the Sample Rate" on page 3-49
- "Comparing the Resampled Signals" on page 3-49
- "Increasing the Sample Rate by a Fractional Factor" on page 3-51
- "Plotting the Original Signal and the Reconverted Signal" on page 3-52
- "Converting from 48 kHz to 44.1 kHz " on page \(3-53\)
- "Plotting the 48 kHz Signal and the 44.1 kHz Signal" on page 3-54

\section*{Creating the Multirate Filters}

All fractional sample rate conversion filters are created in the same way. You specify the interpolation factor L , and the decimation factor M , and the FIR filter coefficients. L and M must be relatively prime.

Two integers a and \(b\) are relatively prime when they do not share any common factors. For example, 21 and 54 are not relatively prime- 3 is a factor common to both. 14 and 25 are relatively prime.
When \(L\) and \(M\) are not relatively prime, they are converted to relatively prime factors and you get a warning in MATLAB.

If you do not provide filter coefficients when you construct your filter, the filter design process returns a lowpass filter with a cutoff frequency of \(\pi / \max (\mathrm{L}, \mathrm{M})\) and a gain of \(L\) in the passband.

Begin by designing a default rate change filter hm1.
```

hm1 = mfilt.firsrc(4,3); % Default sample rate change filter.
hm2 = mfilt.firfracinterp(8,6);
Warning: L and M are not relatively prime. Converting ratio 8/6
to 4/3.
The cutoff frequency of the filter should be approximately pi/4.

```

MATLAB notifies you that the factors 8 and 6 do not meet the relatively prime specification and reduces each by the common factor 2 . Then MATLAB designs the filter.

\section*{Decreasing the Sample Rate by a Fractional Factor}

Suppose you are converting an audio signal recorded at 48 kHz to 32 kHz for broadcasting. Consider the following audio sample recorded at 48 kHz (Copyright 2002 FingerBomb) by loading the sample into MATLAB and then playing the file.
```

load audio48;

```

To listen to the original 48 kHz signal, you can use an audio player object in MATLAB.
```

p48 = audioplayer(signal48kHz,Fs48); % Create audio player
% object.
play(p48); % Play the track. Use stop(p48) to stop play.

```

In all, the track lasts about 9 seconds.

\section*{Constructing the Fractional Decimator}

Reducing the 48 kHz sample rate for the signal to 32 kHz requires decimating the signal by two-thirds (discard one sample out of every three). Decimation by two-thirds is an example of fractional decimation.

The interpolation factor for this case is 2 and the decimation factor is 3 . You can use a fractional decimator to achieve this sample rate modification. To avoid making this example more complicated, use the default filter that mfilt.firfracdecim designs for now.
```

hfd = mfilt.firfracdecim(2,3); % Use default decimator filter.

```
```

hfd
hfd =
FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
Numerator: [1x72 double]
RateChangeFactors: [2 3]
PersistentMemory: false
States: [36\times1 double]

```

You could also use your own lowpass filter by specifying the coefficients as a third input argument
```

hfd = mfilt.firfracdecim(l,m,coeffs)

```
where coeffs contains the FIR filter coefficients to use.

\section*{Filtering to Change the Sample Rate}

To use the fractional decimator hfd to convert the sample rate of the signal, you invoke the filter method with the signal signal48kHz and hfd.
```

s32 = filter(hfd,signal48kHz);

```

Once again, you can use an audioplayer object to listen to the down-converted signal.
```

p32 = audioplayer(s32,32e3); % Create a new audio player.
play(p32);

```

\section*{Comparing the Resampled Signals}

You now have about 9 seconds of audio. Of course, you can find the exact length in seconds from
```

length(signal48kHz)/Fs48 % Or length(s32)/32e3.
ans =
8.9634

```

For clarity, you should overlay the two signals on a plot to compare them. Because the audio track contains some 430,000 samples, you show only a small signal segment. You also have to account for the delay the filter introduces in the 32 kHz signal (the transient response mentioned earlier). Filter hfd has a
group-delay of 36 samples. Since it is running three times faster than the 32 kHz signal, the delay is equivalent to 12 low speed samples.

Note that there are three samples of the 48 kHz signal for every two samples of the 32 kHz signal. Now to pick some audio data samples to display.

To make the overlay work, you need the same starting point for each signal. The following code finds common points for the 48 kHz and 32 kHz signals and displays them in a stem plot.
```

xindx = 999:1500; % 0.0105 seconds of audio at 48 kHz.
figure
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on;
xindx2 = xindx(1)*32e3/48e3:xindx(end)*32e3/48e3; % Find the same
% start and
% stop times.

```
```

stem(xindx2/32,s32(xindx2+12),'r'); % Add 12 samples to account
% for filter transient delay.

```


\section*{Increasing the Sample Rate by a Fractional Factor}

You can convert the broadcast quality signal at 32 kHz back to 48 kHz with a fractional interpolator, perhaps to store it on a digital audio tape (DAT). Moving from 32 to 48 requires upsampling by 50 percent, achieved using an interpolation factor of 3 and decimation by 2 . Again, you use the fractional FIR interpolator.
```

hfi = mfilt.firfracinterp(3,2);
s48 = filter(hfi,s32);

```

Listening to the up-converted audio might be interesting. Use an audio player again.
```

ps48 = audioplayer(s48,Fs48);
play(ps48);

```

\section*{Plotting the Original Signal and the Reconverted Signal}

To compare both 48 kHz signals-the original and the twice-converted signal, you must account for the delay introduced by both the fractional decimation and the fractional interpolation processes when you converted the signal down to 32 kHz and back to 48 kHz . In the stem plot shown here, notice that most of the reconverted signal samples have moved slightly from where they were originally. This is distortion introduced by converting down to 32 kHz by decimation and then converting back up to 48 kHz by interpolation.
```

figure;
xindx = 1000:1500;
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on;
stem(xindx/Fs48*1e3,s48(1037:1537),'r'); % Account for the
% process-induced
% delays.

```


Different filters achieve different results. You used the default filters which do not optimize the output.

\section*{Converting from 48 kHz to 44.1 kHz}

To convert from studio quality audio at 48 kHz to CD quality audio, 44.1 kHz , you would use a multirate filter better suited for this ratio change (interpolation factor of 147 , decimation factor of 160 ; decimation by 1.088 ). To avoid the startup delay (latency) introduced by the filter, preload half of the filter states with the beginning of the signal. Doing this step compensates for the delay caused by filtering and decimation. For this rate change, you use the FIR sample rate change multirate filter-firsrc.
```

hsrc = mfilt.firsrc(147,160) % Use default filter coefficients.
hsrc =

```
```

 FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
 Numerator: [1x3840 double]
 RateChangeFactors: [147 160]
 PersistentMemory: true
 States: [26x1 double]
 hsrc.persistentmemory = true; % Allows you to set the states
% to eliminate delay.
hsrc.States(13:-1:1) = signal48kHz(1:13); % Preload the states.
s441 = filter(hsrc,signal48kHz(14:end)); % This takes a few
% seconds.

```

Again, you can play the down-converted signal at 44.1 kHz with a MATLAB audio player.
```

p441 = audioplayer(s441,44.1e3);
play(p441);

```

When you are doing sample-rate conversion with large values of L or M , as you are in this case where \(\mathrm{L}=147\) and \(\mathrm{M}=160\), using the mfilt. firsrc structure is the most effective approach. Other possible fractional rate change structures, such as mfilt.firfracinterp (where \(L>M\) ) or mfilt.firfracdecim (where \(\mathrm{L}<\mathrm{M}\) ) may have prohibitively large memory requirements for applications that require large rate changes.

\section*{Plotting the \(\mathbf{4 8} \mathbf{~ k H z}\) Signal and the \(\mathbf{4 4 . 1} \mathbf{~ k H z}\) Signal}

Now compare segments of the two signals graphically. In this case you can verify visually in the stem plot shown that the filter does not introduce delay since you compensated for its group delay by preloading the states.
```

figure
xindx = 1:160;
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on
xindx2 = 1:147;
stem(xindx2/44.1,s441(xindx2), 'r');

```


Designing Multirate Filters

\section*{Designing Adaptive Filters}

Introducing Adaptive Filtering (p. 4-2) Provides a little background on the development of adaptive filters and the contents of this section

Getting Started with Adaptive Filters (p. 4-4)

Overview of Adaptive Filters and Applications (p. 4-14)

System Identification (p. 4-17)

Adaptive Filters in the Filter Design Toolbox (p. 4-21)
Examples of Adaptive Filters That Use LMS Algorithms (p. 4-26)

Example of Adaptive Filter That Uses RLS Algorithm (p. 4-47)
Selected Bibliography (p. 4-52)

Uses a signal enhancement application to introduce adaptive filters

Provides a short discussion about adaptive filters and their uses

Learn about the questions to ask when you need an adaptive filter
Learn about the adaptive filter objects provided in the toolbox
Presents examples of adaptive filters that use LMS algorithms to determine filter coefficients

Presents examples of adaptive filters that use RLS algorithms to determine filter coefficients
Lists a few books that cover adaptive filters in both detail and with broad scope

\section*{Introducing Adaptive Filtering}

Over the past three decades, digital signal processors have made great advances in increasing speed and complexity, and reducing power consumption. As a direct result, real-time adaptive filtering is quickly becoming essential for the future of communications, both wired and wireless.

In the following sections, this guide presents an overview of adaptive filtering; discussions of some of the common applications for adaptive filters; and details about the adaptive filters available in the toolbox.
Listed below are the sections that cover adaptive filters in this guide. Within each section, examples and a short discussion of the theory of the filters introduce the adaptive filter concepts.
- "Getting Started with Adaptive Filters" on page 4-4 introduces adaptive filtering through a worked example.
- "Overview of Adaptive Filters and Applications" on page 4-14 presents a general discussion of adaptive filters and their applications.
- "System Identification" on page 4-17-Using adaptive filters to identify the response of an unknown system such as a communications channel or a telephone line.
- "Inverse System Identification" on page 4-18-Using adaptive filters to develop a filter that has a response that is the inverse of an unknown system.
- "Noise Cancellation (or Interference Cancellation)" on page 4-18Performing active noise cancellation where the filter adapts in real-time to remove noise by keeping the error small.
- "Prediction" on page 4-19—describes using adaptive filters to predict a signal's future values.
- "System Identification" on page 4-17 describes the important considerations for selecting an adaptive filter for an application.
- "Adaptive Filters in the Filter Design Toolbox" on page 4-21 lists the adaptive filters included in the toolbox.
- "Examples of Adaptive Filters That Use LMS Algorithms" on page 4-26 presents a discussion of using LMS techniques to perform the filter adaptation process.
- "Example of Adaptive Filter That Uses RLS Algorithm" on page 4-47 discusses adaptive filters based on the RMS techniques for minimizing the total error between the known and unknown systems.

For more detailed information about adaptive filters and adaptive filter theory, refer to the books listed in "Selected Bibliography" on page 4-52.

\section*{Getting Started with Adaptive Filters}

This demonstration illustrates one way to use a few of the adaptive filter algorithms provided in the toolbox.

This example uses a signal enhancement application as an illustration. While there are about 30 different adaptive filtering algorithms included with the toolbox, this example demonstrates two algorithms-least means square (LMS), adaptfilt.lms, and normalized LMS, adaptfilt.nlms, for adaptation.

\section*{Tutorial Contents}

As you follow this tutorial, you encounter these subjects.
- "Create the Signals for Adaptation" on page 4-4
- "Construct Two Adaptive Filters" on page 4-5
- "Choose the Step Size" on page 4-6
- "Set the Adapting Filter Step Size" on page 4-7
- "Filter with the Adaptive Filters" on page 4-7
- "Compute the Optimal Solution" on page 4-8
- "Plot the Results" on page 4-8
- "Compare the Final Coefficients" on page 4-9
- "Reset the Filter Before Filtering" on page 4-10
- "Compute the Learning Curves" on page 4-11
- "Compute the Theoretical Learning Curves" on page 4-12

\section*{Create the Signals for Adaptation}

The goal is to use an adaptive filter to extract a desired signal from a noise-corrupted signal by filtering out the noise. The desired signal (the output from the process) is a sinusoid with 1000 samples.
```

n = (1:1000)';
s = sin(0.075*pi*n);

```

To perform adaptation requires two signals:
- a reference signal
- a noisy signal that contains both the desired signal and an added noise component.

\section*{Generate the Noise Signal}

To create a noise signal, assume that the noise v1 is autoregressive, meaning that the value of the noise at time \(t\) depends only on its previous values and on a random disturbance.
```

v = 0.8*randn(1000,1); % Random noise part.
ar = [1, 1/2]; % Autoregression coefficients.
v1 = filter(1,ar,v); % Noise signal. Applies a 1-D digital
% filter.

```

\section*{Corrupt the Desired Signal to Create a Noisy Signal}

To generate the noisy signal that contains both the desired signal and the noise, add the noise signal \(v 1\) to the desired signal s. The noise corrupted sinusoid x is
\[
x=s+v 1 ;
\]
where \(s\) is the desired signal the the noise is \(v 1\). Adaptive filter processing seeks to recover s from \(x\). To complete the signals needed to perform adaptive filtering, the process requires a reference signal.

\section*{Create a Reference Signal}

Define a moving average signal v2 that is correlated with v1. This v2 is the reference signal for the examples.
```

ma = [1, -0.8, 0.4 , -0.2];
v2 = filter(ma,1,v);

```

\section*{Construct Two Adaptive Filters}

Two similar adaptive filters-LMS and NLMS—form the basis of this example, both sixth order. Set the order as a variable in MATLAB and create the filters.
```

l = 7; % Seven taps or weights. Order equals 6.
halms=adaptfilt.lms(l)
halms =

```
```

 Algorithm: 'Direct-Form FIR LMS Adaptive Filter'
 FilterLength: 7
 StepSize: 0.1
 Leakage: 1
 PersistentMemory: false
 hanlms=adaptfilt.nlms(l)
hanlms =
Algorithm: 'Direct-Form FIR Normalized LMS Adaptive Filter'
FilterLength: 7
StepSize: 1
Leakage: 1
Offset: 0
PersistentMemory: false

```

\section*{Choose the Step Size}

LMS-like algorithms have a step size that determines the amount of correction applied as the filter adapts from one iteration to the next. Choosing the approprite step size is not always easy, usually requiring experience in adaptive filter design.
- A step size that is too small increases the time for the filter to converge on a set of coefficients. This becomes an issue of speed and accuracy.
- One that is too large may cause the adapting filter to diverge, never reaching convergence. In this case, the issue is stability-the resulting filter might not be stable.

As a rule of thumb, smaller step sizes improve the accuracy of the convergence of the filter to match the characteristics of the unknown, at the expense of the time it takes to adapt.

The toolbox includes an algorithm-maxstep-to determine the maximum step size suitable for each LMS adaptive filter algorithm that still ensures that the filter converges to a solution. Often, the notation for the step size is \(\mu\).
```

[mumaxlms,mumaxmselms] = maxstep(halms,x)
[mumaxnlms,mumaxmsenlms] = maxstep(hanlms) % Always equal to 2.
Warning: Step size is not in the range 0 < mu < mumaxmse/2:

```
```

Erratic behavior might result.
mumaxlms =
0.2270
mumaxmselms =
0.1356
mumaxnlms =
2
mumaxmsenlms =
2

```

\section*{Set the Adapting Filter Step Size}

The first output of maxstep is the value needed for the mean of the coefficients to converge while the second is the value needed for the mean squared coefficients to converge. Choosing a large step size often causes large variations from the convergence values, so choose smaller step sizes generally.
```

halms.stepsize = mumaxmselms/30; % You can set this graphically.
inspect(halms) % Opens the Property Inspector in MATLAB.
hanlms.stepsize = mumaxmsenlms/20;
inspect(hanlms)

```

If you know the step size to use, set the step size value when you create the filter with the step input argument.
```

halms = adaptfilt.lms(n,step); Adds the step input argument.

```

\section*{Filter with the Adaptive Filters}

Now you have set up the parameters of the adaptive filters and are ready to filter the noisy signal. The reference signal, v2 is the input to the adaptive filters, while x is the desired signal in this configuration.

Through adaptation \(y\), the output of the filters, tries to emulate \(x\) as closely as possible.

Since \(v 2\) is correlated only with the noise component \(v 1\) of \(x\), it can only really emulate v 1 . The error signal, the desired x , minus the actual output y , constitutes an estimate of the part of \(x\) that is not correlated with \(v 2-s\), the signal to extract from \(x\).
```

[ylms,elms] = filter(hlms,v2,x);
[ynlms,enlms] = filter(hnlms,v2,x);

```

\section*{Compute the Optimal Solution}

For comparison, compute the optimal FIR Wiener filter.
```

filterbw = firwiener(L-1,v2,x); % Optimal FIR Wiener.
filteryw = filter(bw,1,v2); % Estimate of x using Wiener.
filterew = x-yw; % Estimate of actual sinusoid.

```

\section*{Plot the Results}

Plot the resulting denoised sinusoid for each filter-the Wiener filter, the LMS adaptive filter, and the NLMS adaptive filter-to compare the performance of the various techniques.
```

plot(n(900:end),[ew(900:end), elms(900:end),enlms(900:end)]);
legend('Wiener filter denoised sinusoid','LMS denoised...
sinusoid', 'NLMS denoised sinusoid');

```

As a reference point, include the noisy signal as a dotted line in the plot.
```

hold on
plot(n(900:end),x(900:end),'k:')
hold off

```


\section*{Compare the Final Coefficients}

Finally, compare the Wiener filter coefficients with the coefficients of the adaptive filters. While adapting, the adaptive filters try to converge to the Wiener coefficients.
```

[bw.' hlms.Coefficients.' hnlms.Coefficients.']
ans =

| 1.0221 | 0.8751 | 1.0411 |
| ---: | ---: | ---: |
| 0.3345 | 0.1201 | 0.3601 |
| 0.1217 | -0.0118 | 0.1077 |
| 0.0483 | -0.0183 | 0.0081 |
| 0.1179 | 0.0558 | 0.0420 |
| 0.0637 | -0.0049 | -0.0290 |

```
\[
\begin{array}{lll}
0.0216 & -0.0235 & -0.0222
\end{array}
\]

\section*{Reset the Filter Before Filtering}

Adaptive fiters have a PersistentMemory property that you can use to reproduce experiments exactly. By default, the PersistentMemory is false. The states and the coefficients of the filter are reset before filtering and the filter does not remember the results from previous times you use the filter.
For instance, the following succesive calls produce the same output when PersistentMemory is false.
```

[ylms,elms] = filter(hlms,v2,x);
[ylms2,elms2] = filter(hlms,v2,x);

```

To keep the history of the filter when filtering a new set of data, enable persistent memory for the filter by setting the PersistentMemory property to true. In this configuration, the filter uses the final states and coefficients from the previous run as the initial conditions for the next run and set of data.
```

[ylms,elms] = filter(hlms,v2,x);
hlms.PersistentMemory = true;
[ylms2,elms2] = filter(hlms,v2,x); % No longer the same.

```

Setting the property value to true is useful when you are filtering large amounts of data that you partition into smaller sets and then feed into the filter using a for-loop construction.

\section*{Investigate Convergence Through Learning Curves}

To analyze the convergence of the adaptive filters, look at the learning curves. The toolbox provides methods to generate the learning curves, but you need more than one iteration of the experiment to obtain significant results.

This demonstration uses 25 sample realizations of the noisy sinusoids.
```

n = (1:5000)';
s = sin(0.075*pi*n);
nr = 25;
v = 0.8*randn(5000,nr);
v1 = filter(1,ar,v);
x = repmat(s,1,nr) + v1;
v2 = filter(ma,1,v);

```

\section*{Compute the Learning Curves}

Now compute the mean-square error. To speed things up, compute the error every 10 samples.

First, reset the adaptive filters to avoid using the coefficients it has already computed and the states it has stored.
```

reset(hlms);
reset(hnlms);
M = 10; % Decimation factor.
mselms = msesim(hlms,v2,x,M);
msenlms = msesim(hnlms,v2,x,M);
plot(1:M:n(end),[mselms,msenlms])legend('LMS learning...
curve','NLMS learning curve')

```

In the next plot you see the calculated learning curves for the LMS and NLMS adaptive filters.


\section*{Compute the Theoretical Learning Curves}

For the LMS and NLMS algorithms, functions in the toolbox help you compute the theoretical learning curves, along with the minimum mean-square error (MMSE) the excess mean-square error (EMSE) and the mean value of the coefficients.

MATLAB may take some time to calculate the curves. The figure shown after the code plots the predicted and actual LMS curves.
```

reset(hlms);
[mmselms,emselms,meanwlms,pmselms] = msepred(hlms,v2,x,M);
plot(1:M:n(end),[mmselms*ones(500,1),emselms*ones(500,1),···
pmselms,mselms])
legend('MMSE','EMSE','Predicted LMS learning curve',...
'LMS learning curve')

```


\section*{Overview of Adaptive Filters and Applications}

This section presents a brief description of how adaptive filters work and some of the applications where they can be useful.

Adaptive filters self learn. As the signal into the filter continues, the adaptive filter coefficients adjust themselves to achieve the desired result, such as identifying an unknown filter or canceling noise in the input signal. In the figure below, the shaded box represents the adaptive filter, comprising the adaptive filter and the adaptive recursive least squares (RLS) algorithm.


\section*{Block Diagram That Defines the Inputs and Output of a Generic RLS Adaptive Filter}

The next figure provides the general adaptive filter setup with inputs and outputs.


Block Diagram Defining General Adaptive Filter Algorithm Inputs and Outputs

Filter Design Toolbox includes adaptive filters of a broad range of forms, all of which can be worthwhile for specific needs. Some of the common ones are:
- Adaptive filters based on least mean squares (LMS) techniques, such as adaptfilt.lms, adaptfilt.filtxlms, and adaptfilt.nlms
- Adaptive filters based on recursive least squares (RLS) techniques. For example, adaptfilt.rls and adaptfilt.swrls
- Adaptive filters based on sign-data (adaptfilt.sd), sign-error (adaptfilt.se), and sign-sign (adaptfilt.ss) techniques
- Adaptive filters based on lattice filters. For example, adaptfilt.gal and adaptfilt.lsl
- Adaptive filters that operate in the frequency domain, such as adaptfilt.fdaf and adaptfilt.pbufdaf.
- Adaptive filters that operate in the transform domain. Two of these are the adaptfilt.tdafdft and adaptfilt.tdafdct filters

An adaptive filter designs itself based on the characteristics of the input signal to the filter and a signal that represents the desired behavior of the filter on its input.

Designing the filter does not require any other frequency response information or specification. To define the self-learning process the filter uses, you select the adaptive algorithm used to reduce the error between the output signal \(y(k)\) and the desired signal \(d(k)\).

When the LMS performance criterion for \(e(k)\) has achieved its minimum value through the iterations of the adapting algorithm, the adaptive filter is finished and its coefficients have converged to a solution. Now the output from the adaptive filter matches closely the desired signal \(d(k)\). When you change the input data characteristics, sometimes called the filter environment, the filter adapts to the new environment by generating a new set of coefficients for the new data. Notice that when \(e(k)\) goes to zero and remains there you achieve perfect adaptation, the ideal result but not likely in the real world.

The adaptive filter functions in this toolbox implement the shaded portion of the figures, replacing the adaptive algorithm with an appropriate technique. To use one of the functions, you provide the input signal or signals and the initial values for the filter.
"Adaptive Filters in the Filter Design Toolbox" on page 4-21 offers details about the algorithms available and the inputs required to use them in MATLAB.

\section*{Choosing an Adaptive Filter}

Selecting the adaptive filter that best meets your needs requires careful consideration. An exhaustive discussion of the criteria for selecting your approach is beyond the scope of this User's Guide. However, a few guidelines can help you make your choice.

Two main considerations frame the decision-how you plan to use the filter and the filter algorithm to use.

When you begin to develop an adaptive filter for your needs, most likely the primary concern is whether using an adaptive filter is a cost-competitive approach to solving your filtering needs. Generally many areas determine the suitability of adaptive filters (these areas are common to most filtering and signal processing applications). Four such areas are
- Filter consistency-Does your filter performance degrade when the filter coefficients change slightly as a result of quantization, or you switch to fixed-point arithmetic? Will excessive noise in the signal hurt the performance of your filter?
- Filter performance-Does your adaptive filter provide sufficient identification accuracy or fidelity, or does the filter provide sufficient signal discrimination or noise cancellation to meet your requirements?
- Tools-Do tools exist that make your filter development process easier? Better tools can make it practical to use more complex adaptive algorithms.
- DSP requirements-Can your filter perform its job within the constraints of your application? Does your processor have sufficient memory, throughput, and time to use your proposed adaptive filtering approach? Can you trade memory for throughput: use more memory to reduce the throughput requirements or use a faster signal processor?

Of the preceding considerations, characterizing filter consistency or robustness may be the most difficult.

The simulations in the Filter Design Toolbox offers a good first step in developing and studying these issues. LMS algorithm filters provide both
a relatively straightforward filters to implement and sufficiently powerful tool for evaluating whether adaptive filtering can be useful for your problem.

Additionally, starting with an LMS approach can form a solid baseline against which you can study and compare the more complex adaptive filters available in the toolbox. Finally, your development process should, at some time, test your algorithm and adaptive filter with real data. For truly testing the value of your work there is no substitute for actual data.

\section*{System Identification}

One common adaptive filter application is to use adaptive filters to identify an unknown system, such as the response of an unknown communications channel or the frequency response of an auditorium, to pick fairly divergent applications. Other applications include echo cancellation and channel identification.

In the figure, the unknown system is placed in parallel with the adaptive filter. This layout represents just one of many possible structures. The shaded area contains the adaptive filter system.


\section*{Using an Adaptive Filter to Identify an Unknown System}

Clearly, when \(e(k)\) is very small, the adaptive filter response is close to the response of the unknown system. In this case the same input feeds both the adaptive filter and the unknown. If, for example, the unknown system is a modem, the input often represents white noise, and is a part of the sound you hear from your modem when you log in to your Internet service provider.

\section*{Inverse System Identification}

By placing the unknown system in series with your adaptive filter, your filter adapts to become the inverse of the unknown system as \(e(k)\) becomes very small. As shown in the figure the process requires a delay inserted in the desired signal \(d(k)\) path to keep the data at the summation synchronized. Adding the delay keeps the system causal.


\section*{Determining an Inverse Response to an Unknown System}

Including the delay to account for the delay caused by the unknown system prevents this condition.

Plain old telephone systems (POTS) commonly use inverse system identification to compensate for the copper transmission medium. When you send data or voice over telephone lines, the copper wires behave like a filter, having a response that rolls off at higher frequencies (or data rates) and having other anomalies as well.

Adding an adaptive filter that has a response that is the inverse of the wire response, and configuing the filter to adapt in real time, lets the filter compensate for the rolloff and anomalies, increasing the available frequency output range and data rate for the telephone system.

\section*{Noise Cancellation (or Interference Cancellation)}

In noise cancellation, adaptive filters let you remove noise from a signal in real time. Here, the desired signal, the one to clean up, combines noise and desired information. To remove the noise, feed a signal \(n^{\prime}(k)\) to the adaptive filter that represents noise that is correlated to the noise to remove from the desired signal.


\section*{Using an Adaptive Filter to Remove Noise from an Unknown System}

So long as the input noise to the filter remains correlated to the unwanted noise accompanying the desired signal, the adaptive filter adjusts its coefficients to reduce the value of the difference between \(y(k)\) and \(d(k)\), removing the noise and resulting in a clean signal in \(e(k)\). Notice that in this application, the error signal actually converges to the input data signal, rather than converging to zero.

\section*{Prediction}

Predicting signals requires that you make some key assumptions. Assume that the signal is either steady or slowly varying over time, and periodic over time as well.


\section*{Predicting Future Values of a Periodic Signal}

Accepting these assumptions, the adaptive filter must predict the future values of the desired signal based on past values. When \(s(k)\) is periodic and the filter is long enough to remember previous values, this structure with the delay in the input signal, can perform the prediction. You might use this structure to remove a periodic signal from stochastic noise signals.

Finally, notice that most systems of interest contain elements of more than one of the four adaptive filter structures. Carefully reviewing the real structure may be required to determine what the adaptive filter is adapting to.

Also, for clarity in the figures, the analog-to-digital (A/D) and digital-to-analog (D/A) components do not appear. Since the adaptive filters are assumed to be digital in nature, and many of the problems produce analog data, converting the input signals to and from the analog domain is probably necessary.

\section*{Adaptive Filters in the Filter Design Toolbox}

Filter Design Toolbox contains many objects for constructing and applying adaptive filters to data. As you see in the tables in the next section, the objects use various algorithms to determine the weights for the filter coefficients of the adapting filter. While the algorithms differ in their detail implementations, the LMS and RLS share a common operational approach-minimizing the error between the filter output and the desired signal.

\section*{Algorithms}

For adaptive filter (adaptfilt) objects, the algorithm string determines which adaptive filter algorithm your adaptfilt object implements. Each available algorithm entry appears in one of the tables along with a brief description of the algorithm. Click on the algorithm in the first column to get more information about the associated adaptive filter technique.
- LMS based adaptive filters
- RLS based adaptive filters
- Affine projection adaptive filters
- Adaptive filters in the frequency domain
- Lattice based adaptive filters

\title{
Least Mean Squares (LMS) Based FIR Adaptive Filters
}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Adaptive Filter \\
Method
\end{tabular} & \begin{tabular}{l} 
Adapting Algorithm Used to Generate Filter \\
Coefficients During Adaptation
\end{tabular} \\
\hline adaptfilt.adjlms & Adjoint LMS FIR adaptive filter algorithm \\
\hline adaptfilt.blms & Block LMS FIR adaptive filter algorithm \\
\hline adaptfilt.blmsfft & \begin{tabular}{l} 
FFT-based Block LMS FIR adaptive filter \\
algorithm
\end{tabular} \\
\hline adaptfilt.dlms & Delayed LMS FIR adaptive filter algorithm \\
\hline adaptfilt.filtxlms & Filtered-x LMS FIR adaptive filter algorithm \\
\hline adaptfilt.lms & LMS FIR adaptive filter algorithm \\
\hline adaptfilt.nlms & Normalized LMS FIR adaptive filter algorithm \\
\hline adaptfilt.sd & Sign-data LMS FIR adaptive filter algorithm \\
\hline adaptfilt.se & Sign-error LMS FIR adaptive filter algorithm \\
\hline adaptfilt.ss & Sign-sign LMS FIR adaptive filter algorithm \\
\hline
\end{tabular}

For further information about an adapting algorithm, refer to the reference page for the algorithm.

\section*{Recursive Least Squares (RLS) Based FIR Adaptive Filters}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Adaptive Filter \\
Method
\end{tabular} & \begin{tabular}{l} 
Adapting Algorithm Used to Generate Filter \\
Coefficients During Adaptation
\end{tabular} \\
\hline adaptfilt.ftf & \begin{tabular}{l} 
Fast transversal least-squares adaptation \\
algorithm
\end{tabular} \\
\hline adaptfilt.qrdrls & QR-decomposition RLS adaptation algorithm \\
\hline adaptfilt.hrls & Householder RLS adaptation algorithm \\
\hline adaptfilt.hswrls & Householder SWRLS adaptation algorithm \\
\hline adaptfilt.rls & \begin{tabular}{l} 
Recursive-least squares (RLS) adaptation \\
algorithm
\end{tabular} \\
\hline adaptfilt.swrls & Sliding window (SW) RLS adaptation algorithm \\
\hline adaptfilt.swftf & Sliding window FTF adaptation algorithm \\
\hline
\end{tabular}

For more complete information about an adapting algorithm, refer to the reference page for the algorithm.

\section*{Affine Projection (AP) FIR Adaptive Filters}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Adaptive Filter \\
Method
\end{tabular} & \begin{tabular}{l} 
Adapting Algorithm Used to Generate Filter \\
Coefficients During Adaptation
\end{tabular} \\
\hline adaptfilt.ap & \begin{tabular}{l} 
Affine projection algorithm that uses direct \\
matrix inversion
\end{tabular} \\
\hline adaptfilt.apru & \begin{tabular}{l} 
Affine projection algorithm that uses recursive \\
matrix updating
\end{tabular} \\
\hline adaptfilt.bap & Block affine projection adaptation algorithm \\
\hline
\end{tabular}

To find more information about an adapting algorithm, refer to the reference page for the algorithm.

\title{
FIR Adaptive Filters in the Frequency Domain (FD)
}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Adaptive Filter \\
Method
\end{tabular} & \begin{tabular}{l} 
Description of the Adapting Algorithm Used to \\
Generate Filter Coefficients During Adaptation
\end{tabular} \\
\hline adaptfilt.fdaf & Frequency domain adaptation algorithm \\
\hline adaptfilt.pbfdaf & Partition block version of the FDAF algorithm \\
\hline adaptfilt.pbufdaf & \begin{tabular}{l} 
Partition block unconstrained version of the \\
FDAF algorithm
\end{tabular} \\
\hline adaptfilt.tdafdct & \begin{tabular}{l} 
Transform domain adaptation algorithm using \\
DCT
\end{tabular} \\
\hline adaptfilt.tdafdft & \begin{tabular}{l} 
Transform domain adaptation algorithm using \\
DFT
\end{tabular} \\
\hline adaptfilt.ufdaf & Unconstrained FDAF algorithm for adaptation \\
\hline
\end{tabular}

For more information about an adapting algorithm, refer to the reference page for the algorithm.

\section*{Lattice Based (L) FIR Adaptive Filters}
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Adaptive Filter \\
Method
\end{tabular} & \begin{tabular}{l} 
Description of the Adapting Algorithm Used to \\
Generate Filter Coefficients During Adaptation
\end{tabular} \\
\hline adaptfilt.gal & \begin{tabular}{l} 
Gradient adaptive lattice filter adaptation \\
algorithm
\end{tabular} \\
\hline adaptfilt.lsl & Least squares lattice adaptation algorithm \\
\hline adaptfilt.qrdlsl & QR decomposition RLS adaptation algorithm \\
\hline
\end{tabular}

For more information about an adapting algorithm, refer to the reference page for the algorithm.

Presenting a detailed derivation of the Wiener-Hopf equation and determining solutions to it is beyond the scope of this User's Guide. Full descriptions of the
theory appear in the adaptive filter references provided in the "Selected Bibliography" on page 4-52.

\section*{Using Adaptive Filter Objects}

After you construct an adaptive filter object, how do you apply it to your data or system? Like quantizer objects, adaptive filter objects have a filter method that you use to apply the adaptfilt object to data. In the following sections, various examples of using LMS and RLS adaptive filters show you how filter works with the objects to apply them to data.
- "Examples of Adaptive Filters That Use LMS Algorithms" on page 4-26
- "Example of Adaptive Filter That Uses RLS Algorithm" on page 4-47

\section*{Examples of Adaptive Filters That Use LMS Algorithms}

This section provides introductory examples using some of the least mean squares (LMS) adaptive filter functions in the toolbox.

The toolbox provides many adaptive filter design functions that use the LMS algorithms to search for the optimal solution to the adaptive filter, including
- adaptfilt.lms-Implement the LMS algorithm to solve the Wiener-Hopf equation and find the filter coefficients for an adaptive filter.
- adaptfilt.nlms-implement the normalized variation of the LMS algorithm to solve the Wiener-Hopf equation and determine the filter coefficients of an adaptive filter.
- adaptfilt.sd-Implement the sign-data variation of the LMS algorithm to solve the Wiener-Hopf equation and determine the filter coefficients of an adaptive filter. The correction to the filter weights at each iteration depends on the sign of the input \(x(k)\).
- adaptfilt.se-Implement the sign-error variation of the LMS algorithm to solve the Wiener-Hopf equation and determine the filter coefficients of an adaptive filter. The correction applied to the current filter weights for each successive iteration depends on the sign of the error, \(e(k)\).
- adaptfilt.ss-Implement the sign-sign variation of the LMS algorithm to solve the Wiener-Hopf equation and determine the filter coefficients of an adaptive filter. The correction applied to the current filter weights for each successive iteration depends on both the sign of \(x(k)\) and the sign of \(e(k)\).

To demonstrate the differences and similarities among the various LMS algorithms supplied in the toolbox, the LMS and NLMS adaptive filter examples use the same filter for the unknown system. The unknown filter is the constrained lowpass filter from "firgr and fircband Examples" on page 2-9.
```

[b,err,res]=firgr(12,[0 0.4 0.5 1], [11 1 0 0], [1 0.2],...
{'w' 'c'});

```

From the figure you see that the filter is indeed lowpass and constrained to 0.2 ripple in the stopband. With this as the baseline, the adaptive LMS filter examples use the adaptive LMS algorithms and their initialization functions to identify this filter in a system identification role.

To review the general model for system ID mode, look at "System Identification" on page 4-17 for the layout.


For the sign variations of the LMS algorithm, the examples use noise cancellation as the demonstration application, as opposed to the system identification application used in the LMS examples.

\section*{adaptfilt.Ims Example-System Identification}

To use the adaptive filter functions in the toolbox you need to provide three things:
- The adaptive LMS function to use. This example uses the LMS adaptive filter function adaptfilt.lms.
- An unknown system or process to adapt to. In this example, the filter designed by firgr is the unknown system.
- Appropriate input data to exercise the adaptation process. In terms of the generic LMS model, these are the desired signal \(d(k)\) and the input signal \(x(k)\).

Start by defining an input signal x .
\[
x=0.1 * \operatorname{randn}(1,250) ;
\]

The input is broadband noise. For the unknown system filter, use firgr to create a twelfth-order lowpass filter:
```

[b,err,res] = firgr(22,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

```

Although you do not need them here, include the err and res output arguments.

Now filter the signal through the unknown system to get the desired signal.
\[
d=\text { filter }(b, 1, x) ;
\]

With the unknown filter designed and the desired signal in place you construct and apply the adaptive LMS filter object to identify the unknown.
Preparing the adaptive filter object requires that you provide starting values for estimates of the filter coefficients and the LMS step size. You could start with estimated coefficients of some set of nonzero values; this example uses zeros for the 12 initial filter weights.

For the step size, 0.8 is a reasonable value-a good compromise between being large enough to converge well within the 250 iterations ( 250 input sample points) and small enough to create an accurate estimate of the unknown filter.
```

mu = 0.8;
ha = adaptfilt.lms(13,mu,wO)

```

Finally, using the adaptfilt object ha, desired signal, d, and the input to the filter, \(x\), run the adaptive filter to determine the unknown system and plot the results, comparing the actual coefficients from firgr to the coefficients found by adaptlms.
```

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])

```


In the stem plot the actual and estimated filter weights are the same. As an experiment, try changing the step size to 0.2 . Repeating the example with \(m u=0.2\) results in the following stem plot. The estimated weights fail to approximate the actual weights closely.


Since this may be because you did not iterate over the LMS algorithm enough times, try using 1000 samples. With 1000 samples, the stem plot, shown in the next figure, looks much better, albeit at the expense of much more computation. Clearly you should take care to select the step size with both the computation required and the fidelity of the estimated filter in mind.


\section*{adaptfilt.nIms Example-System Identification}

To improve the convergence performance of the LMS algorithm, the normalized variant (NLMS) uses an adaptive step size based on the signal power. As the input signal power changes, the algorithm calculates the input power and adjusts the step size to maintain an appropriate value. Thus the step size changes with time.

As a result, the normalized algorithm converges more quickly with fewer samples in many cases. For input signals that change slowly over time, the normalized LMS can represent a more efficient LMS approach.

In the adaptlms example, you used firgr to create the filter that you would identify. So you can compare the results, you use the same filter, and replace
adaptlms with adaptnlms, to use the normalized LMS algorithm variation. You should see better convergence with similar fidelity.

First, generate the input signal and the unknown filter.
```

x = 0.1*randn(1,500);
[b,err,res] = fircband(12,[0 0.4 0.5 1], [11 1 0 0], [1 0.2],...
{'w' 'c'});
d = filter(b,1,x);

```

Again d represents the desired signal \(d(x)\) as you defined it earlier and \(b\) contains the filter coefficients for your unknown filter.
```

mu = 0.8;
ha = adaptfilt.nlms(13,mu);

```

You use the preceding code to initialize the normalized LMS algorithm. For more information about the optional input arguments, refer to adaptfilt. nlms in the reference section of this User's Guide.

Running the system identification process is a matter of using adaptfilt.nlms with the desired signal, the input signal, and the initial filter coefficients and conditions specified in s as input arguments. Then plot the results to compare the adapted filter to the actual filter.
```

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])

```

As shown in the following stem plot (a convenient way to compare the estimated and actual filter coefficients), the two are nearly identical.


If you compare the convergence performance of the regular LMS algorithm to the normalized LMS variant, you see the normalized version adapts in far fewer iterations to a result almost as good as the nonnormalized version.


\section*{adaptfilt.sd Example - Noise Cancellation}

When the amount of computation required to derive an adaptive filter drives your development process, the sign-data variant of the LMS (SDLMS) algorithm may be a very good choice as demonstrated in this example.
Fortunately, the current state of digital signal processor (DSP) design has relaxed the need to minimize the operations count by making DSPs whose multiply and shift operations are as fast as add operations. Thus some of the impetus for the sign-data algorithm (and the sign-error and sign-sign variations) has been lost to DSP technology improvements.

In the standard and normalized variations of the LMS adaptive filter, coefficients for the adapting filter arise from the mean square error between the desired signal and the output signal from the unknown system. Using the sign-data algorithm changes the mean square error calculation by using the
sign of the input data to change the filter coefficients.
When the error is positive, the new coefficients are the previous coefficients plus the error multiplied by the step size \(\mu\). If the error is negative, the new coefficients are again the previous coefficients minus the error multiplied by \(\mu\)-note the sign change.

When the input is zero, the new coefficients are the same as the previous set.
In vector form, the sign-data LMS algorithm is
\[
\mathbf{w}(k+1)=\mathbf{w}(k)+\mu e(k) \operatorname{sgn}[\mathbf{x}(k)], \operatorname{sgn}[\mathbf{x}(k)]=\left\{\begin{array}{r}
1, \mathbf{x}(k)>0 \\
0, \\
\mathbf{x}(k)=0 \\
-1, \\
\mathbf{x}(k)<0
\end{array}\right.
\]
with vector \(\mathbf{w}\) containing the weights applied to the filter coefficients and vector \(\mathbf{x}\) containing the input data. \(e(k)\) (equal to desired signal - filtered signal) is the error at time \(k\) and is the quantity the SDLMS algorithm seeks to minimize. \(\mu\) (mu) is the step size.

As you specify mu smaller, the correction to the filter weights gets smaller for each sample and the SDLMS error falls more slowly. Larger mu changes the weights more for each step so the error falls more rapidly, but the resulting error does not approach the ideal solution as closely. To ensure good convergence rate and stability, select mu within the following practical bounds
\[
0<\mu<\frac{1}{N\{\text { InputSignalPower }\}}
\]
where \(N\) is the number of samples in the signal. Also, define mu as a power of two for efficient computing.

Note How you set the initial conditions of the sign-data algorithm profoundly influences the effectiveness of the adaptation. Because the algorithm essentially quantizes the input signal, the algorithm can become unstable easily.

A series of large input values, coupled with the quantization process may
result in the error growing beyond all bounds. You restrain the tendency of the sign-data algorithm to get out of control by choosing a small step size ( \(\mu \ll\) 1 ) and setting the initial conditions for the algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptfilt.sd requires two input data sets:
- Data containing a signal corrupted by noise. In Figure, this is \(d(k)\), the desired signal. The noise cancellation process removes the noise, leaving the signal.
- Data containing random noise ( \(x(k)\) in Figure ) that is correlated with the noise that corrupts the signal data. Without the correlation between the noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.
```

signal = sin(2*pi*0.055*[0:1000-1]');

```

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise through a lowpass FIR filter, and then add the filtered noise to the signal.
```

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

```
fnoise is the correlated noise and \(d\) is now the desired input to the sign-data algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs and mu for the object. As noted earlier in this section, the values you set for coeffs and mu determine whether the adaptive filter can remove the noise from the signal path.

In "adaptfilt.lms Example-System Identification" on page 4-27, you constructed a default filter that sets the filter coefficients to zeros. In most cases that approach does not work for the sign-data algorithm. The closer you set your initial filter coefficients to the expected values, the more likely it is
that the algorithm remains well behaved and converges to a filter solution that removes the noise effectively.

For this example, start with the coefficients in the filter you used to filter the noise (nfilt), and modify them slightly so the algorithm has to adapt.
```

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

```

With the required input arguments for adaptfilt.sd prepared, construct the adaptfilt object, run the adaptation, and view the results.
```

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

```

When adaptfilt.sd runs, it uses far fewer multiply operations than either of the LMS algorithms. Also, performing the sign-data adaptation requires only bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in the next figure is quite good, the sign-data algorithm is much less stable than the standard LMS variations. In this noise cancellation example, the signal after processing is a very good match to the input signal, but the algorithm could very easily grow without bound rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the correlated noise can cause noise cancellation to fail and the algorithm to become useless.


\section*{adaptfilt.se Example-Noise Cancellation}

In some cases, the sign-error variant of the LMS algorithm (SELMS) may be a very good choice for an adaptive filter application.
In the standard and normalized variations of the LMS adaptive filter, the coefficients for the adapting filter arise from calculating the mean square error between the desired signal and the output signal from the unknown system, and applying the result to the current filter coefficients. Using the sign-error algorithm replaces the mean square error calculation by using the sign of the error to modify the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients plus the error multiplied by the step size \(\mu\). If the error is negative, the new coefficients are again the previous coefficients minus the error multiplied by
\(\mu\)-note the sign change. When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-error LMS algorithm is
\[
\mathbf{w}(k+1)=\mathbf{w}(k)+\mu \operatorname{sgn}[e(k)][\mathbf{x}(k)], \operatorname{sgn}[e(k)]=\left\{\begin{array}{r}
1, e(k)>0 \\
0, e(k)=0 \\
-1, e(k)<0
\end{array}\right.
\]
with vector \(\mathbf{w}\) containing the weights applied to the filter coefficients and vector \(\mathbf{x}\) containing the input data. \(e(k)\) (equal to desired signal - filtered signal) is the error at time \(k\) and is the quantity the SELMS algorithm seeks to minimize. \(\mu(\mathrm{mu})\) is the step size. As you specify mu smaller, the correction to the filter weights gets smaller for each sample and the SELMS error falls more slowly.

Larger mu changes the weights more for each step so the error falls more rapidly, but the resulting error does not approach the ideal solution as closely. To ensure good convergence rate and stability, select mu within the following practical bounds
\[
0<\mu<\frac{1}{N\{\text { InputSignalPower }\}}
\]
where \(N\) is the number of samples in the signal. Also, define mu as a power of two for efficient computation.

Note How you set the initial conditions of the sign-data algorithm profoundly influences the effectiveness of the adaptation. Because the algorithm essentially quantizes the error signal, the algorithm can become unstable easily.

A series of large error values, coupled with the quantization process may result in the error growing beyond all bounds. You restrain the tendency of the sign-error algorithm to get out of control by choosing a small step size ( \(\mu \ll\) 1) and setting the initial conditions for the algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptfilt. se requires two input data sets:
- Data containing a signal corrupted by noise. In Figure, this is \(d(k)\), the desired signal. The noise cancellation process removes the noise, leaving the signal.
- Data containing random noise \((x(k)\) in Figure ) that is correlated with the noise that corrupts the signal data. Without the correlation between the noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.
```

signal = sin(2*pi*0.055*[0:1000-1]');

```

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise through a lowpass FIR filter, then add the filtered noise to the signal.
```

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter.
fnoise=filter(nfilt,1,noise); % Correlated noise data.
d=signal.'+fnoise;

```
fnoise is the correlated noise and \(d\) is now the desired input to the sign-data algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs and mu for the object. As noted earlier in this section, the values you set for coeffs and mu determine whether the adaptive filter can remove the noise from the signal path. In "adaptfilt.lms Example-System Identification" on page 4-27, you constructed a default filter that sets the filter coefficients to zeros.

Setting the coefficients to zero often does not work for the sign-error algorithm. The closer you set your initial filter coefficients to the expected values, the more likely it is that the algorithm remains well behaved and converges to a filter solution that removes the noise effectively.

For this example, you start with the coefficients in the filter you used to filter the noise (nfilt), and modify them slightly so the algorithm has to adapt.
```

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm update.

```

With the required input arguments for adaptfilt.se prepared, run the adaptation and view the results.
```

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

```

Notice that you have to set the property PersistentMemory to true when you manually change the settings of object ha.

If PersistentMemory is left to false, the default, when you try to apply ha with the method filter, the filtering process starts by resetting the object properties to their initial conditions at construction. To preserve the customized coefficients in this example, you set PersistentMemory to true so the coefficients do not get reset automatically back to zero.

When adaptfilt.se runs, it uses far fewer multiply operations than either of the LMS algorithms. Also, performing the sign-error adaptation requires only bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in the next figure is quite good, the sign-data algorithm is much less stable than the standard LMS variations. In this noise cancellation example, the signal after processing is a very good match to the input signal, but the algorithm could very easily become unstable rather than achieve good performance.
Changing coeffs, mu, or even the lowpass filter you used to create the correlated noise can cause noise cancellation to fail and the algorithm to become useless.


\section*{adaptfilt.ss Example-Noise Cancellation}

One more example of a variation of the LMS algorithm in the toolbox is the sign-sign variant (SSLMS). The rationale for this version matches those for the sign-data and sign-error algorithms presented in preceding sections. For more details, refer to "adaptfilt.sd Example-Noise Cancellation" on page 4-34.

The sign-sign algorithm (SSLMS) replaces the mean square error calculation with using the sign of the input data to change the filter coefficients. When the error is positive, the new coefficients are the previous coefficients plus the error multiplied by the step size \(\mu\).
If the error is negative, the new coefficients are again the previous coefficients minus the error multiplied by \(\mu\)-note the sign change. When the input is zero, the new coefficients are the same as the previous set.

In essence, the algorithm quantizes both the error and the input by applying the sign operator to them.

In vector form, the sign-sign LMS algorithm is
\[
\mathbf{w}(k+1)=\mathbf{w}(k)+\mu \operatorname{sgn}[e(k)] \operatorname{sgn}[\mathbf{x}(k)], \operatorname{sgn}[z(k)]=\left\{\begin{aligned}
1, z(k)> & 0 \\
0, & z(k)=0 \\
-1, & z(k)<0
\end{aligned}\right.
\]
where
\[
z(k)=[e(k)] \operatorname{sgn}[\mathbf{x}(k)]
\]

Vector \(\mathbf{w}\) contains the weights applied to the filter coefficients and vector \(\mathbf{x}\) contains the input data. \(e(k)\) ( = desired signal - filtered signal) is the error at time \(k\) and is the quantity the SSLMS algorithm seeks to minimize. \(\mu\) (mu) is the step size. As you specify mu smaller, the correction to the filter weights gets smaller for each sample and the SSLMS error falls more slowly.

Larger mu changes the weights more for each step so the error falls more rapidly, but the resulting error does not approach the ideal solution as closely. To ensure good convergence rate and stability, select mu within the following practical bounds
\[
0<\mu<\frac{1}{N\{\text { InputSignalPower }\}}
\]
where \(N\) is the number of samples in the signal. Also, define mu as a power of two for efficient computation.

Note How you set the initial conditions of the sign-sign algorithm profoundly influences the effectiveness of the adaptation. Because the algorithm essentially quantizes the input signal and the error signal, the algorithm can become unstable easily.

A series of large error values, coupled with the quantization process may
result in the error growing beyond all bounds. You restrain the tendency of the sign-sign algorithm to get out of control by choosing a small step size ( \(\mu \ll 1\) ) and setting the initial conditions for the algorithm to nonzero positive and negative values.

In this noise cancellation example, adaptfilt.ss requires two input data sets:
- Data containing a signal corrupted by noise. In Figure, this is \(d(k)\), the desired signal. The noise cancellation process removes the noise, leaving the cleaned signal as the content of the error signal.
- Data containing random noise ( \(x(k)\) in Figure ) that is correlated with the noise that corrupts the signal data, called. Without the correlation between the noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 elements.
```

signal = sin(2*pi*0.055*[0:1000-1]');

```

Now, add correlated white noise to signal. To ensure that the noise is correlated, pass the noise through a lowpass FIR filter, then add the filtered noise to the signal.
```

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

```
fnoise is the correlated noise and \(d\) is now the desired input to the sign-data algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs and mu for the object. As noted earlier in this section, the values you set for coeffs and mu determine whether the adaptive filter can remove the noise from the signal path. In "adaptfilt.lms Example-System Identification" on page 4-27, you constructed a default filter that sets the filter coefficients to zeros. Usually that approach does not work for the sign-sign algorithm.

The closer you set your initial filter coefficients to the expected values, the more likely it is that the algorithm remains well behaved and converges to a filter
solution that removes the noise effectively. For this example, you start with the coefficients in the filter you used to filter the noise (nfilt), and modify them slightly so the algorithm has to adapt.
```

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

```

With the required input arguments for adaptfilt.ss prepared, run the adaptation and view the results.
```

ha = adaptfilt.ss(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

```

Notice that you have to set the property PersistentMemory to true when you manually change the settings of object ha.

If PersistentMemory is left to false, when you try to apply ha with the method filter the filtering process starts by resetting the object properties to their initial conditions at construction. To preserve the customized coefficients in this example, you set PersistentMemory to true so the coefficients do not get reset automatically back to zero.
When adaptfilt.ss runs, it uses far fewer multiply operations than either of the LMS algorithms. Also, performing the sign-sign adaptation requires only bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-sign algorithm as shown in the next figure is quite good, the sign-sign algorithm is much less stable than the standard LMS variations. In this noise cancellation example, the signal after processing is a very good match to the input signal, but the algorithm could very easily become unstable rather than achieve good performance.
Changing coeffs, mu, or even the lowpass filter you used to create the correlated noise can cause noise cancellation to fail and the algorithm to become useless.


As an aside, the sign-sign LMS algorithm is part of the international CCITT standard for \(32 \mathrm{~Kb} / \mathrm{s}\) ADPCM telephony.

\section*{Example of Adaptive Filter That Uses RLS Algorithm}

This section provides an introductory example that uses the RLS adaptive filter function adaptfilt.rls.

If LMS algorithms represent the simplest and most easily applied adaptive algorithms, the recursive least squares (RLS) algorithms represents increased complexity, computational cost, and fidelity. In performance, RLS approaches the Kalman filter in adaptive filtering applications, at somewhat reduced required throughput in the signal processor.

Compared to the LMS algorithm, the RLS approach offers faster convergence and smaller error with respect to the unknown system, at the expense of requiring more computations.

In contrast to the least mean squares algorithm, from which it can be derived, the RLS adaptive algorithm minimizes the total squared error between the desired signal and the output from the unknown system.

Referring to Figure, you see the signal flow graph (or model) for the RLS adaptive filter system. Note that the signal paths and identifications are the same whether the filter uses RLS or LMS. The difference lies in the adapting portion.

Within limits, you can use any of the adaptive filter algorithms to solve an adaptive filter problem by replacing the adaptive portion of the application with a new algorithm.

Examples of the sign variants of the LMS algorithms demonstrated this feature to demonstrate the differences between the sign-data, sign-error, and sign-sign variations of the LMS algorithm.

One interesting input option that applies to RLS algorithms is not present in the LMS processes-a forgetting factor, \(\lambda\), that determines how the algorithm treats past data input to the algorithm.

When the LMS algorithm looks at the error to minimize, it considers only the current error value. In the RLS method, the error considered is the total error from the beginning to the current data point.

Said another way, the RLS algorithm has infinite memory-all error data is given the same consideration in the total error. In cases where the error value might come from a spurious input data point or points, the forgetting factor lets
the RLS algorithm reduce the value of older error data by multiplying the old data by the forgetting factor.

Since \(0 \leq \lambda<1\), applying the factor is equivalent to weighting the older error. When \(\lambda=1\), all previous error is considered of equal weight in the total error.

As \(\lambda\) approaches zero, the past errors play a smaller role in the total. For example, when \(\lambda=0.9\), the RLS algorithm multiplies an error value from 50 samples in the past by an attenuation factor of \(0.9^{50}=5.15 \times 10^{-3}\), considerably deemphasizing the influence of the past error on the current total error.

\section*{adaptfilt.rls Example—Inverse System Identification}

Rather than use a system identification application to demonstrate the RLS adaptive algorithm, or a noise cancellation model, this example use the inverse system identification model shown in here.


Cascading the adaptive filter with the unknown filter causes the adaptive filter to converge to a solution that is the inverse of the unknown system.

If the transfer function of the unknown is \(\mathrm{H}(\mathrm{z})\) and the adaptive filter transfer function is \(\mathrm{G}(\mathrm{z})\), the error measured between the desired signal and the signal from the cascaded system reaches its minimum when the product of \(\mathrm{H}(\mathrm{z})\) and \(\mathrm{G}(\mathrm{z})\) is \(1, \mathrm{G}(\mathrm{z}) * \mathrm{H}(\mathrm{z})=1\). For this relation to be true, \(\mathrm{G}(\mathrm{z})\) must equal \(-\mathrm{H}(\mathrm{z})\), the inverse of the transfer function of the unknown system.

To demonstrate that this is true, create a signal to input to the cascaded filter pair.
```

x = randn(1,3000);

```

In the cascaded filters case, the unknown filter results in a delay in the signal arriving at the summation point after both filters. To prevent the adaptive filter from trying to adapt to a signal it has not yet seen (equivalent to predicting the future), delay the desired signal by 32 samples, the order of the unknown system.

Generally, you do not know the order of the system you are trying to identify. In that case, delay the desired signal by the number of samples equal to half the order of the adaptive filter. Delaying the input requires prepending 12 zero-values samples to \(x\).
```

delay = zeros(1,12);
d = [delay x(1:2988)]; % Concatenate the delay and the signal.

```

You have to keep the desired signal vector d the same length as \(x\), hence adjust the signal element count to allow for the delay samples.
Although not generally true, for this example you know the order of the unknown filter, so you add a delay equal to the order of the unknown filter.
For the unknown system, use a lowpass, 12th-order FIR filter.
```

ufilt = fir1(12,0.55,'low');

```

Filtering \(x\) provides the input data signal for the adaptive algorithm function.
```

xdata = filter(ufilt,1,x);

```

To set the input argument values for the adaptfilt.rls object, use the constructor adaptfilt.rls, providing the needed arguments l, lambda, and invcov.

For more information about the input conditions to prepare the RLS algorithm object, refer to adaptfilt.rls in the reference section of this user's guide.
```

p0 = 2*eye(13);
lambda = 0.99;
ha = adaptfilt.rls(13,lambda,p0);

```

Most of the process to this point is the same as the preceding examples. However, since this example seeks to develop an inverse solution, you need to be careful about which signal carries the data and which is the desired signal.

Earlier examples of adaptive filters use the filtered noise as the desired signal. In this case, the filtered noise (xdata) carries the unknown system information.

With Gaussian distribution and variance of 1 , the unfiltered noise \(d\) is the desired signal. The code to run this adaptive filter example is
\[
[y, e]=\text { filter(ha, xdata, d) }
\]
where y returns the coefficients of the adapted filter and e contains the error signal as the filter adapts to find the inverse of the unknown system. You can review the returned elements of the adapted filter in the properties of ha.

The next figure presents the results of the adaptation. In the figure, the magnitude response curves for the unknown and adapted filters show. As a reminder, the unknown filter was a lowpass filter with cutoff at 0.55 , on the normalized frequency scale from 0 to 1 .


Viewed alone (refer to the following figure), the inverse system looks like a fair compensator for the unknown lowpass filter-a high pass filter with linear phase.


\section*{Selected Bibliography}
[1] Hayes, Monson H., Statistical Digital Signal Processing and Modeling, John Wiley \& Sons, 1996, 493-552.
[2] Haykin, Simon, Adaptive Filter Theory, Prentice-Hall, Inc., 1996

\section*{User's Guide}

Digital Frequency Transformations (p. 5-1)

Using FDATool with the Filter Design Toolbox (p. 6-1)

Reference for the Properties of Filter Objects (p. 7-1)

Functions - By Category (p. 8-2)
(online only)

Bibliography (p. A-1)

Provides tutorial information about performing transformations of discrete-time filters

Presents a detailed reference covering the fixed-point, multirate, and scaling pages of the Filter Design and Analysis Tool
Provides:
- A summary of the filter objects properties
- A detailed filter property reference, including descriptions of the filter structures and properties for adaptfilt, dfilt, and mfilt objects
Provides:
- Tables that include short descriptions of the functions in this toolbox
- A detailed alphabetical function reference

Lists references for filtering texts and papers

\title{
Digital Frequency Transformations
}

\author{
Introduction (p. 5-2) \\ Definition of the Problem (p. 5-3) \\ Frequency Transformations for Real Filters (p. 5-11) \\ Frequency Transformations for Complex Filters (p. 5-26)
}

Provides background about digital frequency transformations for filters

Presents and defines the problem of using digital frequency transformation

Discusses the functions for transforming real filters to other real filters

Describes the functions for transforming complex filters to other complex filters, or real filters to complex filters

\section*{Introduction}

Converting existing FIR or IIR filter designs to a modified IIR form is often done using allpass frequency transformations. Although the resulting designs can be considerably more expensive in terms of dimensionality than the prototype (original) filter, their ease of use in fixed or variable applications is a big advantage.

The general idea of the frequency transformation is to take an existing prototype filter and produce another filter from it that retains some of the characteristics of the prototype, in the frequency domain. Transformation functions achieve this by replacing each delaying element of the prototype filter with an allpass filter carefully designed to have a prescribed phase characteristic for achieving the modifications requested by the designer.

This tutorial gives an overview and interpretation of the frequency transformations, and describes the range of transformations available to the toolbox user. To aid this purpose the tutorial has been arranged into three sections:
- "Definition of the Problem" on page 5-3 introduces the frequency transformation concept and provides its mathematical and intuitive interpretations.
- "Frequency Transformations for Real Filters" on page 5-11 describes the real frequency transformations available in the toolbox. Such transformations start from a real prototype filter and return a real target filter.
- "Frequency Transformations for Complex Filters" on page 5-26 describes complex frequency transformations available in the toolbox. Such transformations start from the any real or complex prototype filter and return a complex target filter.

\section*{Definition of the Problem}

The basic form of mapping in common use is
\[
H_{T}(z)=H_{o}\left[H_{A}(z)\right]
\]

The \(H_{A}(z)\) is an Nth-order allpass mapping filter given by
\[
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0}^{N} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}}=\frac{N_{A}(z)}{D_{A}(z)} \\
& \alpha_{0}=1
\end{aligned}
\]
where
\(H_{o}(z)\) - Transfer function of the prototype filter
\(H_{A}(z)\) - Transfer function of the allpass mapping filter
\(H_{T}(z)\) - Transfer function of the target filter
Let's look at a simple example of the transformation given by
\[
H_{T}(z)=H_{o}(-z)
\]

The target filter has its poles and zeroes flipped across the origin of the real and imaginary axes. For the real filter prototype, it gives a mirror effect against 0.5, which means that lowpass \(H_{o}(z)\) gives rise to a real highpass \(H_{T}(z)\). This is shown in the following figure for the prototype filter designed as a third-order halfband elliptic filter.



Prototype filter Pole-Zero plot


Target filter Pole-Zero plot

Figure 5-1: Example of a Simple Mirror Transformation
The choice of an allpass filter to provide the frequency mapping is necessary to provide the frequency translation of the prototype filter frequency response to the target filter by changing the frequency position of the features from the prototype filter without affecting the overall shape of the filter response.

The phase response of the mapping filter normalized to \(\pi\) can be interpreted as a translation function:
\[
H\left(w_{\text {new }}\right)=\omega_{o l d}
\]

The graphical interpretation of the frequency transformation is shown in the figure below. The complex multiband transformation takes a real lowpass filter and converts it into a number of passbands around the unit circle.


Figure 5-2: Graphical Interpretation of the Mapping Process
Most of the frequency transformations are based on the second-order allpass mapping filter:
\[
H_{A}(z)= \pm \frac{1+\alpha_{1} z^{-1}+\alpha_{2} z^{-2}}{\alpha_{2}+\alpha_{1} z^{-1}+z^{-2}}
\]

The two degrees of freedom provided by \(\alpha_{1}\) and \(\alpha_{2}\) choices are not fully used by the usual restrictive set of "flat-top" classical mappings like lowpass to bandpass. Instead, any two transfer function features can be migrated to (almost) any two other frequency locations if \(\alpha_{1}\) and \(\alpha_{2}\) are chosen so as to keep the poles of \(H_{A}(z)\) strictly outside the unit circle (since \(H_{A}(z)\) is substituted for \(z\) in the prototype transfer function). Moreover, as first pointed out by Constantinides, the selection of the outside sign influences whether the original feature at zero can be moved (the minus sign, a condition known as
"DC mobility") or whether the Nyquist frequency can be migrated (the "Nyquist mobility" case arising when the leading sign is positive).

All the transformations forming the package are explained in the next sections of the tutorial. They are separated into those operating on real filters and those generating or working with complex filters. The choice of transformation ranges from standard Constantinides first and second-order ones [19][20] up to the real multiband filter by Mullis and Franchitti [21], and the complex multiband filter and real/complex multipoint ones by Krukowski, Cain and Kale [22].

\section*{Selecting Features Subject to Transformation}

Choosing the appropriate frequency transformation for achieving the required effect and the correct features of the prototype filter is very important and needs careful consideration. It is not advisable to use a first-order transformation for controlling more than one feature. The mapping filter will not give enough flexibility. It is also not good to use higher order transformation just to change the cutoff frequency of the lowpass filter. The increase of the filter order would be too big, without considering the additional replica of the prototype filter that may be created in undesired places.


Figure 5-3: Feature Selection for Real Lowpass to Bandpass Transformation
To illustrate the idea, the second-order real multipoint transformation was applied three times to the same elliptic halfband filter in order to make it into a bandpass filter. In each of the three cases, two different features of the
prototype filter were selected in order to obtain a bandpass filter with passband ranging from 0.25 to 0.75 . The position of the DC feature was not important, but it would be advantageous if it were in the middle between the edges of the passband in the target filter. In the first case the selected features were the left and the right band edges of the lowpass filter passband, in the second case they were the left band edge and the DC, in the third case they were DC and the right band edge.


Figure 5-4: Result of choosing different features
The results of all three approaches are completely different. For each of them only the selected features were positioned precisely where they were required. In the first case the DC is moved toward the left passband edge just like all the other features close to the left edge being squeezed there. In the second case the right passband edge was pushed way out of the expected target as the precise position of DC was required. In the third case the left passband edge was pulled toward the DC in order to position it at the correct frequency. The conclusion is that if only the DC can be anywhere in the passband, the edges of the passband should have been selected for the transformation. For most of the cases requiring the positioning of passbands and stopbands, designers should
always choose the position of the edges of the prototype filter in order to make sure that they get the edges of the target filter in the correct places. Frequency responses for the three cases considered are shown in the figure. The prototype filter was a third-order elliptic lowpass filter with cutoff frequency at 0.5 .
The MATLAB code used to generate the figure is given here.
The prototype filter is a halfband elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

In the example the requirements are set to create a real bandpass filter with passband edges at 0.1 and 0.3 out of the real lowpass filter having the cutoff frequency at 0.5 . This is attempted in three different ways. In the first approach both edges of the passband are selected, in the second approach the left edge of the passband and the DC are chosen, while in the third approach the DC and the right edge of the passband are taken:
```

[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [0.0, 0.5], [0.2, 0.3]);

```

\section*{Mapping from Prototype Filter to Target Filter}

In general the frequency mapping converts the prototype filter, \(H_{0}(z)\), to the target filter, \(H_{T}(z)\), using the \(N_{A}\) th-order allpass filter, \(H_{A}(z)\). The general form of the allpass mapping filter is given in Equation. The frequency mapping is a mathematical operation that replaces each delayer of the prototype filter with an allpass filter. There are two ways of performing such mapping. The choice of the approach is dependent on how prototype and target filters are represented.
When the Nth-order prototype filter is given with pole-zero form
\[
H_{o}(z)=\frac{\sum_{i=1}\left(z-z_{i}\right)}{\sum_{i-1}^{N}\left(z-p_{i}\right)}
\]
the mapping will replace each pole, \(p_{i}\), and each zero, \(z_{i}\), with a number of poles and zeros equal to the order of the allpass mapping filter:
\[
H_{o}(z)=\frac{\sum_{i=1}^{N}\left(\begin{array}{cc}
N-1 & N-1 \\
S \sum_{k=0}^{N-1} \alpha_{k}^{k}-z_{i} \cdot \sum_{k=0}^{N} \alpha_{k} z^{N-k}
\end{array}\right)}{\sum_{i=1}^{N}\binom{N-1}{\sum_{k=0}^{N-1} \alpha_{k} z^{k}-p_{i} \cdot \sum_{k=0}^{N} \alpha_{k} z^{N-k}}}
\]

The root finding needs to be used on the bracketed expressions in order to find the poles and zeros of the target filter.

When the prototype filter is described in the numerator-denominator form:
\[
H_{T}(z)=\left.\frac{\beta_{0} z^{N}+\beta_{1} z^{N-1}+\ldots+\beta_{N}}{\alpha_{0} z^{N}+\alpha_{1} z^{N-1}+\ldots+\alpha_{N}}\right|_{z=H_{A}(z)}
\]

Then the mapping process will require a number of convolutions in order to calculate the numerator and denominator of the target filter:
\[
H_{T}(z)=\frac{\beta_{1} N_{A}(z)^{N}+\beta_{2} N_{A}(z)^{N-1} D_{A}(z)+\ldots+\beta_{N} D_{A}(z)^{N}}{\beta_{1} N_{A}(z)^{N}+\beta_{2} N_{A}(z)^{N-1} D_{A}(z)+\ldots+\beta_{N} D_{A}(z)^{N}}
\]

For each coefficient \(\alpha_{i}\) and \(\beta_{i}\) of the prototype filter the \(N_{A}\) th-order polynomials must be convolved \(N\) times. Such approach may cause rounding errors for large prototype filters and/or high order mapping filters. In such a case the user should consider the alternative of doing the mapping using via poles and zeros.

\section*{Summary of Frequency Transformations}

\section*{Advantages}
- Most frequency transformations are described by closed-form solutions or can be calculated from the set of linear equations.
- They give predictable and familiar results.
- Ripple heights from the prototype filter are preserved in the target filter.
- They are architecturally appealing for variable and adaptive filters.

\section*{Disadvantages}
- There are cases when using optimization methods to design the required filter gives better results.
- High-order transformations increase the dimensionality of the target filter, which may give expensive final results.
- Starting from fresh designs helps avoid locked-in compromises.

\section*{Frequency Transformations for Real Filters}

This section discusses real frequency transformations that take the real lowpass prototype filter and convert it into a different real target filter. The target filter has its frequency response modified in respect to the frequency response of the prototype filter according to the characteristic of the applied frequency transformation:
- "Real Frequency Shift" on page 5-12
- "Real Lowpass to Real Lowpass" on page 5-13
- "Real Lowpass to Real Highpass" on page 5-15
- "Real Lowpass to Real Bandpass" on page 5-17
- "Real Lowpass to Real Bandstop" on page 5-19
- "Real Lowpass to Real Multiband" on page 5-21
- "Real Lowpass to Real Multipoint" on page 5-23

\section*{Real Frequency Shift}

Real frequency shift transformation uses a second-order allpass mapping filter. It performs an exact mapping of one selected feature of the frequency response into its new location, additionally moving both the Nyquist and DC features. This effectively moves the whole response of the lowpass filter by the distance specified by the selection of the feature from the prototype filter and the target filter. As a real transformation, it works in a similar way for positive and negative frequencies.
\[
H_{A}(z)=z^{-1} \cdot \frac{1-\alpha z^{-1}}{\alpha-z^{-1}}
\]
with \(\alpha\) given by
\[
\alpha= \begin{cases}\frac{\cos \frac{\pi}{2}\left(\omega_{\text {old }}-2 \omega_{\text {new }}\right)}{\cos \frac{\pi}{2} \omega_{\text {old }}} & \text { for } \\ \frac{\sin \frac{\pi}{2}\left(\omega_{\text {old }}-2 \omega_{\text {new }}\right)}{\sin \frac{\pi}{2} \omega_{\text {old }}} & \text { otherwise }\end{cases}
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new }}\) - Position of the feature originally at \(\omega_{\text {old }}\) in the target filter
The example below shows how this transformation can be used to move the response of the prototype lowpass filter in either direction. Please note that because the target filter must also be real, the response of the target filter will inherently be disturbed at frequencies close to Nyquist and close to DC. Here is the MATLAB code for generating the example in the figure.
The prototype filter is a halfband elliptic, real, third-order lowpass filter:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

The example transformation moves the feature originally at 0.5 to 0.9 :
```

[num,den] = iirshift(b, a, 0.5, 0.9);

```


Figure 5-5: Example of Real Frequency Shift Mapping

\section*{Real Lowpass to Real Lowpass}

Real lowpass filter to real lowpass filter transformation uses a first-order allpass mapping filter. It performs an exact mapping of one feature of the frequency response into the new location keeping DC and Nyquist features fixed. As a real transformation, it works in a similar way for positive and negative frequencies. It is important to mention that using first-order mapping ensures that the order of the filter after the transformation is the same as it was originally.
\[
H_{A}(z)=-\left(\frac{1-\alpha z^{-1}}{\alpha-z^{-1}}\right)
\]
with \(\alpha\) given by
\[
\alpha=\frac{\sin \frac{\pi}{2}\left(w_{\text {old }}-w_{\text {new }}\right)}{\sin \frac{\pi}{2}\left(w_{\text {old }}+w_{\text {new }}\right)}
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new }}\) - Frequency location of the same feature in the target filter
The example below shows how to modify the cutoff frequency of the prototype filter. The MATLAB code for this example is shown in the figure below.

The prototype filter is a halfband elliptic, real, third-order filter:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

The cutoff frequency moves from 0.5 to 0.75 :
```

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

```


Figure 5-6: Example of Real Lowpass to Real Lowpass Mapping

\section*{Real Lowpass to Real Highpass}

Real lowpass filter to real highpass filter transformation uses a first-order allpass mapping filter. It performs an exact mapping of one feature of the frequency response into the new location additionally swapping DC and Nyquist features. As a real transformation, it works in a similar way for positive and negative frequencies. Just like in the previous transformation because of using a first-order mapping, the order of the filter before and after the transformation is the same.
\[
H_{A}(z)=-\left(\frac{1+\alpha z^{-1}}{\alpha+z^{-1}}\right)
\]
with \(\alpha\) given by
\[
\alpha=-\left(\frac{\cos \frac{\pi}{2}\left(w_{\text {old }}+w_{\text {new }}\right)}{\cos \frac{\pi}{2}\left(w_{\text {old }}-w_{\text {new }}\right)}\right)
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new }}\) - Frequency location of the same feature in the target filter
The example below shows how to convert the lowpass filter into a highpass filter with arbitrarily chosen cutoff frequency. In the MATLAB code below, the lowpass filter is converted into a highpass with cutoff frequency shifted from0.5 to 0.75 . Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

The example moves the cutoff frequency from 0.5 to 0.75 :
```

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

```


Figure 5-7: Example of Real Lowpass to Real Highpass Mapping

\section*{Real Lowpass to Real Bandpass}

Real lowpass filter to real bandpass filter transformation uses a second-order allpass mapping filter. It performs an exact mapping of two features of the frequency response into their new location additionally moving a DC feature and keeping the Nyquist feature fixed. As a real transformation, it works in a similar way for positive and negative frequencies.
\[
H_{A}(z)=-\left(\frac{1-\beta(1+\alpha) z^{-1}-\alpha z^{-2}}{\alpha-\beta(1+\alpha) z^{-1}+z^{-2}}\right)
\]
with \(\alpha\) and \(\beta\) given by
\[
\begin{aligned}
\alpha & =\frac{\sin \frac{\pi}{4}\left(2 w_{\text {old }}-w_{\text {new }, 2}+w_{\text {new }, 1}\right)}{\sin \frac{\pi}{4}\left(2 w_{\text {old }}+w_{\text {new }, 2}-w_{\text {new }, 1}\right)} \\
\beta & =\cos \frac{\pi}{2}\left(w_{\text {new }, 1}+w_{\text {new }, 2}\right)
\end{aligned}
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new, } 1}\) - Position of the feature originally at \(\left(-\omega_{o l d}\right)\) in the target filter
\(\omega_{\text {new }, 2}\) - Position of the feature originally at \(\left(+\omega_{\text {old }}\right)\) in the target filter
The example below shows how to move the response of the prototype lowpass filter in either direction. Please note that because the target filter must also be real, the response of the target filter will inherently be disturbed at frequencies close to Nyquist and close to DC. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

The example transformation creates the passband between 0.5 and 0.75 :
```

[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);

```


Figure 5-8: Example of Real Lowpass to Real Bandpass Mapping

\section*{Real Lowpass to Real Bandstop}

Real lowpass filter to real bandstop filter transformation uses a second-order allpass mapping filter. It performs an exact mapping of two features of the frequency response into their new location additionally moving a Nyquist feature and keeping the DC feature fixed. This effectively creates a stopband between the selected frequency locations in the target filter. As a real transformation, it works in a similar way for positive and negative frequencies.
\[
H_{A}(z)=\frac{1-\beta(1+\alpha) z^{-1}+\alpha z^{-2}}{\alpha-\beta(1+\alpha) z^{-1}+z^{-2}}
\]
with \(\alpha\) and \(\beta\) given by
\[
\begin{aligned}
& \alpha=\frac{\cos \frac{\pi}{4}\left(2 w_{\text {old }}+w_{\text {new }, 2}-w_{\text {new }, 1}\right)}{\cos \frac{\pi}{4}\left(2 w_{\text {old }}-w_{\text {new }, 2}+w_{\text {new }, 1}\right)} \\
& \beta=\cos \frac{\pi}{2}\left(w_{\text {new }, 1}+w_{\text {new }, 2}\right)
\end{aligned}
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new, } 1}\) - Position of the feature originally at \(\left(-\omega_{\text {old }}\right)\) in the target filter
\(\omega_{\text {new }, 2}\) - Position of the feature originally at \(\left(+\omega_{\text {old }}\right)\) in the target filter
The example below shows how this transformation can be used to convert the prototype lowpass filter with cutoff frequency at 0.5 into a real bandstop filter with the same passband and stopband ripple structure and stopband positioned between 0.5 and 0.75 . Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

The example transformation creates a stopband from 0.5 to 0.75 :
```

[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);

```


Figure 5-9: Example of Real Lowpass to Real Bandstop Mapping

\section*{Real Lowpass to Real Multiband}

This high-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into a number of new locations in the target filter. Its most common use is to convert a real lowpass with predefined passband and stopband ripples into a real multiband filter with \(N\) arbitrary band edges, where \(N\) is the order of the allpass mapping filter.
\[
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0}^{N} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}} \\
& \alpha_{0}=1
\end{aligned}
\]

The coefficients \(\alpha\) are given by
\[
\left\{\begin{array}{l}
\alpha_{0}=1 \quad k=1, \ldots, N \\
\alpha_{k}=-S \frac{\sin \frac{\pi}{2}\left(N \omega_{\text {new }}+(-1)^{k} \omega_{o l d}\right)}{\sin \frac{\pi}{2}\left((N-2 k) \omega_{\text {new }}+(-1)^{k} \omega_{\text {old }}\right)}
\end{array}\right.
\]
where
\(\omega_{o l d, k}\) - Frequency location of the first feature in the prototype filter
\(\omega_{\text {new,k }}\) - Position of the feature originally at \(\omega_{o l d, k}\) in the target filter
The mobility factor, \(s\), specifies the mobility or either DC or Nyquist feature:
\[
S=\left\{\begin{array}{lc}
1 & \text { Nyquist } \\
-1 & D C
\end{array}\right.
\]

The example below shows how this transformation can be used to convert the prototype lowpass filter with cutoff frequency at 0.5 into a filter having a number of bands positioned at arbitrary edge frequencies \(1 / 5,2 / 5,3 / 5\) and \(4 / 5\). Parameter \(S\) was such that there is a passband at DC. Here is the MATLAB code for generating the figure.
The prototype filter is a halfband elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

The example transformation creates three passbands, from DC to 0.2 , from 0.4 to 0.6 and from 0.8 to Nyquist:
```

[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], `pass');

```


Figure 5-10: Example of Real Lowpass to Real Multiband Mapping

\section*{Real Lowpass to Real Multipoint}

This high-order frequency transformation performs an exact mapping of a number of selected features of the prototype filter frequency response to their new locations in the target filter. The mapping filter is given by the general IIR polynomial form of the transfer function as given below.
\[
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0}^{N} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i} z^{-N+i}} \\
& \alpha_{0}=1
\end{aligned}
\]

For the Nth-order multipoint frequency transformation the coefficients \(\alpha\) are
\[
\left\{\begin{array}{l}
\sum_{i=1}^{N} \alpha_{N-i} z_{o l d, k} \cdot z_{n e w, k}^{i}-S \cdot z_{n e w, k}^{N-i}=-z_{o l d, k}-S \cdot z_{n e w, k} \\
z_{o l d, k}=e^{j \pi \omega_{o l d, k}} \\
z_{n e w, k}=e^{j \pi \omega_{n e w, k}} \\
k=1, \ldots, N
\end{array}\right.
\]
where
\(\omega_{o l d, k}\) - Frequency location of the first feature in the prototype filter
\(\omega_{\text {new,k }}\) - Position of the feature originally at \(\omega_{o l d, k}\) in the target filter
The mobility factor, \(s\), specifies the mobility of either DC or Nyquist feature:
\[
S=\left\{\begin{array}{lc}
1 & \text { Nyquist } \\
-1 & D C
\end{array}\right.
\]

The example below shows how this transformation can be used to move features of the prototype lowpass filter originally at -0.5 and 0.5 to their new locations at 0.5 and 0.75 , effectively changing a position of the filter passband. Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
\[
[b, a]=e l l i p(3,0.1,30,0.409) ;
\]

The example transformation creates a passband from 0.5 to 0.75 :
```

[num,den] = iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], `pass');

```



Figure 5-11: Example of Real Lowpass to Real Multipoint Mapping

\section*{Frequency Transformations for Complex Filters}

This section discusses complex frequency transformation that take the complex prototype filter and convert it into a different complex target filter. The target filter has its frequency response modified in respect to the frequency response of the prototype filter according to the characteristic of the applied frequency transformation from:
- "Complex Frequency Shift" on page 5-26
- "Real Lowpass to Complex Bandpass" on page 5-28
- "Real Lowpass to Complex Bandstop" on page 5-29
- "Real Lowpass to Complex Multiband" on page 5-31
- "Real Lowpass to Complex Multipoint" on page 5-33
- "Complex Bandpass to Complex Bandpass" on page 5-35

\section*{Complex Frequency Shift}

Complex frequency shift transformation is the simplest first-order transformation that performs an exact mapping of one selected feature of the frequency response into its new location. At the same time it rotates the whole response of the prototype lowpass filter by the distance specified by the selection of the feature from the prototype filter and the target filter.
\[
H_{A}(z)=\alpha z^{-1}
\]
with \(\alpha\) given by
\[
\alpha=e^{j 2 \pi\left(v_{\text {new }}-v_{\text {old }}\right)}
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new }}\) - Position of the feature originally at \(\omega_{\text {old }}\) in the target filter
A special case of the complex frequency shift is a, so called, Hilbert Transformer. It can be designed by setting the parameter to \(|\alpha|=1\), that is
\[
\alpha=\left\{\begin{array}{lr}
1 & \text { forward } \\
-1 & \text { inverse }
\end{array}\right.
\]

The example below shows how to apply this transformation to rotate the response of the prototype lowpass filter in either direction. Please note that because the transformation can be achieved by a simple phase shift operator, all features of the prototype filter will be moved by the same amount. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
\[
[b, a]=\text { ellip(3, 0.1, 30, 0.409); }
\]

The example transformation moves the feature originally at 0.5 to 0.9 :
```

[num,den] = iirshift(b, a, 0.5, 0.9);

```



Figure 5-12: Example of Complex Frequency Shift Mapping

\section*{Real Lowpass to Complex Bandpass}

This first-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into two new locations in the target filter creating a passband between them. Both Nyquist and DC features can be moved with the rest of the frequency response.
\[
H_{A}(z)=\frac{\beta-\alpha z^{-1}}{z^{-1}-\alpha \beta}
\]
with \(\alpha\) and \(\beta\) are given by
\[
\begin{aligned}
& \alpha=\frac{\sin \frac{\pi}{4}\left(2 w_{\text {old }}-w_{\text {new }, 2}+w_{\text {new }, 1}\right)}{\sin \pi\left(2 w_{\text {old }}+w_{\text {new }, 2}-w_{\text {new }, 1}\right)} \\
& \beta=e^{-j \pi\left(w_{\text {new }}-w_{\text {old }}\right)}
\end{aligned}
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new, } 1}\) - Position of the feature originally at \(\left(-\omega_{o l d}\right)\) in the target filter
\(\omega_{\text {new, } 2}\) - Position of the feature originally at \(\left(+\omega_{\text {old }}\right)\) in the target filter
The example below shows the use of such a transformation for converting a real halfband lowpass filter into a complex bandpass filter with band edges at 0.5 and 0.75 . Here is the MATLAB code for generating the example in the figure.
The prototype filter is a half band elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

The transformation creates a passband from 0.5 to 0.75 :
```

[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);

```


Figure 5-13: Example of Real Lowpass to Complex Bandpass Mapping

\section*{Real Lowpass to Complex Bandstop}

This first-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into two new locations in the target filter creating a stopband between them. Both Nyquist and DC features can be moved with the rest of the frequency response.
\[
H_{A}(z)=\frac{\beta-\alpha z^{-1}}{\alpha \beta-z^{-1}}
\]
with \(\alpha\) and \(\beta\) are given by
\[
\alpha=\frac{\cos \pi\left(2 w_{\text {old }}+v_{\text {new }, 2}-v_{\text {new }, 1}\right)}{\cos \pi\left(2 w_{\text {old }}-v_{\text {new }, 2}+v_{\text {new }, 1}\right)}
\]
\[
\beta=e^{-j \pi\left(w_{\text {new }}-w_{\text {old }}\right)}
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter
\(\omega_{\text {new, } 1}\) - Position of the feature originally at \(\left(-\omega_{\text {old }}\right)\) in the target filter
\(\omega_{\text {new }, 2}\) - Position of the feature originally at \(\left(+\omega_{\text {old }}\right)\) in the target filter
The example below shows the use of such a transformation for converting a real halfband lowpass filter into a complex bandstop filter with band edges at 0.5 and 0.75 . Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

The transformation creates a stopband from 0.5 to 0.75 :
```

[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);

```


Figure 5-14: Example of Real Lowpass to Complex Bandstop Mapping

\section*{Real Lowpass to Complex Multiband}

This high-order transformation performs an exact mapping of one selected feature of the prototype filter frequency response into a number of new locations in the target filter. Its most common use is to convert a real lowpass with predefined passband and stopband ripples into a multiband filter with arbitrary band edges. The order of the mapping filter must be even, which corresponds to an even number of band edges in the target filter. The Nth-order complex allpass mapping filter is given by the general transfer function form as shown below.
\[
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0}^{N} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i}{ }^{*} z^{-N+i}} \\
& \alpha_{0}=1
\end{aligned}
\]

The coefficients \(\alpha\) are calculated from the system of linear equations:
\[
\left\{\begin{array}{l}
\sum_{i=1}^{N} \mathfrak{R}\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}-\cos \beta_{2, k}\right]+\mathfrak{I}\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}+\sin \beta_{2, k}\right]=\cos \beta_{3, k} \\
N \\
\sum_{i=1} \mathfrak{R}\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}-\sin \beta_{2, k}\right]-\mathfrak{I}\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}+\cos \beta_{2, k}\right]=\sin \beta_{3, k} \\
\beta_{1, k}=-\pi\left[v_{\text {old }} \cdot(-1)^{k}+v_{\text {new }, k}(N-k)\right] \\
\beta_{2, k}=-\pi\left[\Delta C+v_{\text {new }, k} k\right] \\
\beta_{3, k}=-\pi\left[v_{\text {old }} \cdot(-1)^{k}+v_{\text {new }, k} N\right] \\
k=1 \ldots N
\end{array}\right.
\]
where
\(\omega_{\text {old }}\) - Frequency location of the selected feature in the prototype filter \(\omega_{\text {new }, i}\) - Position of features originally at \(\pm \omega_{o l d}\) in the target filter
Parameter \(S\) is the additional rotation factor by the frequency distance \(\Delta C\), giving the additional flexibility of achieving the required mapping:
\[
S=e^{-j \pi \Delta C}
\]

The example shows the use of such a transformation for converting a prototype real lowpass filter with the cutoff frequency at 0.5 into a multiband complex filter with band edges at \(0.2,0.4,0.6\) and 0.8 , creating two passbands around the unit circle. Here is the MATLAB code for generating the figure.


Figure 5-15: Example of Real Lowpass to Complex Multiband Mapping
The prototype filter is a halfband elliptic, real, third-order lowpass filter:
\[
[b, a]=\text { ellip }(3,0.1,30,0.409) ;
\]

The example transformation creates two complex passbands:
```

[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);

```

\section*{Real Lowpass to Complex Multipoint}

This high-order transformation performs an exact mapping of a number of selected features of the prototype filter frequency response to their new locations in the target filter. The Nth-order complex allpass mapping filter is given by the general transfer function form as shown below.
\[
\begin{aligned}
& H_{A}(z)=S \frac{\sum_{i=0}^{N} \alpha_{i} z^{-i}}{\sum_{i=0}^{N} \alpha_{i}^{*} z^{-N+i}} \\
& \alpha_{0}=1
\end{aligned}
\]

The coefficients \(\alpha\) can be calculated from the system of linear equations:
\[
\left\{\begin{array}{l}
\sum_{i=1}^{N} \Re\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}-\cos \beta_{2, k}\right]+\mathfrak{I}\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}+\sin \beta_{2, k}\right]=\cos \beta_{3, k} \\
N \\
\sum_{i=1} \Re\left(\alpha_{i}\right) \cdot\left[\sin \beta_{1, k}-\sin \beta_{2, k}\right]-\mathfrak{J}\left(\alpha_{i}\right) \cdot\left[\cos \beta_{1, k}+\cos \beta_{2, k}\right]=\sin \beta_{3, k} \\
\beta_{1, k}=-\frac{\pi}{2}\left[w_{\text {old }, k}+w_{n e w, k}(N-k)\right] \\
\beta_{2, k}=-\frac{\pi}{2}\left[2 \Delta C+w_{n e w, k} k\right] \\
\beta_{3, k}=-\frac{\pi}{2}\left[w_{\text {old }, k}+w_{n e w, k} N\right] \\
k=1 \ldots N
\end{array}\right.
\]
where
\(\omega_{o l d, k}\) - Frequency location of the first feature in the prototype filter
\(\omega_{\text {new, } k}\) - Position of the feature originally at \(\omega_{o l d, k}\) in the target filter
Parameter \(S\) is the additional rotation factor by the frequency distance \(\Delta C\), giving the additional flexibility of achieving the required mapping:
\[
S=e^{-j \pi \Delta C}
\]

The example below shows how this transformation can be used to move one selected feature of the prototype lowpass filter originally at -0.5 to two new frequencies -0.5 and 0.1 , and the second feature of the prototype filter from 0.5
to new locations at -0.25 and 0.3 . This creates two nonsymmetric passbands around the unit circle, creating a complex filter. Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

The example transformation creates two nonsymmetric passbands:
\[
\text { [num,den] }=\operatorname{iirlp2xc}\left(b, a, 0.5^{*}[-1,1,-1,1],[-0.5,-0.25,0.1,0.3]\right) ;
\]


Figure 5-16: Example of Real Lowpass to Complex Multipoint Mapping

\section*{Complex Bandpass to Complex Bandpass}

This first-order transformation performs an exact mapping of two selected features of the prototype filter frequency response into two new locations in the
target filter. Its most common use is to adjust the edges of the complex bandpass filter.
\[
H_{A}(z)=\frac{\alpha\left(\gamma-\beta z^{-1}\right)}{z^{-1}-\beta \gamma}
\]
with \(\alpha\) and \(\beta\) are given by
\[
\begin{aligned}
& \alpha=\frac{\sin \frac{\pi}{4}\left(\left(w_{\text {old }, 2}-w_{\text {old }, 1}\right)-\left(w_{\text {new }, 2}-w_{\text {new }, 1}\right)\right)}{\sin \frac{\pi}{4}\left(\left(w_{\text {old }, 2}-w_{\text {old }, 1}\right)+\left(w_{\text {new }, 2}-w_{\text {new }, 1}\right)\right)} \\
& \alpha=e^{-j \pi\left(w_{\text {old }, 2}-w_{\text {old }, 1}\right)} \\
& \gamma=e^{-j \pi\left(w_{\text {new }, 2}-w_{\text {new }, 1}\right)}
\end{aligned}
\]
where
\(\omega_{o l d, 1}\) - Frequency location of the first feature in the prototype filter
\(\omega_{o l d, 2}\) - Frequency location of the second feature in the prototype filter
\(\omega_{\text {new, } 1}\) - Position of the feature originally at \(\omega_{o l d, 1}\) in the target filter
\(\omega_{\text {new, } 2}\) - Position of the feature originally at \(\omega_{o l d, 2}\) in the target filter
The example below shows how this transformation can be used to modify the position of the passband of the prototype filter, either real or complex. In the example below the prototype filter passband spanned from 0.5 to 0.75 . It was converted to having a passband between -0.5 and 0.1 . Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:
```

[b, a] = ellip(3, 0.1, 30, 0.409);

```

The example transformation creates a passband from 0.25 to 0.75 :
```

[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);

```


Figure 5-17: Example of Complex Bandpass to Complex Bandpass Mapping

\section*{Using FDATool with the Filter Design Toolbox}

Designing Advanced Filters in
FDATool (p. 6-5)

Switching FDATool to Quantization Mode (p. 6-8)

Quantizing Filters in the Filter Design and Analysis Tool (p. 6-12)
Analyzing Filters with a Noise-Based Method (p. 6-23)

Scaling Second-Order Section Filters (p. 6-30)

Reordering the Sections of
Second-Order Section Filters (p. 6-38)
Viewing SOS Filter Sections (p. 6-46)

Importing and Exporting Quantized Filters (p. 6-53)

Importing XILINX Coefficient (.COE) Files (p. 6-58)

Transforming Filters (p. 6-59)

Using FDATool to design more advanced filters. This sections assumes you are familiar with FDATool from the Signal Processing Toolbox.
After you open FDATool, this section explain how to access the quantization features in the tool.
Explains how you quantize a filter in FDATool.

FDATool provides a variety of analysis methods for quantized filters; this section explains how to use two of them.

You can adjust the way FDATool scales SOS filters. To learn how, read this section.

Shows you how to change the order of the sections in an SOS filter.

Shows you how to use the SOS View feature in FDATool to analyze the sections of SOS filters.

Shows you how to import and export filters to and from your MATLAB workspace, as well as to other destinations.

Import the coefficients from a XILINX .coe file to create a quantized filter in FDATool.

Describes how you use the filter transformation capability in FDATool to change the magnitude response of your FIR or IIR filters in the tool.

Designing Multirate Filters in FDATool (p. 6-70)

Quantizing Multirate Filters (p. 6-81)

Realizing Filters as Simulink Subsystem Blocks (p. 6-84)
Getting Help for FDATool (p. 6-89)

Explains how to use FDATool to design multirate filters. This section assumes you are familiar with FDATool from the Signal Processing Toolbox and you are familiar with mfilt objects.
Explains how to use FDATool to quantize multirate filters.

Using the Realize Model feature to create a Simulink model of your quantized filter as a subsystem block.

Shows you how to get help about the features in FDATool, such as using Help or using the What's This option.

The Filter Design Toolbox adds new dialogs and operating modes, and new menu selections, to the Filter Design and Analysis Tool (FDATool) provided by the Signal Processing Toolbox. From the new dialogs, one titled Set
Quantization Parameters and one titled Frequency Transformations, you can:
- Design advanced filters that Signal Processing Toolbox does not provide the design tools to develop.
- View Simulink models of the filter structures available in the toolbox.
- Quantize double-precision filters you design in this GUI using the design mode.
- Quantize double-precision filters you import into this GUI using the import mode.
- Analyze quantized filters.
- Scale second-order section filters.
- Select the quantization settings for the properties of the quantized filter displayed by the tool:
- Coefficients-select the quantization options applied to the filter coefficients
- Input/output-control how the filter processes input and output data
- Filter Internals-specify how the arithmetic for the filter behaves
- Design multirate filters.
- Transform both FIR and IIR filters from one response to another.

After you import a filter in to FDATool, the options on the quantization dialog let you quantize the filter and investigate the effects of various quantization settings.

Options in the frequency transformations dialog let you change the frequency response of your filter, keeping various important features while changing the response shape.
This section presents the following information and procedures for using FDATool:
- "Designing Advanced Filters in FDATool" on page 6-5
- "Switching FDATool to Quantization Mode" on page 6-8
- "Quantizing Filters in the Filter Design and Analysis Tool" on page 6-12
- "Analyzing Filters with a Noise-Based Method" on page 6-23
- "Choosing Quantized Filter Structures" on page 6-28
- "Reordering the Sections of Second-Order Section Filters" on page 6-38
- "Viewing SOS Filter Sections" on page 6-46
- "Importing XILINX Coefficient (.COE) Files" on page 6-58
- "Transforming Filters" on page 6-59
- "Designing Multirate Filters in FDATool" on page 6-70
- "Realizing Filters as Simulink Subsystem Blocks" on page 6-84

\section*{Designing Advanced Filters in FDATool}

Adding the Filter Design Toolbox to your tool suite adds a number of filter design techniques to FDATool. Use the new filter responses to develop filters that meet more complex requirements than those you can design in the Signal Processing Toolbox. While the designs in FDATool are available as command line functions, the graphical user interface of FDATool makes the design process more clear and easier to accomplish.

As you select a response type, the options in the panels to the right in FDATool change to let you set the values that define your filter. You also see that the analysis area includes a diagram (called a design mask)that describes the options for the filter response you choose.

By reviewing the mask you can see how the options are defined and how to use them. While this is usually straightforward for lowpass or highpass filter responses, setting the options for the arbitrary response types or the peaking/notching filters is more complicated. Having the masks leads you to your result more easily.

Changing the filter design method changes the available response type options. Similarly, the response type you select may change the filter design methods you can choose.

\section*{Example-Design a Notch Filter}

Notch filters aim to remove one or a few frequencies from a broader spectrum. You must specify the frequencies to remove by setting the filter design options in FDATool appropriately:
- Response Type
- Design Method
- Frequency Specifications
- Magnitude Specifications

Here is how you design a notch filter that removes concert A ( 440 Hz ) from an input musical signal spectrum.

1 Select Notching from the Differentiator list in Response Type.
2 Select IIR in Filter Design Method and choose Single Notch from the list.

3 For the Frequency Specifications, set Units to Hz and Fs, the full scale frequency, to 10000.

4 Set the location of the center of the notch, in either normalized frequency or Hz . For the notch center at 440 Hz , enter 440 .

5 To shape the notch, enter the bandwidth, bw, to be 40.
6 Leave the Magnitude Specification in dB (the default) and leave Apass as 1 .

7 Click Design Filter.
FDATool computes the filter coefficients and plots the filter magnitude response in the analysis area for you to review.

When you design a single notch filter, you do not have the option of setting the filter order-the Filter Order options are disabled.
Your filter should look about like this:


For more information about a design method, refer to the online Help system. For instance, to get further information about the \(\mathbf{Q}\) setting for the notch filter in FDATool, enter
```

doc iirnotch

```
at the prompt. This opens the Help browser and displays the reference page for function iirnotch.

Designing other filters follows a similar procedure, adjusting for different design specification options as each design requires.

Any one of the designs may be quantized in FDATool and analyzed with the available analyses on the Analysis menu. For more general information about FDATool, such as the user interface and areas, refer to the FDATool documentation in the Signal Processing Toolbox documentation. One way to do this is to enter
doc signal/fdatool
at the prompt. The signal qualifier is necessary to open the reference page in the Signal Processing Toolbox documentation, rather than the page in the Filter Design Toolbox documentation. You might also look at the general section on FDATool in the Signal Processing Toolbox User's Guide.

\section*{Switching FDATool to Quantization Mode}

You use the quantization mode in FDATool to quantize filters. Quantization represents the fourth operating mode for FDATool, along with the filter design, filter transformation, and import modes. To switch to quantization mode, open FDATool from the MATLAB command prompt by entering
```

fdatool

```

You see FDATool in this configuration.

\section*{- A Filter Design \& Analysis Tool - [untitited.fda]}

Eile Edit Analysis Targets view Window Help



When FDATool opens, click the Set Quantization Parameters button on the side bar. FDATool switches to quantization mode and you see the following panel at the bottom of FDATool, with the default double-precision option shown for Filter arithmetic.


The Filter arithmetic option lets you quantize filters and investigate the effects of changing quantization settings. To enable the quantization settings in FDATool, select Fixed-point from the Filter Arithmetic.

The quantization options appear in the lower panel of FDATool. You see tabs that access various sets of options for quantizing your filter.


You use the following tabs in the dialog to perform tasks related to quantizing filters in FDATool:
- Coefficients provides access the settings for defining the coefficient quantization. This is the default active panel when you switch FDATool to quantization mode without a quantized filter in the tool. When you import a fixed-point filter into FDATool, this is the active pane when you switch to quantization mode.
- Input/Output switches FDATool to the options for quantizing the inputs and outputs for your filter.
- Filter Internals lets you set a variety of options for the arithmetic your filter performs, such as how the filter handles the results of multiplication operations or how the filter uses the accumulator.
- Apply-applies changes you make to the quantization parameters for your filter.

\section*{Quantizing Filters in the Filter Design and Analysis Tool}

Quantized filters have properties that define how they quantize data you filter. Use the Set Quantization Parameters dialog in FDATool to set the properties. Using options in the Set Quantization Parameters dialog, FDATool lets you perform a number of tasks:
- Create a quantized filter from a double-precision filter after either importing the filter from your workspace, or using FDATool to design the prototype filter.
- Create a quantized filter that has the default structure (Direct form II transposed) or any structure you choose, and other property values you select.
- Change the quantization property values for a quantized filter after you design the filter or import it from your workspace.

When you click Set Quantization Parameters, and then change Filter Arithmetic to Fixed-point, the quantized filter panel opens in FDATool, with the coefficient quantization options set to default values. In this image, you see the options for an SOS filter. Some of the options shown apply only to SOS filters. Other filter structures present a subset of the options you see here.


\section*{Coefficients Options}

To let you set the properties for the filter coefficients that make up your quantized filter, FDATool lists options for numerator word length (and denominator word length if you have an IIR filter). The following table lists each coefficients option and a short description of what the option setting does in the filter.
\begin{tabular}{l|l|l}
\hline Option Name & When Used & Description \\
\hline Numerator Word Length & FIR filters only & \begin{tabular}{l} 
Sets the word length used to represent \\
numerator coefficients in FIR filters.
\end{tabular} \\
\hline Numerator Frac. Length & FIR/IIR & \begin{tabular}{l} 
Sets the fraction length used to \\
interpret numerator coefficients in FIR \\
filters.
\end{tabular} \\
\hline Numerator Range (+/-) & FIR/IIR & \begin{tabular}{l} 
Lets you set the range the numerators \\
represent. You use this instead of the \\
Numerator Frac. Length option to set \\
the precision. When you enter a value x, \\
the resulting range is -x to x. Range \\
must be a positive integer.
\end{tabular} \\
\hline Coefficient Word Length & IIR filters only & \begin{tabular}{l} 
Sets the word length used to represent \\
both numerator and denominator \\
coefficients in IIR filters. You cannot set \\
different word lengths for the numerator \\
and denominator coefficients.
\end{tabular} \\
\hline Denominator Frac. Length & IIR filters & \begin{tabular}{l} 
Sets the fraction length used to \\
interpret denominator coefficients in IIR \\
filters.
\end{tabular} \\
\hline Denominator Range (+/-) & IIR filters & \begin{tabular}{l} 
Lets you set the range the denominator \\
coefficients represent. You use this \\
instead of the Denominator Frac.
\end{tabular} \\
Length option to set the precision. \\
When you enter a value x, the resulting \\
range is -x to x. Range must be a \\
positive integer.
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Option Name } & \text { When Used } & \text { Description } \\ \hline \begin{array}{l}\text { Best-precision fraction } \\ \text { lengths }\end{array} & \text { All filters } & \begin{array}{l}\text { Directs FDATool to select the fraction } \\ \text { lengths for numerator (and denominator } \\ \text { where available) values to maximize the } \\ \text { filter performance. Selecting this option } \\ \text { disables all of the fraction length options } \\ \text { for the filter. }\end{array} \\ \hline \text { Scale Values frac. length } & \text { SOS IIR filters } & \begin{array}{l}\text { Sets the fraction length used to } \\ \text { interpret the scale values in SOS filters. }\end{array} \\ \hline \text { Scale Values range (+/-) } & \text { SOS IIR filters } & \begin{array}{l}\text { Lets you set the range the SOS scale } \\ \text { values represent. You use this with SOS } \\ \text { filters to adjust the scaling used } \\ \text { between filter sections. Setting this } \\ \text { value disables the Scale Values frac. } \\ \text { length option. When you enter a value } \\ \text { x, the resulting range is -x to x. Range }\end{array} \\ \text { must be a positive integer. }\end{array}\right\}\)

\section*{Input/Output Options}

The options that specify how the quantized filter uses input and output values are listed in the table below. In the following picture you see the options for an SOS filter.

\begin{tabular}{l|l|l}
\hline Option Name & When Used & Description \\
\hline Input Word Length & All filters & \begin{tabular}{l} 
Sets the word length used to represent \\
the input to a filter.
\end{tabular} \\
\hline Input fraction length & All filters & \begin{tabular}{l} 
Sets the fraction length used to interpret \\
input values to filter.
\end{tabular} \\
\hline Input range (+/-) & All filters & \begin{tabular}{l} 
Lets you set the range the inputs \\
represent. You use this instead of the \\
Input fraction length option to set the \\
precision. When you enter a value x, the \\
resulting range is -x to x. Range must be \\
a positive integer.
\end{tabular} \\
\hline Output word length & All filters & \begin{tabular}{l} 
Sets the word length used to represent \\
the output from a filter.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Option Name & When Used & Description \\
\hline Avoid overflow & All filters & \begin{tabular}{l} 
Directs the filter to set the fraction \\
length for the input to prevent the \\
output values from exceeding the \\
available range as defined by the word \\
length. Clearing this option lets you set \\
Output fraction length.
\end{tabular} \\
\hline Output fraction length & All filters & All filters \\
\hline Output range (+/-) & \begin{tabular}{l} 
Sets the fraction length used to \\
represent output values from a filter.
\end{tabular} \\
\hline Stage input word length & SOS filters only & \begin{tabular}{l} 
Lets you set the range the outputs \\
represent. You use this instead of the \\
Output fraction length option to set the \\
precision. When you enter a value x, the \\
resulting range is -x to x. Range must be \\
a positive integer.
\end{tabular} \\
\hline Avoid overflow & \begin{tabular}{l} 
Sets the word length used to represent \\
the input to an SOS filter section.
\end{tabular} \\
\hline SOS filters only & \begin{tabular}{l} 
Directs the filter to use a fraction length \\
for stage inputs that prevents overflows \\
in the values. When you clear this \\
option, you can set Stage input fraction \\
length.
\end{tabular} \\
\hline Stage input fraction length & SOS filters only & \begin{tabular}{l} 
Sets the fraction length used to \\
represent input to a section of an SOS \\
filter.
\end{tabular} \\
\hline Stage output word length & SOS filters only & \begin{tabular}{l} 
Sets the word length used to represent \\
the output from an SOS filter section.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|}
\hline Option Name & When Used \\
\hline Avoid overflow & SOS filters only
\end{tabular} \begin{tabular}{l} 
Directs the filter to use a fraction length \\
for stage outputs that prevents overflows \\
in the values. When you clear this \\
option, you can set Stage output \\
fraction length.
\end{tabular}

\section*{Filter Internals Options}

The options that specify how the quantized filter performs arithmetic operations are listed in the table after the figure. In the following picture you see the options for an SOS filter.

\(\left.\begin{array}{l|l|l}\hline \text { Option } & \begin{array}{l}\text { Equivalent Filter Property } \\ \text { (using wildcard *) }\end{array} & \text { Description } \\ \hline \text { Round towards } & \text { RoundMode } & \begin{array}{l}\text { Sets the mode the filter uses to } \\ \text { quantize numeric values when the } \\ \text { values lie between representable } \\ \text { values for the data format (word and } \\ \text { fraction lengths). Choose from one of: }\end{array} \\ & & \text { - Ceiling-round up to the nearest } \\ \text { allowable quantized value. }\end{array}\right\}\)
\begin{tabular}{l|l|l}
\hline Option & \begin{tabular}{l} 
Equivalent Filter Property \\
(using wildcard *)
\end{tabular} & Description \\
\hline Overflow Mode & OverflowMode & \begin{tabular}{l} 
Sets the mode used to respond to \\
overflow conditions in fixed-point \\
arithmetic. Choose from either \\
saturate (limit the output to the \\
largest positive or negative \\
representable value) or wrap (set \\
overflowing values to the nearest \\
representable value using modular \\
arithmetic.
\end{tabular} \\
\hline Filter Product (Multiply) & ProductMode & \begin{tabular}{l} 
Determines how the filter handles the \\
output of product operations. Choose \\
from full precision (FullPrecision), \\
or whether to keep the most \\
significant bit (KeepMSB) or least \\
significant bit (KeepLSB) in the result \\
when you need to shorten the word \\
length. Specify all lets you set the \\
fraction length applied to the results
\end{tabular} \\
of product operations.
\end{tabular}\(|\)\begin{tabular}{l} 
Mode \\
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Option } & \begin{array}{l}\text { Equivalent Filter Property } \\ \text { (using wildcard *) }\end{array} & \text { Description } \\ \hline \text { Filter Sum Options } & \text { AccumMode } & \begin{array}{l}\text { Determines how the accumulator } \\ \text { outputs stored values. Choose from } \\ \text { full precision (FullPrecision), or } \\ \text { whether to keep the most significant } \\ \text { bits (KeepMSB) or least significant bits } \\ \text { (KeepLSB) when output results need } \\ \text { shorter word length than the } \\ \text { accumulator supports. To let you set } \\ \text { the word length and the precision } \\ \text { (the fraction length) used by the }\end{array} \\ \text { output from the accumulator, set this } \\ \text { to Specify all. }\end{array}\right\}\)
\begin{tabular}{lll}
\hline Option & \begin{tabular}{l} 
Equivalent Filter Property \\
(using wildcard *)
\end{tabular} & Description \\
\hline Avoid overflow & None & \begin{tabular}{l} 
Prevent overflows in arithmetic \\
calculations by setting the fraction \\
length appropriately.
\end{tabular} \\
\hline State fraction length & *StateFracLength & \begin{tabular}{l} 
Lets you set the fraction length \\
applied to interpret the filter states. \\
Applied to both numerator- and \\
denominator-related states
\end{tabular} \\
\hline
\end{tabular}

\section*{Filter Internals Options for CIC Filters}

CIC filters use slightly different options for specifying the fixed-point arithmetic in the filter. The next table shows and describes the options.

\section*{Example-Quantize Double-Precision Filters}

When you are quantizing a double-precision filter by switching to fixed-point or single-precision floating point arithmetic, follow these steps.

1 Click Set Quantization Parameters to display the Set Quantization Parameters pane in FDATool.

2 Select Single-precision floating point or Fixed-point from Filter arithmetic.

When you select one of the optional arithmetic settings, FDATool quantizes the current filter according to the settings of the options in the Set Quantization Parameter panes, and changes the information displayed in the analysis area to show quantized filter data.

3 In the quantization panes, set the options for your filter. Set options for Coefficients, Input/Output, and Filter Internals.

4 Click Apply.
FDATool quantizes your filter using your new settings.

5 Use the analysis features in FDATool to determine whether your new quantized filter meets your requirements.

\section*{Example-Change the Quantization Properties of Quantized Filters}

When you are changing the settings for the quantization of a quantized filter, or after you import a quantized filter from your MATLAB workspace, follow these steps to set the property values for the filter:

1 Verify that the current filter is quantized.
2 Click Set Quantization Parameters to display the Set Quantization Parameters panel.

3 Review and select property settings for the filter quantization: Coefficients, Input/Output, and Filter Internals. Settings for options on these panes determine how your filter quantizes data during filtering operations.

4 Click Apply to update your current quantized filter to use the new quantization property settings from Step 3.

5 Use the analysis features in FDATool to determine whether your new quantized filter meets your requirements.

\section*{Analyzing Filters with a Noise-Based Method}

One technique for estimating the frequency response for quantized filters is the magnitude response estimate. FDATool offers this noise-based method as a filter analysis tool accessible from the toolbar.

\section*{Using the Magnitude Response Estimate Method}

After you design and quantize your filter, the Magnitude Response Estimate option on the Analysis menu lets you apply the noise loading method to your filter. When you select Analysis -> Magnitude Response Estimate from the menubar, FDATool immediately starts the Monte Carlo trials that form the basis for the method and runs the analysis, ending by displaying the results in the analysis area in FDATool.

With the noise-based method, you estimate the complex frequency response for your filter as determined by applying a noise- like signal to the filter input. Magnitude Response Estimate uses the Monte Carlo trials to generate a noise signal that contains complete frequency content across the range 0 to Fs. The first time you run the analysis, magnitude response estimate uses default settings for the various conditions that define the process, such as the number of test points and the number of trials.
\begin{tabular}{|l|l|l}
\hline Analysis Parameter & Default Setting & Description \\
\hline Number of Points & 512 & \begin{tabular}{l} 
Number of equally spaced points \\
around the upper half of the \\
unit circle.
\end{tabular} \\
\hline Frequency Range & 0 to Fs/2 & \begin{tabular}{l} 
Frequency range of the plot \\
x-axis.
\end{tabular} \\
\hline Frequency Units & Hz & \begin{tabular}{l} 
Units for specifying the \\
frequency range.
\end{tabular} \\
\hline \begin{tabular}{l} 
Sampling \\
Frequency
\end{tabular} & 48000 & Inverse of the sampling period. \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Analysis Parameter & Default Setting & Description \\
\hline Frequency Scale & dB & \begin{tabular}{l} 
Units used for the y-axis display \\
of the output.
\end{tabular} \\
\hline \begin{tabular}{l} 
Normalized \\
Frequency
\end{tabular} & Off & \begin{tabular}{l} 
Use normalized frequency for \\
the display.
\end{tabular} \\
\hline
\end{tabular}

After your first analysis run ends, open the Analysis Parameters dialog and adjust your settings appropriately, such as changing the number of trials or number of points.

To open the Analysis Parameters dialog, use either of the next procedures when you have a quantized filter in FDATool:
- Select Analysis -> Analysis Parameters from the menu bar
- Right-click in the filter analysis area and select Analysis Parameters from the context menu

Whichever option you choose opens the dialog as shown in the figure. Notice that the settings for the options reflect the defaults.


\section*{Example-Noise Method Applied to a Filter}

To demonstrate the magnitude response estimate method, start by creating a quantized filter. For this example, use FDATool to design a sixth-order Butterworth IIR filter.

\section*{To Use Noise-Based Analysis in FDATool}

1 Enter fdatool at the MATLAB prompt to launch FDATool.
2 Under Response Type, select Highpass.
3 Select IIR in Design Method. Then select Butterworth.
4 To set the filter order to 6, select Specify order under Filter Order. Enter 6 in the text box.

5 Click Design Filter.
In FDATool, the analysis area changes to display the magnitude response for your filter.

6 To generate the quantized version of your filter, using default quantizer settings, click on the side bar.

FDATool switches to quantization mode and displays the quantization panel.

7 From Filter arithmetic, select fixed-point.
Now the analysis areas shows the magnitude response for both filters-your original filter and the fixed-point arithmetic version.

8 Finally, to use noise-based estimation on your quantized filter, select Analysis -> Magnitude Response Estimate from the menubar.

FDATool runs the trial, calculates the estimated magnitude response for the filter, and displays the result in the analysis area as shown in this figure.

Magnitude Response Estimate


In the figure you see the magnitude response as estimated by the analysis method.

\section*{To View the Noise Power Spectrum}

When you use the noise method to estimate the magnitude response of a filter, FDATool simulates and applies a spectrum of noise values to test your filter response. While the simulated noise is essentially white, you might want to see the actual spectrum that FDATool used to test your filter.

From the Analysis menu bar option, select Round-off Noise Power Spectrum. In the analysis area in FDATool, you see the spectrum of the noise used to estimate the filter response. The details of the noise spectrum, such as the range and number of data points, appear in the Analysis Parameters dialog.

\section*{To Change Your Noise Analysis Parameters}

In "Example-Noise Method Applied to a Filter", you used synthetic white noise to estimate the magnitude response for a fixed-point highpass Butterworth filter. Since you ran the estimate only once in FDATool, your noise analysis used the default analysis parameters settings shown in "Using the Magnitude Response Estimate Method".

To change the settings, follow these steps after the first time you use the noise estimate on your quantized filter.

1 With the results from running the noise estimating method displayed in the FDATool analysis area, select Analysis->Analysis Parameters from the menubar.

To give you access to the analysis parameters, the Analysis Parameters dialog opens as shown here (with default settings).


2 To use more points in the spectrum to estimate the magnitude response, change Number of Points to 1024 and click OK to run the analysis.

FDATool closes the Analysis Parameters dialog and reruns the noise estimate, returning the results in the analysis area.

To rerun the test without closing the dialog, press Enter after you type your new value into a setting, then click Apply. Now FDATool runs the test without closing the dailog. When you want to try many different settings for the noise-based analysis, this is a useful shortcut.

\section*{Comparing the Estimated and Theoretical Magnitude Responses}

An important measure of the effectiveness of the noise method for estimating the magnitude response of a quantized filter is to compare the estimated response to the theoretical response.

One way to do this comparison is to overlay the theoretical response on the estimated response. While you have the Magnitude Response Estimate displaying in FDATool, select Analysis->Overlay Analysis from the menu bar. Then select Magnitude Response to show both response curves plotted together in the analysis area.

\section*{Choosing Quantized Filter Structures}

FDATool lets you change the structure of any quantized filter. Use the Convert structure option to change the structure of your filter to one that meets your needs.

To learn about changing the structure of a filter in FDATool, refer to "Converting to a New Structure" in your Signal Processing Toolbox documentation.

\section*{Converting the Structure of a Quantized Filter}

You use the Convert structure option to change the structure of filter. When the Source is Designed(Quantized) or Imported(Quantized), Convert structure lets you recast the filter to one of the following structures:
- "Direct Form II Transposed Filter Structure" on page 7-52
- "Direct Form I Transposed Filter Structure" on page 7-48
- "Direct Form II Filter Structure" on page 7-49
- "Direct Form I Filter Structure" on page 7-47
- "Direct Form Finite Impulse Response (FIR) Filter Structure" on page 7-57
- "Direct Form FIR Transposed Filter Structure" on page 7-58
- "Lattice Autoregressive Moving Average (ARMA) Filter Structure" on page 7-64
- "dfilt.calattice" on page 8-305
- "dfilt.calatticepc" on page 8-308
- "Direct Form Symmetric FIR Filter Structure (Any Order)" on page 7-66

Starting from any quantized filter, you can convert to one of the following representation:
- Direct form I
- Direct form II
- Direct form I transposed
- Direct form II transposed
- Lattice ARMA

Additionally, FDATool lets you do the following conversions:
- Minimum phase FIR filter to Lattice MA minimum phase
- Maximum phase FIR filter to Lattice MA maximum phase
- Allpass filters to Lattice allpass

Refer to "FilterStructure" on page 7-43 for details about each of these structures.

\section*{Converting Filters to Second-Order Sections Form}

To learn about using FDATool to convert your quantized filter to use second-order sections, refer to "Converting to Second-Order Sections" in your Signal Processing Toolbox documentation. You might notice that filters you design in FDATool, rather than filters you imported, are implemented in SOS form.

\section*{To View Filter Structures in FDATool}

To open the demonstration, click Help -> Show filter structures. After the Help browser opens, you see the reference page for the current filter. You find the filter structure signal flow diagram on this reference page, or you can navigate to reference pages for other filter.

\section*{Scaling Second-Order Section Filters}

FDATool provides the ability to scale SOS filters after you create them. Using options on the Reordering and Scaling Second-Order Sections dialog, FDATool scales either or both the filter numerators and filter scale values according to your choices for the scaling options.

\begin{tabular}{ll}
\hline Parameter & Description and Valid Value \\
\hline Scale & \begin{tabular}{l} 
Apply any scaling options to the filter. \\
Select this when you are reordering your \\
SOS filter and you want to scale it at the \\
same time. Or when you are scaling your \\
filter, with or without reordering. Scaling \\
is disabled by default.
\end{tabular} \\
\hline No Overflow-High SNR & \begin{tabular}{l} 
Lets you set whether scaling favors \\
reducing arithmetic overflow in the filter \\
slider maximizing the signal-to-noise ratio \\
(SNR)) at the filter output. Moving the
\end{tabular} \\
& \begin{tabular}{l} 
slider to the right increases the \\
emphasis on SNR at the expense of \\
possible overflows.
\end{tabular} \\
& \begin{tabular}{l} 
The markings indicate the P-norm \\
applied to achieve the desired result in
\end{tabular} \\
& \begin{tabular}{l} 
SNR or overflow protection. For more \\
information about the P-norm settings, \\
refer to norm for details.
\end{tabular} \\
\hline Maximum Numerator & \begin{tabular}{l} 
Maximum allowed value for numerator \\
coefficients after scaling.
\end{tabular} \\
\hline Numerator Constraint & \begin{tabular}{l} 
Specifies whether and how to constrain \\
numerator coefficient values. Options \\
are none, normalize, power of 2, and
\end{tabular} \\
unit. Choosing none lets the scaling use \\
any scale value for the numerators by \\
removing any constraints on the \\
numerators. Normalize. The power of 2 \\
option forces scaling to use numerator \\
values that are powers of 2, such as 2 or \\
0.5.
\end{tabular}
\(\left.\begin{array}{ll}\hline \text { Parameter } & \text { Description and Valid Value } \\ \hline \text { Overflow Mode } & \begin{array}{l}\text { Sets the way the filter handles } \\ \text { arithmetic overflow situations during } \\ \text { scaling. Choose from either saturate } \\ \text { (limit the output to the largest positive } \\ \text { or negative representable value) or wrap } \\ \text { (set overflowing values to the nearest } \\ \text { representable value using modular } \\ \text { arithmetic. }\end{array} \\ \hline \text { Scale Value Constraint } & \begin{array}{l}\text { Specify whether to constrain the filter } \\ \text { scale values, and how to constrain them. } \\ \text { Valid options are none, power of 2, and } \\ \text { unit. Choosing unit for the constraint } \\ \text { disables the Max. Scale Value setting } \\ \text { and limits scale values to one. }\end{array} \\ & \begin{array}{l}\text { Power of 2 constrains the scale values } \\ \text { to be powers of 2, such as 2 or 0.5, while } \\ \text { none removes any constraint on the scale } \\ \text { values. }\end{array} \\ \hline \text { Max. Scale Value } & \begin{array}{l}\text { Sets the maximum allowed scale values. } \\ \text { SOS filter scaling applies the Max. Scale } \\ \text { Value limit only when you set Scale } \\ \text { Value Constraint to a value other than }\end{array} \\ \text { unit (the default setting). Note that }\end{array}\right\}\)

Various combinations of settings let you scale filter numerators without changing the scale values, or adjust the filter scale values without changing the numerators. There is no scaling control for denominators.

\section*{Example-Scale An SOS Filter}

Start the process by designing a lowpass elliptical filter in FDATool.
1 Launch FDATool.
2 In Response Type, select Lowpass.
3 In Design Method, select IIR and Elliptic from the IIR design methods list.
4 Select Minimum Order for the filter.
5 Switch the frequency units by choosing Normalized (0 to 1) from the Units list.

6 To set the passband specifications, enter 0.45 for wpass and 0.55 for wstop. Finally, in Magnitude Specifications, set Astop to 60.

7 Click Design Filter to design the filter.
After FDATool finishes designing the filter, you see the following plot and settings in the tool.


You kept the Options setting for Match exactly as both, meaning the filter design matches the specification for the passband and the stopband.

8 To switch to scaling the filter, select Edit—>Reorder and Scale Second-Order Sections from the menu bar.

Your selection opens the Reordering and Scaling Second-Order Sections dialog shown here.


9 To see the filter coefficients, return to FDATool and select Filter Coefficients from the Analysis menu. FDATool displays the coefficients and scale values in FDATool.
```

_ Filter Coefficients

```
\begin{tabular}{|llllll|l|}
\hline Sos matrix: & l. & & \\
\hline 1 & 1.729397029770226 & 1 & 1 & -1.087129242767174 & 0.418972372994757 \\
1 & 0.748473366528337 & 1 & 1 & -0.590169079330449 & 0.709160377407721 \\
1 & 0.318456238149725 & 1 & 1 & -0.304359210053485 & 0.922024429931248 \\
Scale Factors: & & & & \\
0.079303838869308 & & & & \\
0.407131941573331 & & & & \\
0.697733773559928 & & & \\
1.000000000000000 & & &
\end{tabular}

With the coefficients displayed you can see the effects of scaling your filter directly in the scale values and filter coefficients.
Now try scaling the filter in a few different ways. First scale the filter to maximize the SNR.

1 Return to the Reordering and Scaling Second-Order Sections dialog and select None for Reordering in the left pane. This prevents FDATool from reordering the filter sections when you rescale the filter.

2 Move the No Overflow-High SNR slider from No Overflow to High SNR.
3 Click Apply to scale the filter and leave the dialog open.
After a few moments, FDATool updates the coefficients displayed so you see the new scaling, as shown here.

\section*{Coefficients}


All of the scale factors are now 1, and the SOS matrix of coefficients shows that none of the numerator coefficients are 1 and the first denominator coefficient of each section is 1 .

4 Click Revert to Original Filter to restore the filter to the original settings for scaling and coefficients.

\section*{Reordering the Sections of Second-Order Section Filters}

FDATool design most discrete-time filters in second-order sections. Generally, SOS filters resist the effects of quantization changes when you create fixed-point filters. After you have a second-order section filter in FDATool, either one you designed in the tool, or one you imported, FDATool provides the capability to change the order of the sections that compose the filter.

Any SOS filter in FDATool allows reordering of the sections.

\section*{Switching FDATool to Reorder Filters}

To reorder the sections of a filter, you access the Reorder and Scaling of Second-Order Sections dialog in FDATool.

With your SOS filter in FDATool, select
Edit—Reorder and Scale Second-Order Sections from the menu bar. FDATool returns the reordering dialog shown here with the default settings.


\section*{Controls on the Reordering and Scaling of Second-Order Sections Dialog}

In this dialog, the left-hand side contains options for reordering SOS filters. On the right you see the scaling options. These are independent-reordering your filter does not require scaling (note the Scale option) and scaling does not require that you reorder your filter (note the None option under Reordering). For more about scaling SOS filters, refer to "Scaling Second-Order Section Filters" on page 6-30 and to scale in the reference section.

Reordering SOS filters involves using the options in the Reordering and Scaling of Second-Order Sections dialog. The following table lists each reorder option and provides a description of what the option does.
\begin{tabular}{l|l}
\hline Control Option & Description \\
\hline Auto & \begin{tabular}{l} 
Reorders the filter sections to minimize the \\
output noise power of the filter. Note that \\
different ordering applies to each specification \\
type, such as lowpass or highpass. Automatic \\
ordering adapts to the specification type of your \\
filter.
\end{tabular} \\
\hline None & \begin{tabular}{l} 
Does no reordering on your filter. Selecting \\
None lets you scale your filter without \\
applying reordering at the same time. When \\
you access this dialog with a current filter, this \\
is the default setting-no reordering is applied.
\end{tabular} \\
\hline \begin{tabular}{l} 
Least selective section \\
to most selective \\
section
\end{tabular} & \begin{tabular}{l} 
Rearranges the filter sections so the least \\
restrictive (lowest Q) section is the first section \\
and the most restrictive (highest Q) section is \\
the last section.
\end{tabular} \\
\hline \begin{tabular}{l} 
Most selective section \\
to least selective \\
section
\end{tabular} & \begin{tabular}{l} 
Rearranges the filter sections so the most \\
restrictive (highest Q) section is the first \\
section and the least restrictive (lowest Q) \\
section is the last section.
\end{tabular} \\
\hline Custom reordering & \begin{tabular}{l} 
Lets you specify the section ordering to use by \\
enabling the Numerator Order and
\end{tabular} \\
\hline Numerator Order & \begin{tabular}{l} 
Denominator Order options
\end{tabular} \\
\hline Specify new ordering for the sections of your \\
SOS filter. Enter a vector of the indices of the \\
sections in the order in which to rearrange \\
them. For example, a filter with five sections \\
has indices 1, 2, 3, 4, and 5. To switch the \\
second and fourth sections, the vector would be \\
[1,4,3,2,5].
\end{tabular}
\(\left.\begin{array}{l|l}\hline \text { Control Option } & \text { Description } \\ \hline \text { Use Numerator Order } & \begin{array}{l}\text { Rearranges the denominators in the order } \\ \text { assigned to the numerators. }\end{array} \\ \hline \text { Specify } & \begin{array}{l}\text { Lets you specify the order of the denominators, } \\ \text { rather than using the numerator order. Enter } \\ \text { a vector of the indices of the sections to specify } \\ \text { the order of the denominators to use. For } \\ \text { example, a filter with five sections has indices } \\ 1,2,3,4, \text { and } 5 . \text { To switch the second and } \\ \text { fourth sections, the vector would be [1,4,3,2,5]. }\end{array} \\ \hline \text { Use Numerator Order } & \begin{array}{l}\text { Reorders the scale values according to the } \\ \text { order of the numerators. }\end{array} \\ \hline \text { Specify } & \begin{array}{l}\text { Lets you specify the order of the scale values, } \\ \text { rather than using the numerator order. Enter } \\ \text { a vector of the indices of the sections to specify } \\ \text { the order of the denominators to use. For } \\ \text { example, a filter with five sections has indices }\end{array} \\ 1,2,3,4, \text { and 5. To switch the second and } \\ \text { fourth sections, the vector would be [1,4,3,2,5]. }\end{array}\right\}\)

\section*{Example-Reorder an SOS Filter}

With FDATool open and a second-order filter as the current filter, you use the following process to access the reordering capability and reorder you filter. Start by launching FDATool from the command prompt.

1 Enter fdatool at the command prompt to launch FDATool.
2 Design a lowpass Butterworth filter with order 10 and the default frequency specifications by entering the following settings:
- Under Response Type select Lowpass.
- Under Design Method, select IIR and Butterworth from the list.
- Specify the order equal to 10 in Specify order under Filter Order.
- Keep the default Fs and Fc values in Frequency Specifications.

\section*{3 Click Design Filter.}

FDATool design the Butterworth filter and returns your filter as a Direct-Form II filter implemented with second-order sections. You see the specifications in the Current Filter Information area.

With the second-order filter in FDATool, reordering the filter uses the Reordering and Scaling of Second-Order Sections feature in FDATool (also available in Filter Visualization Tool, fvtool).

4 To reorder your filter, select Edit—>Reorder and Scale Second-Order Sections from the FDATool menus. FDATool opens the following dialog that controls reordering of the sections of your filter.


Now you are ready to reorder the sections of your filter. Note that FDATool performs the reordering on the current filter in the session.

\section*{Use Least Selective to Most Selective Section Reordering}

To let FDATool reorder your filter so the least selective section is first and the most selective section is last, perform the following steps in the Reordering and Scaling of Second-Order Sections dialog.

1 In Reordering, select Least selective section to most selective section.
2 To prevent filter scaling at the same time, clear Scale in Scaling.
3 In FDATool, select View \(\rightarrow\) SOS View from the menu bar so you see the sections of your filter displayed in FDATool.

4 In the SOS View dialog, select Individual sections. Making this choice configures FDATool to show the magnitude response curves for each section of your filter in the analysis area.

5 Back in the Reordering and Scaling of Second-Order Sections dialog, click Apply to reorder your filter according to the Qs of the filter sections, and keep the dialog open. In response, FDATool presents the responses for each filter section (there should be five sections) in the analysis area.

In the next two figures you can compare the ordering of the sections of your filter. In the first figure, your original filter sections appear. In the second figure, the sections have been rearranged from least selective to most selective.



You see what reordering does, although the result is a bit subtle. Now try custom reordering the sections of your filter or using the most selective to least selective reordering option.

\section*{Viewing SOS Filter Sections}

Since you can design and reorder the sections of SOS filters, FDATool provides the ability to view the filter sections in the analysis area-SOS View. Once you have a second-order section filter as your current filter in FDATool, you turn on the SOS View option to see the filter sections individually, or cumulatively, or even only some of the sections. Enabling SOS View puts FDATool in a mode where all second-order section filters display sections until you disable the SOS View option. SOS View mode applies to any analysis you display in the analysis area. For example, if you configure FDATool to show the phase responses for filters, enabling SOS View means FDATool displays the phase response for each section of SOS filters.

\section*{Controls on the SOS View Dialog}

SOS View uses a few options to control how FDATool displays the sections, or which sections to display. When you select View \(\rightarrow\) SOS View from the FDATool menu bar, you see this dialog containing options to configure SOS View operation.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{4 Sos view} & \multicolumn{2}{|r|}{- - \(\square^{\text {a }}\) x} \\
\hline \multicolumn{5}{|l|}{[ Sos View} \\
\hline \multicolumn{5}{|l|}{Coverall fiter} \\
\hline \multicolumn{5}{|l|}{C Individual sections} \\
\hline \multicolumn{5}{|l|}{C Cumulative sections} \\
\hline \multicolumn{5}{|l|}{\(\bigcirc\) User defined} \\
\hline \multicolumn{5}{|l|}{\{1, 1:2} \\
\hline \multicolumn{5}{|l|}{Г Use secondary-scaling points} \\
\hline OK & Cancel & Help & Apply & \\
\hline
\end{tabular}

By default, SOS View shows the overall response of SOS filters. Options in the SOS View dialog let you change the display. This table lists all the options and describes the effects of each.
\begin{tabular}{l|l}
\hline Option & Description \\
\hline Overall Filter & \begin{tabular}{l} 
This is the familiar display in FDATool. \\
For a second-order section filter you see \\
only the overall response rather than the \\
responses for the individual sections. This \\
is the default configuration.
\end{tabular} \\
\hline Individual sections & \begin{tabular}{l} 
When you select this option, FDATool \\
displays the response for each section as a \\
curve. If your filter has five sections you \\
see five response curves, one for each \\
section, and they are independent.
\end{tabular} \\
& Compare to Cumulative sections.
\end{tabular}

\section*{Option \\ Description}

User defined
Here you define which sections to display, and in which order. Selecting this option enables the text box where you enter a cell array of the indices of the filter sections.

Each index represents one section.
Entering one index plots one response. Entering something like \(\{1: 2\}\) plots the combined response of sections 1 and 2 . If you have a filter with four sections, the entry \(\{1: 4\}\) plots the combined response for all four sections, whereas \(\{1,2,3,4\}\) plots the response for each section.

Note that after you enter the cell array, you need to click OK or Apply to update the FDATool analysis area to the new SOS View configuration.

\section*{Use secondary-scaling points}

This directs FDATool to use the secondary scaling points in the sections to determine where to split the sections. This option applies only when the filter is a df2sos or df1tsos filter. For these structures, the secondary scaling points refer to the scaling locations between the recursive and the nonrecursive parts of the section (the "middle" of the section). By default, secondary -scaling points is not enabled.

You use this with the Cumulative sections option only.

\section*{Example-View the Sections of SOS Filters}

After you design or import an SOS filter in to FDATool, the SOS view option lets you see the per section performance of your filter. Enabling SOS View from
the View menu in FDATool configures the tool to display the sections of SOS filters whenever the current filter is an SOS filter.

These next steps demonstrate using SOS View to see your filter sections displayed in FDATool.

1 Launch FDATool.
2 Create a lowpass SOS filter using the Butterworth design method. Specify the filter order to be 6 . Using a low order filter makes seeing the sections more clear.

3 Design your new filter by clicking Design Filter.
FDATool design your filter and show you the magnitude response in the analysis area. In Current Filter Information you see the specifications for your filter. You should have a sixth-order Direct-Form II, Second-Order Sections filter with three sections.

4 To enable SOS View, select View \(\rightarrow\) SOS View from the menu bar.
Now you see the SOS View dialog in FDATool. Options here let you specify how to display the filter sections.


By default the analysis area in FDATool shows the overall filter response, not the individual filter section responses. This dialog lets you change the display configuration to see the sections.

5 To see the magnitude responses for each filter section, select Individual sections.

6 Click Apply to update FDATool to display the responses for each filter section. The analysis area changes to show you something like the following figure.


If you switch FDATool to display filter phase responses, you see the phase response for each filter section in the analysis area.


7 To define your own display of the sections, you use the User defined option and enter a vector of section indices to display. Now we display the first section response, and the cumulative first, second. and third sections response:
- Select User defined to enable the text entry box in the dialog.
- Enter the cell array \(\{1,1: 3\}\) to specify that FDATool should display the response of the first section and the cumulative response of the first three sections of the filter.

8 To apply your new SOS View selection, click Apply or OK (which closes the SOS View dialog).

In the FDATool analysis area you see two curves-one for the response of the first filter section and one for the combined response of sections 1,2 , and 3.


\section*{Importing and Exporting Quantized Filters}

When you import a quantized filter into FDATool, or export a quantized filter from FDATool to your workspace, the import and export functions use objects and you specify the filter as a variable. This contrasts with importing and exporting nonquantized filters, where you select the filter structure and enter the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB workspace, exporting them to text files, or exporting them to MAT-files.

This section includes:
- "Example-Import Quantized Filters"
- "To Export Quantized Filters"

For general information about importing and exporting filters in FDATool, refer to "Filter Design and Analysis Tool" section in your Signal Processing Toolbox User's Guide.

FDATool imports quantized filters having the following structures:
- Direct form I
- Direct form II
- Direct form I transposed
- Direct form II transposed
- Direct form symmetric FIR
- Direct form antisymmetric FIR
- Lattice allpass
- Lattice AR
- Lattice MA minimum phase
- Lattice MA maximum phase
- Lattice ARMA
- Lattice coupled-allpass
- Lattice coupled-allpass power complementary

\section*{Example-Import Quantized Filters}

After you design or open a quantized filter in your MATLAB workspace, FDATool lets you import the filter for analysis. Follow these steps to import your filter in to FDATool:

1 Open FDATool.
2 Select Filter->Import Filter from the menu bar.
In the lower region of FDATool, the Design Filter pane becomes Import Filter, and options appear for importing quantized filters, as shown.


3 From the Filter Structure list, select Filter object.
The options for importing filters change to include:
- Discrete filter-Enter the variable name for the discrete-time, fixed-point filter in your workspace.
- Frequency units-Select the frequency units from the Units list under Sampling Frequency, and specify the sampling frequency value in \(\mathbf{F s}\) if needed. Your sampling frequency must correspond to the units you select. For example, when you select Normalized (0 to 1), Fs defaults to one. But if you choose one of the frequency options, enter the sampling
frequency in your selected units. If you have the sampling frequency defined in your workspace as a variable, enter the variable name for the sampling frequency.

4 Click Import to import the filter.
FDATool checks your workspace for the specified filter. It imports the filter if it finds it, displaying the magnitude response for the filter in the analysis area. If it cannot find the filter it returns an FDATool Error dialog.

Note If, during any FDATool session, you switch to quantization mode and create a fixed-point filter, FDATool remains in quantization mode. If you import a double-precision filter, FDATool automatically quantizes your imported filter applying the most recent quantization parameters.

When you check the current filter information for your imported filter, it will indicate that the filter is Source: imported (quantized) even though you did not import a quantized filter.

\section*{To Export Quantized Filters}

To save your filter design, FDATool lets you export the quantized filter to your MATLAB workspace (or you can save the current session in FDATool). When you choose to save the quantized filter by exporting it, you select one of these options:
- Export to your MATLAB workspace
- Export to a text file
- Export to a MAT-file

\section*{Example-Export Coefficients or Objects to the Workspace}

You can save the filter as filter coefficients variables or as a dfilt filter object variable. To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog appears.
2 Select Workspace from the Export To list.

3 Select Coefficients from the Export As list to save the filter coefficients or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator and Denominator options under Variable Names. For objects, assign the variable name in the Discrete or Quantized filter option. If you have variables with the same names in your workspace and you want to overwrite them, select the Overwrite Variables box.

5 Click the OK button

If you try to export the filter to a variable name that exists in your workspace, and you did not select Overwrite existing variables, FDATool stops the export operation and returns a warning that the variable you specified as the quantized filter name already exists in the workspace. To continue to export the filter to the existing variable, click \(\mathbf{O K}\) to dismiss the warning dialog, select the Overwrite existing variables check box and click OK or Apply.

\section*{Getting Filter Coefficients after Exporting}

To extract the filter coefficients from your quantized filter after you export the filter to MATLAB, use the celldisp function in MATLAB. For example, create a quantized filter in FDATool and export the filter as Hq. To extract the filter coefficients for Hq , use
```

celldisp(Hq.referencecoefficients)

```
which returns the cell array containing the filter reference coefficients, or
```

celldisp(Hq.quantizedcoefficients)

```
to return the quantized coefficients.

\section*{Example-Exporting as a Text File}

To save your quantized filter as a text file, follow these steps:
1 Select Export from the File menu.
2 Select Text-file under Export to.

3 Click OK to export the filter and close the dialog. Click Apply to export the filter without closing the Export dialog. Clicking Apply lets you export your quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to Text-file dialog appears. This is the standard Microsoft Windows save file dialog.

4 Choose or enter a directory and filename for the text file and click OK.
FDATool exports your quantized filter as a text file with the name you provided, and the MATLAB editor opens, displaying the file for editing.

\section*{Example-Exporting as a MAT-File}

To save your quantized filter as a MAT-file, follow these steps:
1 Select Export from the File menu.
2 Select MAT-file under Export to.
3 Assign a variable name for the filter.
4 Click OK to export the filter and close the dialog. Click Apply to export the filter without closing the Export dialog. Clicking Apply lets you export your quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to MAT-file dialog appears. This is the standard Microsoft Windows save file dialog.

5 Choose or enter a directory and filename for the text file and click OK.
FDATool exports your quantized filter as a MAT-file with the specified name.

\section*{Importing XILINX Coefficient (.COE) Files}

You can import XILINX coefficients (.coe) files into FDATool to create quantized filters directly using the imported filter coefficients.

\section*{Example-Import XILINX .COE Files}

To use the new import file feature:
1 Select File->Import Filter From XILINX Coefficient (.COE) File in FDATool.

2 In the Import Filter From XILINX Coefficient (.COE) File dialog, find and select the .coe file to import.

3 Click Open to dismiss the dialog and start the import process.
FDATool imports the coefficient file and creates a quantized, single-section, direct-form FIR filter.

\section*{Transforming Filters}

The toolbox provides functions for transforming filters between various forms. When you use FDATool with the Toolbox installed, a side bar button and a menu bar option enable you to use the Transform Filter panel to transform filters as well as using the command line functions.

From the selection on the FDATool menu bar-Transformations-you can transform lowpass FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:
- Lowpass to lowpass.
- Lowpass to highpass.

For IIR filters, you can convert from:
- Lowpass to lowpass.
- Lowpass to highpass.
- Lowpass to bandpass.
- Lowpass to bandstop.

When you click the Transform Filter button, 범 , on the side bar, the Transform Filter panel opens in FDATool, as shown here.


Your options for Original filter type refer to the type of your current filter to transform. If you select lowpass, you can transform your lowpass filter to another lowpass filter or to a highpass filter, or to numerous other filter formats, real and complex.

Note When your original filter is an FIR filter, both the FIR and IIR transformed filter type options appear on the Transformed filter type list. Both options remain active because you can apply the IIR transforms to an FIR filter. If your source is as IIR filter, only the IIR transformed filter options show on the list.

\section*{Original Filter Type}

Select the magnitude response of the filter you are transforming from the list. Your selection changes the types of filters you can transform to. For example:
- When you select Lowpass with an IIR filter, your transformed filter type can be
- Lowpass
- Highpass
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)
- When you select Lowpass with an FIR filter, your transformed filter type can be
- Lowpass
- Lowpass (FIR)
- Highpass
- Highpass (FIR) narrowband
- Highpass (FIR) wideband
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

In the following table you see each available original filter type and all the types of filter to which you can transform your original.
\begin{tabular}{ll}
\hline Original Filter & Available Transformed Filter Types \\
\hline Lowpass FIR & \(\bullet\) Lowpass \\
& \(\bullet\) Lowpass (FIR) \\
& \(\bullet\) Highpass \\
& \(\bullet\) Highpass (FIR) narrowband \\
& \(\bullet\) Highpass (FIR) wideband \\
& \(\bullet\) Bandpass \\
& \(\bullet\) Bandstop \\
& \(\bullet\) Multiband \\
& \(\bullet\) Bandpass (complex) \\
& \(\bullet\) Bandstop (complex) \\
& \(\bullet\) Multiband (complex) \\
& \(\bullet\) Lowpass \\
& \(\bullet\) Highpass \\
& \(\bullet\) Bandpass \\
& \(\bullet\) Bandstop \\
& \(\bullet\) Multiband \\
& \(\bullet\) Bandpass (complex) \\
& \(\bullet\) Bandstop (complex) \\
& \(\bullet\) Multiband (complex) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Original Filter & Available Transformed Filter Types \\
\hline Highpass FIR & \begin{tabular}{l}
- Lowpass \\
- Lowpass (FIR) narrowband \\
- Lowpass (FIR) wideband \\
- Highpass (FIR) \\
- Highpass \\
- Bandpass \\
- Bandstop \\
- Multiband \\
- Bandpass (complex) \\
- Bandstop (complex) \\
- Multiband (complex)
\end{tabular} \\
\hline Highpass IIR & \begin{tabular}{l}
- Lowpass \\
- Highpass \\
- Bandpass \\
- Bandstop \\
- Multiband \\
- Bandpass (complex) \\
- Bandstop (complex) \\
- Multiband (complex)
\end{tabular} \\
\hline Bandpass FIR & \begin{tabular}{l}
- Bandpass \\
- Bandpass (FIR)
\end{tabular} \\
\hline Bandpass IIR & Bandpass \\
\hline Bandstop FIR & \begin{tabular}{l}
- Bandstop \\
- Bandstop (FIR)
\end{tabular} \\
\hline Bandstop IIR & Bandstop \\
\hline
\end{tabular}

Note also that the transform options change depending on whether your original filter is FIR or IIR. Starting from an IIR filter, you can transform to IIR or FIR forms. With an IIR original filter, you are limited to IIR target filters.

After selecting your response type, use Frequency point to transform to specify the magnitude response point in your original filter to transfer to your target filter. Your target filter inherits the performance features of your original filter, such as passband ripple, while changing to the new response form.

For more information about transforming filters, refer to "Frequency Transformations for Real Filters" on page 5-11 and "Frequency Transformations for Complex Filters" on page 5-26.

\section*{Frequency Point to Transform}

The frequency point you enter in this field identifies a magnitude response value (in dB ) on the magnitude response curve.

When you enter frequency values in the Specify desired frequency location option, the frequency transformation tries to set the magnitude response of the transformed filter to the value identified by the frequency point you enter in this field.

While you can enter any location, generally you should specify a filter passband or stopband edge, or a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the values you enter in Specify desired frequency location. Specify a value that lies at either the edge of the stopband or the edge of the passband.

If, for example, you are creating a bandpass filter from a highpass filter, the transformation algorithm sets the magnitude response of the transformed filter at the Specify desired frequency location to be the same as the response at the Frequency point to transform value. Thus you get a bandpass filter whose response at the low and high frequency locations is the same. Notice that the passband between them is undefined. In the next two figures you see the original highpass filter and the transformed bandpass filter.

For more information about transforming filters, refer to "Digital Frequency Transformations" on page 5-1.

\section*{Transformed Filter Type}

Select the magnitude response for the target filter from the list. The complete list of transformed filter types is:
- Lowpass
- Lowpass (FIR)
- Highpass
- Highpass (FIR) narrowband
- Highpass (FIR) wideband
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

Not all types of transformed filters are available for all filter types on the Original filter types list. You can transform bandpass filters only to bandpass filters. Or bandstop filters to bandstop filters. Or IIR filters to IIR filters.

For more information about transforming filters, refer to "Frequency Transformations for Real Filters" on page 5-11 and "Frequency Transformations for Complex Filters" on page 5-26.

\section*{Specify Desired Frequency Location}

The frequency point you enter in Frequency point to transform matched a magnitude response value. At each frequency you enter here, the transformation tries to make the magnitude response the same as the response identified by your Frequency point to transform value.
While you can enter any location, generally you should specify a filter passband or stopband edge, or a value in the passband or stopband.

For more information about transforming filters, refer to "Digital Frequency Transformations" on page 5-1.

\section*{Example-Transform Filters}

To transform the magnitude response of your filter, use the Transform Filter option on the side bar.

1 Design or import your filter into FDATool.
2 Click Transform Filter, \(\overrightarrow{\underline{u}{ }^{[5]}}\), on the side bar.
FDATool opens the Transform Filter panel in FDATool.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{- Frequency Transformations} \\
\hline Original filter type: & Lowpass & \(\square\) & Transformed filter type: & Lowpass & \(\square\) \\
\hline Frequency point to transform: & 9.6 & kHz & Specify desired frequency location: & 7.2 & kHz \\
\hline \multicolumn{6}{|c|}{Transform Filter} \\
\hline
\end{tabular}

3 From the Original filter type list, select the response form of the filter you are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or bandstop, FDATool recognizes whether your filter form is FIR or IIR. Using both your filter type selection and the filter form, FDATool adjusts the entries on the Transformed filter type list to show only those that apply to your original filter.

4 Enter the frequency point to transform value in Frequency point to transform. Notice that the value you enter must be in KHz ; for example, enter 0.1 for 100 Hz or 1.5 for 1500 Hz .

5 From the Transformed filter type list, select the type of filter you want to transform to.

Your filter type selection changes the options here.
- When you pick a lowpass or highpass filter type, you enter one value in Specify desired frequency location.
- When you pick a bandpass or bandstop filter type, you enter two valuesone in Specify desired low frequency location and one in Specify desired high frequency location. Your values define the edges of the passband or stopband.
- When you pick a multiband filter type, you enter values as elements in a vector in Specify a vector or desired frequency locations- one element for each desired location. Your values define the edges of the passbands and stopbands.
After you click Transform Filter, FDATool transforms your filter, displays the magnitude response of your new filter, and updates the Current Filter Information to show you that your filter has been transformed. In the filter information, the Source is Transformed. For example, the figure shown here includes the magnitude response curves for two filter. The original filter is a lowpass filter with rolloff between 0.2 and 0.25 . The transformed filter is a lowpass filter with rolloff region between 0.8 and 0.85 .

- To transform your lowpass filter to a highpass filter, select Lowpass to Highpass.

When you select Lowpass to Highpass, FDATool returns the dialog shown here. More information about the Select Transform... dialog follows the figure.


To demonstrate the effects of selecting Narrowband Highpass or Wideband Highpass, the next figure presents the magnitude response curves for a source lowpass filter after it is transformed to both narrow- and wideband highpass filters. For comparison, the response of the original filter appears as well.


For the narrowband case, the transformation algorithm essentially reverses the magnitude response, like reflecting the curve around the \(y\)-axis, then translating the curve to the right until the origin lies at 1 on the \(x\)-axis. After reflecting and translating, the passband at high frequencies is the reverse of the passband of the original filter at low frequencies with the same rolloff and ripple characteristics.

\section*{Designing Multirate Filters in FDATool}

Not only can you design multirate filters from the MATLAB command prompt, FDATool provides the same design capability in a graphical user interface tool. By starting FDATool and switching to the multirate filter design mode you have access to all of the multirate design capabilities in the toolboxdecimators, interpolators, and fractional rate changing filters, among others.

\section*{Switching FDATool to Multirate Filter Design Mode}

The multirate filter design mode in FDATool lets you specify and design a wide range of multirate filters, including decimators and interpolators.

With FDATool open, click Create a Multirate Filter, on the side bar. You see FDATool switch to the design mode showing the multirate filter design options. Shown in the figure below is the default multirate design configuration that designs an interpolating filter with an interpolation factor of 2 . The design uses the current FIR filter in FDATool.


When the current filter in FDATool is not an FIR filter, the multirate filter design panel removes the Use current FIR filter option and selects the Use default Nyquist FIR filter option instead as the default setting.

\section*{Controls on the Multirate Design Panel}

You see the options that allow you to design a variety of multirate filters. The Type option is your starting point. From this list you select the multirate filter to design. Based on your selection, other options change to provide the controls you need to specify your filter.

Notice the separate sections of the design panel. On the left is the filter type area where you choose the type of multirate filter to design and set the filter performance specifications.

In the center section FDATool provides choices that let you pick the filter design method to use.

The rightmost section offers options that control filter configuration when you select Cascaded-Integrator Comb (CIC) as the design method in the center section. Both the Decimator type and Interpolator type filters let you use the Cascaded-Integrator Comb (CIC) option to design multirate filters.

Here are all the options available when you switch to multirate filter design mode. Each option listed includes a brief description of what the option does when you use it.
\begin{tabular}{|c|c|}
\hline Option for Selecting and Configuring Your Filter & Description \\
\hline Type & \begin{tabular}{l}
Specifies the type of multirate filter to design. Choose from Decimator, Interpolator, or Fractional-rate convertor. \\
- When you choose Decimator, set Decimation Factor to specify the decimation to apply. \\
- When you choose Interpolator, set Interpolation Factor to specify the interpolation amount applied. \\
- When you choose Fractional-rate convertor, set both Interpolation Factor and Decimation Factor. FDATool uses both to determine the fractional rate change by dividing Interpolation Factor by Decimation Factor to determine the fractional rate change in the signal. \\
You should select values for interpolation and decimation that are relatively prime. When your interpolation factor and decimation factor are not relatively prime, FDATool reduces the interpolation/decimation fractional rate to the lowest common denominator and issues a message in the status bar in FDATool. \\
For example, if the interpolation factor is 6 and the decimation factor is 3 , FDATool reduces \(6 / 3\) to \(2 / 1\) when you design the rate changer. But if the interpolation factor is 8 and the decimation factor is 3, FDATool designs the filter without change.
\end{tabular} \\
\hline Interpolation Factor & Use the up-down control arrows to specify the amount of interpolation to apply to the signal. Factors range upwards from 2. \\
\hline Decimation Factor & Use the up-down control arrows to specify the amount of decimation to apply to the signal. Factors range upwards from 2. \\
\hline Sampling Frequency & No settings here. Just Units and Fs below. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \(\begin{array}{l}\text { Option for Selecting and } \\
\text { Configuring Your Filter }\end{array}\) & \multicolumn{2}{l}{ Description } \\
\hline Units & \(\begin{array}{l}\text { Specify whether Fs is specified in Hz, kHz, MHz, GHz, or Normalized } \\
(0 \text { to 1) units. }\end{array}\) \\
\hline Fs & \(\begin{array}{l}\text { Set the full scale sampling frequency in the frequency units you } \\
\text { specified in Units. When you select Normalized for Units, you do } \\
\text { not enter a value for Fs. }\end{array}\) \\
\hline Options for Designing Your Filter & Description \\
\hline Use current FIR filter & \(\begin{array}{l}\text { Directs FDATool to use the current FIR filter to design the } \\
\text { multirate filter. If the current filter is an IIR form, you } \\
\text { cannot select this option. You cannot design multirate } \\
\text { filters with IIR structures. }\end{array}\) \\
\hline Cascaded Integrator-Comb (CIC) & \(\begin{array}{l}\text { Tells FDATool to use the default Nyquist design method } \\
\text { when the current filter in FDATool is not an FIR filter. }\end{array}\) \\
\hline Hold Interpolator (Zero-order) & \(\begin{array}{l}\text { Design CIC filters using the options provided in the } \\
\text { right-hand area of the multirate design panel. }\end{array}\) \\
\hline When you design an interpolator, you can specify how the \\
filter sets interpolated values between signal values. \\
When you select this option, the interpolator applies the \\
most recent signal value for each interpolated value until \\
it processes the next signal value. This is similar to \\
sample-and-hold techniques. Compare to the Linear
\end{tabular}\(]\)\begin{tabular}{ll} 
Interpolator option.
\end{tabular}

To see the difference between hold interpolation and linear interpolation, the following figure presents a sine wave signal s1 in three forms:
- The top subplot in the figure presents s 1 without interpolation.
- The middle subplot shows signal s1 interpolated by a linear interpolator with an interpolation factor of 5 .
- The bottom subplot shows signal s1 interpolated by a hold interpolator with an interpolation factor of 5 .

You see in the bottom figure the sample and hold nature of hold interpolation, and the first-order linear interpolation applied by the linear interpolator.


We used FDATool to create interpolators similar to the following code for the figure:

\footnotetext{
- Linear interpolator-hm=mfilt.linearinterp(5)
}
- Hold interpolator—hm=mfilt.holdinterp(5)
\begin{tabular}{l|l}
\hline \begin{tabular}{l} 
Options for Designing \\
CIC Filters
\end{tabular} & Description \\
\hline Differential Delay & \begin{tabular}{l} 
Sets the differential delay for the CIC filter. Usually a value of one or \\
two is appropriate.
\end{tabular} \\
\hline Number of Sections & \begin{tabular}{l} 
Specifies the number of sections in a CIC decimator. The default \\
number of sections is 2 and the range is any positive integer.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example-Design a Fractional Rate Convertor}

To introduce the process you use to design a multirate filter in FDATool, this example uses the options to design a fractional rate convertor which uses \(7 / 3\) as the fractional rate. Begin the design by creating a default lowpass FIR filter in FDATool. You do not have to begin with this FIR filter, but the default filter works fine.

1 Launch FDATool.
2 Select the settings for a minimum-order lowpass FIR filter, using the Equiripple design method.

3 When FDATool displays the magnitude response for the filter, click in the side bar. FDATool switches to multirate filter design mode, showing the multirate design panel, shown here.


4 To design a fractional rate filter, select Fractional-rate convertor from the Type list. The Interpolation Factor and Decimation Factor options become available.

5 In Interpolation Factor, use the up arrow to set the interpolation factor to 7 .

6 Using the up arrow in Decimation Factor, set 3 as the decimation factor.

7 Select Use a default Nyquist FIR filter. You could design the rate convertor with the current FIR filter as well.

8 Enter 24000 to set Fs.
9 Click Create Multirate Filter.
After designing the filter, FDATool returns with the specifications for your new filter displayed in Current Filter Information, and shows the magnitude response of the filter.


You can test the filter by exporting it to your workspace and using it to filter a signal. For information about exporting filters, refer to "Importing and Exporting Quantized Filters" on page 6-53.

\section*{Example—Design a CIC Decimator for 8 Bit Input/Output Data}

Another kind of filter you can design in FDATool is Cascaded-Integrator Comb (CIC) filters. FDATool provides the options needed to configure your CIC to meet your needs.

1 Launch FDATool and design the default FIR lowpass filter. Designing a filter at this time is an optional step.

2 Switch FDATool to multirate design mode by clicking on the side bar.
3 For Type, select Decimator, and set Decimation Factor to 3.
4 To design the decimator using a CIC implementation, select Cascaded-Integrator Comb (CIC). This enables the CIC-related options on the right of the panel.

5 Set Differential Delay to 2. Generally, 1 or 2 are good values to use.
6 Enter 2 for the Number of Sections. Settings in the multirate design panel should look like this.


\section*{7 Click Create Multirate Filter.}

FDATool designs the filter, shows the magnitude response in the analysis area, and updates the current filter information to show that you designed a tenth-order cascaded-integrator comb decimator with two sections. Notice the source is Multirate Design, indicating you used the multirate design mode in FDATool to make the filter. FDATool should look like this now.


Designing other multirate filters follows the same pattern.
To design other multirate filters, do one of the following depending on the filter to design:
- To design an interpolator, select one of these options.
- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)
- Hold Interpolator (Zero-order)
- Linear Interpolator (First-order)
- To design a decimator, select from these options.
- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)
- To design a fractional-rate convertor, select Use a default Nyquist FIR filter.

\section*{Quantizing Multirate Filters}

After you design a multirate filter in FDATool, the quantization features enable you to convert your floating-point multirate filter to fixed-point arithemetic.

Note CIC filters are always fixed-point.

With your multirate filter as the current filter in FDATool, you can quantize your filter and use the quantization options to specify the fixed-point arithmetic the filter uses.

\section*{To Quantize and Configure Multirate Filters}

Follow these steps to convert your multirate filter to fixed-point arithmetic and set the fixed-point options.

1 Design or import your multirate filter and make sure it is the current filter in FDATool.

2 Click the Set Quantization Parameters button on the side bar.
3 From the Filter Arithmetic list on the Filter Arithmetic pane, select Fixed - point. If your filter is a CIC filter, the Fixed-point option is enabled by default and you do not set this option.

4 In the quantization panes, set the options for your filter. Set options for Coefficients, Input/Output, and Filter Internals.

5 Click Apply.
When you current filter is a CIC filter, the options on the Input/Output and Filter Internals panes change to provide specific features for CIC filters.

\section*{Input/Output}

The options that specify how your CIC filter uses input and output values are listed in the table below.
\begin{tabular}{l|l}
\hline Option Name & Description \\
\hline Input Word Length & \begin{tabular}{l} 
Sets the word length used to represent the \\
input to a filter.
\end{tabular} \\
\hline Input fraction length & \begin{tabular}{l} 
Sets the fraction length used to interpret \\
input values to filter.
\end{tabular} \\
\hline Input range (+/-) & \begin{tabular}{l} 
Lets you set the range the inputs \\
represent. You use this instead of the \\
Input fraction length option to set the \\
precision. When you enter a value x, the \\
resulting range is -x to x. Range must be \\
a positive integer.
\end{tabular} \\
\hline Output word length & \begin{tabular}{l} 
Sets the word length used to represent the \\
output from a filter.
\end{tabular} \\
\hline Avoid overflow & \begin{tabular}{l} 
Directs the filter to set the fraction length \\
for the input to prevent the output values \\
from exceeding the available range as \\
defined by the word length. Clearing this \\
option lets you set Output fraction \\
length.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Option Name & Description \\
\hline Output fraction length & \begin{tabular}{l} 
Sets the fraction length used to represent \\
output values from a filter.
\end{tabular} \\
\hline Output range (+/-) & \begin{tabular}{l} 
Lets you set the range the outputs \\
represent. You use this instead of the \\
Output fraction length option to set the \\
precision. When you enter a value \(x\), the \\
resulting range is -x to \(x\). Range must be \\
a positive integer.
\end{tabular} \\
\hline
\end{tabular}

The available options change when you change the Filter precision setting. Moving from Full to Specify all adds increasing control by enabling more input and output word options.

\section*{Filter Internals}

With a CIC filter as your current filter, the Filter precision option on the Filter Internals pane includes modes for controlling the filter word and fraction lengths.

There are four usage modes for this (the same mode you select for the FilterInternals property in CIC filters at the MATLAB prompt).
- Full-All word and fraction lengths set to \(\mathrm{B}_{\max }+1\), called \(\mathrm{B}_{\text {accum }}\) by harris in [14]. Full Precision is the default setting.
- Minimum section word lengths-Set the section word lengths to minimum values that meet roundoff noise and output requirements as defined by Hogenauer in "Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162." on page A-3.
- Specify word lengths-Enables the Section word length option for you to enter word lengths for each section. Enter either a scalar to use the same value for every section, or a vector of values, one for each section.
- Specify all-Enables the Section fraction length option in addition to Section word length. Now you can provide both the word and fraction lengths for each section, again using either a scalar or a vector of values.

\section*{Realizing Filters as Simulink Subsystem Blocks}

After you design or import a filter in FDATool, the realize model feature lets you create a Simulink subsystem block that implements your filter. The generated filter subsystem block uses the delay, gain, and sum blocks in fixedpoint mode from Simulink. If you do not own Simulink Fixed Point, FDATool still realizes your model using blocks in fixed-point mode from Simulink, but you cannot run any model that includes your filter subsystem block in Simulink.

The block you realize from FDATool accepts only individual sample-based input, not vectors or frames as input. If you have input data in frames, consider unbuffering the input or converting the frames to sample-by-sample input in some other way.

\section*{About the Realize Model Panel in FDATool}

Switching FDATool to realize model mode, by clicking 吾辛 gives you access to the Realize Model panel and the options for realizing your quantized filter as a Simulink subsystem block.
On the panel, as shown here, are the options provided for configuring how FDATool realizes your model.


\section*{Model Options}

Under Model, you set options that direct FDATool where to put your new subsystem block and what to name the block.

Destination. Tells FDATool whether to put the new block in your current Simulink model or open a new Simulink model and add the block to that window. Select Current model to add the block to your current model, or select New model to create a new model for the block.

Block name. Provides FDATool with a name to assign to your block. When you realize your filter as a subsystem, the resulting block shows the name you enter here as the block name, positioned just below the block.

Overwrite block. Directs FDATool whether to overwrite an existing block with this block in the destination model. The result is that the new filter realization subsystem block replaces the existing filter subsystem block. Selecting this option replaces your existing filter realization subsystem block with the one you create when you click Realize Model. Clearing Overwrite block causes FDATool to create a new block in the destination model, rather than replacing the existing block.

\section*{Block Type Option}

To realize your quantized filter as a subsystem block, the most appropriate choice is to select Fixed-point blocks from the list. When you are licensed to use the fixed-point blocks in Signal Processing Blockset, you have the option of realizing your model as either fixed- or floating-point blocks. Since your filter is designed to use quantized coefficients, the fixed-point blocks option usually matches your needs most closely.

You can elect to realize your filter using floating-point blocks, with the understanding that while the coefficients and gains of your filter retain their fixed-point values (the filter uses the fixed-point values for both gain and coefficients, in floating-point format), the math performed during filtering uses floating-point arithmetic and does not truly match the output of your filter running in fixed-point mode. Although realizing your quantized filter with floating-point blocks is not recommended, selecting Floating-point blocks from the list creates your filter from blocks in Simulink and the Signal Processing Blockset.

If you do not own a license for Simulink Fixed Point, realizing your quantized filter as a subsystem generates a subsystem block that uses fixed-point blocks, but you cannot run or edit the block. If you use the filter subsystem in a Simulink model, you cannot run the model.

\section*{Optimization Options}

Four options enable you to tailor the way the realized model optimizes various filter features such as delays and gains. When you open the Realize Model panel, these options are selected by default.

Optimize for zero gains. Specify whether to remove zero-gain blocks from the realized filter.

Optimize for unity gains. Specify whether to replace unity-gain blocks with direct connections in the filter subsystem.

Optimize for -1 gains. Specify whether to replace negative unity-gain blocks with a sign change at the nearest sum block in the filter.

Optimize delay chains. Specify whether to replace cascaded chains of delay blocks with a single integer delay block to provide an equivalent delay.

Each of these options can optimize the way your filter performs in simulation and in code you might generate from your model.

\section*{Example-Realize a Filter Using FDATool}

After your quantized filter in FDATool is performing the way you want, with your desired phase and magnitude response, and with the right coefficients and form, follow these steps to realize your filter as a subsystem that you can use in a Simulink model.

1 Click Realize Model on the sidebar to change FDATool to realize model mode.

2 From the Destination list under Model, select either:
- Current model-to add the realized filter subsystem to your current model
- New model-to open a new Simulink model window and add your filter subsystem to the new window

3 Provide a name for your new filter subsystem in the Name field.
4 Decide whether to overwrite an existing block with this new one, and select or clear Overwrite block to direct FDATool which way to go-overwrite or not.

5 Select Fixed-point blocks from the list in Block Type.
6 Select or clear the optimizations to apply.
- Optimize for zero gains-removes zero gain blocks from the model realization
- Optimize for unity gains-replaces unity gain blocks with direct connections to adjacent blocks
- Optimize for -1 gains-replaces negative gain blocks by a change of sign at the nearest sum block
- Optimize delay chains-replaces cascaded delay blocks with a single delay block that produces the equivalent gain

7 Click Realize Model to realize your quantized filter as a subsystem block according to the settings you selected.

If you double-click the filter block subsystem created by FDATool, you see the filter implementation in Simulink model form. Depending on the options you chose when you realized your filter, and the filter you started with, you might see one or more sections, or different architectures based on the form of your quantized filter. From this point on, the subsystem filter block acts like any other block that you use in Simulink models.

\section*{Supported Filter Structures}

FDATool lets you realize discrete-time and multirate filters from the following forms:
\begin{tabular}{l|l}
\hline Structure & Description \\
\hline firdecim & Decimators based on FIR filters \\
\hline firtdecim & \begin{tabular}{l} 
Decimators based on transposed FIR \\
filters
\end{tabular} \\
\hline linearinterp & Linear interpolators \\
\hline firinterp & Interpolators based on FIR filters \\
\hline multirate polyphase & Multirate filters \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Structure & Description \\
\hline holdinterp & \begin{tabular}{l} 
Interpolators that use the hold \\
interpolation algorithm
\end{tabular} \\
\hline dfilt.allpass & \begin{tabular}{l} 
Discrete-time filters with allpass \\
structure
\end{tabular} \\
\hline dfilt.cascadeallpass & \\
\hline dfilt.cascadewdfallpass & Decimators based on IIR filters \\
\hline mfilt.iirdecim & Interpolators based on IIR filters \\
\hline mfilt.iirwdfdecim & \\
\hline mfilt.iirinterp & \\
\hline mfilt.iirwdfinterp & \\
\hline dfilt.wdfallpass & \\
\hline
\end{tabular}

\section*{Getting Help for FDATool}

To find out more about the buttons or options in the FDATool dialogs, use the What's This? button to access context-sensitive help.

\section*{The What's This? Option}

To find information on a particular option or region of the dialog:
1 Click the What's This? button A?
Your cursor changes to \(k\) ?
2 Click the region or option of interest.
For example, click Turn quantization on to find out what this option does.
You can also select What's this? from the Help menu to launch context-sensitive help.

\section*{Additional Help for FDATool}

For help about importing filters into FDATool, or for details about using FDATool to create and analyze double-precision filters, refer to the "Filter Design and Analysis Tool Overview" in your Signal Processing Toolbox documentation.

\title{
Reference for the Properties of Filter Objects
}

Fixed-Point Filter Properties (p. 7-3)

Adaptive Filter Properties (p. 7-103)
Multirate Filter Properties (p. 7-117)

Provides an overview and details of the properties of fixed-point filters

Summarizes and details the properties of adaptive filters Provides a summary and the details of the properties of multirate filters

\section*{Overview}

This chapter presents all of the properties for adaptive filters (adaptfilt objects), discrete-time filters (both floating-point and fixed-point dfilt objects), and multirate filters (mfilt objects).
- "Fixed-Point Filter Properties" on page 7-3
- "Adaptive Filter Properties" on page 7-103
- "Multirate Filter Properties" on page 7-117

\section*{Fixed-Point Filter Properties}

There is a distinction between fixed-point filters and quantized filtersquantized filters represent a superset that includes fixed-point filters.

When dfilt objects have their Arithmetic property set to single or fixed, they are quantized filters. However, after you set the Arithmetic property to fixed, the resulting filter is both quantized and fixed-point. Fixed-point filters perform arithmetic operations without allowing the binary point to move in response to the calculation-hence the name fixed-point. You can find out more about fixed-point arithmetic in your Fixed-Point Toolbox documentation or from the Help system.

With the Arithmetic property set to single, meaning the filter uses single-precision floating-point arithmetic, the filter allows the binary point to move during mathematical operations, such as sums or products. Therefore these filters cannot be considered fixed-point filters. But they are quantized filters.

This section presents the properties for fixed-point filters, which includes all the properties for double-precision and single-precision floating-point filters as well.

\section*{Fixed-Point Objects and Filters}

Fixed-point filters depend in part on fixed-point objects from the Fixed-Point Toolbox. You can see this when you display a fixed-point filter at the command prompt.
```

hd=dfilt.df2t
hd =
FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'double'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: [0x1 double]
set(hd,'arithmetic','fixed')
hd

```
```

hd =
FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'fixed'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputFracLength: 15
StateWordLength: 16
StateAutoScale: true
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

Look at the States property, shown here
States: [1x1 embedded.fi]
The notation embedded.fi indicates that the states are being represented by fixed-point objects, usually called fi objects. If you take a closer look at the property States, you see how the properties of the fi object represent the values for the filter states.
hd.states
```

ans =
[]
DataType: Fixed
Scaling: BinaryPoint
Signed: true
WordLength: 16
FractionLength: 15
RoundMode: round
OverflowMode: saturate
ProductMode: FullPrecision
MaxProductWordLength: 128
SumMode: FullPrecision
MaxSumWordLength: 128
CastBeforeSum: true

```

To learn more about fi objects (fixed-point objects) in general, refer to your Fixed-Point Toolbox documentation. Commands like the following can help you get the information you are looking for:
```

docsearch(fixed-point object)

```
or
docsearch(fi)

Either command opens the Help system and searches for information about fixed-point objects in the Fixed Point Toolbox.

As inputs (data to be filtered), fixed-point filters accept both regular double-precision values and fi objects. Which you use depends on your needs. How your filter responds to the input data is determined by the settings of the filter properties, discussed in the next few sections.

\section*{Summary—Fixed-Point Filter Properties}

Discrete-time filters in this toolbox use objects that perform the filtering and configuration of the filter. As objects, they include properties and methods (that we often call functions-not strictly the same as MATLAB functions but mostly so) to provide filtering capability. In discrete-time filters, or dfilt
objects, many of the properties are dynamic, meaning they become available depending on the settings of other properties in the dfilt object or filter.

\section*{Dynamic Properties}

When you use a dfilt.structure function to create a filter, MATLAB displays the filter properties in the command window in return (unless you end the command with a semicolon which suppresses the output display). Generally you see six or seven properties, ranging from the property FilterStructure to PersistentMemory. These first properties are always present in the filter. One of the most important properties is Arithmetic. The Arithmetic property controls all of the dynamic properties for a filter.

Dynamic properties become available when you change another property in the filter. For example, when you change the Arithmetic property value to fixed, the display now shows many more properties for the filter, all of them considered dynamic. Here is an example that uses a direct form II filter. First create the default filter:
```

hd=dfilt.df2
hd =
FilterStructure: 'Direct-Form II'
Arithmetic: 'double'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: [0x1 double]

```

With the filter hd in the workspace, convert the arithmetic to fixed-point. Do this by setting the property Arithmetic to fixed. Notice the display. Instead of a few properties, the filter now has many more, each one related to a particular part of the filter and its operation. Each of the now-visible properties is dynamic.
```

hd.arithmetic='fixed'
hd =
FilterStructure: 'Direct-Form II'
Arithmetic: 'fixed'

```
```

 Numerator: 1
 Denominator: 1
 PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
StateWordLength: 16
StateFracLength: 15
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

Even this list of properties is not yet complete. Changing the value of other properties such as the ProductMode or CoeffAutoScale properties may reveal even more properties that control how the filter works. Remember this feature about dfilt objects and dynamic properties as you review the rest of this section about properties of fixed-point filters.

An important distinction is you cannot change the value of a property unless you see the property listed in the default display for the filter. Entering the filter name at the MATLAB prompt generates the default property display for the named filter. Using get (filtername) does not generate the default display-it lists all of the filter properties, both those that you can change and those that are not available yet.

The following table summarizes the properties, static and dynamic, of fixed-point filters and provides a brief description of each. Full descriptions of each property, in alphabetical order, follow the table.
\begin{tabular}{|c|c|c|}
\hline Property Name & Valid Values [default value] & Brief Description \\
\hline AccumFracLength & Any positive or negative integer number of bits [29] & Specifies the fraction length used to interpret data output by the accumulator. This is a property of FIR filters and lattice filters. IIR filters have two similar properties-DenAccumFracLength and NumAccumFracLength-that let you set the precision for numerator and denominator operations separately. \\
\hline AccumWordLength & Any positive integer number of bits [40] & Sets the word length used to store data in the accumulator/buffer. \\
\hline Arithmetic & [Double], single, fixed & Defines the arithmetic the filter uses. Gives you the options double, single, and fixed. In short, this property defines the operating mode for your filter. \\
\hline CastBeforeSum & [True] or false & Specifies whether to cast numeric data to the appropriate accumulator format (as shown in the signal flow diagrams) before performing sum operations. \\
\hline CoeffAutoScale & [True] or false & Specifies whether the filter automatically chooses the proper fraction length to represent filter coefficients without overflowing. Turning this off by setting the value to false enables you to change the NumFracLength and DenFracLength properties to specify the precision used. \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name (Continued) & \begin{tabular}{l} 
Valid Values \\
[default value]
\end{tabular} & Brief Description \\
\hline CoefffracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l} 
Set the fraction length the filter uses to \\
interpret coefficients. CoeffFracLength is \\
not available until you set CoeffAutoScale \\
to false. Scalar filters include this \\
property.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l} 
Any positive \\
integer number of \\
bits [16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline DenAccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [29]
\end{tabular} & \begin{tabular}{l} 
Specifies how the filter algorithm \\
interprets the results of addition operations \\
involving denominator coefficients.
\end{tabular} \\
\hline DenFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l} 
Sets the fraction length the filter uses to \\
interpret denominator coefficients. \\
DenFracLength is always available, but it is \\
read-only until you set CoeffAutoScale to \\
false.
\end{tabular} \\
\hline Denominator & \begin{tabular}{l} 
Any filter \\
coefficient value
\end{tabular} & \begin{tabular}{l} 
Holds the denominator coefficients for IIR \\
filters.
\end{tabular} \\
\hline [1] & \begin{tabular}{l} 
Any positive or \\
negative integer
\end{tabular} & \begin{tabular}{l} 
Specifies how the filter algorithm \\
numberprets the results of product operations \\
involving denominator coefficients. You can \\
change this property value after you set
\end{tabular} \\
ProductMode to SpecifyPrecision.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name (Continued) & \begin{tabular}{l} 
Valid Values \\
[default value]
\end{tabular} & Brief Description \\
\hline FilterInternals & \begin{tabular}{l} 
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l} 
Controls whether the filter sets the output \\
word and fraction lengths, and the \\
accumulator word and fraction lengths \\
automatically to maintain the best \\
precision results during filtering. The \\
default value, FullPrecision, sets \\
automatic word and fraction length \\
determination by the filter. \\
SpecifyPrecision exposes the output and \\
accumulator related properties so you can \\
set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline FilterStructure & Not applicable. & \begin{tabular}{l} 
Describes the signal flow for the filter \\
object, including all of the active elements \\
that perform operations during filtering- \\
gains, delays, sums, products, and \\
input/output.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [15]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length the filter uses \\
to interpret data to be processed by the \\
filter.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l} 
Any positive \\
integer number of \\
bits [16]
\end{tabular} & \begin{tabular}{l} 
Specifies the word length applied to \\
represent input data.
\end{tabular} \\
\hline Ladder & \begin{tabular}{l} 
Any ladder \\
coefficients in \\
double-precision \\
data type [1]
\end{tabular} & \begin{tabular}{l} 
latticearma filters include this property to \\
store the ladder coefficients.
\end{tabular} \\
\hline Any positive or \\
negative integer \\
number of bits [29]
\end{tabular} \begin{tabular}{l} 
latticearma filters use this to define the \\
fraction length applied to values output by \\
the accumulator that stores the results of \\
ladder computations.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name (Continued) & \begin{tabular}{l} 
Valid Values \\
[default value]
\end{tabular} & Brief Description \\
\hline LadderFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l} 
latticearma filters use ladder coefficients \\
in the signal flow. This property determines \\
the fraction length used to interpret the \\
coefficients.
\end{tabular} \\
\hline Lattice & \begin{tabular}{l} 
Any lattice \\
structure \\
coefficients. No \\
default value.
\end{tabular} & \begin{tabular}{l} 
Stores the lattice coefficients for \\
lattice-based filters.
\end{tabular} \\
\hline LatticeAccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [29]
\end{tabular} & \begin{tabular}{l} 
Specifies how the accumulator outputs the \\
results of operations on the lattice \\
coefficients.
\end{tabular} \\
\hline LatticeFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [15]
\end{tabular} & \begin{tabular}{l} 
Specifies the fraction length applied to the \\
lattice coefficients.
\end{tabular} \\
\hline MultiplicandFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [15]
\end{tabular} & \begin{tabular}{l} 
Sets the fraction length for values used in \\
product operations in the filter. Direct-form \\
Itransposed (df1t) filter structures include \\
this property.
\end{tabular} \\
\hline MultiplicandWordLength & \begin{tabular}{l} 
Any positive \\
integer number of \\
bits [16]
\end{tabular} & \begin{tabular}{l} 
Sets the word length applied to the values \\
input to a multiply operation (the \\
multiplicands). The filter structure df1t \\
includes this property.
\end{tabular} \\
\hline NumAccumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [29]
\end{tabular} & \begin{tabular}{l} 
Specifies how the filter algorithm \\
interprets the results of addition operations \\
involving numerator coefficients.
\end{tabular} \\
\hline Numerator & \begin{tabular}{l} 
Any \\
double-precision \\
filter coefficients \\
[1]
\end{tabular} & \begin{tabular}{l} 
the filter. numerator coefficient values for
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Property Name (Continued) } & \begin{array}{l}\text { Valid Values } \\ \text { [default value] }\end{array} & \text { Brief Description } \\ \hline \text { NumFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits [14] }\end{array} & \begin{array}{l}\text { Sets the fraction length used to interpret } \\ \text { the numerator coefficients. }\end{array} \\ \hline \text { NumProdFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits [29] }\end{array} & \begin{array}{l}\text { Specifies how the filter algorithm } \\ \text { interprets the results of product operations } \\ \text { involving numerator coefficients. You can } \\ \text { change the property value after you set } \\ \text { ProductMode to SpecifyPrecision. }\end{array} \\ \hline \text { NumStateFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits [15] }\end{array} & \begin{array}{l}\text { For IIR filters, this defines the fraction } \\ \text { length applied to the numerator states of } \\ \text { the filter. Specifies the fraction length used } \\ \text { to interpret the states associated with } \\ \text { numerator coefficients in the filter. }\end{array} \\ \hline \text { NumStateWordLength } & \begin{array}{l}\text { Any positive } \\ \text { integer number of } \\ \text { bits [16] }\end{array} & \begin{array}{l}\text { For IIR filters, this defines the word length } \\ \text { applied to the numerator states of the filter. } \\ \text { Specifies the word length used to interpret }\end{array} \\ \text { the states associated with numerator } \\ \text { coefficients in the filter. }\end{array}\right]\)
\(\left.\begin{array}{l|l|l}\hline \text { Property Name (Continued) } & \begin{array}{l}\text { Valid Values } \\
\text { [default value] }\end{array} & \text { Brief Description } \\
\hline \text { OutputMode } & \begin{array}{l}\text { [AvoidOverflow], } \\
\text { BestPrecision, } \\
\text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\
\text { filtered input data. You have the following } \\
\text { choices: }\end{array} \\
\text { - Avoid0verflow-directs the filter to set } \\
\text { the output data fraction length to avoid } \\
\text { causing the data to overflow. } \\
\text { - BestPrecision-directs the filter to set } \\
\text { the output data fraction length to } \\
\text { maximize the precision in the output } \\
\text { data. }\end{array}\right\}\)\begin{tabular}{l} 
- SpecifyPrecision-lets you set the \\
fraction length used by the filtered \\
data.
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Property Name (Continued) } & \begin{array}{l}\text { Valid Values } \\
\text { [default value] }\end{array} & \text { Brief Description } \\
\hline \text { ProductFracLength } & \begin{array}{l}\text { Any positive or } \\
\text { negative integer } \\
\text { number of bits [29] }\end{array} & \begin{array}{l}\text { For the output from a product operation, } \\
\text { this sets the fraction length used to } \\
\text { interpret the numeric data. This property } \\
\text { becomes writable (you can change the } \\
\text { value) after you set ProductMode to } \\
\text { SpecifyPrecision. }\end{array} \\
\hline \text { ProductMode } & \begin{array}{l}\text { [FullPrecision], } \\
\text { KeepLSB, } \\
\text { KeepMSB, } \\
\text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Determines how the filter handles the } \\
\text { output of product operations. Choose from } \\
\text { full precision (FullPrecision), or whether } \\
\text { to keep the most significant bit (KeepMSB) or } \\
\text { least significant bit (KeepLSB) in the result } \\
\text { when you need to shorten the data words. } \\
\text { For you to be able to set the precision (the } \\
\text { fraction length) used by the output from the }\end{array} \\
\text { multiplies, you set ProductMode to }\end{array}\right\}\)\begin{tabular}{l} 
SpecifyPrecision.
\end{tabular}
\(\left.\left.\begin{array}{l|l|l}\hline \text { Property Name (Continued) } & \begin{array}{l}\text { Valid Values } \\ \text { [default value] }\end{array} & \begin{array}{l}\text { Brief Description } \\ \text { RoundMode } \\ \end{array} \\ \hline & \begin{array}{l}\text { [Convergent], ceil, } \\ \text { fix, floor, round }\end{array} & \begin{array}{l}\text { Sets the mode the filter uses to quantize } \\ \text { numeric values when the values lie } \\ \text { between representable values for the data } \\ \text { format (word and fraction lengths). }\end{array} \\ \text { - convergent-Round up to the next } \\ \text { allowable quantized value. }\end{array}\right\} \begin{array}{l}\text { - ceil-Round to the nearest allowable } \\ \text { quantized value. Numbers that are } \\ \text { exactly halfway between the two nearest } \\ \text { allowable quantized values are rounded } \\ \text { up only if the least significant bit (after } \\ \text { rounding) would be set to 1. }\end{array}\right\}\)
\begin{tabular}{|c|c|c|}
\hline Property Name (Continued) & Valid Values [default value] & Brief Description \\
\hline ScaleValueFracLength & Any positive or negative integer number of bits [29] & Scale values work with SOS filters. Setting this property controls how your filter interprets the scale values by setting the fraction length. Available only when you disable CoeffAutoScale by setting it to false. \\
\hline ScaleValues & [ \(2 \times 1\) double] array with values of 1 & Stores the scaling values for sections in SOS filters. \\
\hline Signed & [True] or false & Specifies whether the filter uses signed or unsigned fixed-point coefficients. Only coefficients reflect this property setting. \\
\hline sosMatrix & \(\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0\end{array}\right]\) & Holds the filter coefficients as property values. Displays the matrix in the format [sections x coefficients/section datatype]. A [15x6 double] SOS matrix represents a filter with 6 coefficients per section and 15 sections, using data type double to represent the coefficients. \\
\hline SectionInputAutoScale & [True] or false & Specifies whether the filter automatically chooses the proper fraction length to prevent overflow by data entering a section of an SOS filter. Setting this property to false enables you to change the SectionInputFracLength property to specify the precision used. Available only for SOS filters. \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name (Continued) & \begin{tabular}{l} 
Valid Values \\
[default value]
\end{tabular} & Brief Description \\
\hline SectionInputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [29]
\end{tabular} & \begin{tabular}{l} 
Section values work with SOS filters. \\
Setting this property controls how your \\
filter interprets the section values between \\
sections of the filter by setting the fraction \\
length. This applies to data entering a \\
section. Compare to \\
SectionOutputFracLength. Available only \\
when you disable SectionInputAutoScale \\
by setting it to false.
\end{tabular} \\
\hline SectionInputWordLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [29]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to represent the \\
data moving into a section of an SOS filter.
\end{tabular} \\
\hline SectionOutputAutoScale & [True] or false & \begin{tabular}{l} 
Specifies whether the filter automatically \\
chooses the proper fraction length to \\
prevent overflow by data leaving a section \\
of an SOS filter. Setting this property to \\
false enables you to change the \\
SectionOutputFracLength property to \\
specify the precision used.
\end{tabular} \\
\hline SectionOutputFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [29]
\end{tabular} & \begin{tabular}{l} 
Section values work with SOS filters. \\
Setting this property controls how your \\
filter interprets the section values between \\
sections of the filter by setting the fraction \\
length. This applies to data leaving a \\
section. Compare to \\
SectionInputFracLength. Available after \\
you disable SectionOutputAutoScale by \\
setting it to false.
\end{tabular} \\
\hline SectionOutputWordLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [32]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to represent the \\
data moving out of one section of an SOS \\
filter.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name (Continued) & \begin{tabular}{l} 
Valid Values \\
[default value]
\end{tabular} & Brief Description \\
\hline StateFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [15]
\end{tabular} & \begin{tabular}{l} 
Lets you set the fraction length applied to \\
interpret the filter states.
\end{tabular} \\
\hline States & [1x1 embedded fi] & \begin{tabular}{l} 
Contains the filter states before, during, \\
and after filter operations. States act as \\
filter memory between filtering runs or \\
sessions. Notice that the states use fi \\
objects, with the associated properties from \\
those objects. For details, refer to \\
filtstates in your Signal Processing \\
Toolbox documentation or in the Help \\
system.
\end{tabular} \\
\hline StateWordLength & \begin{tabular}{l} 
Any positive \\
integer number of \\
bits [16]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to represent the \\
filter states.
\end{tabular} \\
\hline TapSumFracLength & \begin{tabular}{l} 
Any positive or \\
negative integer \\
number of bits [15]
\end{tabular} & \begin{tabular}{l} 
Sets the fraction length used to represent \\
the filter tap values in addition operations. \\
This is available after you set TapSumMode \\
to false. Symmetric and antisymmetric
\end{tabular} \\
FIR filters include this property.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name (Continued) & \begin{tabular}{l} 
Valid Values \\
[default value]
\end{tabular} & Brief Description \\
\hline TapSumMode & \begin{tabular}{l} 
FullPrecision, \\
KeepLSB, \\
[KeepMSB], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l} 
Determines how the accumulator outputs \\
stored that involve filter tap weights. \\
Choose from full precision (FullPrecision) \\
to prevent overflows, or whether to keep the \\
most significant bits (KeepMSB) or least \\
significant bits (KeepLSB) when outputting \\
results from the accumulator. To let you set \\
the precision (the fraction length) used by \\
the output from the accumulator, set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
& & \begin{tabular}{l} 
Symmetric and antisymmetric FIR filters \\
include this property.
\end{tabular} \\
\hline TapSumWordLength & \begin{tabular}{l} 
Any positive \\
number of bits [17]
\end{tabular} & \begin{tabular}{l} 
Sets the word length used to represent the \\
filter tap weights during addition.
\end{tabular} \\
Symmetric and antisymmetric FIR filters \\
include this property.
\end{tabular}

\section*{Property Details for Fixed-Point Filters}

When you create a fixed-point filter, you are creating a filter object (a dfilt object). In this manual, we use filter, dfilt object, and filter object interchangeably. To filter data, you apply the filter object to your data set. The output of the operation is the data filtered by the filter and the filter property values.

Filter objects have properties to which you assign property values. You use these property values to assign various characteristics to the filters you create, including
- The type of arithmetic to use in filtering operations
- The structure of the filter used to implement the filter (not a property you can set or change-you select it by the dfilt.structure function you choose)
- The locations of quantizations and cast operations in the filter
- The data formats used in quantizing, casting, and filtering operations

Details of the properties associated with fixed-point filters are described in alphabetical order on the following pages.

\section*{AccumFracLength}

Except for state-space filters, all dfilt objects that use fixed arithmetic have this property that defines the fraction length applied to data in the accumulator. Combined with AccumWordLength, AccumFracLength helps fully specify how the accumulator outputs data after processing addition operations. As with all fraction length properties, AccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers.

\section*{AccumWordLength}

You use AccumWordLength to define the data word length used in the accumulator. Set this property to a value that matches your intended hardware. For example, many digital signal processors use 40 -bit accumulators, so set AccumWordLength to 40 in your fixed-point filter:
```

set(hq,'arithmetic','fixed');
set(hq,'AccumWordLength',40);

```

Note that AccumWordLength only applies to filters whose Arithmetic property value is fixed.

\section*{Arithmetic}

Perhaps the most important property when you are working with dfilt objects, Arithmetic determines the type of arithmetic the filter uses, and the properties or quantizers that compose the fixed-point or quantized filter. You use strings to set the Arithmetic property value.

The next table shows the valid strings for the Arithmetic property. Following the table, each property string appears with more detailed information about
what happens when you select the string as the value for Arithmetic in your dfilt.
\(\left.\begin{array}{l|l}\hline \text { Arithmetic Property String } & \text { Brief Description of Effect on the Filter } \\ \hline \text { double } & \begin{array}{l}\text { All filtering operations and coefficients } \\ \text { use double-precision floating-point } \\ \text { representations and math. When you } \\ \text { use dfilt.structure to create a filter } \\ \text { object, double is the default value for } \\ \text { the Arithmetic property. }\end{array} \\ \hline \text { single } & \begin{array}{l}\text { All filtering operations and coefficients } \\ \text { use single-precision floating-point } \\ \text { representations and math. }\end{array} \\ \hline \text { fixed } & \begin{array}{l}\text { This string applies selected default } \\ \text { values for the properties in the } \\ \text { fixed-point filter object, including such } \\ \text { properties as coefficient word lengths, } \\ \text { fraction lengths, and various operating } \\ \text { modes. Generally, the default values } \\ \text { match those you use on many digital } \\ \text { signal processors. Allows signed fixed }\end{array} \\ \text { data types only. Fixed-point arithmetic }\end{array}\right\}\)

\section*{double}

When you use one of the dfilt.structure methods to create a filter, the Arithmetic property value is double by default. Your filter is identical to the same filter without the Arithmetic property, as you would create if you used the Signal Processing Toolbox.

Double means that the filter uses double-precision floating-point arithmetic in all operations while filtering:
- All input to the filter must be double data type. Any other data type returns an error.
- The states and output are doubles as well.
- All internal calculations are done in double math.

When you use double data type filter coefficients, the reference and quantized (fixed-point) filter coefficients are identical. The filter stores the reference coefficients as double data type.

\section*{single}

When your filter should use single-precision floating-point arithmetic, set the Arithmetic property to single so all arithmetic in the filter processing gets restricted to single-precision data type.
- Input data must be single data type. Other data types return errors.
- The filter states and filter output use single data type.

When you choose single, you can provide the filter coefficients in either of two ways:
- Double data type coefficients. With Arithmetic set to single, the filter casts the double data type coefficients to single data type representation.
- Single data type. These remain unchanged by the filter.

Depending on whether you specified single or double data type coefficients, the reference coefficients for the filter are stored in the data type you provided. If you provide coefficients in double data type, the reference coefficients are double as well. Providing single data type coefficients generates single data type reference coefficients. Note that the arithmetic used by the reference filter is always double.

When you use reffilter to create a reference filter from the reference coefficients, the resulting filter uses double-precision versions of the reference filter coefficients.

To set the Arithmetic property value, create your filter, then use set to change the Arithmetic setting, as shown in this example using a direct form FIR filter.
```

b=fir1(7,0.45);
hd=dfilt.dffir(b)

```
```

hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x8 double]
PersistentMemory: false
States: [7x1 double]
set(hd,'arithmetic','single')
hd
hd =

```
```

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'single'
Numerator: [1x8 double]
PersistentMemory: false
States: [7x1 single]

```

\section*{fixed}

Converting your dfilt object to use fixed arithmetic results in a filter structure that uses properties and property values to match how the filter would behave on digital signal processing hardware.

Note The fixed option for the property Arithmetic is available only when you install the Fixed-Point Toolbox as well as the Filter Design Toolbox.

After you set Arithmetic to fixed, you are free to change any property value from the default value to a value that more closely matches your needs. You cannot, however, mix floating-point and fixed-point arithmetic in your filter when you select fixed as the Arithmetic property value. Choosing fixed restricts you to using either fixed-point or floating point throughout the filter (the data type must be homogenous). Also, all data types must be signed. fixed does not support unsigned data types except for unsigned coefficients when you set the property Signed to false. Mixing word and fraction lengths within the fixed object is acceptable. In short, using fixed arithmetic assumes
- fixed word length.
- fixed size and dedicated accumulator and product registers.
- the ability to do either saturation or wrap arithmetic.
- that multiple rounding modes are available.

Making these assumptions simplifies your job of creating fixed-point filters by reducing repetition in the filter construction process, such as only requiring you to enter the accumulator word size once, rather than for each step that uses the accumulator.

Default property values are a starting point in tailoring your filter to common hardware, such as choosing 40-bit word length for the accumulator, or 16-bit words for data and coefficients.

In this dfilt object example, get returns the default values for dfilt.df1t structures.
```

[b,a]=butter(6,0.45);
hd=dfilt.df1(b,a)
hd =

```
    FilterStructure: 'Direct-Form I'
            Arithmetic: 'double'
            Numerator: [1x7 double]
            Denominator: [1x7 double]
            PersistentMemory: false
                States: Numerator: [6x1 double]
                                    Denominator:[6x1 double]
```

set(hd,'arithmetic','fixed')
get(hd)

```
            PersistentMemory: false
            FilterStructure: 'Direct-Form I'
                    States: [1x1 filtstates.dfiir]
                    Numerator: [1x7 double]
            Denominator: [1x7 double]
            Arithmetic: 'fixed'
    CoeffWordLength: 16
        CoeffAutoScale: 1
```

Signed: 1
RoundMode: 'convergent'
OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15
ProductMode: 'FullPrecision'
OutputWordLength: 16
OutputFracLength: 15
NumFracLength: 16
DenFracLength: 14
ProductWordLength: 32
NumProdFracLength: 31
DenProdFracLength: 29
AccumWordLength: 40
NumAccumFracLength: 31
DenAccumFracLength: 29
CastBeforeSum: 1

```

Here is the default display for hd.
hd
hd =
```

FilterStructure: 'Direct-Form I'
Arithmetic: 'fixed'
Numerator: [1x7 double]
Denominator: [1x7 double]
PersistentMemory: false
States: Numerator: [6x1 fi]
Denominator:[6x1 fi]

```

CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
```

OutputFracLength: 15
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

This second example shows the default property values for dfilt.latticemamax filter objects, using the coefficients from an fir1 filter.
```

b=fir1(7,0.45)
hdlat=dfilt.latticemamax(b)
hdlat =

```
    FilterStructure: [1x45 char]
        Arithmetic: 'double'
            Lattice: [1x8 double]
            PersistentMemory: false
            States: [8x1 double]
hdlat.arithmetic='fixed'
hdlat =
    FilterStructure: [1x45 char]
            Arithmetic: 'fixed'
                            Lattice: [1x8 double]
            PersistentMemory: false
                            States: [1x1 embedded.fi]
                    CoeffWordLength: 16
            CoeffAutoScale: true
                            Signed: true
                    InputWordLength: 16
```

InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
StateWordLength: 16
StateFracLength: 15
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

Unlike the single or double options for Arithmetic, fixed uses properties to define the word and fraction lengths for each portion of your filter. By changing the property value of any of the properties, you control your filter performance. Every word length and fraction length property is independent-set the one you need and the others remain unchanged, such as setting the input word length with InputWordLength, while leaving the fraction length the same.
```

d=fdesign.lowpass('n,fc',6,0.45)
d =
Response: 'Lowpass with cutoff'
Specification: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 6
Fcutoff: 0.4500
designmethods(d)
Design Methods for class fdesign.lowpass:

```
```

butter
hd=butter(d)
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [3x6 double]
ScaleValues: [4x1 double]
PersistentMemory: false
States: [2x3 double]
hd.arithmetic='fixed'
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'fixed'
sosMatrix: [3x6 double]
ScaleValues: [4x1 double]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
SectionInputWordLength: 16
SectionInputAutoScale: true
SectionOutputWordLength: 16
Section OutputAutoScale: true
OutputWordLength: 16
OutputMode: 'AvoidOverflow'

```
StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'FullPrecision'
AccumWordLength: ..... 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
hd.inputWordLength=12
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'fixed'
sosMatrix: [3x6 double]
ScaleValues: [4x1 double]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 12
InputFracLength: ..... 15
SectionInputWordLength: ..... 16
SectionInputAutoScale: ..... true
SectionOutputWordLength: ..... 16
SectionOutputAutoScale: t ..... true
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow'
StateWordLength: ..... 16
```

StateFracLength: 15
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

Notice that the properties for the lattice filter hdlat and direct-form II filter hd are different, as befits their differing filter structures. Also, some properties are common to both objects, such as RoundMode and PersistentMemory and behave the same way in both objects.

\section*{Notes About Fraction Length, Word Length, and Precision}

Word length and fraction length combine to make the format for a fixed-point number, where word length is the number of bits used to represent the value and fraction length specifies, in bits, the location of the binary point in the fixed-point representation. Therein lies a problem-fraction length, which you specify in bits, can be larger than the word length, or a negative number of bits. This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to be used in this User's Guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the binary point) is true only when the fraction length is positive and less than or equal to the word length. In MATLAB format notation we use [word length fraction length]. For example, for the format [16 16], the second 16 (the fraction length) is the number of fractional bits or bits to the right of the binary point. In this example, all 16 bits are to the right of the binary point.

But it is also possible to have fixed-point formats of [16 18] or [16-45]. In these cases the fraction length can no longer be the number of bits to the right of the binary point since the format says the word length is 16 -there cannot be 18 fraction length bits on the right. And how can there be a negative number of bits for the fraction length, such as [16-45]?
A better way to think about fixed-point format [word length fraction length] and what it means is that the representation of a fixed-point number is a
weighted sum of powers of two driven by the fraction length, or the two's complement representation of the fixed-point number.

Consider the format [B L], where the fraction length \(L\) can be positive, negative, 0 , greater than B (the word length) or less than B. (B and L are always integers and \(B\) is always positive.)

Given a binary string \(b(1) b(2) b(3) \ldots b(B)\), to determine the two's-complement value of the string in the format described by [B L], use the value of the individual bits in the binary string in the following formula, where \(b(1)\) is the first binary bit (and most significant bit, MSB), \(\mathrm{b}(2)\) is the second, and on up to \(\mathrm{b}(\mathrm{B})\).

The decimal numeric value that those bits represent is given by
```

value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+...+ b(B)*2^(-L)

```

L , the fraction length, represents the negative of the weight of the last, or least significant bit (LSB). L is also the step size or the precision provided by a given fraction length.

\section*{Precision}

Here is how precision works.
When all of the bits of a binary string are zero except for the LSB (which is therefore equal to one), the value represented by the bit string is given by \(2^{(-L)}\). If \(L\) is negative, for example \(L=-16\), the value is \(2^{16}\). The smallest step between numbers that can be represented in a format where \(L=-16\) is given by \(1 \times 2^{16}\) (the rightmost term in the formula above), which is 65536 . Note the precision does not depend on the word length.

Take a look at another example. When the word length set to 8 bits, the decimal value 12 is represented in binary by 00001100 . That 12 is the decimal equivalent of 00001100 tells us we are using [80] data format representationthe word length is 8 bits and fraction length 0 bits, and the step size or precision (the smallest difference between two adjacent values in the format [ 8,0\(]\), is \(2^{0}=1\).

Suppose you plan to keep only the upper 5 bits and discard the other three. The resulting precision after removing the right-most three bits comes from the weight of the lowest remaining bit, the fifth bit from the left, which is \(2^{3}=8\), so the format would be [5,-3].

Note that in this format the step size is 8, I cannot represent numbers that are between multiples of 8 .

In MATLAB, with the Fixed-Point Toolbox installed:
```

x=8;
q=quantizer([8,0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq
binxq =
0 0 0 0 1 0 0 0
binxq1
binxq1 =
0 0 0 0 1

```

But notice that in [5,-3] format, 00001 is the two's complement representation for 8 , not for \(1 ; q=\) quantizer ([80]) and q1 \(=\) quantizer ([5-3]) are not the same. They cover the about the same range-range (q) \(>\) range (q1) -but their quantization step is different-eps \((q)=8\), and eps \((q 1)=1\).
Look at one more example. When you construct a quantizer \(q\)
\[
q=\text { quantizer }([a, b])
\]
the first element in [ \(a, b\) ] is \(a\), the word length used for quantization. The second element in the expression, \(b\), is related to the quantization step-the numerical difference between the two closest values that the quantizer can represent. This is also related to the weight given to the LSB. Note that \(2^{\wedge}(-b)=e p s(q)\).

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let q2 use the format [16, -16].
```

q1 = quantizer([32,0])

```
```

q2 = quantizer([16,-16])

```

Quantizers q1 and q2 cover the same range, but q2 has less precision. It covers the range in steps of \(2^{16}\), while q covers the range in steps of 1 .

This lost precision is due to (or can be used to model) throwing out 16 least-significant bits.

An important point to understand is that in dfilt objects and filtering you control which bits are carried from the sum and product operations in the filter to the filter output by setting the format for the output from the sum or product operation.

For instance, if you use [16 0] as the output format for a 32 -bit result from a sum operation when the original format is [32 0], you take the lower 16 bits from the result. If you use [ \(16-16\) ], you take the higher 16 bits of the original 32 bits. You could even take 16 bits somewhere in between the 32 bits by choosing something like [16-8], but you probably do not want to do that.

Filter scaling is directly implicated in the format and precision for a filter. When you know the filter input and output formats, as well as the filter internal formats, you can scale the inputs or outputs to stay within the format ranges. For more information about scaling filters, refer to "Working with Fixed-Point Direct-Form FIR Filters" on page 2-14.

Notice that overflows or saturation might occur at the filter input, filter output, or within the filter itself, such as during add or multiply or accumulate operations. Improper scaling at any point in the filter can result in numerical errors that dramatically change the performance of your fixed-point filter implementation.

\section*{CastBeforeSum}

Setting the CastBeforeSum property determines how the filter handles the input values to sum operations in the filter. After you set your filter Arithmetic property value to fixed, you have the option of using CastBeforeSum to control the data type of some inputs (addends) to summations in your filter. To determine which addends reflect the CastBeforeSum property setting, refer to the reference page for the signal flow diagram for the filter structure.

CastBeforeSum specifies whether to cast selected addends to summations in the filter to the output format from the addition operation before performing
the addition. When you specify true for the property value, the results of the affected sum operations match most closely the results found on most digital signal processors. Performing the cast operation before the summation adds one or two additional quantization operations that can add error sources to your filter results.

Specifying CastBeforeSum to be false prevents the addends from being cast to the output format before the addition operation. Choose this setting to get the most accurate results from summations without considering the hardware your filter might use.

Notice that the output format for every sum operation reflects the value of the output property specified in the filter structure diagram. Which input property is referenced by CastBeforeSum depends on the structure.
\begin{tabular}{ll}
\hline Property Value & Description \\
\hline false & \begin{tabular}{l} 
Configures filter summation operations to retain \\
the addends in the format carried from the \\
previous operation.
\end{tabular} \\
\hline true & \begin{tabular}{l} 
Configures filter summation operations to convert \\
the input format of the addends to match the \\
summation output format before performing the \\
summation operation. Usually this generates \\
results from the summation that more closely \\
match those found from digital signal processors
\end{tabular} \\
\hline
\end{tabular}

Another point—with CastBeforeSum set to false, the filter realization process inserts an intermediate data type format to hold temporarily the full precision sum of the inputs. A separate Convert block performs the process of casting the addition result to the accumulator format. This intermediate data format occurs because the Sum block in Simulink always casts input (addends) to the output data type.

\section*{Diagrams of CastBeforeSum Settings}

When CastBeforeSum is false, sum elements in filter signal flow diagrams look like this:

showing that the input data to the sum operations (the addends) retain their format word length and fraction length from previous operations. The addition process uses the existing input formats and then casts the output to the format defined by AccumFormat. Thus the output data has the word length and fraction length defined by AccumWordLength and AccumFracLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look like this:

showing that the input data gets recast to the accumulator format word length and fraction length (AccumFormat) before the sum operation occurs. The data output by the addition operation has the word length and fraction length defined by AccumWordLength and AccumFracLength.

\section*{CoeffAutoScale}

How the filter represents the filter coefficients depends on the property value of CoeffAutoScale. When you create a dfilt object, you use coefficients in double-precision format. Converting the dfilt object to fixed-point arithmetic forces the coefficients into a fixed-point representation. The representation the filter uses depends on whether the value of CoeffAutoScale is true or false.
- CoeffAutoScale = true means the filter chooses the fraction length to maintain the value of the coefficients as close to the double-precision values as possible. When you change the word length applied to the coefficients, the filter object changes the fraction length to try to accommodate the change. true is the default setting.
- CoeffAutoScale \(=\) false removes the automatic scaling of the fraction length for the coefficients and exposes the property that controls the coefficient fraction length so you can change it. For example, if the filter is a direct form FIR filter, setting CoeffAutoScale = false exposes the NumFracLength property that specifies the fraction length applied to numerator coefficients. If the filter is an IIR filter, setting CoeffAutoScale = false exposes both the NumFracLength and DenFracLength properties.

Here is an example of using CoeffAutoScale with a direct form filter.
```

hd2=dfilt.dffir([0.3 0.6 0.3])

```
hd2 =
FilterStructure: 'Direct-Form FIR' Arithmetic: 'double' Numerator: [0.3000 0.60000 .3000 ]
PersistentMemory: false
States: [2x1 double]
hd2.arithmetic='fixed'
hd2 =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]
```

PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

To this point, the filter coefficients retain the original values from when you created the filter as shown in the Numerator property. Now change the CoeffAutoScale property value from true to false.
```

hd2.coeffautoScale=false

```
    hd2 =
```

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.3000 0.6000 0.3000]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: false
 NumFracLength: 15
 Signed: true
 InputWordLength: 16
    ```
```

 InputFracLength: 15
 OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

With the NumFracLength property now available, change the word length to 5 bits.

Notice the coefficient values. Setting CoeffAutoScale to false removes the automatic fraction length adjustment and the filter coefficients cannot be represented by the current format of [5 15] -a word length of 5 bits, fraction length of 15 bits.
```

hd2.coeffwordlength=5
hd2 =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [4.5776e-004 4.5776e-004 4.5776e-004]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 5
CoeffAutoScale: false
NumFracLength: 15
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'

```
```

 ProductMode: 'FullPrecision'
 AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

Restoring CoeffAutoScale to true goes some way to fixing the coefficient values. Automatically scaling the coefficient fraction length results in setting the fraction length to 4 bits. You can check this with get (hd2) as shown below.
```

hd2.coeffautoScale=true
hd2 =
FilterStructure: 'Direct-Form FIR
Arithmetic: 'fixed'
Numerator: [0.3125 0.6250 0.3125]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 5
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```
```

get(hd2)
PersistentMemory: false
FilterStructure: 'Direct-Form FIR'
States: [1x1 embedded.fi]
Numerator: [0.3125 0.6250 0.3125]
Arithmetic: 'fixed'
CoeffWordLength: 5
CoeffAutoScale: 1
Signed: 1
RoundMode: 'convergent'
OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
NumFracLength: 4
OutputFracLength: 12
ProductWordLength: 21
ProductFracLength: 19
AccumWordLength: 40
AccumFracLength: 19
CastBeforeSum: 1

```

Clearly five bits is not enough to represent the coefficients accurately.

\section*{CoefffracLength}

Fixed-point scalar filters that you create using dfilt.scalar use this property to define the fraction length applied to the scalar filter coefficients. Like the coefficient-fraction-length-related properties for the FIR, lattice, and IIR filters, CoeffFracLength is not displayed for scalar filters until you set CoeffAutoScale to false. Once you change the automatic scaling you can set the fraction length for the coefficients to any value you require.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 14 bits, with the CoeffWordlength of 16 bits.

\section*{CoeffWordLength}

One primary consideration in developing filters for hardware is the length of a data word. CoeffWordLength defines the word length for these data storage and arithmetic locations:
- Numerator and denominator filter coefficients
- Tap sum in dfilt.dfsymfir and dfilt.dfasymfir filter objects
- Section input, multiplicand, and state values in direct-form SOS filter objects such as dfilt.df1t and dfilt.df2
- Scale values in second-order filters
- Lattice and ladder coefficients in lattice filter objects, such as dfilt.latticearma and dfilt.latticemamax
- Gain in dfilt.scalar

Setting this property value controls the word length for the data listed. In most cases, the data words in this list have separate fraction length properties to define the associated fraction lengths.

Any positive, integer word length works here, limited by the machine you use to develop your filter and the hardware you use to deploy your filter.

\section*{DenAccumFracLength}

Filter structures df1, df1t, df2, and df2t that use fixed arithmetic have this property that defines the fraction length applied to denominator coefficients in the accumulator. In combination with AccumWordLength, the properties fully specify how the accumulator outputs data stored there.

As with all fraction length properties, DenAccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers. To be able to change the property value for this property, you set FilterInternals to SpecifyPrecision.

\section*{DenFracLength}

Property DenFracLength contains the value that specifies the fraction length for the denominator coefficients for your filter. DenFracLength specifies the fraction length used to interpret the data stored in C. Used in combination with CoeffWordLength, these two properties define the interpretation of the coefficients stored in the vector that contains the denominator coefficients.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 15 bits, with the CoeffWordLength of 16 bits.

\section*{Denominator}

The denominator coefficients for your IIR filter, taken from the prototype you start with, are stored in this property. Generally this is a 1 -by-N array of data in double format, where N is the length of the filter.

All IIR filter objects include Denominator, except the lattice-based filters which store their coefficients in the Lattice property, and second-order section filters, such as dfilt.df1tsos, which use the SosMatrix property to hold the coefficients for the sections.

\section*{DenProdFracLength}

A property of all of the direct form IIR dfilt objects, except the ones that implement second-order sections, DenProdFracLength specifies the fraction length applied to data output from product operations that the filter performs on denominator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you see that denominators and numerators are handled separately. When you set ProductMode to SpecifyPrecision, you can change the DenProdFracLength setting manually. Otherwise, for multiplication operations that use the denominator coefficients, the filter sets the fraction length as defined by the ProductMode setting.

\section*{DenStateFracLength}

When you look at the flow diagram for the dfilt.df1 sos filter object, the states associated with denominator coefficient operations take the fraction length from this property. In combination with the DenStateWordLength property, these properties fully specify how the filter interprets the states.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 15 bits, with the DenStateWordLength of 16 bits.

\section*{DenStateWordLength}

When you look at the flow diagram for the dfilt.df1sos filter object, the states associated with the denominator coefficient operations take the data format from this property and the DenStateFracLength property. In combination, these properties fully specify how the filter interprets the state it uses.
By default, the value is 16 bits, with the DenStateFracLength of 15 bits.

\section*{FilterInternals}

Similar to the FilterInternals pane in FDATool, this property controls whether the filter sets the output word and fraction lengths automatically, and the accumulator word and fraction lengths automatically as well, to maintain the best precision results during filtering. The default value, FullPrecision, sets automatic word and fraction length determination by the filter. Setting FilterInternals to SpecifyPrecision exposes the output and accumulator related properties so you can set your own word and fraction lengths for them. Note that

\section*{FilterStructure}

Every dfilt object has a FilterStructure property. This is a read-only property containing a string that declares the structure of the filter object you created.

When you construct filter objects, the FilterStructure property value is returned containing one of the strings shown in the following table. Property FilterStructure indicates the filter architecture and comes from the constructor you use to create the filter.

After you create a filter object, you cannot change the FilterStructure property value. To make filters that use different structures, you construct new filters using the appropriate methods, or use convert to switch to a new structure.

Default value: Since this depends on the constructor you use and the constructor includes the filter structure definition, there is no default value.

When you try to create a filter without specifying a structure, MATLAB returns an error.
\begin{tabular}{l|l}
\hline Filfer Constructor Name & FilterStructure Property String and Filter Type \\
\hline 'dfilt.df1' & Direct form I \\
\hline 'dfilt.df1sos' & \begin{tabular}{l} 
Direct form I filter implemented using \\
second-order sections
\end{tabular} \\
\hline 'dfilt.df1t' & Direct form I transposed \\
\hline 'dfilt.df2' & Direct form II \\
\hline 'dfilt.df2sos' & \begin{tabular}{l} 
Direct form II filter implemented using second \\
order sections
\end{tabular} \\
\hline 'dfilt.df2t' & Direct form II transposed \\
\hline 'dfilt.dfasymfir' & \begin{tabular}{l} 
Antisymmetric finite impulse response (FIR). \\
Even and odd forms.
\end{tabular} \\
\hline 'dfilt.dffir' & Direct form FIR \\
\hline 'dfilt.dffirt' & Direct form FIR transposed \\
\hline 'dfilt.latticeallpass' & Lattice allpass \\
\hline 'dfilt.latticear' & Lattice autoregressive (AR) \\
\hline 'dfilt.latticemamin' & Lattice moving average (MA) minimum phase \\
\hline 'dfilt.latticemamax ' & Lattice moving average (MA) maximum phase \\
\hline 'dfilt.latticearma' & Lattice ARMA \\
\hline 'dfilt.dfsymfir' & Symmetric FIR. Even and odd forms \\
\hline 'dfilt.scalar' & Scalar \\
\hline
\end{tabular}

\section*{Filter Structures with Quantizations Shown in Place}

To help you understand how and where the quantizations occur in filter structures in this toolbox, Figure 7-1 presents the structure for a Direct Form 2 filter, including the quantizations (fixed-point formats) that compose part of
the fixed-point filter. You see that one or more quantization processes, specified by the *format label, accompany each filter element, such as a delay, product, or summation element. The input to or output from each element reflects the result of applying the associated quantization as defined by the word length and fraction length format. Wherever a particular filter element appears in a filter structure, recall the quantization process that accompanies the element as it appears in this figure. Each filter reference page, such as the dfilt.df2 reference page, includes the signal flow diagram showing the formatting elements that define the quantizations that occur throughout the filter flow.

For example, a product quantization, either numerator or denominator, follows every product (gain) element and a sum quantization, also either numerator or denominator, follows each sum element. In this figure, we set the Arithmetic property value to fixed.


Figure 7-1: df2 IIR Filter Structure Including The Formatting Objects, With Arithmetic Property Value fixed

When your df2 filter uses the Arithmetic property set to fixed, the filter structure contains the formatting features shown in the diagram. The formats included in the structure are fixed-point objects that include properties to set various word and fraction length formats. For example, the NumFormat or DenFormat in the fixed-point arithmetic filter set the properties for quantizing numerator or denominator coefficients according to word and fraction length settings.

When the leading denominator coefficient a(1) in your filter is not 1 , choose it to be a power of two so that a shift replaces the multiply that would otherwise be used.

\section*{Fixed-Point Arithmetic Filter Structures}

You choose among several filter structures when you create fixed-point filters. You can also specify filters with single or multiple cascaded sections of the same type. Because quantization is a nonlinear process, different fixed-point filter structures produce different results.

To specify the filter structure, you select the appropriate dfilt.structure method to construct your filter. Refer to the function reference information for dfilt and set for details on setting property values for quantized filters.

The figures in the following subsections of this section serve as aids to help you determine how to enter your filter coefficients for each filter structure. Each subsection contains an example for constructing a filter of the given structure.

Scale factors for the input and output for the filters do not appear in the block diagrams. The default filter structures do not include, nor assume, the scale factors. For filter scaling information, refer to scale in the Help system.

\section*{About the Filter Structure Diagrams}

In the diagrams that accompany the following filter structure descriptions, you see the active operators that define the filter, such as sums and gains, and the formatting features that control the processing in the filter. Notice also that the coefficients are labeled in the figure. This tells you the order in which the filter processes the coefficients.

While the meaning of the block elements is straightforward, the labels for the formats that form part of the filter are less clear. Each figure includes text in the form labelFormat that represents the existence of a formatting feature at that point in the structure. The Format stands for formatting object and the label specifies the data that the formatting object affects.

For example, in the dfilt.df2 filter shown on page 7-45, the entries InputFormat and OutputFormat are the formats applied, that is the word length and fraction length, to the filter input and output data. For example, filter properties like OutputWordLength and InputWordLength specify values that control filter operations at the input and output points in the structure
and are represented by the formatting objects InputFormat and OutputFormat shown in the filter structure diagrams.

\section*{Direct Form I Filter Structure}

The following figure depicts the direct form I filter structure that directly realizes a transfer function with a second-order numerator and denominator. The numerator coefficients are numbered \(b(i), \mathrm{i}=1,2,3\); the denominator coefficients are numbered \(a(i), i=1,2,3\); and the states (used for initial and final state values in filtering) are labeled \(z(i)\). In the figure, the Arithmetic property is set to fixed.


Example-Specifying a Direct Form I Filter. You can specify a second-order direct form I structure for a quantized filter hq with the following code.
```

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1(b,a);

```

To create the fixed-point filter, set the Arithmetic property to fixed as shown here.
```

set(hq,'arithmetic','fixed');

```

\section*{Direct Form I Filter Structure With Second-Order Sections}

The following figure depicts a direct form I filter structure that directly realizes a transfer function with a second-order numerator and denominator and second-order sections. The numerator coefficients are numbered \(b(i), \mathrm{i}=1,2,3\); the denominator coefficients are numbered \(a(i), i=1,2,3\); and the states (used for initial and final state values in filtering) are labeled \(z(i)\). In the figure, the Arithmetic property is set to fixed to place the filter in fixed-point mode.


Example-Specifying a Direct Form I Filter with Second-Order Sections. You can specify an eighth-order direct form I structure for a quantized filter hq with the following code.
```

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1sos(b,a);

```

To create the fixed-point filter, set the Arithmetic property to fixed, as shown here.
```

set(hq,'arithmetic','fixed');

```

\section*{Direct Form I Transposed Filter Structure}

The next signal flow diagram depicts a direct form I transposed filter structure that directly realizes a transfer function with a second-order numerator and denominator. The numerator coefficients are \(b(i), i=1,2,3\); the denominator
coefficients are \(\alpha(i), i=1,2,3\); and the states (used for initial and final state values in filtering) are labeled \(z(i)\). With the Arithmetic property value set to fixed, the figure shows the filter with the properties indicated.


Example-Specifying a Direct Form I Transposed Filter. You can specify a second-order direct form I transposed filter structure for a quantized filter hq with the following code.
```

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1t(b,a);
set(hq,'arithmetic','fixed');

```

\section*{Direct Form II Filter Structure}

The following graphic depicts a direct form II filter structure that directly realizes a transfer function with a second-order numerator and denominator. In the figure, the Arithmetic property value is fixed. Numerator coefficients
are named \(b(i)\); denominator coefficients are named \(a(i), i=1,2,3\); and the states (used for initial and final state values in filtering) are named \(z(i)\).


Use the method dfilt.df2 to construct a quantized filter whose FilterStructure property is Direct-Form II.

Example-Specifying a Direct Form II Filter. You can specify a second-order direct form II filter structure for a quantized filter hq with the following code.
```

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2({b,a});
hq.arithmetic = 'fixed'

```

To convert your initial double-precision filter hq to a quantized or fixed-point filter, set the Arithmetic property to fixed, as shown.

\section*{Direct Form II Filter Structure With Second-Order Sections}

The following figure depicts direct form II filter structure using second-order sections that directly realizes a transfer function with a second-order numerator and denominator sections. In the figure, the Arithmetic property value is fixed. Numerator coefficients are labeled \(b(i)\); denominator coefficients are labeled \(a(i), i=1,2,3\); and the states (used for initial and final state values in filtering) are labeled \(z(i)\).


Use the method dfilt.df2sos to construct a quantized filter whose FilterStructure property is Direct-Form II.

Example-Specifying a Direct Form II Filter with Second-Order Sections. You can specify a tenth-order direct form II filter structure that uses second-order sections for a quantized filter hq with the following code.
```

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2sos({b,a});
hq.arithmetic = 'fixed'

```

To convert your prototype double-precision filter hq to a fixed-point filter, set the Arithmetic property to fixed, as shown.

\section*{Direct Form II Transposed Filter Structure}

The following figure depicts the direct form II transposed filter structure that directly realizes transfer functions with a second-order numerator and denominator. The numerator coefficients are labeled \(b(i)\), the denominator coefficients are labeled \(a(i), i=1,2,3\), and the states (used for initial and final state values in filtering) are labeled \(z(i)\). In the first figure, the Arithmetic property value is fixed.


Use the constructor dfilt.df2t to specify the value of the FilterStructure property for a filter with this structure that you can convert to fixed-point filtering.

Example-Specifying a Direct Form II Transposed Filter. Specifying or constructing a second-order direct form II transposed filter for a fixed-point filter hq starts with the following code to define the coefficients and construct the filter.
```

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t({b,a});

```

Now create the fixed-point filtering version of the filter from hd, which is floating point.
```

hq = set(hd,'arithmetic','fixed');

```

\section*{Direct Form Antisymmetric FIR Filter Structure (Any Order)}

The following figure depicts a direct form antisymmetric FIR filter structure that directly realizes a second-order antisymmetric FIR filter. The filter coefficients are labeled \(b(i)\), and the initial and final state values in filtering are labeled \(z(i)\). This structure reflects the Arithmetic property set to fixed.


Use the method dfilt.dfasymfir to construct the filter, and then set the Arithmetic property to fixed to convert to a fixed-point filter with this structure.

Example-Specifying an Odd-Order Direct Form Antisymmetric FIR Filter. Specify a fifth-order direct form antisymmetric FIR filter structure for a fixed-point filter hq with the following code.
```

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hq = dfilt.dfasymfir(b);
set(hq,'arithmetic','fixed')

```
```

hq
hq =

```
```

FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'fixed'
Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]
PersistentMemory: false
States: [1x1 fi object]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
TapSumMode: 'KeepMSB'
TapSumWordLength: 17
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
InheritSettings: false

```

Example-Specifying an Even-Order Direct Form Antisymmetric FIR Filter. You can specify a fourth-order direct form antisymmetric FIR filter structure for a fixed-point filter hq with the following code.
```

b = [-0.01 0.1 0.0 -0.1 0.01];
hq = dfilt.dfasymfir(b);
hq.arithmetic='fixed'

```
```

hq =
FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'fixed'
Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
PersistentMemory: false
States: [1x1 fi object]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
TapSumMode: 'KeepMSB'
TapSumWordLength: 17
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
InheritSettings: false

```

\section*{Direct Form Finite Impulse Response (FIR) Filter Structure}

In the next figure, you see the signal flow graph for a direct form finite impulse response (FIR) filter structure that directly realizes a second-order FIR filter. The filter coefficients are \(b(i), i=1,2,3\), and the states (used for initial and final state values in filtering) are \(z(i)\). To generate the figure, set the Arithmetic property to fixed after you create your prototype filter in double-precision arithmetic.


Use the dfilt.dffir method to generate a filter that uses this structure.
Example-Specifying a Direct Form FIR Filter. You can specify a second-order direct form FIR filter structure for a fixed-point filter hq with the following code.
```

b = [0.05 0.9 0.05];
hd = dfilt.dffir({b});
hq = set(hd,'arithmetic','fixed');

```

\section*{Direct Form FIR Transposed Filter Structure}

This figure uses the filter coefficients labeled \(b(i), i=1,2,3\), and states (used for initial and final state values in filtering) are labeled \(z(i)\). These depict a direct form finite impulse response (FIR) transposed filter structure that directly realizes a second-order FIR filter.


With the Arithmetic property set to fixed, your filter matches the figure. Using the method dfilt.dffirt returns a double-precision filter that you convert to a fixed-point filter.

Example-Specifying a Direct Form FIR Transposed Filter. You can specify a second-order direct form FIR transposed filter structure for a fixed-point filter hq with the following code.
b = [0.05 0.9 0.05];
hd=dfilt.dffirt(\{b\});
hq = copy(hd);
hq.arithmetic = 'fixed';

\section*{Lattice Allpass Filter Structure}

The following figure depicts the lattice allpass filter structure. The pictured structure directly realizes third-order lattice allpass filters using fixed-point arithmetic. The filter reflection coefficients are labeled \(k 1(i), i=1,2,3\). The states (used for initial and final state values in filtering) are labeled \(z(i)\).


To create a quantized filter that uses the lattice allpass structure shown in the figure, use the dfilt.latticeallpass method and set the Arithmetic property to fixed.

Example-Specifying a Lattice Allpass Filter. You can create a third-order lattice allpass filter structure for a quantized filter hq with the following code.
```

k = [.66 .7 .44];
hd=dfilt.latticeallpass({k});
hq = copy(hd)
set(hq,'arithmetic','fixed');

```

\section*{Lattice Moving Average Maximum Phase Filter Structure}

In the next figure you see a lattice moving average maximum phase filter structure. This signal flow diagram directly realizes a third-order lattice moving average (MA) filter with the following phase form depending on the initial transfer function:
- When you start with a minimum phase transfer function, the upper branch of the resulting lattice structure returns a minimum phase filter. The lower branch returns a maximum phase filter.
- When your transfer function is neither minimum phase nor maximum phase, the lattice moving average maximum phase structure will not be maximum phase.
- When you start with a maximum phase filter, the resulting lattice filter is maximum phase also.

The filter reflection coefficients are labeled \(k(i), i=1,2,3\). The states (used for initial and final state values in filtering) are labeled \(z(i)\). In the figure, we set the Arithmetic property to fixed to reveal the fixed-point arithmetic format features that control such options as word length and fraction length.


Example-Constructing a Lattice Moving Average Maximum Phase Filter. Constructing a fourth-order lattice MA maximum phase filter structure for a quantized filter hq begins with the following code.
```

k = [.66 .7 .44 .33];
hd=dfilt.latticemamax({k});

```

\section*{Lattice Autoregressive (AR) Filter Structure}

The method dfilt.latticear directly realizes lattice autoregressive filters in the toolbox. The following figure depicts the third-order lattice autoregressive \((A R)\) filter structure-with the Arithmetic property equal to fixed. The filter reflection coefficients are labeled \(k(i), i=1,2,3\), and the states (used for initial and final state values in filtering) are labeled \(z(i)\).


Example-Specifying a Lattice AR Filter. You can specify a third-order lattice AR filter structure for a quantized filter hq with the following code.
```

k = [.66 .7 .44];
hd=dfilt.latticear({k});
hq = copy(hd);
hq.arithmetic = 'custom';

```

\section*{Lattice Moving Average (MA) Filter Structure for Minimum Phase}

The following figures depict lattice moving average (MA) filter structures that directly realize third-order lattice MA filters for minimum phase. The filter reflection coefficients are labeled \(k(i), i=1,2,3\), and the states (used for initial and final state values in filtering) are labeled \(z(i)\). Setting the Arithmetic property of the filter to fixed results in a fixed-point filter that matches the figure.

This signal flow diagram directly realizes a third-order lattice moving average (MA) filter with the following phase form depending on the initial transfer function:
- When you start with a minimum phase transfer function, the upper branch of the resulting lattice structure returns a minimum phase filter. The lower branch returns a minimum phase filter.
- When your transfer function is neither minimum phase nor maximum phase, the lattice moving average minimum phase structure will not be minimum phase.
- When you start with a minimum phase filter, the resulting lattice filter is minimum phase also.

The filter reflection coefficients are labeled \(k(i), i=1,2,3\). The states (used for initial and final state values in filtering) are labeled \(z(i)\). In the figure, we set the Arithmetic property to fixed to reveal the fixed-point arithmetic format features that control such options as word length and fraction length.


Example-Specifying a Minimum Phase Lattice MA Filter. You can specify a third-order lattice MA filter structure for minimum phase applications using variations of the following code.
```

k = [l.66 .7 .44];
hd=dfilt.latticemamin({k});
hq = copy(hd);
set(hq,'arithmetic','fixed');

```

\section*{Lattice Autoregressive Moving Average (ARMA) Filter Structure}

The figure below depicts a lattice autoregressive moving average (ARMA) filter structure that directly realizes a fourth-order lattice ARMA filter. The filter reflection coefficients are labeled \(k(i), i=1, \ldots, 4\); the ladder coefficients are labeled \(v(i), i=1,2,3\); and the states (used for initial and final state values in filtering) are labeled \(z(i)\).


Example-Specifying an Lattice ARMA Filter. The following code specifies a fourth-order lattice ARMA filter structure for a quantized filter hq, starting from hd, a floating-point version of the filter.
```

k = [. 66 .7 .44 . 66];
v = [1 0 0];
hd=dfilt.latticearma({k,v});
hq = copy(hd);
hq.arithmetic = 'fixed';

```

\section*{Direct Form Symmetric FIR Filter Structure (Any Order)}

Shown in the next figure, you see signal flow that depicts a direct form symmetric FIR filter structure that directly realizes a fifth-order direct form symmetric FIR filter. Filter coefficients are labeled \(b(i), i=1, \ldots, n\), and states (used for initial and final state values in filtering) are labeled \(z(i)\). Showing the filter structure used when you select fixed for the Arithmetic property value, the first figure details the properties in the filter object.


Example-Specifying an Odd-Order Direct Form Symmetric FIR Filter. By using the following code in MATLAB, you can specify a fifth-order direct form symmetric FIR filter for a fixed-point filter hq:
```

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd=dfilt.dfsymfir({b});

```
```

hq = copy(hd);
set(hq,'arithmetic','fixed');

```

\section*{Assigning Filter Coefficients}

The syntax you use to assign filter coefficients for your floating-point or fixed-point filter depends on the structure you select for your filter.

\section*{Converting Filters Between Representations}

Filter conversion functions in this toolbox and in the Signal Processing Toolbox let you convert filter transfer functions to other filter forms, and from other filter forms to transfer function form. Relevant conversion functions include the following functions.
\begin{tabular}{l|l}
\hline Conversion Function & Description \\
\hline ca2tf & \begin{tabular}{l} 
Converts from a coupled allpass filter to a \\
transfer function.
\end{tabular} \\
\hline cl2tf & \begin{tabular}{l} 
Converts from a lattice coupled allpass filter to \\
a transfer function.
\end{tabular} \\
\hline convert & \begin{tabular}{l} 
Convert a discrete-time filter from one filter \\
structure to another.
\end{tabular} \\
\hline sos & \begin{tabular}{l} 
Converts quantized filters to create \\
second-order sections. We recommend this \\
method for converting quantized filters to \\
second-order sections.
\end{tabular} \\
\hline tf2ca & \begin{tabular}{l} 
Converts from a transfer function to a coupled \\
allpass filter.
\end{tabular} \\
\hline tf2cl & \begin{tabular}{l} 
Converts from a transfer function to a lattice \\
coupled allpass filter.
\end{tabular} \\
\hline tf2latc & \begin{tabular}{l} 
Converts from a transfer function to a lattice \\
filter.
\end{tabular} \\
\hline tf2sos & \begin{tabular}{l} 
Converts from a transfer function to a \\
second-order section form.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Conversion Function & Description \\
\hline tf2ss & \begin{tabular}{l} 
Converts from a transfer function to \\
state-space form.
\end{tabular} \\
\hline tf2zp & \begin{tabular}{l} 
Converts from a rational transfer function to \\
its factored (single section) form \\
(zero-pole-gain form).
\end{tabular} \\
\hline zp2sos & \begin{tabular}{l} 
Converts a zero-pole-gain form to a \\
second-order section form.
\end{tabular} \\
\hline zp2ss & \begin{tabular}{l} 
Conversion of zero-pole-gain form to a \\
state-space form.
\end{tabular} \\
\hline zp2tf & \begin{tabular}{l} 
Conversion of zero-pole-gain form to transfer \\
functions of multiple order sections.
\end{tabular} \\
\hline
\end{tabular}

Note that these conversion routines do not apply to dfilt objects.
Function convert is a special case-when you use convert to change the filter structure of a fixed-point filter, you lose all of the filter states and settings. Your new filter has default values for all properties, and it in not fixed-point.

To demonstrate the changes that occur, convert a fixed-point direct form I transposed filter to direct form II structure.
```

hd=dfilt.df1t
hd =
FilterStructure: 'Direct-Form I Transposed'
Arithmetic: 'double'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: Numerator: [0xO double]
Denominator:[0x0 double]
hd.arithmetic='fixed'
hd =

```
```

 FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'fixed'
 Numerator: 1
 Denominator: 1
 PersistentMemory: false
States: Numerator: [0x0 fi]
Denominator:[0x0 fi]
convert(hd,'df2')
Warning: Using reference filter for structure conversion.
Fixed-point attributes will not be converted.
ans =
FilterStructure: 'Direct-Form II'
Arithmetic: 'double'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: [0x1 double]

```

You can specify a filter with \(L\) sections of arbitrary order by
1 Factoring your entire transfer function with tf2zp. This converts your transfer function to zero-pole-gain form.

2 Using zp2tf to compose the transfer function for each section from the selected first-order factors obtained in step 1.

Note You are not required to normalize the leading coefficients of each section's denominator polynomial when you specify second-order sections, though tf2sos does.

\section*{Gain}
dfilt.scalar filters have a gain value stored in the gain property. By default the gain value is one-the filter acts as a wire.

\section*{InputFracLength}

InputFracLength defines the fraction length assigned to the input data for your filter. Used in tandem with InputWordLength, the pair defines the data format for input data you provide for filtering.
As with all fraction length properties in dfilt objects, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, in this case InputWordLength, as well.

\section*{InputWordLength}

Specifies the number of bits your filter uses to represent your input data. Your word length option is limited by the arithmetic you choose-up to 32 bits for double, float, and fixed. Setting Arithmetic to single (single-precision floating-point) limits word length to 16 bits. The default value is 16 bits.

\section*{Ladder}

Included as a property in dfilt.latticearma filter objects, Ladder contains the denominator coefficients that form an IIR lattice filter object. For instance, the following code creates a high pass filter object that uses the lattice ARMA structure.
```

[b,a]=cheby1(5,.5,.5,'high')
b =
0.0282 -0.1409 0.2817 -0.2817 0.1409 -0.0282
a =
1.0000 0.9437
hd=dfilt.latticearma(b,a)
hd =

```
```

 FilterStructure: [1x44 char]
 Arithmetic: 'double'
 Lattice: [1x6 double]
 Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]
 PersistentMemory: false
States: [6x1 double]
hd.arithmetic='fixed'
hd =
FilterStructure: [1x44 char]
Arithmetic: 'fixed'
Lattice: [1x6 double]
Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
StateWordLength: 16
StateFracLength: 15
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

\section*{LadderAccumFracLength}

Autoregressive, moving average lattice filter objects (lattticearma) use ladder coefficients to define the filter. In combination with LadderFracLength and CoeffWordLength, these three properties specify or reflect how the accumulator outputs data stored there. As with all fraction length properties, LadderAccumFracLength can be any integer, including integers larger than

AccumWordLength, and positive or negative integers. The default value is 29 bits.

\section*{LadderFracLength}

To let you control the way your latticearma filter interprets the denominator coefficients, LadderFracLength sets the fraction length applied to the ladder coefficients for your filter. The default value is 14 bits.

As with all fraction length properties, LadderFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers.

\section*{Lattice}

When you create a lattice-based IIR filter, your numerator coefficients (from your IIR prototype filter or the default dfilt lattice filter function) get stored in the Lattice property of the dfilt object. The properties CoeffWordLength and LatticeFracLength define the data format the object uses to represent the lattice coefficients. By default, lattice coefficients are in double-precision format.

\section*{LatticeAccumFracLength}

Lattice filter objects (latticeallpass, latticearma, latticemamax, and latticemamin) use lattice coefficients to define the filter. In combination with LatticeFracLength and CoeffWordLength, these three properties specify how the accumulator outputs lattice coefficient-related data stored there. As with all fraction length properties, LatticeAccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers. By default, the property is set to 31 bits.

\section*{LatticeFracLength}

To let you control the way your filter interprets the denominator coefficients, LatticeFracLength sets the fraction length applied to the lattice coefficients for your lattice filter. When you create the default lattice filter, LatticeFracLength is 16 bits.

As with all fraction length properties, LatticeFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers.

\section*{MultiplicandFracLength}

Each input data element for a multiply operation has both word length and fraction length to define its representation. MultiplicandFracLength sets the fraction length to use when the filter object performs any multiply operation during filtering. For default filters, this is set to 15 bits.
As with all word and fraction length properties, MultiplicandFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers.

\section*{MultiplicandWordLength}

Each input data element for a multiply operation has both word length and fraction length to define its representation. MultiplicandWordLength sets the word length to use when the filter performs any multiply operation during filtering. For default filters, this is set to 16 bits. Only the df1t and df1tsos filter objects include the MultiplicandFracLength property.

Only the df1t and df1tsos filter objects include the MultiplicandWordLength property.

\section*{NumAccumFracLength}

Filter structures \(d f 1, d f 1 t, d f 2\), and df2t that use fixed arithmetic have this property that defines the fraction length applied to numerator coefficients in output from the accumulator. In combination with AccumWordLength, the NumAccumFracLength property fully specifies how the accumulator outputs numerator-related data stored there.

As with all fraction length properties, NumAccumFracLength can be any integer, including integers larger than AccumWordLength, and positive or negative integers. 30 bits is the default value when you create the filter object. To be able to change the value for this property, set FilterInternals for the filter to SpecifyPrecision.

\section*{Numerator}

The numerator coefficients for your filter, taken from the prototype you start with or from the default filter, are stored in this property. Generally this is a 1-by- N array of data in double format, where N is the length of the filter.

All of the filter objects include Numerator, except the lattice-based and second-order section filters, such as dfilt.latticema and dfilt.df1tsos.

\section*{NumFracLength}

Property NumFracLength contains the value that specifies the fraction length for the numerator coefficients for your filter. NumFracLength specifies the fraction length used to interpret the numerator coefficients. Used in combination with CoeffWordLength, these two properties define the interpretation of the coefficients stored in the vector that contains the numerator coefficients.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 15 bits, with the CoeffWordLength of 16 bits.

\section*{NumProdFracLength}

A property of all of the direct form IIR dfilt objects, except the ones that implement second-order sections, NumProdFracLength specifies the fraction length applied to data output from product operations the filter performs on numerator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you see that denominators and numerators are handled separately. When you set ProductMode to SpecifyPrecision, you can change the NumProdFracLength setting manually. Otherwise, for multiplication operations that use the numerator coefficients, the filter sets the word length as defined by the ProductMode setting.

\section*{NumStateFracLength}

All the variants of the direct form I structure include the property NumStateFracLength to store the fraction length applied to the numerator states for your filter object. By default, this property has the value 15 bits, with the CoeffWordLength of 16 bits, which you can change after you create the filter object.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well.

\section*{NumStateWordLength}

When you look at the flow diagram for the df1sos filter object, the states associated with the numerator coefficient operations take the data format from this property and the NumStateFracLength property. In combination, these properties fully specify how the filter interprets the state it uses.

As with all fraction length properties, the value you enter here can be any negative or positive integer, or zero. Fraction length can be larger than the associated word length, as well. By default, the value is 16 bits, with the NumStateFracLength of 11 bits.

\section*{OutputFracLength}

To define the output from your filter object, you need both the word and fraction lengths. OutputFracLength determines the fraction length applied to interpret the output data. Combining this with OutputWordLength fully specifies the format of the output.

Your fraction length can be any negative or positive integer, or zero. In addition, the fraction length you specify can be larger than the associated word length. Generally, the default value is 11 bits.

\section*{OutputMode}

Sets the mode the filter uses to scale the filtered (output) data. You have the following choices:
- AvoidOverflow-directs the filter to set the property that controls the output data fraction length to avoid causing the data to overflow. In a df2 filter, this would be the OutputFracLength property.
- BestPrecision-directs the filter to set the property that controls the output data fraction length to maximize the precision in the output data. For df1t filters, this is the OutputFracLength property. When you change the word length (OutputWordLength), the filter adjusts the fraction length to maintain the best precision for the new word size.
- SpecifyPrecision-lets you set the fraction length used by the filtered data. When you select this choice, you can set the output fraction length using the OutputFracLength property to define the output precision.

All filters include this property except the direct form I filter which takes the output format from the filter states.

Here is an example that changes the mode setting to bestprecision, and then adjusts the word length for the output.
```

hd=dfilt.df2
hd =
FilterStructure: 'Direct-Form II'
Arithmetic: 'double'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: [Ox1 double]
hd.arithmetic='fixed'
hd =
FilterStructure: 'Direct-Form II'
Arithmetic: 'fixed'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
StateWordLength: 16
StateFracLength: 15

```
```

 ProductMode: 'FullPrecision'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 get(hd)
PersistentMemory: false
FilterStructure: 'Direct-Form II'
States: [1x1 embedded.fi]
Numerator: 1
Denominator: 1
Arithmetic: 'fixed'
CoeffWordLength: 16
CoeffAutoScale: 1
Signed: 1
RoundMode: 'convergent'
OverflowMode: 'wrap'
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
StateWordLength: 16
StateFracLength: 15
NumFracLength: 14
DenFracLength: 14
OutputFracLength: 13
ProductWordLength: 32
NumProdFracLength: }2
DenProdFracLength: 29
AccumWordLength: 40
NumAccumFracLength: 29
DenAccumFracLength: 29
CastBeforeSum: 1
hd.outputMode='bestprecision'

```
```

hd =
FilterStructure: 'Direct-Form II'
Arithmetic: 'fixed'
Numerator: 1
Denominator: 1
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'BestPrecision'
StateWordLength: 16
StateFracLength: 15
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
hd.outputWordLength=8;
get(hd)
PersistentMemory: false
FilterStructure: 'Direct-Form II'
States: [1x1 embedded.fi]
Numerator: 1
Denominator: 1
Arithmetic: 'fixed'
CoeffWordLength: 16

```
```

 CoeffAutoScale: 1
 Signed: 1
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 8
 OutputMode: 'BestPrecision'
 ProductMode: 'FullPrecision'
 StateWordLength: 16
 StateFracLength: 15
 NumFracLength: 14
 DenFracLength: 14
 OutputFracLength: 5
 ProductWordLength: 32
NumProdFracLength: 29
DenProdFracLength: 29
AccumWordLength: 40
NumAccumFracLength: 29
DenAccumFracLength: 29
CastBeforeSum: 1

```

Changing the OutputWordLength to 8 bits caused the filter to change the OutputFracLength to 5 bits to keep the best precision for the output data.

\section*{OutputWordLength}

Use the property OutputWordLength to set the word length used by the output from your filter. Set this property to a value that matches your intended hardware. For example, some digital signal processors use 32 -bit output so you would set OutputWordLength to 32.
```

[b,a] = butter(6,.5);
hd=dfilt.df1t(b,a);
set(hd,'arithmetic','fixed')
hd
hd =
FilterStructure: 'Direct-Form I Transposed'

```
```

 Arithmetic: 'fixed'
 Numerator: [1x7 double]
 Denominator: [11 0 0.7777 0 0.1142 0 0.0018]
 PersistentMemory: false
 States: Numerator: [6x1 fi]
 Denominator:[6x1 fi]
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 MultiplicandWordLength: 16
 MultiplicandFracLength: 15
 StateWordLength: 16
 StateAutoScale: true
 ProductMode: 'FullPrecision'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 hd.outputwordLength=32
hd =

```
```

FilterStructure: 'Direct-Form I Transposed'

```
FilterStructure: 'Direct-Form I Transposed'
                    Arithmetic: 'fixed'
                    Arithmetic: 'fixed'
                    Numerator: [1x7 double]
                    Numerator: [1x7 double]
            Denominator: [1 0 0.7777 0 0.1142 0 0.0018]
            Denominator: [1 0 0.7777 0 0.1142 0 0.0018]
PersistentMemory: false
PersistentMemory: false
                                    States: Numerator: [6x1 fi]
                                    States: Numerator: [6x1 fi]
                                    Denominator:[6x1 fi]
```

 Denominator:[6x1 fi]
    ```
```

 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 32
 OutputMode: 'AvoidOverflow'
 MultiplicandWordLength: 16
 MultiplicandFracLength: 15
StateWordLength: 16
StateAutoScale: true
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

When you create a filter object, this property starts with the value 16 .

\section*{OverflowMode}

The OverflowMode property is specified as one of the following two strings indicating how to respond to overflows in fixed-point arithmetic:
- 'saturate '-saturate overflows.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the applicable word length and fraction length properties), these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.
- 'wrap '-wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the data format
properties), these values are wrapped back into that range using modular arithmetic relative to the smallest representable number. You can learn more about modular arithmetic in the Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.
- Applies to the accumulator and output data only.
- Does not apply to coefficients or input data. These always saturate the results.
- Does not apply to products. Products maintain full precision at all times. Your filters do not lose precision in the products.

Default value: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic range overflow to \(\pm i n f\).

\section*{ProductFracLength}

After you set ProductMode for a fixed-point filter to SpecifyPrecision, this property becomes available for you to change. ProductFracLength sets the fraction length the filter uses for the results of multiplication operations. Only the FIR filters such as asymmetric FIRs or lattice autoregressive filters include this dynamic property.

Your fraction length can be any negative or positive integer, or zero. In addition, the fraction length you specify can be larger than the associated word length. Generally, the default value is 11 bits.

\section*{ProductMode}

This property, available when your filter is in fixed-point arithmetic mode, specifies how the filter outputs the results of multiplication operations. All dfilt objects include this property when they use fixed-point arithmetic.

When available, you select from one of the following values for ProductMode:
- FullPrecision-means the filter automatically chooses the word length and fraction length it uses to represent the results of multiplication operations.

The setting allow the product to retain the precision provided by the inputs (multiplicands) to the operation.
- KeepMSB—means you specify the word length for representing product operation results. The filter sets the fraction length to discard the LSBs, keep the higher order bits in the data, and maintain the precision.
- KeepLSB—means you specify the word length for representing the product operation results. The filter sets the fraction length to discard the MSBs, keep the lower order bits, and maintain the precision. Compare to the KeepMSB option.
- SpecifyPrecision-means you specify the word length and the fraction length to apply to data output from product operations.

When you switch to fixed-point filtering from floating-point, you are most likely going to throw away some data bits after product operations in your filter, perhaps because you have limited resources. When you have to discard some bits, you might choose to discard the least significant bits (LSB) from a result since the resulting quantization error would be small as the LSBs carry less weight. Or you might choose to keep the LSBs because the results have MSBs that are mostly zero, such as when your values are small relative to the range of the format in which they are represented. So the options for ProductMode let you choose how to maintain the information you need from the accumulator.

For more information about data formats, word length, and fraction length in fixed-point arithmetic, refer to "Notes About Fraction Length, Word Length, and Precision" on page 7-30.

\section*{ProductWordLength}

You use ProductWordLength to define the data word length used by the output from multiplication operations. Set this property to a value that matches your intended application. For example, the default value is 32 bits, but you can set any word length.
```

set(hq,'arithmetic','fixed');
set(hq,'ProductWordLength',64);

```

Note that ProductWordLength applies only to filters whose Arithmetic property value is fixed.

\section*{PersistentMemory}

Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter object. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false-the filter does not retain memory about filtering operations from one to the next. Maintaining memory (setting PersistentMemory to true) lets you filter large data sets as collections of smaller subsets and get the same result.

In this example, filter hd first filters data xtot in one pass. Then we use hd to filter \(x\) as two separate data sets. The results ytot and ysec are the same in both cases.
```

xtot=[x,x];
ytot=filter(hd,xtot)
ytot =
0 -0.0003 0.0005 -0.0014 0.0028 -0.0054 0.0092
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hd,x) filter(hd,x)]
ysec =
0

```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

\section*{RoundMode}

The RoundMode property value specifies the rounding method used for quantizing numerical values. Specify the RoundMode property values as one of the following five strings.
\begin{tabular}{ll}
\hline RoundMode String & Description of Rounding Algorithm \\
\hline 'ceil' & \begin{tabular}{l} 
Round up to the next representable quantized \\
value.
\end{tabular} \\
\hline 'convergent' & \begin{tabular}{l} 
Round to the nearest representable quantized \\
value. Numbers that are exactly halfway \\
between the two nearest representable \\
quantized values are rounded up when the least \\
significant bit would be set to 1 after rounding. \\
Otherwise, the number is rounded down. Filter \\
objects use convergent rounding by default.
\end{tabular} \\
\hline 'fix' & \begin{tabular}{l} 
Round negative numbers up and positive \\
numbers down to the next representable \\
quantized value.
\end{tabular} \\
\hline 'floor' & \begin{tabular}{l} 
Round down to the next representable quantized \\
value.
\end{tabular} \\
\hline 'round' & \begin{tabular}{l} 
Round to the nearest representable quantized \\
value. Numbers that are halfway between the \\
two nearest representable quantized values are \\
rounded up.
\end{tabular} \\
\hline
\end{tabular}

Default value: ' convergent'
The choice you make affects only the accumulator and output arithmetic.
Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.

\section*{ScaleValueFracLength}

Filter structures \(d f 1\) sos, \(d f 1 t s o s, d f 2 s o s\), and df2tsos that use fixed arithmetic have this property that defines the fraction length applied to the
scale values the filter uses between sections. In combination with CoeffWordLength, these two properties fully specify how the filter interprets and uses the scale values stored in the property ScaleValues. As with fraction length properties, ScaleValueFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter.

\section*{ScaleValues}

The ScaleValues property values are specified as a scalar (or vector) that introduces scaling for inputs (and the outputs from cascaded sections in the vector case) during filtering:
- When you only have a single section in your filter:
- Specify the ScaleValues property value as a scalar if you only want to scale the input to your filter.
- Specify the ScaleValues property as a vector of length 2 if you want to specify scaling to the input (scaled with the first entry in the vector) and the output (scaled with the last entry in the vector).
- When you have \(L\) cascaded sections in your filter:
- Specify the ScaleValues property value as a scalar if you only want to scale the input to your filter.
- Specify the value for the ScaleValues property as a vector of length \(L+1\) if you want to scale the inputs to every section in your filter, along with the output:
-The first entry of your vector specifies the input scaling
- Each successive entry specifies the scaling at the output of the next section
- The final entry specifies the scaling for the filter output.

The interpretation of this property is described below with diagrams in "Interpreting the ScaleValues Property".
Default value: 0
Remarks: The value of the ScaleValues property is not quantized. Data affected by the presence of a scaling factor in the filter is quantized according to the appropriate data format.

When you apply normalize to a fixed-point filter, the value for the ScaleValues property is changed accordingly.

It is good practice to choose values for this property that are either positive or negative powers of two.

\section*{Interpreting the ScaleValues Property}

When you specify the values of the ScaleValues property of a quantized filter, the values are entered as a vector, the length of which is determined by the number of cascaded sections in your filter:
- When you have only one section, the value of the Scalevalues property can be a a scalar or a two-element vector.
- When you have \(L\) cascaded sections in your filter, the value of the Scalevalues property can be a scalar or an \(L+1\)-element vector.

The following diagram shows how the ScaleValues property values are applied to a quantized filter with only one section.

\section*{Application of ScaleValues to a Single Section}


The following diagram shows how the ScaleValues property values are applied to a quantized filter with two sections.

\section*{Application of ScaleValues to Multiple Sections}


\section*{Signed}

When you create a dfilt object for fixed-point filtering (you set the property Arithmetic to fixed, the property Signed specifies whether the filter interprets coefficients as signed or unsigned. This setting applies only to the coefficients. While the default setting is true, meaning that all coefficients are assumed to be signed, you can change the setting to false after you create the fixed-point filter.

For example, create a fixed-point direct-form II transposed filter with both negative and positive coefficients, and then change the property value for Signed from true to false to see what happens to the negative coefficient values.
```

hd=dfilt.df2t(-5:5)
hd =
FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'double'
Numerator: [-5 -4 -3 -2 -1 0 1 2 3 4 5]
Denominator: 1
PersistentMemory: false
States: [10x1 double]
set(hd,'arithmetic','fixed')
hd.numerator

```
```

ans =
-5 llllllllllll
set(hd,'signed',false)
hd.numerator
ans =

| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

Using unsigned coefficients limits you to using only positive coefficients in your filter. Signed is a dynamic property-you cannot set or change it until you switch the setting for the Arithmetic property to fixed.

\section*{SosMatrix}

When you convert a dfilt object to second-order section form, or create a second-order section filter, sosMatrix holds the filter coefficients as property values. Using the double data type by default, the matrix is in [sections coefficients per section] form, displayed as [15-x-6] for filters with 6 coefficients per section and 15 sections, [15 6].

To demonstrate, the following code creates an order 30 filter using second-order sections in the direct-form II transposed configuration. Notice the sosMatrix property contains the coefficients for all the sections.
```

d = fdesign.lowpass('n,fc',30,0.5);
hd = butter(d);
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [15x6 double]
ScaleValues: [16x1 double]
PersistentMemory: false
States: [2x15 double]
hd.arithmetic='fixed'

```
```

hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'fixed'
sosMatrix: [15x6 double]
ScaleValues: [16x1 double]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
SectionInputWordLength: 16
SectionInputAutoScale: true
SectionOutputWordLength: 16
SectionOutputAutoScale: true
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
StateWordLength: 16
StateFracLength: 15
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
hd.sosMatrix
ans =

```
\begin{tabular}{llllll}
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.9005 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.7294 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.5888 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.4724 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.3755 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.2948 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.2275 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.1716 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.1254 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.0878 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.0576 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.0344 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.0173 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.0062 \\
1.0000 & 2.0000 & 1.0000 & 1.0000 & 0 & 0.0007
\end{tabular}

The SOS matrix is an M-by-6 matrix, where M is the number of sections in the second-order section filter. Filter hd has M equal to 15 as shown above ( 15 rows). Each row of the SOS matrix contains the numerator and denominator coefficients (b's and a's) and the scale factors of the corresponding section in the filter.

\section*{SectionInputAutoScale}

Second-order section filters include this property that determines who the filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends on the property value of SectionInputAutoScale. The representation the filter uses between the filter sections depends on whether the value of SectionInputAutoScale is true or false.
- SectionInputAutoScale = true means the filter chooses the fraction length to maintain the value of the data between sections as close to the output values from the previous section as possible. true is the default setting.
- SectionInputAutoScale = false removes the automatic scaling of the fraction length for the intersection data and exposes the property that controls the coefficient fraction length (SectionInputFracLength) so you can change it. For example, if the filter is a second-order, direct form FIR filter, setting SectionInputAutoScale \(=\) false exposes the

SectionInputFracLength property that specifies the fraction length applied to data between the sections.

\section*{SectionInputFracLength}

Second-order section filters use quantizers at the input to each section of the filter. The quantizers apply to the input data entering each filter section. Note that the quantizers for each section are the same. To set the fraction length for interpreting the input values, use the property value in SectionInputFracLength.

In combination with CoeffWordLength, SectionInputFracLength fully determines how the filter interprets and uses the state values stored in the property States. As with all word and fraction length properties, SectionInputFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

\section*{SectionInputWordLength}

SOS filters are composed of sections, each one a second-order filter. Filtering data input to the filter involves passing the data through each filter section. SectionInputWordLength specifies the word length applied to data as it enters one filter section from the previous section. Only second-order implementations of direct-form I transposed and direct-form II transposed filters include this property.
By looking at one of the SOS transposed filter structures, such as this one for the transposed direct-form I filter implemented using second-order sections, you see the filter sections at the bottom of the figure.


SectionInputWordLength defaults to 16 bits.

\section*{SectionOutputAutoScale}

Second-order section filters include this property that determines who the filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends on the property value of SectionOutputAutoScale. The representation the filter uses between the filter sections depends on whether the value of SectionOutputAutoScale is true or false.
- SectionOutputAutoScale = true means the filter chooses the fraction length to maintain the value of the data between sections as close to the output values from the previous section as possible. true is the default setting.
- SectionOutputAutoScale = false removes the automatic scaling of the fraction length for the intersection data and exposes the property that controls the coefficient fraction length (SectionOutputFracLength) so you can change it. For example, if the filter is a second-order, direct form FIR filter, setting SectionOutputAutoScale = false exposes the SectionOutputFracLength property that specifies the fraction length applied to data between the sections.

\section*{SectionOutputFracLength}

Second-order section filters use quantizers at the output from each section of the filter. The quantizers apply to the output data leaving each filter section. Note that the quantizers for each section are the same. To set the fraction length for interpreting the output values, use the property value in SectionOutputFracLength.

In combination with CoeffWordLength, SectionOutputFracLength determines how the filter interprets and uses the state values stored in the property States. As with all fraction length properties, SectionOutputFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

\section*{SectionOutputWordLength}

SOS filters are composed of sections, each one a second-order filter. Filtering data input to the filter involves passing the data through each filter section. SectionOutputWordLength specifies the word length applied to data as it leaves one filter section to go to the next. Only second-order implementations direct-form I transposed and direct-form II transposed filters include this property.

By looking at one of the SOS transposed filter structures, such as this one for the transposed direct-form I filter implemented using second-order sections, you see the filter sections at the bottom of the figure.


SectionOutputWordLength defaults to 16 bits.

\section*{StateAutoScale}

Although all filters use states, some do not allow you to choose whether the filter automatically scales the state values to prevent overruns or bad arithmetic errors. You select either of the following settings:
- StateAutoScale = true means the filter chooses the fraction length to maintain the value of the states as close to the double-precision values as possible. When you change the word length applied to the states (where allowed by the filter structure), the filter object changes the fraction length to try to accommodate the change. true is the default setting.
- StateAutoScale \(=\) false removes the automatic scaling of the fraction length for the states and exposes the property that controls the coefficient fraction length so you can change it. For example, in a direct form I
transposed SOS FIR filter, setting StateAutoScale = false exposes the NumStateFracLength and DenStateFracLength properties that specify the fraction length applied to states.

Each of the following filter structures provides the StateAutoScale property:
- df1t
- df1tsos
- df2t
- df2tsos
- dffirt

Other filter structures do not include this property.

\section*{StateFracLength}

Filter states stored in the property States have both word length and fraction length. To set the fraction length for interpreting the stored filter object state values, use the property value in StateFracLength.
In combination with CoeffWordLength, StateFracLength fully determines how the filter interprets and uses the state values stored in the property States.

As with all fraction length properties, StateFracLength can be any integer, including integers larger than CoeffWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

\section*{States}

Digital filters are dynamic systems. The behavior of dynamic systems (their response) depends on the input (stimulus) to the system and the current or previous state of the system. You can say the system has memory or inertia. All fixed- or floating-point digital filters (as well as analog filters) have states.

Filters use the states to compute the filter output for each input sample, as well using them while filtering in loops to maintain the filter state between loop iterations. In the toolbox we assume zero-valued initial conditions (the dynamic system is at rest) by default when we filter the first input sample. Assuming the states are zero initially does not mean the states are not used; they are, but arithmetically they do not have any effect.

Filter objects store the state values in the property States. The number of stored states depends on the filter implementation, since the states represent the delays in the filter implementation.

When you review the display for a filter object with fixed arithmetic, notice that the states return an embedded fi object, as you see here.
```

b = ellip(6,3,50,300/500);
hd=dfilt.dffir(b)
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]
PersistentMemory: false
States: [6x1 double]
hd.arithmetic='fixed'
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [llllllllll
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: 'on'
Signed: 'on'
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'
AccumWordLength: 40
CastBeforeSum: 'on'
RoundMode: 'convergent'
OverflowMode: 'wrap'
InheritSettings: 'off'

```
fi objects provide fixed-point support for the filters. To learn more about the details about fi objects, refer to your Fixed-Point Toolbox documentation.

The property States lets you use a fi object to define how the filter interprets the filter states. For example, you can create a fi object in MATLAB, then assign the object to States, as follows:
```

statefi=fi([],16,12)
statefi =

```
[]
```

DataTypeMode = Fixed-point: binary point scaling
Signed = true
Wordlength = 16
Fractionlength = 12

```

This fi object does not have a value associated (notice the [] input argument to fi for the value), and it has word length of 16 bits and fraction length of 12 bit. Now you can apply statefi to the States property of the filter hd.
```

set(hd,'States',statefi);
Warning: The 'States' property will be reset to the value
specified at construction before filtering.
Set the 'PersistentMemory' flag to 'True' to avoid changing this
property value.
hd
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'fixed'
Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858
0.2938 0.0773]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: 'on'
Signed: 'on'
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputMode: 'AvoidOverflow'
ProductMode: 'FullPrecision'

```
```

AccumWordLength: 40
CastBeforeSum: 'on'
RoundMode: 'convergent'
OverflowMode: 'wrap'

```

\section*{StateWordLength}

While all filters use states, some do not allow you to directly change the state representation - the word length and fraction lengths-independently. For the others, StateWordLength specifies the word length, in bits, the filter uses to represent the states. Filters that do not provide direct state word length control include:
- df1
- dfasymfir
- dffir
- dfsymfir

For these structures, the filter derives the state format from the input format you choose for the filter-except for the df1 IIR filter. In this case, the numerator state format comes from the input format and the denominator state format comes from the output format. All other filter structures provide control of the state format directly.

\section*{TapSumFracLength}

Direct-form FIR filter objects, both symmetric and antisymmetric, use this property. To set the fraction length for output from the sum operations that involve the filter tap weights, use the property value in TapSumFracLength. To enable this property, set the TapSumMode to SpecifyPrecision in your filter.

As you can see in this code example that creates a fixed-point asymmetric FIR filter, the TapSumFracLength property becomes available after you change the TapSumMode property value.
```

hd=dfilt.dfasymfir
hd =

```
```

FilterStructure: 'Direct-Form Antisymmetric FIR'

```
FilterStructure: 'Direct-Form Antisymmetric FIR'
    Arithmetic: 'double'
```

 Arithmetic: 'double'
    ```
```

 Numerator: 1
 PersistentMemory: false
 States: [0x1 double]
 set(hd,'arithmetic','fixed');
hd
hd =
FilterStructure: 'Direct-Form Antisymmetric FIR'
Arithmetic: 'fixed'
Numerator: 1
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true

```
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow'
TapSumMode: 'KeepMSB'
TapSumWordLength: ..... 17
ProductMode: 'FullPrecision'
AccumWordLength: ..... 40
CastBeforeSum: ..... true
RoundMode: 'convergent'
OverflowMode: 'wrap'

With the filter now in fixed-point mode, you can change the TapSumMode property value to SpecifyPrecision, which gives you access to the TapSumFracLength property.
```

set(hd,'TapSumMode','SpecifyPrecision');

```
```

hd
hd =

```
```

FilterStructure: 'Direct-Form Antisymmetric FIR'

```
FilterStructure: 'Direct-Form Antisymmetric FIR'
    Arithmetic: 'fixed'
    Arithmetic: 'fixed'
            Numerator: 1
            Numerator: 1
PersistentMemory: false
PersistentMemory: false
            States: [1x1 embedded.fi]
            States: [1x1 embedded.fi]
                    CoeffWordLength: 16
                    CoeffWordLength: 16
            CoeffAutoScale: true
            CoeffAutoScale: true
            Signed: true
            Signed: true
                    InputWordLength: 16
                    InputWordLength: 16
InputFracLength: 15
InputFracLength: 15
OutputWordLength: 16
OutputWordLength: 16
            OutputMode: 'AvoidOverflow'
            OutputMode: 'AvoidOverflow'
            TapSumMode: 'SpecifyPrecision'
            TapSumMode: 'SpecifyPrecision'
TapSumWordLength: 17
TapSumWordLength: 17
TapSumFracLength: 15
TapSumFracLength: 15
            ProductMode: 'FullPrecision'
            ProductMode: 'FullPrecision'
            AccumWordLength: 40
            AccumWordLength: 40
            CastBeforeSum: true
            CastBeforeSum: true
            RoundMode: 'convergent'
            RoundMode: 'convergent'
            OverflowMode: 'wrap'
```

 OverflowMode: 'wrap'
    ```

In combination with TapSumWordLength, TapSumFracLength fully determines how the filter interprets and uses the state values stored in the property States.

As with all fraction length properties, TapSumFracLength can be any integer, including integers larger than TapSumWordLength, and positive or negative integers. 15 bits is the default value when you create the filter object.

\section*{TapSumMode}

This property, available only after your filter is in fixed-point mode, specifies how the filter outputs the results of summation operations that involve the filter tap weights. Only symmetric (dfilt.dfsymfir) and antisymmetric (dfilt.dfasymfir) FIR filters use this property.
When available, you select from one of the following values:
- Fullprecision-means the filter automatically chooses the word length and fraction length to represent the results of the sum operation so they retain all of the precision provided by the inputs (addends).
- KeepMSB-means you specify the word length for representing tap sum summation results to keep the higher order bits in the data. The filter sets the fraction length to discard the LSBs from the sum operation. This is the default property value.
- KeepLSB-means you specify the word length for representing tap sum summation results to keep the lower order bits in the data. The filter sets the fraction length to discard the MSBs from the sum operation. Compare to the KeepMSB option.
- SpecifyPrecision-means you specify the word and fraction lengths to apply to data output from the tap sum operations.

\section*{TapSumWordLength}

Specifies the word length the filter uses to represent the output from tap sum operations. The default value is 17 bits. Only dfasymfir and dfsymfir filters include this property.

\section*{Adaptive Filter Properties}

The following table summarizes the adaptive filter properties and provides a brief description of each. Full descriptions of each property, in alphabetical order, follow the table.
\(\left.\begin{array}{ll}\hline \text { Property } & \text { Description } \\ \hline \text { Algorithm } & \begin{array}{l}\text { Reports the algorithm the object } \\ \text { uses for adaptation. When you } \\ \text { construct your adaptive filter object, } \\ \text { this property is set automatically by } \\ \text { the constructor, such as } \\ \text { adaptfilt.nlms creating an } \\ \text { adaptive filter that uses the } \\ \text { normalized LMS algorithm. You } \\ \text { cannot change the value-it is read } \\ \text { only. }\end{array} \\ \hline \text { AvgFactor } & \begin{array}{l}\text { Averaging factor used to compute } \\ \text { the exponentially-windowed } \\ \text { estimates of the powers in the } \\ \text { transformed signal bins for the }\end{array} \\ \text { coefficient updates. AvgFactor } \\ \text { should lie between zero and one. For } \\ \text { default filter objects, AvgFactor } \\ \text { equals (1-step). lambda is the input } \\ \text { argument that represents AvgFactor }\end{array}\right\}\)
\(\left.\begin{array}{ll}\hline \text { Property (Continued) } & \text { Description } \\ \hline \text { Blocklength } & \begin{array}{l}\text { Block length for the coefficient } \\ \text { updates. This must be a positive } \\ \text { integer such that (l/blocklength) is } \\ \text { also an integer. For faster execution, } \\ \text { blocklength should be a power of } \\ \text { two. blocklength defaults to two. }\end{array} \\ \hline \text { Coefficients } & \begin{array}{l}\text { Vector containing the initial filter } \\ \text { coefficients. It must be a length 1 } \\ \text { vector where l is the number of filter } \\ \text { coefficients. coeffs defaults to } \\ \text { length l vector of zeros when you do } \\ \text { not provide the argument for input. }\end{array} \\ \hline \text { ConversionFactor } & \begin{array}{l}\text { Conversion factor defaults to the } \\ \text { matrix [1 -1] that specifies }\end{array} \\ \text { soft-constrained initialization. This } \\ \text { is the gamma input argument for } \\ \text { some of the fast transversal } \\ \text { algorithms. }\end{array}\right\}\)
\begin{tabular}{|c|c|}
\hline Property (Continued) & Description \\
\hline ErrorStates & Vector of the adaptive filter error states. ErrorStates defaults to a zero vector with length equal to (projectord-1). \\
\hline FFTCoefficients & Stores the discrete Fourier transform of the filter coefficients in coeffs. \\
\hline FFTStates & Stores the states of the FFT of the filter coefficients during adaptation. \\
\hline FilteredInputStates & Vector of filtered input states with length equal to \(1-1\). \\
\hline FilterLength & Contains the length of the filter. Note that this is not the filter order. Filter length is 1 greater than filter order. Thus a filter with length equal to 10 has filter order equal to 9 . \\
\hline ForgettingFactor & Determines how the RLS adaptive filter uses past data in each iteration. You use the forgetting factor to specify whether old data carries the same weight in the algorithm as more recent data. \\
\hline FwdPredErrorPower & Returns the minimum mean-squared prediction error in the forward direction. Refer to [12] in the bibliography for details about linear prediction. \\
\hline FwdPrediction & Contains the predicted values for samples during adaptation. Compare these to the actual samples to get the error and power. \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Property (Continued) & Description \\
\hline InitFactor & \begin{tabular}{l} 
Soft-constrained initialization factor. \\
This scalar should be positive and \\
sufficiently large to prevent an \\
excessive number of Kalman gain \\
rescues. Called delta as an input \\
argument, this defaults to one.
\end{tabular} \\
\hline InvCov & \begin{tabular}{l} 
Upper-triangular Cholesky (square \\
root) factor of the input covariance \\
matrix. Initialize this matrix with a \\
positive definite upper triangular \\
matrix. Dimensions are l-by-l, \\
where l is the filter length.
\end{tabular} \\
\hline KalmanGain & \begin{tabular}{l} 
Empty when you construct the \\
object, this gets populated after you \\
run the filter.
\end{tabular} \\
\hline KalmanGainStates & \begin{tabular}{l} 
Contains the states of the Kalman \\
gain updates during adaptation.
\end{tabular} \\
\hline Leakage & \begin{tabular}{l} 
Contains the setting for leakage in \\
the adaptive filter algorithm. Using \\
a leakage factor that is not 1 forces \\
the weights to adapt even when they \\
have found the minimum error \\
solution. Forcing the adaptation can \\
improve the numerical performance \\
of the LMS algorithm.
\end{tabular} \\
\hline OffsetCov & \begin{tabular}{l} 
Contains the offset covariance \\
matrix.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Property (Continued) & Description \\
\hline Offset & \begin{tabular}{l} 
Specifies an optional offset for the \\
denominator of the step size \\
normalization term. You must \\
specify offset to be a scalar greater \\
than or equal to zero. Nonzero \\
offsets can help avoid a \\
divide-by-near-zero condition that \\
causes errors.
\end{tabular} \\
\hline Power & \begin{tabular}{l} 
A vector of 2*l elements, each \\
initialized with the value delta from \\
the input arguments. As you filter \\
data, Power gets updated by the
\end{tabular} \\
filter process.
\end{tabular}
\begin{tabular}{l|l}
\hline Property (Continued) & Description \\
\hline SecondaryPathCoeffs & \begin{tabular}{l} 
A vector that contains the coefficient \\
values of your secondary path from \\
the output actuator to the error \\
sensor.
\end{tabular} \\
\hline SecondaryPathEstimate & \begin{tabular}{l} 
An estimate of the secondary path \\
filter model.
\end{tabular} \\
\hline SecondaryPathStates & \begin{tabular}{l} 
The states of the secondary path \\
filter, the unknown system.
\end{tabular} \\
\hline SqrtCov & \begin{tabular}{l} 
Upper-triangular Cholesky (square \\
root) factor of the input covariance \\
matrix. Initialize this matrix with a \\
positive definite upper triangular \\
matrix.
\end{tabular} \\
\hline SqrtlnvCov & \begin{tabular}{l} 
Square root of the inverse of the \\
sliding window input signal \\
covariance matrix. This square \\
matrix should be full-ranked.
\end{tabular} \\
\hline States & \begin{tabular}{l} 
Vector of the adaptive filter states. \\
states defaults to a vector of zeros \\
whose length depends on the chosen \\
algorithm. Usually the length is a \\
function of the filter length l and \\
another input argument to the filter \\
object, such as projectord.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Property (Continued) & Description \\
\hline StepSize & \begin{tabular}{l} 
Reports the size of the step taken \\
between iterations of the adaptive \\
filter process. Each adaptfilt object \\
has a default value that best meets \\
the needs of the algorithm.
\end{tabular} \\
\hline SwBlockLength & \begin{tabular}{l} 
Block length of the sliding window. \\
This integer must be at least as \\
large as the filter length. \\
swblocklen defaults to 16.
\end{tabular} \\
\hline
\end{tabular}

Like dfilt objects, adaptfilt objects have properties that govern their behavior and store some of the results of filtering operations. The following pages list, in alphabetical order, the name of every property associated with adaptfilt objects. Note that not all adaptfilt objects have all of these properties. To view the properties of a particular adaptive filter, such as an adaptfilt.bap filter, use get with the object handle, like this:
```

ha = adaptfilt.bap(32,0.5,4,1.0);
get(ha)
PersistentMemory: false
Algorithm: 'Block Affine Projection FIR Adaptive Filter'
FilterLength: 32
Coefficients: [1x32 double]
States: [35\times1 double]
StepSize: 0.5000
ProjectionOrder: 4
OffsetCov: [4x4 double]

```
get shows you the properties for ha and the values for the properties. Entering the object handle returns the same values and properties without the formatting of the list and the more familiar property names.

\section*{Algorithm}

Reports the algorithm the object uses for adaptation. When you construct you adaptive filter object, this property is set automatically. You cannot change the value-it is read only.

\section*{AvgFactor}

Averaging factor used to compute the exponentially-windowed estimates of the powers in the transformed signal bins for the coefficient updates. AvgFactor should lie between zero and one. For default filter objects, AvgFactor equals (1 - step). lambda is the input argument that represent AvgFactor

\section*{BkwdPredErrorPower}

\section*{BkwdPrediction}

When you use an adaptive filter that does backward prediction, such as adaptfilt.ftf, one property of the filter contains the backward prediction coefficients for the adapted filter. With these coefficient, the forward coefficients, and the system under test, you have the full set of knowledge of
how the adaptation occurred. Two values stored in properties compose the BkwdPrediction property:
- Coefficients, which contains the coefficients of the system under test, as determined using backward predictions process.
- Error, which is the difference between the filter coefficients determined by backward prediction and the actual coefficients of the sample filter. In this example, adaptfilt.ftf identifies the coefficients of an unknown FIR system.
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); %FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
N = 31; % Adaptive filter order
lam = 0.99; % RLS forgetting factor
del = 0.1; % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);
ha
ha =

```
```

 Algorithm: 'Fast Transversal Least-Squares Adaptive Filter'
    ```
                    Algorithm: 'Fast Transversal Least-Squares Adaptive Filter'
            FilterLength: 32
            FilterLength: 32
            Coefficients: [1x32 double]
            Coefficients: [1x32 double]
                    States: [31x1 double]
                    States: [31x1 double]
        ForgettingFactor: 0.9900
        ForgettingFactor: 0.9900
            InitFactor: 0.1000
            InitFactor: 0.1000
            FwdPrediction: [1x1 struct]
            FwdPrediction: [1x1 struct]
            BkwdPrediction: [1x1 struct]
            BkwdPrediction: [1x1 struct]
                    KalmanGain: [32x1 double]
                    KalmanGain: [32x1 double]
                ConversionFactor: 0.7338
                ConversionFactor: 0.7338
                KalmanGainStates: [32x1 double]
                KalmanGainStates: [32x1 double]
                PersistentMemory: false
                PersistentMemory: false
ha.coefficients
ans =
    Columns 1 through 8
\begin{tabular}{llllllll}
-0.0055 & 0.0048 & 0.0045 & 0.0146 & -0.0009 & 0.0002 & -0.0019 & 0.0008
\end{tabular}
\begin{tabular}{llllllll} 
Columns 9 through 16 \\
-0.0142 & -0.0226 & 0.0234 & 0.0421 & -0.0571 & -0.0807 & 0.1434 & 0.4620
\end{tabular}
    Columns 17 through 24
\begin{tabular}{llllllll}
0.4564 & 0.1532 & -0.0879 & -0.0501 & 0.0331 & 0.0361 & -0.0266 & -0.0220
\end{tabular}
        Columns 25 through 32
```

0.0231	0.0026	-0.0063	-0.0079	0.0032	0.0082	0.0033	0.0065
ha.bkwdprediction							
ans $=$							
$\begin{aligned} & \text { Coeffs: [1x32 double] } \\ & \text { Error: } 82.3394 \end{aligned}$							
>> ha.bkwdprediction.coeffs							
ans =							
Columns 1 through 8							
0.0067	0.0186	0.1114	-0.0150	-0.0239	-0.0610	-0.1120	-0.1026
Columns 9 through 16							
0.0093	-0.0399	-0.0045	0.0622	0.0997	0.0778	0.0646	-0.0564
Columns 17 through 24							
0.0775	0.0814	0.0057	0.0078	0.1271	-0.0576	0.0037	-0.0200
Columns 25 through 32							
-0.0246	0.0180	-0.0033	0.1222	0.0302	-0.0197	-0.1162	0.0285

Blocklength

Block length for the coefficient updates. This must be a positive integer such that (l/blocklen) is also an integer. For faster execution, blocklen should be a power of two. blocklen defaults to two.

Coefficients

Vector containing the initial filter coefficients. It must be a length 1 vector where l is the number of filter coefficients. coeffs defaults to length l vector of zeros when you do not provide the argument for input.

ConversionFactor

Conversion factor defaults to the matrix [1-1] that specifies soft-constrained initialization. This is the gamma input argument for some of the fast transversal algorithms.

Delay

Update delay given in time samples. This scalar should be a positive integernegative delays do not work. delay defaults to 1 for most algorithms.

DesiredSignalStates

Desired signal states of the adaptive filter. dstates defaults to a zero vector with length equal to (blocklen-1) or (swblocklen-1) depending on the algorithm.

EpsilonStates

Vector of the epsilon values of the adaptive filter. EpsilonStates defaults to a vector of zeros with (projectord-1) elements.

ErrorStates

Vector of the adaptive filter error states. ErrorStates defaults to a zero vector with length equal to (projectord - 1).

FFTCoefficients

Stores the discrete Fourier transform of the filter coefficients in coeffs.

FFTStates

Stores the states of the FFT of the filter coefficients during adaptation.

FilteredInputStates

Vector of filtered input states with length equal to l-1.

FilterLength

Contains the length of the filter. Note that this is not the filter order. Filter length is 1 greater than filter order. Thus a filter with length equal to 10 has filter order equal to 9 .

ForgettingFactor

Determines how the RLS adaptive filter uses past data in each iteration. You use the forgetting factor to specify whether old data carries the same weight in the algorithm as more recent data.

This is a scalar and should lie in the range (0,1]. It defaults to 1 . Setting forgetting factor $=1$ denotes infinite memory while adapting to find the new filter. Note that this is the lambda input argument.

FwdPredErrorPower

Returns the minimum mean-squared prediction error in the forward direction. Refer to [12] in the bibliography for details about linear prediction.

FwdPrediction

Contains the predicted values for samples during adaptation. Compare these to the actual samples to get the error and power.

InitFactor

Returns the soft-constrained initialization factor. This scalar should be positive and sufficiently large to prevent an excessive number of Kalman gain rescues. delta defaults to one.

InvCov

Upper-triangular Cholesky (square root) factor of the input covariance matrix. Initialize this matrix with a positive definite upper triangular matrix.
Dimensions are l-by-l, where 1 is the filter length.

KalmanGain

Empty when you construct the object, this gets populated after you run the filter.

KalmanGainStates

Contains the states of the Kalman gain updates during adaptation.

Leakage

Contains the setting for leakage in the adaptive filter algorithm. Using a leakage factor that is not 1 forces the weights to adapt even when they have found the minimum error solution. Forcing the adaptation can improve the numerical performance of the LMS algorithm.

OffsetCov

Contains the offset covariance matrix.

Offset

Specifies an optional offset for the denominator of the step size normalization term. You must specify offset to be a scalar greater than or equal to zero.

Nonzero offsets can help avoid a divide-by-near-zero condition that causes errors.

Use this to avoid dividing by zero or by very small numbers when input signal amplitude becomes very small, or dividing by very small numbers when any of the FFT input signal powers become very small. offset defaults to one.

Power

A vector of $2^{*} 1$ elements, each initialized with the value delta from the input arguments. As you filter data, Power gets updated by the filter process.

ProjectionOrder

Projection order of the affine projection algorithm. projectord defines the size of the input signal covariance matrix and defaults to two.

ReflectionCoeffs

For adaptive filters that use reflection coefficients, this property stores them.

ReflectionCoeffsStep

As the adaptive filter changes coefficient values during adaptation, the step size used between runs is stored here.

PersistentMemory

Determines whether the filter states and coefficients get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter.

PersistentMemory returns to zero any property value that the filter changes during processing. Property values that the filter does not change are not affected. Defaults to false.

SecondaryPathCoeffs

A vector that contains the coefficient values of your secondary path from the output actuator to the error sensor.

SecondaryPathEstimate

An estimate of the secondary path filter model.

SecondaryPathStates

The states of the secondary path filter, the unknown system.

SqrtCov

Upper-triangular Cholesky (square root) factor of the input covariance matrix. Initialize this matrix with a positive definite upper triangular matrix.

SqrilnvCov

Square root of the inverse of the sliding window input signal covariance matrix. This square matrix should be full-ranked.

States

Vector of the adaptive filter states. states defaults to a vector of zeros whose length depends on the chosen algorithm. Usually the length is a function of the filter length l and another input argument to the filter object, such as projectord.

StepSize

Reports the size of the step taken between iterations of the adaptive filter process. Each adaptfilt object has a default value that best meets the needs of the algorithm.

SwBlockLength

Block length of the sliding window. This integer must be at least as large as the filter length. swblocklength defaults to 16 .

Multirate Filter Properties

The following table summarizes the multirate filter properties and provides a brief description of each. Full descriptions of each property follow in the next section.
$\left.\left.\begin{array}{l|l|l|l}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { BlockLength } & \text { Positive integers } & 100 & \begin{array}{l}\text { Length of each block of data } \\ \text { input to the FFT used in the } \\ \text { filtering. fftfirinterp } \\ \text { multirate filters include this } \\ \text { property. }\end{array} \\ \hline \text { DecimationFactor } & \begin{array}{l}\text { Any positive } \\ \text { integer }\end{array} & 2 & \begin{array}{l}\text { Amount to reduce the input } \\ \text { sampling rate. }\end{array} \\ \hline \text { DifferentialDelay } & \text { Any integer } & 1 & \begin{array}{l}\text { Sets the differential delay for the } \\ \text { filter. Usually a value of one or } \\ \text { two is appropriate. }\end{array} \\ \hline \text { FilterInternals } & \begin{array}{l}\text { Fullprecision, } \\ \text { MinWordenghs, } \\ \text { SpecifyWordLengths } \\ \text { SpecifyPrecision }\end{array} & \text { FullPrecision } & \begin{array}{l}\text { Controls whether the filter sets } \\ \text { the output word and fraction }\end{array} \\ \text { lengths, and the accumulator } \\ \text { word and fraction lengths } \\ \text { automatically to maintain the } \\ \text { best precision results during } \\ \text { filtering. The default value, }\end{array}\right] \begin{array}{l}\text { FullPrecision, sets automatic } \\ \text { word and fraction length } \\ \text { determination by the filter. } \\ \text { SpecifyPrecision exposes the }\end{array}\right\}$

Name	Values	Default	Description
FilterStructure	mfilt structure string	None	Describes the signal flow for the filter object, including all of the active elements that perform operations during filtering- gains, delays, sums, products, and input/output. You cannot set this property-it is always read only and results from your choice of mfilt object.
InputOffset	Integers	0	Contains the number of input data samples processed without generating an output sample.
InterpolationFactor	Positive integers	2	Interpolation factor for the filter. l specifies the amount to increase the input sampling rate.
NumberOfSections	Any positive integer	2	Number of sections used in the decimator, or in the comb and integrator portions of CIC filters.
Numerator	Array of double	No default	Vector containing the coefficients of the FIR lowpass filter used for interpolation.

Name	Values	Default	Description
OverflowMode	saturate, [wrap]	wrap	Sets the mode used to respond to overflow conditions in fixed-point arithmetic. Choose from either saturate (limit the output to the largest positive or negative representable value) or wrap (set overflowing values to the nearest representable value using modular arithmetic. The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always saturates. Finally, products never overflow-they maintain full precision.
PolyphaseAccum	Values depend on filter type. Either double, single, or fixed-point object	0	Stores the value remaining in the accumulator after the filter processes the last input sample. The stored value for PolyphaseAccum affects the next output when PersistentMemory is true and InputOffset is not equal to 0 . Always provides full precision values. Compare the AccumWordLength and AccumFracLength.

Name	Values	Default	Description
PersistentMemory	false or true	false	Determines whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it.
RateChangeFactors	[l,m]		PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected.
[2,3] or [3,2]	Reports the decimation (m) and interpolation (l) factors for the filter object. Combining these factors results in the final rate change for the signal. The		
default changes depending on			
whether the filter decimates or			
interpolates.			

$\left.\begin{array}{l|l|l|l}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { SectionWordLengthMode } & \begin{array}{l}\text { MinWordLengths or } \\ \text { SpecifyWordLengths }\end{array} & \text { MinWordLength } & \begin{array}{l}\text { Determines whether the filter } \\ \text { object sets the section word } \\ \text { lengths or you provide the word } \\ \text { lengths explicitly. By default, the } \\ \text { filter uses the input and output } \\ \text { word lengths in the command to } \\ \text { determine the proper word } \\ \text { lengths for each section, } \\ \text { according to the information in } \\ \text { [1]. When you choose }\end{array} \\ \text { SpecifyWordLengths, you } \\ \text { provide the word length for each } \\ \text { section. In addition, choosing } \\ \text { SpecifyWordLengths exposes } \\ \text { the SectionWordLengths } \\ \text { property for you to modify as } \\ \text { needed. }\end{array}\right\}$

The following sections provide details about the properties that govern the way multirate filter work. Creating any multirate filter object puts in place a number of these properties. On the next pages, we list the mfilt object properties in alphabetical order.

BitsPerSection

Any integer or a vector of length $2 * n$.
Defines the bits per section used while accumulating the data in the integrator sections or while subtracting the data during the comb sections (using wrap arithmetic). Enter bps as a scalar or vector of length $2^{*} n$, where n is the number of sections. When bps is a scalar, the scalar value is applied to each filter section. The default is 16 for each section in the decimator.

BlockLength

Length of each block of input data used in the filtering.
mfilt.fftfirinterp objects process data in blocks whose length is determined by the value you set for the BlockLength property. By default the property value is 100 . When you set the BlockLength value, try choosing a value so that [BlockLength + length(filter order)] is a power of two.

Larger block lengths generally reduce the computation time.

DecimationFactor

Decimation factor for the filter. m specifies the amount to reduce the sampling rate of the input signal. It must be an integer. You can enter any integer value. The default value is 2 .

DifferentialDelay

Sets the differential delay for the filter. Usually a value of one or two is appropriate. While you can set any value, the default is one and the maximum is usually two.

FilterInternals

Similar to the FilterInternals pane in FDATool, this property controls whether the filter sets the output word and fraction lengths automatically, and the
accumulator word and fraction lengths automatically as well, to maintain the best precision results during filtering. The default value, FullPrecision, sets automatic word and fraction length determination by the filter. Setting FilterInternals to SpecifyPrecision exposes the output and accumulator related properties so you can set your own word and fraction lengths for them.

About FilterInternals Modes

There are four modes of usage for this which are set using the FilterInternals property in multirate filters.

- FullPrecision—All word and fraction lengths set to $B_{\text {max }}+1$, called $B_{\text {accum }}$ by fred harris in [14]. Full Precision is the default setting.
- MinWordLengths-Minimum Word Lengths
- SpecifyWordLengths-Specify Word Lengths
- SpecifyPrecision-Specify Precision

Full Precision

In full precision mode, the word lengths of all sections and the output are set to $B_{\text {accum }}$ as defined by
$B_{\text {accum }}=\operatorname{ceil}\left(N_{\text {secs }}\left(\log _{2}(D \times M)\right)+\right.$ InputWordLength $)$
where $N_{\text {secs }}$ is the number of filter sections.
Section fraction lengths and the fraction length of the output are set to the input fraction length.

Here is the display looks for this mode.

```
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'FullPrecision'
```


Minimum Word Lengths

In minimum word length mode, you control the output word length explicitly. When the output word length is less than $B_{\text {accum }}$, roundoff noise is introduced at the output of the filter. Hogenauer's bit pruning theory (refer to [15]) states that one valid design criterion is to make the word lengths of the different sections of the filter smaller than $B_{\text {accum }}$ as well, so that the roundoff noise introduced by all sections does not exceed the roundoff noise introduced at the output.

In this mode, the design calculates the word lengths of each section to meet the Hogenauer criterion. The algorithm subtracts the number of bits computed using eq. 21 in Hogenauer's paper from $B_{\text {accum }}$ to determine the word length each section.

To compute the fraction lengths of the different sections, the algorithm notes that the bits thrown out for this word length criterion are least significant bits (LSB), therefore each bit thrown out at a particular section decrements the fraction length of that section by one bit compared to the input fraction length. Setting the output word length for the filter automatically sets the output fraction length as well.

Here is the display for this mode:

```
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'MinWordLengths'
OutputWordLength: 16
```


Specify word lengths

In this mode, the design algorithm discards the LSBs, adjusting the fraction length so that unrecoverable overflow does not occur, always producing a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
2*(NumberOfSections), where each vector element represents the word length for a section. If you specify a scalar, such as $B_{\text {accum }}$, the full-precision output word length, the algorithm expands that scalar to a vector of the appropriate size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are monotonically decreasing. There are some cases where the word lengths are not necessarily monotonically decreasing, for example

```
hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;
```

which are valid CIC filters but the word lengths do not decrease monotonically across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

```
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'SpecifyWordLengths'
SectionWordLengths: [19 18 18 17]
OutputWordLength: 16
```


Specify precision

In this mode, you have full control over the word length and fraction lengths of all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length 2^{*} (NumberOfSections) with elements that represent the word length for each section. When you enter a scalar such as $B_{\text {accum }}$, the CIC algorithm expands that scalar to a vector of the appropriate size and applies the scalar value to each section and the output. The design does not check that this vector is monotonically decreasing.

Also, you must enter a vector of length 2^{*} (NumberOfSections) with elements that represent the fraction length for each section as well. When you enter a scalar such as $B_{\text {accum }}$, the design applies scalar expansion as done for the word lengths.

Here is the SpecifyPrecision display.

```
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'SpecifyPrecision'
SectionWordLengths: [[19 18 18 17]
SectionFracLengths: [[14 13 13 12]
OutputWordLength: 16
OutputFracLength: 11
```


FilterStructure

Reports the type of filter object, such as a decimator or fractional integrator. You cannot set this property-it is always read only and results from your choice of mfilt object. Because of the length of the names of multirate filters, FilterStructure often returns a vector specification for the string. For example, when you use mfilt.firfracinterp to design a filter, FilterStructure returns as [1x49 char].

```
hm=mfilt.firfracinterp
hm =
```

```
    FilterStructure: [1x49 char]
```

 FilterStructure: [1x49 char]
 Numerator: [1x72 double]
 Numerator: [1x72 double]
 RateChangeFactors: [3 2]
RateChangeFactors: [3 2]
PersistentMemory: false
PersistentMemory: false
States: [24x1 double]

```
    States: [24x1 double]
```


InputOffset

When you decimate signals whose length is not a multiple of the decimation factor M, the last samples- $(n M+1)$ to $[(n+1)(M)-1]$, where n is an integerare processed and used to track where the filter stopped processing input data and when to expect the next output sample. If you think of the filtering process as generating an output for a block of input data, InputOffset contains a count of the number of samples in the last incomplete block of input data.

Note InputOffset applies only when you set PersistentMemory to true. Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:
1 The input signal is a multiple of the filter decimation factor. In this case, the filter processes the input samples and generates output samples for all inputs as determined by the decimation factor. For example, processing 99 input samples with a filter that decimates by three returns 33 output samples.

2 The input signal is not a multiple of the decimation factor. When this occurs, the filter processes all of the input samples, generates output samples as determined by the decimation factor, and has one or more input samples that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has decimation factor of 3 , you get 33 output samples, and 1 sample that did not
generate an output. In this case, InputOffset stores the value 1 after the filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into blocks of data with length equal to your filter decimation factor, the filter processed one sample from a new (incomplete) block of data. Subsequent inputs to the filter are concatenated with this single sample to form the next block of length m.

One way to define the value stored in InputOffset is

```
InputOffset = mod(length(nx),m)
```

where $n x$ is the number of input samples in the data set and m is the decimation factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any point and start over from there, provided that the PersistentMemory property is set to true. Being able to resume filtering after stopping a signal lets you break large data sets in to smaller pieces for filtering. With PersistentMemory set to true and the InputOffset property in the filter, breaking a signal into sections of arbitrary length and filtering the sections is equivalent to filtering the entire signal at once.

```
xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =
    0
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]
ysec =
    0
```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

InterpolationFactor

Amount to increase the sampling rate. Interpolation factor for the filter. It specifies the amount to increase the input sampling rate. It must be an integer. Two is the default value. You may use any positive value.

NumberOfSections

Number of sections used in the multirate filter. By default multirate filters use two sections, but any positive integer works.

OverflowMode

The OverflowMode property is specified as one of the following two strings indicating how to respond to overflows in fixed-point arithmetic:

- 'saturate'-saturate overflows.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the applicable word length and fraction length properties), these values are quantized to the value of either the largest or smallest representable value, depending on which is closest.

- 'wrap '-wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest and smallest representable numbers (as specified by the data format properties), these values are wrapped back into that range using modular arithmetic relative to the smallest representable number. You can learn more about modular arithmetic in the Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.

- Applies to the accumulator and output data only.
- Does not apply to coefficients or input data. These always saturate the results.
- Does not apply to products. Products maintain full precision at all times. Your filters do not lose precision in the products.

Default value: 'saturate'

Note Numbers in floating-point filters that extend beyond the dynamic range overflow to \pm inf.

PolyphaseAccum

The idea behind PolyphaseAccum and AccumWordLength/AccumFracLength is to distinguish between the adders that always work in full precision (PolyphaseAccum) from the others [the adders that are controlled by the user (through AccumWordLength and AccumFracLength) and that may introduce quantization effects when you set property FilterInternals to SpecifyPrecision].

Given a product format determined by the input word and fraction lengths, and the coefficients word and fraction lengths, doing full precision accumulation means allowing enough guard bits to avoid overflows and underflows.

Property PolyphaseAccum stores the value that was in the accumulator the last time your filter ran out of input samples to process. The default value for PolyphaseAccum affects the next output only if PersistentMemory is true and InputOffset is not equal to 0 .

PolyphaseAccum stores data in the format for the filter arithmetic. Double-precision filters store doubles in PolyphaseAccum. Single-precision filter store singles in PolyphaseAccum. Fixed-point filters store fi objects in PolyphaseAccum.

PersistentMemory

Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected.

Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter object. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to true-the filter retains memory about filtering operations
from one to the next. Maintaining memory lets you filter large data sets as collections of smaller subsets and get the same result.

```
xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =
    0
reset(hm1); % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]
ysec =
    0
```

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the entire signal filtered at once).

RateChangeFactors

Reports the decimation (m) and interpolation (1) factors for the filter object when you create fractional integrators and decimators, although m and l are used as arguments to both decimators and integrators, applying the same meaning. Combining these factors as input arguments to the fractional decimator or integrator results in the final rate change for the signal.

For decimating filters, the default is [2,3]. For integrators, [3,2].

States

Stored conditions for the filter, including values for the integrator and comb sections. m is the differential delay and n is the number of sections in the filter.

About the States of Multirate Filters

In the states property you find the states for both the integrator and comb portions of the filter, stored in a filtstates object. states is a matrix of dimensions $\mathrm{m}+1$-by-n, with the states in CIC filters apportioned as follows:

- States for the integrator portion of the filter are stored in the first row of the state matrix.
- States for the comb portion fill the remaining rows in the state matrix.

In the state matrix, state values are specified and stored in double format.
States stores conditions for the delays between each interpolator phase, the filter states, and the states at the output of each phase in the filter, including values for the interpolator and comb states.

The number of states is $(\mathrm{ln}-1) * \mathrm{~m}+(\mathrm{l}-1) *(\mathrm{lo}+\mathrm{mo})$ where 1 h is the length of each subfilter, and l and m are the interpolation and decimation factors. 10 and mo, the input and output delays between each interpolation phase, are integers from Euclid's theorem such that $10 * 1-\mathrm{mo} * \mathrm{~m}=-1$ (refer to the reference for more details). Use euclidfactors to get lo and mo for an mfilt.firfracdecim object.

States defaults to a vector of zeros that has length equal to nstates(hm)

Function Reference

Functions - By Category (p. 8-2) Lists the functions in the toolbox, by category, such as object constructors or analysis functions
Adaptive Filter Constructors (p. 8-3)
Discrete-Time Filter Constructors (p. 8-6)
Multirate Filter Constructors (p. 8-10)
Filter Analysis Methods (p. 8-12)
Lists all for the functions for designing adaptive filters
Lists all of the functions for designing discrete-time filters
Lists the multirate filter design functions
Lists the analysis functions provided for working with adaptive, discrete-time, and multirate filters

Functions - By Category

Adaptive Filter Constructors (p. 8-3)	Functions for designing adaptive filters		
Discrete-Time Filter			
Constructors (p. 8-6)	Functions for designing FIR and IIR discrete-time filter objects		
Filter Specification Objects -	Methods for creating objects that specify filter responses, such as lowpass or bandstop		
Filter Specification Objects -	Methods for designing filter objects from specification objects		
Design Methods (p. 8-9)	Functions for designing many types of multirate filter objects		
Multirate Filter Constructors			
(p. 8-10)	Methods for analyzing filters and filter objects		
Filter Analysis Methods (p. 8-12)			Methods and functions for creating
:---			

Adaptive Filter Constructors

Least Mean Squares (LMS) Based FIR	Lists the filter functions that rely
Adaptive Filters (p. 8-3)	on the LMS technique
Recursive Least Squares (RLS) Based	Lists the filter functions that rely
FIR Adaptive Filters (p. 8-4)	on the RLS technique
Affine Projection (AP) FIR Adaptive	Lists the filter functions that affine projection
Filters (p. 8-4)	Lists the filter functions that work FIR Adaptive Filters in the Frequency Domain (FD) (p. 8-4)
Lattice Based (L) FIR Adaptive Filters (p. 8-6) Lists the filter functions that rely on lattice filters,l	

Least Mean Squares (LMS) Based FIR Adaptive Filters

adaptfilt.adjlms	Adjoint least mean square (LMS) FIR adaptive filter that adapts using adjoint LMS algorithm
adaptfilt.blms	Construct Block LMS (BLMS) FIR adaptive filter
adaptfilt.blmsfft	Construct FFT-based block LMS FIR adaptive filter
adaptfilt.dlms	Create delayed LMS FIR adaptive filter object
adaptfilt.filtxlms	Create filtered-x LMS FIR adaptive filter
adaptfilt.lms	Construct least-mean-square (LMS) FIR adaptive filter object
adaptfilt.nlms	Construct normalized least mean squares (LMS) FIR adaptive filter object
adaptfilt.sd	Construct FIR adaptive filter object that uses sign-data algorithm
adaptfilt.se	Construct sign-error algorithm FIR adaptive filter object
adaptfilt.ss	Construct adaptive FIR filter object that uses sign-sign algorithm

Recursive Least Squares (RLS) Based FIR Adaptive Filters	
adaptfilt.ftf	Construct fast transversal least squares adaptive filter object
adaptfilt.hrls	Construct a householder recursive least squares (RLS) FIR adaptive filter object
adaptfilt.hswrls	Construct householder sliding window recursive least squares (RLS) FIR adaptive filter
adaptfilt.qrdrls	Create QR-decomposition-based recursive least squares (RLS) FIR adaptive filter object
adaptfilt.rls	Construct direct form recursive least squares (RLS) FIR adaptive filter object
adaptfilt.swftf	Construct sliding window fast transversal least squares adaptive filter object
adaptfilt.swrls	Construct sliding window recursive least squares (RLS) FIR adaptive filter

Affine Projection (AP) FIR Adaptive Filters

adaptfilt.ap	Construct affine projection FIR adaptive filter object that uses direct matrix inversion
adaptfilt.apru	Affine projection FIR adaptive filter object that uses recursive matrix updating
adaptfilt.bap	Block affine projection FIR adaptive filter object

FIR Adaptive Filters in the Frequency Domain (FD)

adaptfilt.fdaf	Construct frequency-domain FIR adaptive filter with bin step size normalization
adaptfilt.pbfdaf	Construct partitioned block frequency-domain (PBFDAF) FIR adaptive filter with bin step size
	normalization

adaptfilt.pbufdaf	Construct partitioned block unconstrained frequency-domain (PBUFDAF) FIR adaptive filter with bin step size normalization
adaptfilt.tdafdct	Construct transform-domain (TDAFDCT) adaptive filter object that uses discrete cosine transform
adaptfilt.tdafdft	Create transform-domain (TDAFDFT) adaptive filter object that uses discrete Fourier transform
adaptfilt.ufdaf	Construct unconstrained frequency-domain (UFDAF) FIR adaptive filter with quantized step size normalization

Lattice Based (L) FIR Adaptive Filters

```
adaptfilt.gal Construct gradient adaptive lattice FIR filter
adaptfilt.lsl
adaptfilt.qrdlsl
Construct least squares lattice (LSL) adaptive filter
QR-decomposition-based least squares lattice (LSL)
adaptive filter object
```


Discrete-Time Filter Constructors

dfilt.allpass	Construct allpass filter object
dfilt.calattice	Construct discrete-time, coupled-allpass, lattice filter object
dfilt.calatticepc	Construct discrete-time, coupled-allpass, power-complementary lattice filter object Construct cascade of discrete-time filter objects
dfilt.cascade	Construct cascade of allpass discrete-time filter objects
dfilt.cascadeallpass	Construct allpass wave digital filter (WDF) object by cascading allpass WDF filter objects
dfilt.cascadewdfallpass	
dfilt.df1	Construct discrete-time, direct-form I filter object
dfilt.df1sos	Construct discrete-time, direct-form I filter object that uses second-order sections
dfilt.df1t	Construct discrete-time, direct-form I transposed filter object
dfilt.df1tsos	Construct discrete-time, second-order section, direct-form I transposed filter object
dfilt.df2	Construct discrete-time, direct-form II filter object
dfilt.df2sos	Construct discrete-time, second-order section, direct-form II filter object

dfilt.df2t	Construct discrete-time, direct-form II transposed filter object
dfilt.df2tsos	Construct discrete-time, second-order section direct-form II transposed filter object
dfilt.dfasymfir	Construct discrete-time, direct-form antisymmetric FIR filter object Construct discrete-time direct-form FIR filter object
dfilt.dffir	Construct discrete-time, direct-form FIR transposed filter object
dfilt.dffirt	Construct discrete-time, direct-form symmetric FIR filter object
dfilt.dfsymfir	Construct discrete-time, lattice allpass filter object
dfilt.latticeallpass	Construct discrete-time, lattice, autoregressive filter object
dfilt.latticear	Construct discrete-time, lattice, autoregressive, moving-average filter object
dfilt.latticearma	Construct discrete-time, lattice, moving-average filter object with maximum phase
dfilt.latticemamax	Construct discrete-time, lattice, moving-average filter object with minimum
dfilt.latticemamin	phase dfilt.parallel
dfilt.scalar	Construct discrete-time, parallel structure filter object Construct discrete-time, scalar filter object
dfilt.wdfallpass	Construct wave digital allpass filter object

Filfer Specification Objects - Response Types	
fdesign.arbmag	Construct filter specification object for designing arbitrary response magnitude filters
fdesign.arbmagnphase	Design discrete-time filter specification object for arbitrary magnitude and phase response
fdesign.bandpass	Construct bandpass filter specification object
fdesign.bandstop	Construct bandstop filter specification object
fdesign.ciccomp	Construct filter cascaded-integrator comb (CIC) compensator filter specification object
fdesign.decimator	Construct decimator filter specification object
fdesign.differentiator	Construct differentiator filter specification object
fdesign.halfband	Construct halfband filter specification object
fdesign.highpass	Construct highpass filter specification object
fdesign.hilbert	Construct Hilbert filter specification object
fdesign.interpolator	Construct interpolator filter specification object
fdesign.isinclp	Construct inverse-sinc filter specification object
fdesign.lowpass	Construct lowpass filter specification object

Filter Specification Objects - Design Methods

butter	Design Butterworth IIR digital filter using the specifications in filter specification object
cheby 1	Design Chebyshev Type I digital filter using filter specification object
cheby2	Design Chebyshev Type II digital filter using filter specification object
designmethods	Design methods available for designing filter from filter specification object
designopts	Input arguments and default values applicable to filter specification object and method
ellip	Design elliptical or Cauer digital filter using filter specification object
equiripple	Design equiripple single-rate or multirate FIR filter from filter specification object
firls	Design filter from filter specification object and least-square minimization technique
ifir	Use interpolated FIR method to design FIR filter from specification object
iirlinphase	Design quasi-linear phase IIR filter from halfband filter specification object
kaiserwin	Use Kaiser window to design filter from filter specification object
multistage	Design multistage filter from filter specification object
window	Use window design method to construct filter from specification object

Multirate Filter Constructors

mfilt.cascade	Cascade dfilt and mfilt object(s) into filter
mfilt.cicdecim	Construct fixed-point cascaded integrator-comb (CIC) decimator filter object
mfilt.cicinterp	Construct fixed-point cascaded integrator-comb (CIC) interpolator filter object
mfilt.fftfirinterp	Construct overlap-add FIR polyphase interpolator filter object
mfilt.firdecim	Construct direct-form FIR polyphase decimator filter
mfilt.firfracdecim	Construct direct-form FIR polyphase fractional decimator filter object
mfilt.firfracinterp	Construct direct-form FIR polyphase fractional interpolator filter object
mfilt.firinterp	Construct FIR filter-based interpolator
mfilt.firsrc	Construct direct-form FIR polyphase sample rate converters
mfilt.firtdecim	Construct direct-form transposed FIR filter
mfilt.holdinterp	Construct FIR hold interpolator
mfilt.iirdecim	Construct IIR decimator filter object
mfilt.iirinterp	Construct IIR interpolator filter object
mfilt.iirwdfdecim	Construct IIR wave digital filter decimator object

mfilt.iirwdfinterp Construct IIR wave digital interpolator filter
mfilt.linearinterp Construct linear interpolator filter

Filter Analysis Methods

block	Multirate (some)	Generate a Signal Processing Blockset block from floating-point or fixed-point multirate (mfilt) filter objects.
		Works only when Signal Processing Blockset is installed.
coefficients	Multirate	Filter coefficients for adaptive. discrete-time, and multirate filter.
cumsec	Discrete-time filters	Vector of filters for cumulative sections
denormalize	Discrete-time filters	Reverse filter coefficient and gain changes caused by function
disp		normalize
double	Filter object with properties and	
values		

firtype	Multirate filters	Determine type of linear phase FIR filter, either discrete-time or multirate
freqsamp	Discrete-time filters	Design real or complex frequency-sampled FIR filter from filter specification object
freqz	All filters	Compute frequency response of discrete-time filters, adaptive filters, or multirate filters
fftcoeffs	Single-rate and multirate filters	Frequency-domain coefficients used when filtering with discrete-time and adaptive filter object
grpdelay	All filters	Group delay for filter
help	All filters	Help text for design algorithm in Command Window
impz	All filters	Compute impulse response for filter
isfir	All filters	Determine whether filter is FIR filter
islinphase	All filters	Determine whether filter is linear phase
ismaxphase	All filters	Determine whether filter is maximum phase
isminphase	All filters	Determine whether filter is minimum phase
isreal	All filters	Determine whether filter is real
isstable	All filters	Determine whether filter is stable
limitcycle	Discrete-time filters	Explore steady-state response of single rate, fixed-point IIR filter to zero-valued input

maxstep	Adaptive filter	Maximum step size that allows adaptive filter to converge
measure	Adaptive and discrete-time filter objects	Magnitude response measurement for discrete-time or multirate filter created from filter specification object
msepred	Adaptive filter	Calculate predicted mean-squared error for selected adaptive filter
msesim	Adaptive filter	Calculate measured mean-squared error for adaptive filter
noisepsd	Single-rate filter objectsCompute power spectral density (PSD) of filter output caused by roundoff noise during	
noisepsdopts	Single-rate objects	quantization Create object containing options for running output noise power spectral density (PSD)
		computation noisepsd on filter
norm	P-norm of adaptfilt, dfilt, and mfilt objects	
normalize filter objects	Discrete-time filters	Normalize filter numerator or feed-forward coefficients to
between -1 and 1		

phasez	All filters	Unwrapped phase response for filter
polyphase	Multirate filter	Polyphase decomposition of multirate filter
qreport	All fixed-point filters	Results of most recent fixed-point filtering operation
realizemdl	Fixed-point filters	Realize Simulink subsystem block for quantized filter
reffilter	Discrete-time filters	Double-precision floating-point reference filter that corresponds to fixed-point or single-precision floating-point filter
reorder	SOS discrete-time filters	Rearrange sections in second-order sections (SOS) filter
reset	Adaptive and Multirate filters	Reset filter properties to initial conditions
scale	SOS discrete-time filters	Scale the sections of an SOS filter
scalecheck	SOS discrete-time filters	Check the scaling of an SOS filter
set2int	Single-rate and multirate filters	Configure single-rate and multirate filters for integer filtering
setspecs	fdesign objects	Set specifications for filter specification object
specifyall	Discrete-time filters	Access fixed-point scaling modes and features in direct-form FIR filter object
stepz	Adaptive and Multirate filters	Step response for filter

zerophase	All filters	Return the zerophase response for a filter
zplane	All filters	Return the pole-zero plot for a filter

To see the full listing of analysis methods that apply to the adaptfilt, dfilt, or mfilt objects, enter help adaptfilt, help dfilt, or help mfilt at the MATLAB prompt.

Fixed-Point Filter Construction and Property Functions

cell2sos	Convert a cell array to a second-order sections matrix
get	Get properties of a quantized filter
isreal	Test if filter coefficients are real
reset	Reset the properties of a quantized filter to their initial values
scale	Scale the sections of second-order section filters
scalecheck	Check the scaling of a second-order sections filter
scaleopts	Create an object that contains scaling options for second-order section scaling
set	Set properties of a quantized filter sos
convert a quantized filter to second-order sections form,	
sorder, and scale	

Quantized Filter Analysis Functions

freqz Compute the frequency response for a quantized filter
impz Compute the impulse response for a quantized filter
isallpass Test quantized filters to determine if they are allpass structures
isfir Test quantized filters to see if they are FIR filters
islinphase Test quantized filters to see if they are linear phase
ismaxphase Test quantized filters to see if they are maximum phase filters
isminphase Test quantized filters to see if they are minimum phase filters
isreal Test quantized filters for purely real coefficients

issos	Test whether quantized filters are composed of second-order sections
isstable	Test for stability of quantized filters
noisepsd	Compute the power spectral density (PSD) of filter output caused by round-off noise during the quantization process
noisepsdopts	Create an object that contains options for running the output noise PSD computation noisepsd on a filter
zplane	Compute a pole-zero plot for a quantized filter

SOS Conversion Functions

cell2sos Convert a cell array to a second-order sections matrix
sos Convert a quantized filter to second-order sections form, order, and scale
sos2cell
Convert a second-order sections matrix to a cell array

Filter Design Functions

farrow	Implement Farrow filter
fircband	Perform constrained-band equiripple FIR filter design
fireqint	Design equiripple FIR interpolators
firceqrip	Design constrained, equiripple FIR filter
firgr	Use Parks-McClellan technique to design digital FIR filter
firhalfband	Design halfband FIR filter
firlpnorm	Least P-norm optimal FIR filter design
firminphase	Compute minimum-phase FIR spectral factor
firnyquist	Design lowpass Nyquist (Lth-band) FIR filter
ifir	Design interpolated FIR filters
iircomb	Design comb IIR filters with periodic frequency response
iirgrpdelay	Design least-pth norm IIR filters with given group delay
iirlpnorm	Design least-pth norm IIR filters
iirlpnormc	Design constrained least-pth norm IIR filters
iirnotch	Design notch IIR filters to attenuate a fixed frequency
iirpeak	Design peaking IIR filters for boosting or cutting specific frequencies

Filter Conversion Functions

ca2tf	Convert coupled allpass filters to transfer function form		
cl2tf	Convert lattice coupled allpass filters to transfer function form		
convert	Convert dfilt objects from one structure to another		
firlp2lp	Transform lowpass FIR filters to lowpass filters with different passband specifications		
firlp2hp	Transform lowpass FIR filters to highpass FIR filters		
iirlp2bp	Transform lowpass IIR filters to bandpass filters		
iirlp2bs	Transform lowpass IIR filters to bandstop filters		
iirlp2hp	Transform lowpass IIR filters to highpass filters		
iirlp2lp	Transform lowpass IIR filters to lowpass filters		
iirpowcomp	Compute the power complementary IIR filter		
set2int	Scale the real filter coefficients to integer values for discrete-time and multirate filter objects		
tf2ca	Convert transfer function form to coupled allpass form tf2cl		Convert transfer function form to lattice coupled allpass
:---			
form			

Functions - Alphabetical List

This following pages provide the reference information for each function in the toolbox, in alphabetical order by the name of the function.

adaptfilt

Purpose Construct adaptive filter object

$$
\text { Syntax } \quad \text { ha = adaptfilt.algorithm(input1,input2,) }
$$

Description ha = adaptfilt.algorithm('input1', input2,) returns the adaptive filter object ha that uses the adaptive filtering technique specified by algorithm. When you construct an adaptive filter object, include an algorithm specifier to implement a specific adaptive filter. Note that you do not enclose the algorithm option in single quotation marks as you do for most strings. To construct an adaptive filter object you must supply an algorithm string-there is no default algorithm, although every constructor creates a default adaptive filter when you do not provide input arguments such as input1 or input2 in the calling syntax.

Algorithms

For adaptive filter (adaptfilt) objects, the algorithm string determines which adaptive filter algorithm your adaptfilt object implements. Each available algorithm entry appears in one of the tables along with a brief description of the algorithm. Click on the algorithm in the first column to get more information about the associated adaptive filter technique.

- LMS based adaptive filters
- RLS based adaptive filters
- Affine projection adaptive filters
- Adaptive filters in the frequency domain
- Lattice based adaptive filters

Least Mean Squares (LMS) Based FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.adjlms	Use the Adjoint LMS FIR adaptive filter algorithm
adaptfilt.blms	Use the Block LMS FIR adaptive filter algorithm
adaptfilt.blmsfft	Use the FFT-based Block LMS FIR adaptive filter algorithm
adaptfilt.dlms	Use the delayed LMS FIR adaptive filter algorithm
adaptfilt.filtxlms	Use the filtered-x LMS FIR adaptive filter algorithm
adaptfilt.lms	Use the LMS FIR adaptive filter algorithm
adaptfilt.nlms	Use the normalized LMS FIR adaptive filter algorithm
adaptfilt.sd	Use the sign-data LMS FIR adaptive filter algorithm
adaptfilt.se	Use the sign-error LMS FIR adaptive filter algorithm
adaptfilt.ss	Use the sign-sign LMS FIR adaptive filter algorithm

For further information about an adapting algorithm, refer to the reference page for the algorithm.

adaptfilt

Recursive Least Squares (RLS) Based FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.ftf	Use the fast transversal least squares adaptation algorithm
adaptfilt.qrdrls	Use the QR-decomposition RLS adaptation algorithm
adaptfilt.hrls	Use the householder RLS adaptation algorithm
adaptfilt.hswrls	Use the householder SWRLS adaptation algorithm
adaptfilt.rls	Use the recursive-least squares (RLS) adaptation algorithm
adaptfilt.swrls	Use the sliding window (SW) RLS adaptation algorithm
adaptfilt.swftf	Use the sliding window FTF adaptation algorithm

For more complete information about an adapting algorithm, refer to the reference page for the algorithm.

Affine Projection (AP) FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.ap	Use the affine projection algorithm that uses direct matrix inversion
adaptfilt.apru	Use the affine projection algorithm that uses recursive matrix updating
adaptfilt.bap	Use the block affine projection adaptation algorithm

To find more information about an adapting algorithm, refer to the reference page for the algorithm.

adaptfilt

FIR Adaptive Filters in the Frequency Domain (FD)

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.fdaf	Use the frequency domain adaptation algorithm
adaptfilt.pbfdaf	Use the partition block version of the FDAF algorithm
adaptfilt.pbufdaf	Use the partition block unconstrained version of the FDAF algorithm
adaptfilt.tdafdct	Use the transform domain adaptation algorithm using DCT
adaptfilt.tdafdft	Use the transform domain adaptation algorithm using DFT
adaptfilt.ufdaf	Use the unconstrained FDAF algorithm for adaptation

For more information about an adapting algorithm, refer to the reference page for the algorithm.

Lattice Based (L) FIR Adaptive Filters

adaptfilt.algorithm String	Description of the Adapting Algorithm Used to Generate Filter Coefficients During Adaptation
adaptfilt.gal	Use the gradient adaptive lattice filter adaptation algorithm
adaptfilt.lsl	Use the least squares lattice adaptation algorithm
adaptfilt.qrdlsl	Use the QR decomposition least squares lattice adaptation algorithm

For more information about an adapting algorithm, refer to the reference page for the algorithm.

Properties for all Adaptive Filter Objects

Each reference page for an algorithm and adaptfilt.algorithm object specifies which properties apply to the adapting algorithm and how to use them.

Methods for Adaptive Filter Objects

As is true with all objects, methods enable you to perform various operations on adaptfilt objects. To use the methods, you apply them to the object handle that you assigned when you constructed the adaptfilt object.

Most of the analysis methods that apply to dfilt objects also work with adaptfilt objects. Methods like freqz rely on the filter coefficients in the adaptfilt object. Since the coefficients change each time the filter adapts to data, you should view the results of using a method as an analysis of the filter at a moment in time for the object. Use caution when you apply an analysis method to your adaptive filter objects-always check that your result approached your expectation.

In particular, the Filter Visualization Tool (FVTool) supports all of the adaptfilt objects. Analyzing and viewing your adaptfilt objects is straightforward-use the fvtool method with the name of your object

```
fvtool(objectname)
```


adaptfilt

to launch FVTool and work with your object.
Some methods share their names with functions in the Signal Processing Toolbox, or even functions in this toolbox. Functions that share names with methods behave in a similar way. Using the same name for more than one function or method is called overloading and is common is many toolboxes.

Method	Description
adaptfilt/coefficients	Return the instantaneous adaptive filter coefficients
adaptfilt/filter	Apply an adaptfilt object to your signal
adaptfilt/freqz	Plot the instantaneous adaptive filter frequency response
adaptfilt/grpdelay	Plot the instantaneous adaptive filter group delay
adaptfilt/impz	Plot the instantaneous adaptive filter impulse response.
adaptfilt/info	Return the adaptive filter information.
adaptfilt/isfir	Test whether an adaptive filter is an finite impulse response (FIR) filters.
adaptfilt/islinphase	Test whether an adaptive filter is linear phase
adaptfilt/ismaxphase	Test whether an adaptive filter is maximum phase
adaptfilt/isminphase	Test whether an adaptive filter is minimum phase
adaptfilt/isreal	True whether an adaptive filter has real coefficients
adaptfilt/isstable	Test whether an adaptive filter is stable

Method	Description
adaptfilt/maxstep	Return the maximum step size for an adaptive filter
adaptfilt/msepred	Return the predicted mean square error
adaptfilt/msesim	Return the measured mean square error via simulation.
adaptfilt/phasez	Plot the instantaneous adaptive filter phase response
adaptfilt/reset	Reset an adaptive filter to initial conditions
adaptfilt/stepz	Plot the instantaneous adaptive filter step response
adaptfilt/tf	Return the instantaneous adaptive filter transfer function
adaptfilt/zerophase	Plot the instantaneous adaptive filter zerophase response
adaptfilt/zpk	Return a matrix containing the instantaneous adaptive filter zero, pole, and gain values
adaptfilt/zplane	Plot the instantaneous adaptive filter in the Z-plane

Working with Adaptive Filter Objects

The next sections cover viewing and changing the properties of adaptfilt objects. Generally, modifying the properties is the same for adaptfilt, dfilt, and mfilt objects and most of the same methods apply to all.

Viewing Object Properties

As with any object, you can use get to view a adaptfilt object's properties. To see a specific property, use

```
get(ha,'property')
```


adaptfilt

To see all properties for an object, use

```
get(ha)
```


Changing Object Properties

To set specific properties, use

```
set(ha,'property1',value1,'property2',value2,...)
```

You must use single quotation marks around the property name so MATLAB treats them as strings.

Copying an Object

To create a copy of an object, use copy.

```
ha2 = copy(ha)
```

Note Using the syntax ha2 = ha copies only the object handle and does not create a new object-ha and ha2 are not independent. When you change the characteristics of ha2, those of ha change as well.

Using Filter States

Two properties control your adaptive filter states.

- States-stores the current states of the filter. Before the filter is applied, the states correspond to the initial conditions and after the filter is applied, the states correspond to the final conditions.
- PersistentMemory—resets the filter before filtering. The default value is false which causes the properties that are modified by the filter, such as coefficients and states, to be reset to the value you specified when you constructed the object, before you use the object to filter data. Setting PersistentMemory to true allows the object to retain its current properties between filtering operations, rather than resetting the filter to its property values at construction.

Examples

Construct an LMS adaptive filter object and use it to identify an unknown system. For this example, use 500 iteration of the adapting process to
determine the unknown filter coefficients. Using the LMS algorithm represents one of the most straightforward technique for adaptive filters.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Glancing at the figure shows you the coefficients after adapting closely match the desired unknown FIR filter.

adaptfilt

See Also

dfilt, filter, mfilt
Purpose Adjoint least mean square (LMS) FIR adaptive filter that adapts using adjoint
Syntax

```
```

ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,

```
```

ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states)

```
```

 errstates,pstates,coeffs,states)
    ```
```

DescriptionLMS algorithm
ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs, pathest,
errstates, pstates, coeffs, states) constructs object ha, an FIR adjoint
LMS adaptive filter. l is the adaptive filter length (the number of coefficients
or taps) and must be a positive integer. 1 defaults to 10 when you omit the
argument. step is the adjoint LMS step size. It must be a nonnegative scalar.
When you omit the step argument, step defaults to 0.1.
leakage is the adjoint LMS leakage factor. It must be a scalar between 0 and 1. When leakage is less than one, you implement a leaky version of the adjlms algorithm to determine the filter coefficients. leakage defaults to 1 specifying no leakage in the algorithm.
pathcoeffs is the secondary path filter model. This vector should contain the coefficient values of the secondary path from the output actuator to the error sensor.
pathest is the estimate of the secondary path filter model. pathest defaults to the values in pathcoeffs.
errstates is a vector of error states of the adaptive filter. It must have a length equal to the filter order of the secondary path model estimate. errstates defaults to a vector of zeros of appropriate length. pstates contains the secondary path FIR filter states. It must be a vector of length equal to the filter order of the secondary path model. pstates defaults to a vector of zeros of appropriate length. The initial filter coefficients for the secondary path filter compose vector coeffs. It must be a length 1 vector. coeffs defaults to a length l vector of zeros. states is a vector containing the initial filter states. It must be a vector of length l+ne-1, where ne is the length of errstates. When you omit states, it defaults to an appropriate length vector of zeros.

adaptfilt.adjlms

Properties
In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table lists the properties for the adjoint LMS object, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | None | Specifies the adaptive
 filter algorithm the
 object uses during
 adaptation |
| Coefficients | Length l vector
 with zeros for all
 elements | Adjoint LMS FIR filter
 coefficients. Should be
 initialized with the
 initial coefficients for
 the FIR filter prior to
 adapting. You need
 l entries in
 coefficients. Updated
 filter coefficients are
 returned in
 coefficients when
 you use s as an output
 argument. |
| ErrorStates | $[0, \ldots, 0]$ | A vector of the error
 states for your adaptive
 filter, with length equal
 to the order of your
 secondary path filter |
| FilterLength | 10 | The number of
 coefficients in your
 adaptive filter |

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Leakage | 1 | Specifies the leakage
 parameter. Allows you
 to implement a leaky
 algorithm. Including a
 leakage factor can
 improve the results of
 the algorithm by forcing
 the algorithm to
 continue to adapt even
 after it reaches a
 minimum value.
 Ranges between 0
 and 1. |
| SecondaryPathCoeffs | No default | A vector that contains
 the coefficient values of
 your secondary path
 from the output
 actuator to the error
 sensor |
| SecondaryPathEstimate | pathcoeffs values | An estimate of the
 secondary path filter
 model |
| SecondaryPathStates | Length of the
 secondary path
 filter. All elements
 are zeros. | The states of the
 secondary path filter,
 the unknown system |

adaptfilt.adjilms

| Property | Default Value | Description |
| :--- | :--- | :--- |
| States | l+ne+1, where ne is
 length(errstates) | Contains the initial
 conditions for your
 adaptive filter and
 returns the states of the |
| FIR filter after | | |
| adaptation.If omitted, it | | |
| defaults to a zero vector | | |
| of length equal to | | |
| l+ne +1. When you use | | |
| adaptfilt.adjlms in | | |
| a loop structure, use | | |
| this element to specify | | |
| the initial filter states | | |
| for the adapting FIR | | |
| filter. | | |

| Property | Default Value | Description |
| :---: | :---: | :---: |
| Stepsize | 0.1 | Sets the adjoint LMS algorithm step size used for each iteration of the adapting algorithm. Determines both how quickly and how closely the adaptive filter converges to the filter solution. |
| PersistentMemory | false or true | Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter.
 PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false. |

Example
Demonstrate active noise control of a random noise signal that runs for 1000 samples.

```
x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be canceled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; %Adjoint LMS step size
```


adaptfilt.adjlms

```
ha = adaptfilt.adjlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;
```

Reviewing the figure shows that the adaptive filter attenuates the original noise signal as you expect.

See Also
References
adaptfilt.dlms, adaptfilt.filtxlms
Wan, Eric., "Adjoint LMS: An Alternative to Filtered-X LMS and Multiple Error LMS," Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1841-1845, 1997

| Purpose | Construct affine projection FIR adaptive filter object that uses direct matrix inversion | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.ap(l,step,projectord,offset,coeffs,states, errstates,epsstates)``` | |
| Description | ha = adaptfilt.ap(l,step, projectord,offset,coeffs,states, errstates, epsstates) constructs an affine projection FIR adaptive filter ha using direct matrix inversion. | |
| | Input Arguments | |
| | Entries in the following table describe the input arguments for adaptfilt.ap. | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
| | step | Affine projection step size. This is a scalar that should be a value between zero and one. Setting step equal to one provides the fastest convergence during adaptation. step defaults to 1 . |
| | projectord | Projection order of the affine projection algorithm. projectord defines the size of the input signal covariance matrix and defaults to two. |
| | offset | Offset for the input signal covariance matrix. You should initialize the covariance matrix to a diagonal matrix whose diagonal entries are equal to the offset you specify. offset should be positive. offset defaults to one. |

adaptfilt.ap

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector containing the initial filter
 coefficients. It must be a length l vector, the
 number of filter coefficients. coeffs
 defaults to length l vector of zeros when you
 do not provide the argument for input. |
| states | Vector of the adaptive filter states. states
 defaults to a vector of zeros which has
 length equal to (l + projectord - 2). |
| errstates | Vector of the adaptive filter error states.
 errstates defaults to a zero vector with
 length equal to (projectord - 1). |
| epsstates | Vector of the epsilon values of the adaptive
 filter. epsstates defaults to a vector of zeros
 with (projectord - 1) elements. |

Properties

Since your adaptfilt.ap filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. ap objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| FilterLength | Any positive
 integer | Reports the length of the filter,
 the number of coefficients or
 taps |

| Name | Range | Description |
| :---: | :---: | :---: |
| ProjectionOrder | 1 to as large as needed. | Projection order of the affine projection algorithm.
 ProjectionOrder defines the size of the input signal covariance matrix and defaults to two. |
| OffsetCov | Matrix of values | Contains the offset covariance matrix |
| Coefficients | Vector of elements | Vector containing the initial filter coefficients. It must be a length 1 vector, the number of filter coefficients. coeffs defaults to length 1 vector of zeros when you do not provide the argument for input. |
| States | Vector of elements, data type double | Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to ($1+$ projectord-2). |
| ErrorStates | Vector of elements | Vector of the adaptive filter error states. errstates defaults to a zero vector with length equal to (projectord-1). |
| EpsilonStates | Vector of elements | Vector of the epsilon values of the adaptive filter. epsstates defaults to a vector of zeros with (projectord - 1) elements. |

adaptfilt.ap

| Name | Range | Description |
| :--- | :--- | :--- |
| StepSize | Any scalar
 from zero to
 one, inclusive | Specifies the step size taken
 between filter coefficient
 updates |
| PersistentMemory | false or true | Determine whether the filter
 states get restored to their
 starting values for each
 filtering operation. The
 starting values are the values
 in place when you create the
 filter. PersistentMemory
 returns to zero any state that
 the filter changes during
 processing. States that the
 filter does not change are not
 affected. Defaults to true. |

Example

Quadrature phase shift keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter. Run the adaptation for 1000 iterations.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
                                    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
mu = 0.1; % Step size
po = 4; % Projection order
offset = 0.05; % Offset for covariance matrix
ha = adaptfilt.ap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
```

```
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

The four plots shown reveal the QPSK process at work.

adaptfilt.ap

See also

msesim
References [1] K. Ozeki and Umeda, T., "An Adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine Subspace and Its Properties," Electronics and Communications in Japan, vol.67-A, no. 5, pp. 19-27, May 1984
[2] Y. Maruyama, "A Fast Method of Projection Algorithm," Proc. 1990 IEICE Spring Conf., B-744

adaptfilt.apru

Purpose
Syntax

Description

Affine projection FIR adaptive filter object that uses recursive matrix updating

```
ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states,
    errstates,epsstates)
```

ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states, errstates, epsstates) constructs an affine projection FIR adaptive filter ha using recursive matrix updating.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.apru.

| Input Argument | Description |
| :--- | :--- |
| l | Adaptive filter length (the number of
 coefficients or taps). It must be a positive
 integer. l defaults to 10. |
| step | Affine projection step size. This is a scalar
 that should be a value between zero and
 one. Setting step equal to one provides the
 fastest convergence during adaptation. step
 defaults to 1. |
| projectord | Projection order of the affine projection
 algorithm. projectord defines the size of
 the input signal covariance matrix and
 defaults to two. |
| offset | Offset for the input signal covariance
 matrix. You should initialize the covariance
 matrix to a diagonal matrix whose diagonal
 entries are equal to the offset you specify.
 offset should be positive. offset defaults
 to one. |

adaptfilt.apru

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector containing the initial filter
 coefficients. It must be a length l vector, the
 number of filter coefficients. coeffs
 defaults to length l vector of zeros when you
 do not provide the argument for input. |
| states | Vector of the adaptive filter states. states
 defaults to a vector of zeros which has
 length equal to (l + projectord - 2). |
| errstates | Vector of the adaptive filter error states.
 errstates defaults to a zero vector with
 length equal to (projectord - 1). |
| epsstates | Vector of the epsilon values of the adaptive
 filter. epsstates defaults to a vector of zeros
 with (projectord - 1) elements. |

Properties

Since your adaptfilt.apru filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.apru objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| FilterLength | Any positive
 integer | Reports the length of the filter,
 the number of coefficients or
 taps |

adaptfilt.apru

| Name | Range | Description |
| :---: | :---: | :---: |
| ProjectionOrder | 1 to as large as needed. | Projection order of the affine projection algorithm.
 ProjectionOrder defines the size of the input signal covariance matrix and defaults to two. |
| OffsetCov | Matrix of values | Contains the offset covariance matrix |
| Coefficients | Vector of elements | Vector containing the initial filter coefficients. It must be a length 1 vector, the number of filter coefficients. coeffs defaults to length 1 vector of zeros when you do not provide the argument for input. |
| States | Vector of elements, data type double | Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to ($1+$ projectord-2). |
| ErrorStates | Vector of elements | Vector of the adaptive filter error states. errstates defaults to a zero vector with length equal to (projectord $1)$. |
| EpsilonStates | Vector of elements | Vector of the epsilon values of the adaptive filter. epsstates defaults to a vector of zeros with (projectord - 1) elements. |

adaptfilt.apru

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { StepSize } & \begin{array}{l}\text { Any scalar } \\ \text { from zero to } \\ \text { one, inclusive }\end{array} & \begin{array}{l}\text { Specifies the step size taken } \\ \text { between filter coefficient } \\ \text { updates }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the filter } \\ \text { states get restored to their } \\ \text { starting values for each } \\ \text { filtering operation. The } \\ \text { starting values are the values } \\ \text { in place when you create the } \\ \text { filter. PersistentMemory } \\ \text { returns to zero any state that } \\ \text { the filter changes during } \\ \text { processing. States that the }\end{array} \\ \text { filter does not change are not } \\ \text { affected. Defaults to true. }\end{array}\right]$.

Example

Demonstrate quadrature phase shift keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter. In this example we run the adaptation for 1000 iterations.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
                                    % QPSK sig
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); %Desired signal (delayed QPSK signal)
mu = 0.1; % Step size
po = 4; % Projection order
del = 0.05; % Offset
ha = adaptfilt.apru(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
```


adaptfilt.apru

```
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

In the component and scatter plots below, you see the results of QPSK equalization.

adaptfilt.apru

See Also

References
adaptfilt, adaptfilt.ap, adaptfilt.bap
[1] K. Ozeki, Omeda, T, "An Adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine Subspace and Its Properties,", Electronics and Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984
[2] Y. Maruyama, "A Fast Method of Projection Algorithm," Proceedings 1990 IEICE Spring Conference, B-744

Purpose
Block affine projection FIR adaptive filter object

```
Syntax
ha = adaptfilt.bap(l,step,projectord,offset, coeffs,states)
```

Description
ha = adaptfilt.bap(l,step, projectord,offset, coeffs, states) constructs a block affine projection FIR adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.bap.

| Input Argument | Description |
| :--- | :--- |
| l | Adaptive filter length (the number of
 coefficients or taps) and it must be a
 positive integer. l defaults to 10. |
| step | Affine projection step size. This is a scalar
 that should be a value between zero and
 one. Setting step equal to one provides the
 fastest convergence during adaptation. step
 defaults to 1. |
| projectord | Projection order of the affine projection
 algorithm. projectord defines the size of
 the input signal covariance matrix and
 defaults to two. |
| offset | Offset for the input signal covariance
 matrix. You should initialize the covariance
 matrix to a diagonal matrix whose diagonal
 entries are equal to the offset you specify.
 offset should be positive. offset defaults
 to one. |

adaptfilt.bap

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector containing the initial filter
 coefficients. It must be a length l vector, the
 number of filter coefficients. coeffs
 defaults to length l vector of zeros when you
 do not provide the argument for input. |
| states | Vector of the adaptive filter states. states
 defaults to a vector of zeros which has
 length equal to (l + projectord -2$).$ |

Properties

Since your adaptfilt.bap filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. bap objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| FilterLength | Any positive
 integer | Reports the length of the filter,
 the number of coefficients or
 taps |
| ProjectionOrder | 1 to as large
 as needed. | Projection order of the affine
 projection algorithm.
 ProjectionOrder defines the
 size of the input signal
 covariance matrix and defaults
 to two. |
| OffsetCov | Matrix of | Contains the offset covariance
 matrix |

adaptfilt.bap

| Name | Range | Description |
| :--- | :--- | :--- |
| Coefficients | Vector of
 elements | Vector containing the initial
 filter coefficients. It must be a
 length l vector, the number of
 filter coefficients. coeffs
 defaults to length l vector of
 zeros when you do not provide
 the argument for input. |
| States | Vector of
 elements,
 data type
 double | Vector of the adaptive filter
 states. states defaults to a
 vector of zeros which has
 length equal to (l +
 projectord - 2). |
| StepSize | Any scalar
 from zero to
 one, inclusive | Specifies the step size taken
 between filter coefficient
 updates |
| PersistentMemory | false or true | Determine whether the filter
 states get restored to their
 starting values for each
 filtering operation. The
 starting values are the values
 in place when you create the
 filter. PersistentMemory
 returns to zero any state that
 the filter changes during |
| | | processing. States that the
 filter does not change are not
 affected. Defaults to true. |

Example

Show an example of quadrature phase shift keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of
    % channel
```


adaptfilt.bap

```
a = [1 -0.7]; % Denominator coefficients
    % of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
                                    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed
    % QPSK signal)
mu = 0.5; % Step size
po = 4; % Projection order
offset = 1.0; % Offset for covariance matrix
ha = adaptfilt.bap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```


Using the block affine projection object in QPSK results in the plots shown here.

See Also

References
adaptfilt, adaptfilt.ap, adaptfilt.apru
[1] K. Ozeki, Omeda, T, "An Adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine Subspace and Its Properties," Electronics and Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984
[2] M. Montazeri, M, Duhamel, P, "A Set of Algorithms Linking NLMS and Block RLS Algorithms," IEEE Transactions Signal Processing, vol. 43, no. 2, pp, 444-453, February 1995

adaptfilt.blms

Purpose
Construct Block LMS (BLMS) FIR adaptive filter

Syntax

Description
ha = adaptfilt.blms(l,step,leakage,blocklen, coeffs,states)
ha = adaptfilt.blms(l,step,leakage,blocklen, coeffs,states)
constructs an FIR block LMS adaptive filter ha, where l is the adaptive filter length (the number of coefficients or taps) and must be a positive integer. 1 defaults to 10 .
step is the block LMS step size. You must set step to a nonnegative scalar. You can use function maxstep to determine a reasonable range of step size values for the signals being processed. When unspecified, step defaults to 0 .
leakage is the block LMS leakage factor. It must be a scalar between 0 and 1. If you set leakage to be less than one, you implement the leaky block LMS algorithm. leakage defaults to 1 specifying no leakage in the adapting algorithm.
blocklen is the block length used. It must be a positive integer and the signal vectors d and x should be divisible by blocklen. Larger block lengths result in faster per-sample execution times but with poor adaptation characteristics. When you choose blocklen such that blocklen + length (coeffs) is a power of 2 , use adaptfilt.blmsfft. blocklen defaults to 1 .
coeffs is a vector of initial filter coefficients. it must be a length 1 vector. coeffs defaults to length l vector of zeros.
states contains a vector of your initial filter states. It must be a length l vector and defaults to a length 1 vector of zeros when you do not include it in your calling function.

adaptfilt.blms

Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table lists the properties for the adjoint LMS object, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive
 filter algorithm the
 object uses during
 adaptation |
| FilterLength | Any positive integer | Reports the length of
 the filter, the number of
 coefficients or taps |
| Coefficients | Vector of elements | Vector containing the
 initial filter coefficients.
 It must be a length l
 vector where l is the
 number of filter
 coefficients. coeffs
 defaults to length l
 vector of zeros when
 you do not provide the
 argument for input. |
| States | Vector of elements | Vector of the adaptive
 filter states. states
 defaults to a vector of
 zeros which has length
 equal to l |

adaptfilt.blms

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Leakage | | Specifies the leakage
 parameter. Allows you
 to implement a leaky
 algorithm. Including a
 leakage factor can
 improve the results of
 the algorithm by
 forcing the algorithm to
 continue to adapt even
 after it reaches a
 minimum value.
 Ranges between 0
 and 1. |
| BlockLength | Vector of length 1 | Size of the blocks of
 data processed in each
 iteration |

adaptfilt.blms

$\left.\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { StepSize } & 0.1 & \begin{array}{l}\text { Sets the block LMS } \\ \text { algorithm step size } \\ \text { used for each iteration } \\ \text { of the adapting } \\ \text { algorithm. Determines } \\ \text { both how quickly and } \\ \text { how closely the } \\ \text { adaptive filter } \\ \text { converges to the filter } \\ \text { solution. Use maxstep } \\ \text { to determine the } \\ \text { maximum usable step } \\ \text { size. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the } \\ \text { filter states get } \\ \text { restored to their } \\ \text { starting values for each } \\ \text { filtering operation. The } \\ \text { starting values are the } \\ \text { values in place when }\end{array} \\ \text { you create the filter. }\end{array}\right\} \begin{array}{l}\text { PersistentMemory } \\ \text { returns to zero any } \\ \text { state that the filter } \\ \text { changes during } \\ \text { processing. States that } \\ \text { the filter does not } \\ \text { change are not affected. }\end{array}\right\}$

Example
Use an adaptive filter to identify an unknown 32nd-order FIR filter. In this example we input 500 samples to result in 500 iterations of the adaptation process. You see in the plot that follows the example code that the adaptive filter has determined the coefficients of the unknown system under test.

```
x = randn(1,500); % Input to the filter
```


adaptfilt.blms

```
b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+no; % Desired signal
mu = 0.008; % Block LMS step size
n = 5; % Block length
ha = adaptfilt.blms(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Based on looking at the figures here, the adaptive filter correctly identified the unknown system after 500 iterations, or fewer. In the lower plot, you see the comparison between the actual filter coefficients and those determined by the adaptation process.

[^0]
adaptfilt.blmsfft

Purpose
Construct FFT-based block LMS FIR adaptive filter

Syntax

Description
ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,states)
ha = adaptfilt.blmsfft(l,step,leakage,blocklen, coeffs,states)
constructs an FIR block LMS adaptive filter object ha where 1 is the adaptive filter length (the number of coefficients or taps) and must be a positive integer. 1 defaults to 10 . step is the block LMS step size. It must be a nonnegative scalar. The function maxstep may be helpful to determine a reasonable range of step size values for the signals you are processing. step defaults to 0 .
leakage is the block LMS leakage factor. It must also be a scalar between 0 and 1 . When leakage is less than one, the adaptfilt.blmsfft implements a leaky block LMS algorithm. leakage defaults to 1 (no leakage). blocklen is the block length used. It must be a positive integer such that

```
blocklen + length(coeffs)
```

is a power of two; otherwise, an adaptfilt.blms algorithm is used for adapting. Larger block lengths result in faster execution times, with poor adaptation characteristics as the cost of the speed gained. blocklen defaults to 1 . Enter your initial filter coefficients in coeffs, a vector of length 1 . When omitted, coeffs defaults to a length l vector of all zeros. states contains a vector of initial filter states; it must be a length 1 vector. states defaults to a length 1 vector of all zeros when you omit the states argument in the calling syntax.

adaptfilt.blmsfft

Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table lists the properties for the block LMS object, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive
 filter algorithm the
 object uses during
 adaptation |
| FilterLength | Any positive integer | Reports the length of
 the filter, the number of
 coefficients or taps |
| Coefficients | Vector of elements | Vector containing the
 initial filter coefficients.
 It must be a length l
 vector where l is the
 number of filter
 coefficients.
 coefficients defaults
 to length l vector of
 zeros when you do not
 provide the argument
 for input. |
| States | Vector of elements of | Vector of the adaptive
 filter states. states
 defaults to a vector of
 zeros which has length
 equal to l |

adaptfilt.blmsfft

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Leakage | 1 | Specifies the leakage
 parameter. Allows you
 to implement a leaky
 algorithm. Including a
 leakage factor can
 improve the results of
 the algorithm by
 forcing the algorithm to
 continue to adapt even
 after it reaches a
 minimum value.
 Ranges between 0
 and 1. |
| BlockLength | Vector of length 1 | Size of the blocks of
 data processed in each
 iteration |

$\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { StepSize } & 0.1 & \begin{array}{l}\text { Sets the block LMS } \\ \text { algorithm step size } \\ \text { used for each iteration } \\ \text { of the adapting } \\ \text { algorithm. Determines } \\ \text { both how quickly and } \\ \text { how closely the } \\ \text { adaptive filter } \\ \text { converges to the filter } \\ \text { solution. Use maxstep } \\ \text { to determine the } \\ \text { maximum usable step } \\ \text { size. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the } \\ \text { filter states get } \\ \text { restored to their } \\ \text { starting values for each }\end{array} \\ \text { filtering operation. The } \\ \text { starting values are the }\end{array}\right\}$

Example

Identify an unknown FIR filter with 32 coefficients using 512 iterations of the adapting algorithm.

```
x = randn(1,512); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
no = 0.1*randn(1,512); % Observation noise signal
```


adaptfilt.blmsfft

```
d = filter(b,1,x)+no; % Desired signal
mu = 0.008; % Step size
n = 16; % Block length
ha = adaptfilt.blmsfft(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d(1:500);y(1:500);e(1:500)]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('actual','estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```


adaptfilt.blmsfft

As a result of running the adaptation process, filter object ha now matches the unknown system FIR filter b, based on comparing the filter coefficients derived during adaptation.

See Also
Reference
adaptfilt.blms, adaptfilt.fdaf, adaptfilt.lms, filter
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

adaptfilt.dlms

Purpose Create delayed LMS FIR adaptive filter object

```
Syntax ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
    states)
Description ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
states) constructs an FIR delayed LMS adaptive filter ha.
```


Input Arguments

```
Entries in the following table describe the input arguments for adaptfilt.dlms.
```

| Input Argument | Description |
| :--- | :--- |
| 1 | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. I defaults to 10. |
| step | LMS step size. It must be a nonnegative
 scalar. You can use maxstep to determine
 a reasonable range of step size values for the
 signals being processed. step defaults to 0. |
| leakage | Your LMS leakage factor. It must be a scalar
 between 0 and 1. When leakage is less than
 one, adaptfilt. lms implements a leaky LMS
 algorithm. When you omit the leakage
 property in the calling syntax, it defaults to 1
 providing no leakage in the adapting
 algorithm. |
| delay | Update delay given in time samples. This
 scalar should be a positive integer-negative
 delays do not work. delay defaults to 1. |

| Input Argument | Description |
| :--- | :--- |
| errstates | Vector of the error states of your adaptive
 filter. It must have a length equal to the
 update delay (delay) in samples. errstates
 defaults to an appropriate length vector of
 zeros. |
| coeffs | Vector of initial filter coefficients. it must be a
 length l vector. coeffs defaults to length 1
 vector with elements equal to zero. |
| states | Vector of initial filter states for the adaptive
 filter. It must be a length l-1 vector. states
 defaults to a length l-1 vector of zeros. |

adaptfilt.dlms

Properties
In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table lists the properties for the block LMS object, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | | Vector containing the
 initial filter coefficients. It
 must be a length l vector
 where l is the number of
 filter coefficients. coeffs
 defaults to length l vector
 of zeros when you do not
 provide the argument for
 input. LMS FIR filter
 coefficients. Should be
 initialized with the initial
 coefficients for the FIR
 filter prior to adapting.
 You need l entries in
 coeffs. |
| Delay | 1 | Specifies the update delay
 for the adaptive
 algorithm. |
| ErrorStates | Vector of zeros with
 the number of
 elements equal to
 delay | A vector comprising the
 error states for the
 adaptive filter. |
| FilterLength | Any positive
 integer | Reports the length of the
 filter, the number of
 coefficients or taps. |

adaptfilt.dlms

$\left.\left.\begin{array}{l|ll}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { Leakage } & 1 & \begin{array}{l}\text { Specifies the leakage } \\ \text { parameter. Allows you to } \\ \text { implement a leaky } \\ \text { algorithm. Including a } \\ \text { leakage factor can } \\ \text { improve the results of the } \\ \text { algorithm by forcing the } \\ \text { algorithm to continue to } \\ \text { adapt even after it reaches } \\ \text { a minimum value. Ranges } \\ \text { between 0 and 1. }\end{array} \\ \hline \text { PersistentMemory } & & \text { false or true } \\ & & \begin{array}{l}\text { Determine whether the } \\ \text { filter states get restored to } \\ \text { their starting values for } \\ \text { each filtering operation. } \\ \text { The starting values are } \\ \text { the values in place when }\end{array} \\ \text { you create the filter if you } \\ \text { have not changed the }\end{array}\right\} \begin{array}{l}\text { filter since you } \\ \text { constructed it. } \\ \text { PersistentMemory } \\ \text { returns to zero any state }\end{array}\right\}$

adaptfilt.dlms

| Property | Default Value | Description |
| :--- | :--- | :--- |
| StepSize | 0.1 | Sets the LMS algorithm
 step size used for each
 iteration of the adapting
 algorithm. Determines
 both how quickly and how
 closely the adaptive filter
 converges to the filter
 solution. |
| States | Vector of elements, | Vector of the adaptive
 filter states. states
 defaults to a vector of
 zeros which has length |
| equal to (l + projectord - | | |
| $2)$. | | |

Example

System identification of a 32-coefficient FIR filter. Refer to the figure that follows to see the results of the adapting filter process.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
delay = 1; % Update delay
ha = adaptfilt.dlms(32,mu,1,delay);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Using a delayed LMS adaptive filter in the process to identify an unknown filter appears to work as planned, as shown in this figure.

See Also
Reference
adaptfilt.adjlms, adaptfilt.filtxlms, adaptfilt.lms
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

adaptfilt.fdaf

| Purpose | Construct frequency-domain FIR adaptive filter with bin step size normalization | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen, offset,coeffs,states)``` | |
| Description | ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,offset, coeffs, states) constructs a frequency-domain FIR adaptive filter ha with bin step size normalization. If you omit all the input arguments you create a default object with $\mathrm{I}=10$ and step $=1$. | |
| | Input Arguments | |
| | Entries in the following table describe the input arguments for adaptfilt.fdaf. | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps). l must be a positive integer; it defaults to 10 when you omit the argument. |
| | step | Step size of the adaptive filter. This is a scalar and should lie in the range (0,1]. step defaults to 1. |
| | leakage | Leakage parameter of the adaptive filter. If this parameter is set to a value between zero and one, you implement a leaky FDAF algorithm. leakage defaults to 1 -no leakage provided in the algorithm. |
| | delta | Initial common value of all of the FFT input signal powers. Its initial value should be positive. delta defaults to 1 . |
| | lambda | Specifies the averaging factor used to compute the exponentially-windowed FFT input signal powers for the coefficient updates. lambda should lie in the range $(0,1]$. lambda defaults to 0.9 . |

| Input Argument | Description |
| :--- | :--- |
| blocklen | Block length for the coefficient updates. This
 must be a positive integer. For faster execution,
 (blocklen + l) should be a power of two.
 blocklen defaults to l. |
| offset | Offset for the normalization terms in the
 coefficient updates. Use this to avoid divide by
 zeros or by very small numbers when any of the
 FFT input signal powers become very small.
 offset defaults to zero. |
| coeffs | Initial time-domain coefficients of the adaptive
 filter. coeff should be a length l vector. The
 adaptive filter object uses these coefficients to
 compute the initial frequency-domain filter
 coefficients via an FFT computed after
 zero-padding the time-domain vector by the
 blocklen. |
| states | The adaptive filter states. states defaults to
 a zero vector that has length equal to l. |

Properties

Since your adaptfilt.fdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.fdaf objects. To show you the properties

adaptfilt.fdaf

that apply, this table lists and describes each property for the adaptfilt.fdaf filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation. |
| AvgFactor | $(0,1]$ | Specifies the averaging factor
 used to compute the
 exponentially-windowed FFT
 input signal powers for the
 coefficient updates. Same as
 the input argument lambda. |
| BlockLength | Any integer | Block length for the coefficient
 updates. This must be a
 positive integer. For faster
 execution, (blocklen + l)
 should be a power of two.
 blocklen defaults to l. |
| FFTCoefficients | | Stores the discrete Fourier
 transform of the filter
 coefficients in coeffs. |
| FFTStates | Any positive | States for the FFT operation.
 integer
 Reports the length of the filter,
 theps. |
| FilterLength | | |

adaptfilt.fdaf

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Leakage } & & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. if this } \\ \text { parameter is set to a value } \\ \text { between zero and one, you } \\ \text { implement a leaky FDAF } \\ \text { algorithm. leakage defaults to } \\ \text { 1-no leakage provided in the } \\ \text { algorithm. }\end{array} \\ \hline \text { Offset } & & \begin{array}{l}\text { Any positive } \\ \text { real value }\end{array} \\ & & \begin{array}{l}\text { Offset for the normalization } \\ \text { terms in the coefficient } \\ \text { updates. Use this to avoid } \\ \text { dividing by zero or by very } \\ \text { small numbers when any of the } \\ \text { FFT input signal powers }\end{array} \\ \text { become very small. offset } \\ \text { defaults to zero. }\end{array}\right\}$

adaptfilt.fdaf

| Name | Range | Description |
| :--- | :--- | :--- |
| Power | A vector of 2*l elements, each
 initialized with the value delta
 from the input arguments. As
 you filter data, Power gets
 updated by the filter process. | |
| StepSize | Any scalar
 from zero to
 one, inclusive | Specifies the step size taken
 between filter coefficient
 updates |

Examples

Quadrature Phase Shift Keying (QPSK) adaptive equalization using 1024 iterations of a 32 -coefficient FIR filter. After this example code, a figure demonstrates the equalization results.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1024; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK
    % signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
ha = adaptfilt.fdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
```


adaptfilt.fdaf

```
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```


See Also
Reference
adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blms, adaptfilt.blmsfft
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

adaptfilt.filtxlms

Purpose
Create filtered-x LMS FIR adaptive filter

Syntax
Description

```
ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest,
    errstates,pstates,coeffs,states)
ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest, errstates, pstates, coeffs, states) constructs an filtered-x LMS adaptive filter ha.
```


Input Arguments

Entries in the following table describe the input arguments for adaptfilt.filtxlms.

| Input Argument | Description |
| :--- | :--- |
| 1 | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. I defaults to 10. |
| step | Filtered LMS step size. it must be a
 nonnegative scalar. step defaults to 0.1. |
| leakage | is the filtered-x LMS leakage factor. it must
 be a scalar between 0 and 1. If it is less than
 one, a leaky version of adaptfilt. filtxlms is
 implemented. leakage defaults to 1 (no
 leakage). |
| pathcoeffs | is the secondary path filter model. this vector
 should contain the coefficient values of the
 secondary path from the output actuator to
 the error sensor. |
| pathest | is the estimate of the secondary path filter
 model. pathest defaults to the values in
 pathcoeffs. |
| fstates | is a vector of filtered input states of the
 adaptive filter. fstates defaults to a zero
 vector of length equal to (l-1). |

adaptfilt.filtxlms

| Input Argument | Description |
| :--- | :--- |
| pstates | are the secondary path FIR filter states. it
 must be a vector of length equal to the
 (length(pathcoeffs) - 1). pstates defaults to
 a vector of zeros of appropriate length. |
| coeffs | is a vector of initial filter coefficients. it must
 be a length l vector. coeffs defaults to length
 l vector of zeros. |
| states | Vector of initial filter states. states defaults
 to a zero vector of length equal to the larger of
 (length(pathcoeffs) -1) and
 (length(pathest) -1$).$ |

Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table lists the properties for the adjoint LMS object, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive
 filter algorithm the
 object uses during
 adaptation |
| Coefficients | Vector of elements | Vector containing the
 initial filter coefficients.
 It must be a length l
 vector where l is the
 number of filter
 coefficients. coeffs
 defaults to length 1
 vector of zeros when
 you do not provide the
 argument for input. |

adaptfilt.filtxlms

| Property | Default Value | Description |
| :--- | :--- | :--- |
| FilteredInputStates | $1-1$ | Vector of filtered input
 states with length
 equal to l-1. |
| FilterLength | Any positive integer | Reports the length of
 the filter, the number of
 coefficients or taps |
| States | Vector of elements | Vector of the adaptive
 filter states. states
 defaults to a vector of
 zeros which has length
 equal to
 (l + projectord - 2) |
| SecondaryPathCoeffs | No default | A vector that contains
 the coefficient values of
 your secondary path
 from the output
 actuator to the error
 sensor |
| SecondaryPathEstimate | pathcoeffs values | An estimate of the
 secondary path filter
 model |

adaptfilt.filtxlms

| Property | Default Value | Description |
| :--- | :--- | :--- |
| SecondaryPathStates | Vector of size
 (length(pathcoeffs)-1)
 with all elements
 equal to zero. | The states of the
 secondary path FIR
 filter-the unknown
 system |
| StepSize | 0.1 | Sets the filtered-x
 algorithm step size
 used for each iteration
 of the adapting
 algorithm. Determines
 both how quickly and
 how closely the
 adaptive filter
 converges to the filter
 solution. |

Example

Demonstrate active noise control of a random noise signal over 1000 iterations.
As the figure that follows this code demonstrates, the filtered-x LMS filter successfully controls random noise in this context.

```
x = randn(1,1000); % Noise source
g = fir1(47,0.4); % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n; % Signal to be cancelled (desired)
b = fir1(31,0.5); % FIR secondary path system model
mu = 0.008; % Filtered-X LMS step size
ha = adaptfilt.filtxlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value'); grid on;
```


adaptfilt.filtxIms

See also

Reference
adaptfilt.dlms, adaptfilt.lms
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

Purpose
Syntax
Description

Construct fast transversal least squares adaptive filter object

```
ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)
```

ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)
constructs a fast transversal least squares adaptive filter object ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.ftf.

| Input Argument | Description |
| :--- | :--- |
| l | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. l defaults to 10. |
| lambda | RLS forgetting factor. This is a scalar that
 should lie in the range (1-0.5/l, 1]. lambda
 defaults to 1. |
| delta | Soft-constrained initialization factor. This
 scalar should be positive and sufficiently large
 to prevent an excessive number of Kalman
 gain rescues. delta defaults to one. |
| gamma | Conversion factor. gamma defaults to one
 specifying soft-constrained initialization. |
| gstates | States of the Kalman gain updates. gstates
 defaults to a zero vector of length l. |
| coeffs | Length l vector of initial filter coefficients.
 coeffs defaults to a length l vector of zeros. |
| states | Vector of initial filter States. states defaults
 to a zero vector of length (l-1). |

Properties Since your adaptfilt.ftf filter is an object, it has properties that define its operating behavior. Note that many of the properties are also input arguments

adaptfilt.ftf

for creating adaptfilt.ftf objects. To show you the properties that apply, this table lists and describes each property for the fast transversal least squares filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| BkwdPrediction | Returns the predicted samples
 generated during
 adaptation.Refer to [12] in the
 bibliography for details about
 linear prediction. | |
| Coefficients | Vector of
 elements | Vector containing the initial
 filter coefficients. It must be a
 length l vector where l is the
 number of filter coefficients.
 coeffs defaults to length 1
 vector of zeros when you do not
 provide the argument for
 input. |
| ConversionFactor | | Conversion factor. Called
 gamma when it is an input
 argument, it defaults to the
 matrix [1-1] that specifies
 soft-constrained initialization. |
| FilterLength | | Reports the length of the filter,
 the number of coefficients or
 taps |
| ForgettingFactor | Any positive | |
| integer | | RLS forgetting factor. This is a
 scalar that should lie in the
 range (1-0.5/l, 1]. lambda
 defaults to 1. |

$\left.\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { FwdPrediction } & \begin{array}{l}\text { Contains the predicted values } \\ \text { for samples during adaptation. } \\ \text { Compare these to the actual } \\ \text { samples to get the error and } \\ \text { power. }\end{array} \\ \hline \text { InitFactor } & \begin{array}{l}\text { Soft-constrained initialization } \\ \text { factor. This scalar should be } \\ \text { positive and sufficiently large } \\ \text { to prevent an excessive } \\ \text { number of Kalman gain } \\ \text { rescues. delta defaults to one. }\end{array} \\ \hline \text { KalmanGain } & & \begin{array}{l}\text { Empty when you construct the } \\ \text { object, this gets populated after } \\ \text { you run the filter. }\end{array} \\ \hline \text { PersistentMemory } & & \text { false or true }\end{array} \begin{array}{l}\text { Determine whether the filter } \\ \text { states get restored to their } \\ \text { starting values for each }\end{array}\right\} \begin{array}{l}\text { filtering operation. The } \\ \text { starting values are the values } \\ \text { in place when you create the }\end{array}\right\}$

adaptfilt.ftf

Examples

System Identification of a 32 -coefficient FIR filter by running the identification process for 500 iterations.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
N = 31; % Adaptive filter order
lam = 0.99; % RLS forgetting factor
del = 0.1; % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('coefficient #'); ylabel('Coefficient Value'); grid on;
```

For this example of identifying an unknown system, the figure shows that the adaptation process identifies the filter coefficients for the unknown FIR filter within the first 150 iterations.

See Also
adaptfilt.swftf, adaptfilt.rls, adaptfilt.lsl
Reference
D.T.M. Slock and Kailath, T., "Numerically Stable Fast Transversal Filters for Recursive Least Squares Adaptive Filtering," IEEE Trans. Signal Processing, vol. 38, no. 1, pp. 92-114.

adaptfilt.gal

Purpose Construct gradient adaptive lattice FIR filter

```
Syntax
ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda,
    rcoeffs,coeffs,states)
Description
ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda, rcoeffs, coeffs, states) constructs a gradient adaptive lattice FIR filter ha.
```


Input Arguments

Entries in the following table describe the input arguments for adaptfilt.gal.

| Input Argument | Description |
| :--- | :--- |
| \mathbf{l} | Length of the joint process filter coefficients. It
 must be a positive integer and must be equal
 to the length of the reflection coefficients plus
 one. 1 defaults to 10. |
| step | Joint process step size of the adaptive filter.
 This scalar should be a value between zero
 and one. step defaults to 0. |
| leakage | Leakage factor of the adaptive filter. It must
 be a scalar between 0 and 1. Setting leakage
 less than one implements a leaky algorithm to
 estimate both the reflection and the joint
 process coefficients. leakage defaults to 1 (no
 leakage). |
| offset | Specifies an optional offset for the
 denominator of the step size normalization
 term. It must be a scalar greater or equal to
 zero. A non-zero offset is useful to avoid
 divide-by-near-zero conditions when the input
 signal amplitude becomes very small. offset
 defaults to 1. |

| Input Argument | Description |
| :--- | :--- |
| rstep | Reflection process step size of the adaptive
 filter. This scalar should be a value between
 zero and one. rstep defaults to step. |
| delta | Initial common value of the forward and
 backward prediction error powers. It should be
 a positive value. 0.1 is the default value for
 delta. |
| lambda | Specifies the averaging factor used to compute
 the exponentially windowed forward and
 backward prediction error powers for the
 coefficient updates. lambda should lie in the
 range (0, 1]. lambda defaults to the value
 (1-step). |
| rcoeffs | Vector of initial reflection coefficients. It
 should be a length (l-1) vector. rcoeffs
 defaults to a zero vector of length (l-1). |
| coeffs | Vector of initial joint process filter coefficients.
 It must be a length l vector. coeffs defaults to
 a length l vector of zeros. |
| states | Vector of the backward prediction error states
 of the adaptive filter. states defaults to a zero
 vector of length (l-1). |

Properties

Since your adaptfilt.gal filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.gal objects. To show you the properties that

adaptfilt.gal

apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description | | |
|---|---|---|---|---|
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| AvgFactor | Specifies the averaging factor
 used to compute the
 exponentially-windowed
 forward and backward
 prediction error powers for the
 coefficient updates. Same as
 the input argument lambda. | |
| BkwdPredErrorPower | | Returns the minimum
 mean-squared prediction error.
 Refer to [12] in the
 bibliography for details about
 linear prediction |
| Coefficients | Vector of | |
| elements | | |\quad| Vector containing the initial |
| :--- |
| filter coefficients. It must be a |
| length l vector where l is the |
| number of filter coefficients. |
| coeffs defaults to length l |
| vector of zeros when you do not |
| provide the argument for |
| input. |

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \begin{array}{l}\text { Description } \\ \hline \text { FwdPredErrorPower } \\ \text { Leakage }\end{array} \\ & \begin{array}{l}\text { Returns the minimum } \\ \text { mean-squared prediction error } \\ \text { in the forward direction. Refer } \\ \text { to [12] in the bibliography for } \\ \text { details about linear prediction. }\end{array} \\ \hline \text { Offset to 1 } & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. If this } \\ \text { parameter is set to a value } \\ \text { between zero and one, you } \\ \text { implement a leaky GAL } \\ \text { algorithm. leakage defaults to } \\ 1-\text { no leakage provided in the } \\ \text { algorithm. }\end{array} \\ \hline \text { PersistentMemory } & & \begin{array}{l}\text { Offset for the normalization } \\ \text { terms in the coefficient } \\ \text { updates. Use this to avoid } \\ \text { dividing by zero or by very } \\ \text { small numbers when input }\end{array} \\ \text { signal amplitude becomes very } \\ \text { small. offset defaults to one. }\end{array}\right\}$

adaptfilt.gal

| Name | Range | Description |
| :--- | :--- | :--- |
| ReflectionCoeffs | | Coefficients determined for the
 reflection portion of the filter
 during adaptation. |
| ReflectionCoeffsStep | Size of the steps used to
 determine the reflection
 coefficients. | |
| States | Vector of
 elements | Vector of the adaptive filter
 states. states defaults to a
 vector of zeros which has
 length equal to
 (l + projectord - 2). |
| StepSize | 0 to 1 | Specifies the step size taken
 between filter coefficient
 updates |

Examples

Perform a Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32-coefficient adaptive filter over 1000 iterations.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
                    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.007; % Step size
ha = adaptfilt.gal(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
```

```
xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

To see the results, look at this figure.

See Also
adaptfilt.qrdlsl, adaptfilt.lsl, adaptfilt.tdafdft

adaptfilt.gal

References L.J. Griffiths, "A Continuously Adaptive Filter Implemented as a Lattice Structure," Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Hartford, CT, pp. 683-686, 1977
S. Haykin, Adaptive Filter Theory, 3rd Ed., Upper Saddle River, NJ, Prentice Hall, 1996

| Purpose | Construct a householder recursive least squares (RLS) FIR adaptive filter object | |
| :---: | :---: | :---: |
| Syntax | ha = adaptfilt.hrls(l, lambda, sqrtinvcov, coeffs, states) | |
| Description | ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states) constructs an FIR householder RLS adaptive filter ha. | |
| | Input Arguments
 Entries in the following table describe the input arguments for adaptfilt.hrls. | |
| | | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
| | lambda | RLS forgetting factor. This is a scalar and should lie in the range (0,1]. lambda defaults to 1 meaning the adaptation process retains infinite memory. |
| | sqrtinvcov | Square-root of the inverse of the sliding window input signal covariance matrix. This square matrix should be full-ranked. |
| | coeffs | Vector of initial filter coefficients. It must be a length 1 vector. coeffs defaults to being a length 1 vector of zeros. |
| | states | Vector of initial filter states. It must be a length 1-1 vector. states defaults to a length l-1 vector of zeros. |

Properties

Since your adaptfilt.hrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.hrls objects. To show you the properties

adaptfilt.hrls

that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description | | | |
|---|---|---|---|---|---|
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | Vector of
 elements | Vector containing the initial
 filter coefficients. It must be
 a length l vector where 1 is
 the number of filter
 coefficients. coeffs defaults
 to length l vector of zeros
 when you do not provide the
 argument for input. |
| FilterLength | Any positive
 integer | Reports the length of the
 filter, the number of
 coefficients or taps |
| ForgettingFactor | Scalar | RLS forgetting factor. This
 is a scalar and should lie in |
| the range (0, 1]. Same as | | |
| input argument lambda. It | | |
| defaults to 1 meaning the | | |
| adaptation process retains | | |
| infinite memory. | | |$|$| Empty when you construct |
| :--- |
| the object, this gets |
| populated after you run the |
| filter. |

| Name | Range | Description |
| :--- | :--- | :--- |
| PersistentMemory | false or true | Determine whether the
 filter states get restored to
 their starting values for
 each filtering operation. The
 starting values are the
 values in place when you
 create the filter if you have
 not changed the filter since
 you constructed it.
 PersistentMemory returns
 to zero any state that the
 filter changes during
 processing. Defaults to
 false. |
| SqrtInvCov | | Square root of the inverse of
 the sliding window input
 signal covariance matrix.
 This square matrix should
 be full-ranked. |
| States | Matrix of
 doubles | Vector of the adaptive filter
 states. states defaults to a
 vector of zeros which has
 length equal to (l - 1). |

Examples

Use 500 iterations of an adaptive filter object to identify a 32-coefficient FIR filter system. Both the example code and the resulting figure show the successful filter identification through adaptive filter processing.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
GO = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.hrls(32,lam,GO);
```


adaptfilt.hrls

```
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```


See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls

| Purpose | Construct householder sliding window recursive least squares (RLS) FIR adaptive filter | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen, dstates, coeffs, states)``` | |
| Description | ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen, dstates, coeffs, states) constructs an FIR householder sliding window recursive-least-square adaptive filter ha. | |
| | Input Arguments | |
| | Entries in the following table describe the input arguments for adaptfilt.hswrls. | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
| | lambda | Recursive least square (RLS) forgetting factor. This is a scalar and should lie in the range (0 , $1]$. lambda defaults to 1 meaning the adaptation process retains infinite memory. |
| | sqrtinvcov | Square-root of the inverse of the sliding window input signal covariance matrix. This square matrix should be full-ranked. |
| | swblocklen | Block length of the sliding window. This integer must be at least as large as the filter length. swblocklen defaults to 16 . |
| | dstates | Desired signal states of the adaptive filter. dstates defaults to a zero vector with length equal to (swblocklen-1). |

adaptfilt.hswrls

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector of initial filter coefficients. It must be a
 length l vector. coeffs defaults to being
 a length l vector of zeros. |
| states | Vector of initial filter states. It must be
 a length (l + swblocklen -2) vector. states
 defaults to a length (l + swblocklen -2)
 vector of zeros. |

Properties

Since your adaptfilt.hswrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.hswrls objects. To show you the properties that apply, this table lists and describes each property for the affine projection filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | Vector of
 elements | Vector containing the
 initial filter coefficients. It
 must be a length l vector
 where l is the number of
 filter coefficients. coeffs
 defaults to length l vector
 of zeros when you do not
 provide the argument for
 input. |
| DesiredSignalStates | Vector | Desired signal states of the
 adaptive filter. dstates
 defaults to a zero vector
 with length equal to
 (swblocklen - 1). |

| Name | Range | Description |
| :--- | :--- | :--- |
| FilterLength | Any positive
 integer | Reports the length of the
 filter, the number of
 coefficients or taps |
| ForgettingFactor | Scalar | Root-least-square (RLS)
 forgetting factor. This is a
 scalar and should lie in the
 range (0, 1]. Same as input
 argument lambda. It
 defaults to 1 meaning the
 adaptation process retains
 infinite memory. |
| KalmanGain | (l,1) vector | Empty when you construct
 the object, this gets
 populated after you run the |
| filter. | | |

adaptfilt.hswrls

| Name | Range | Description |
| :--- | :--- | :--- |
| SqrtInvCov | l-by-l Matrix | Square-root of the inverse
 of the sliding window input
 signal covariance matrix.
 This square matrix should
 be full-ranked. |
| States | Vector of
 elements,
 data type
 double | Vector of the adaptive filter
 states. states defaults to a
 vector of zeros which has
 length equal to (l +
 projectord - 2). |
| SwBlockLength | Integer | Block length of the sliding
 window. This integer must
 be at least as large as the
 filter length. swblocklen
 defaults to 16. |

Examples
System Identification of a 32 -coefficient FIR filter.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
GO = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99; % RLS forgetting factor
N = 64; % block length
ha = adaptfilt.hswrls(32,lam,GO,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```


adaptfilt.hswrls

In the pair of plots shown in the figure you see the comparison of the desired and actual output for the adapting filter and the coefficients of both filters, the unknown and the adapted.

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hrls

adaptfilt.Ims

Purpose Construct least-mean-square (LMS) FIR adaptive filter object

```
Syntax ha = adaptfilt.lms(l,step,leakage,coeffs,states)
```

Description
ha = adaptfilt.lms(l,step,leakage, coeffs,states) constructs an FIR LMS adaptive filter object ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.lms.

| Input Argument | Description |
| :--- | :--- |
| \mathbf{l} | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. 1 defaults to 10. |
| step | LMS step size. It must be a nonnegative
 scalar. You can use maxstep to determine
 a reasonable range of step size values for the
 signals being processed. step defaults to 0.1. |
| leakage | Your LMS leakage factor. It must be a scalar
 between 0 and 1. When leakage is less than
 one, adaptfilt. lms implements a leaky LMS
 algorithm. When you omit the leakage
 property in the calling syntax, it defaults to 1
 providing no leakage in the adapting
 algorithm. |
| coeffs | Vector of initial filter coefficients. it must be a
 length l vector. coeffs defaults to length 1
 vector with elements equal to zero. |
| states | Vector of initial filter states for the adaptive
 filter. It must be a length l-1 vector. states
 defaults to a length l-1 vector of zeros. |

Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object created. This table lists the properties for the

adaptfilt.Ims

adaptfilt.lms object, their default values, and a brief description of the property.

| Property | Range | Property Description |
| :--- | :--- | :--- |
| Algorithm | None | Reports the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | Vector of
 elements | Vector containing the initial
 filter coefficients. It must be
 a length l vector where l is
 the number of filter
 coefficients. coeffs defaults
 to a length l vector of zeros
 when you do not provide the
 vector as an input argument. |
| FilterLength | Any positive
 integer | Reports the length of the
 filter, the number of
 coefficients or taps |
| Leakage | 0 to 1 | LMS leakage factor. It must
 be a scalar between zero and
 one. When it is less than one,
 a leaky NLMS algorithm
 results. leakage defaults
 to 1 (no leakage). |

adaptfilt.Ims

| Property | Range | Property Description |
| :--- | :--- | :--- |
| PersistentMemory | false or true | Determine whether the filter
 states and coefficients get
 restored to their starting
 values for each filtering
 operation. The starting
 values are the values in
 place when you create the
 filter. PersistentMemory
 returns to zero any property
 value that the filter changes
 during processing. Property
 values that the filter does
 not change are not affected.
 Defaults to false. |
| States | | Vector of
 elements, data
 type double |
| Vector of the adaptive filter | | |
| states. states defaults to a | | |
| vector of zeros which has | | |
| length equal to (l-1). | | |

Example
Use 500 iterations of an adapting filter system to identify and unknown 32nd-order FIR filter.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 0.008; % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
```

```
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Using LMS filters in an adaptive filter architecture is a time honored means for identifying an unknown filter. By running the example code provided you can demonstrate one process to identify an unknown FIR filter.

adaptfilt.Ims

See Also
Reference
adaptfilt.blms, adaptfilt.blmsfft, adaptfilt.dlms, adaptfilt.nlms, adaptfilt.tdafdft, adaptfilt.sd, adaptfilt.se, adaptfilt.ss
J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

Purpose
Syntax ha = adaptfilt.lsl(l, lambda, delta, coeffs, states)
Description
Construct least squares lattice (LSL) adaptive filter
ha = adaptfilt.lsl(l,lambda,delta, coeffs,states) constructs a least squares lattice adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.lsl.

| Input Argument | Description |
| :--- | :--- |
| l | Length of the joint process filter coefficients. It
 must be a positive integer and must be equal
 to the length of the prediction coefficients plus
 one. L defaults to 10. |
| lambda | Forgetting factor of the adaptive filter. This is
 a scalar and should lie in the range (0, 1].
 lambda defaults to $1 . \quad$ lambda = 1 denotes
 infinite memory while adapting to find the
 new filter. |
| delta | Soft-constrained initialization factor in the
 least squares lattice algorithm. It should be
 positive. delta defaults to 1. |
| coeffs | Vector of initial joint process filter coefficients.
 It must be a length l vector. coeffs defaults to
 a length l vector of all zeros. |
| states | Vector of the backward prediction error states
 of the adaptive filter. states defaults to
 a length l vector of all zeros, specifying
 soft-constrained initialization for the
 algorithm. |

Properties

Since your adaptfilt.lsl filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input

adaptfilt.|sl

arguments for creating adaptfilt. lsl objects. To show you the properties that apply, this table lists and describes each property for the filter object.
$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Algorithm } & \text { None } & \begin{array}{l}\text { Defines the adaptive filter } \\ \text { algorithm the object uses } \\ \text { during adaptation }\end{array} \\ \hline \text { BkwdPrediction } & \begin{array}{l}\text { Returns the predicted } \\ \text { samples generated during } \\ \text { adaptation.Refer to [12] in } \\ \text { the bibliography for details } \\ \text { about linear prediction. }\end{array} \\ \hline \text { Coefficients } & \begin{array}{l}\text { Vector of } \\ \text { elements }\end{array} & \begin{array}{l}\text { Vector containing the initial } \\ \text { filter coefficients. It must be a } \\ \text { length l vector where l is the }\end{array} \\ \text { number of filter coefficients. } \\ \text { coeffs defaults to length 1 } \\ \text { vector of zeros when you do } \\ \text { not provide the argument for } \\ \text { input. }\end{array}\right\}$

| Name | Range | Description |
| :---: | :---: | :---: |
| FwdPrediction | | Contains the predicted values for samples during adaptation. Compare these to the actual samples to get the error and power. |
| InitFactor | | Soft-constrained initialization factor. This scalar should be positive and sufficiently large to prevent an excessive number of Kalman gain rescues. delta defaults to one. |
| PersistentMemory | false or true | Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false. |
| States | Vector of elements, data type double | Vector of the adaptive filter states. states defaults to a vector of zeros which has length equal to l |

Examples
Demonstrate Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient adaptive filter running for 1000 iterations. After you

adaptfilt.lsl

review the example code, the figure shows the results of running the example to use QPSK adaptive equalization with a 32nd-order FIR filter. Notice that the error between the in-phase and quadrature components, as shown by the errors plotted in the upper plots, falls to near zero. Also, the equalized signal shows the clear quadrature nature.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
                                    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK
    % signal)
lam = 0.995; % Forgetting factor
del = 1; % Soft-constrained initialization
factor
ha = adaptfilt.lsl(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```


See Also
References
adaptfilt.qrdlsl, adaptfilt.gal, adaptfilt.ftf, adaptfilt.rls
S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991

adaptfilt.nIms

Purpose Construct normalized least mean squares (LMS) FIR adaptive filter object

```
Syntax ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states)
Description
ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states) constructs a normalized least-mean squares (NLMS) FIR adaptive filter object named ha.
```


Input Arguments

Entries in the following table describe the input arguments for adaptfilt.nlms.

| Input Argument | Description |
| :--- | :--- |
| 1 | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. 1 defaults to 10. |
| step | NLMS step size. It must be a scalar between 0
 and 2. Setting this step size value to one
 provides the fastest convergence. step
 defaults to 1. |
| leakage | NLMS leakage factor. It must be a scalar
 between zero and one. When it is less than
 one, a leaky NLMS algorithm results. leakage
 defaults to 1 (no leakage). |
| offset | Specifies an optional offset for the
 denominator of the step size normalization
 term. You must specify offset to be a scalar
 greater than or equal to zero. Nonzero offsets
 can help avoid a divide-by-near-zero condition
 that causes errors. Use this to avoid dividing
 by zero (or by very small numbers) when the
 square of the input data norm becomes very |
| small (when the input signal amplitude | |
| becomes very small). When you omit it, offset | |
| defaults to zero. | |

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector composed of your initial filter
 coefficients. Enter a length l vector. coeffs
 defaults to a vector of zeros with length equal
 to the filter order. |
| states | Your initial adaptive filter states appear in the
 states vector. It must be a vector of length
 l-1. states defaults to a length 1-1 vector with
 zeros for all of the elements. |

Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table lists the properties for normalized LMS objects, their default values, and a brief description of the property.

| Property | Range | Property Description |
| :--- | :--- | :--- |
| Algorithm | None | Reports the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | Vector of
 elements | Vector containing the initial
 filter coefficients. It must be
 a length l vector where l is
 the number of filter
 coefficients. coeffs defaults
 to length l vector of zeros
 when you do not provide the
 argument for input. |
| FilterLength | Any positive | Reports the length of the
 filter, the number of
 coefficients or taps |

adaptfilt.nlms

$\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Range } & \text { Property Description } \\ \hline \text { Leakage } & 0 \text { to } 1 & \begin{array}{l}\text { NLMS leakage factor. It } \\ \text { must be a scalar between } \\ \text { zero and one. When it is less } \\ \text { than one, a leaky NLMS } \\ \text { algorithm results. leakage } \\ \text { defaults to 1 (no leakage). }\end{array} \\ \hline \text { Offset } & 0 \text { or greater } & \begin{array}{l}\text { Specifies an optional offset } \\ \text { for the denominator of the } \\ \text { step size normalization term. } \\ \text { You must specify offset to be } \\ \text { a scalar greater than or } \\ \text { equal to zero. Nonzero } \\ \text { offsets can help avoid a } \\ \text { divide-by-near-zero condition } \\ \text { that causes errors. Use this } \\ \text { to avoid dividing by zero (or } \\ \text { by very small numbers) }\end{array} \\ \text { when the square of the input } \\ \text { data norm becomes very } \\ \text { small (when the input signal } \\ \text { amplitude becomes very }\end{array}\right\}$

| Property | Range | Property Description |
| :--- | :--- | :--- |
| PersistentMemory | false or true | Determine whether the filter
 states and coefficients get
 restored to their starting
 values for each filtering
 operation. The starting
 values are the values in
 place when you create the
 filter. PersistentMemory
 returns to zero any property
 value that the filter changes
 during processing. Property
 values that the filter does
 not change are not affected.
 Defaults to false. |
| States | Vector of | Vector of the adaptive filter
 states. states defaults to a
 elements, data of zeros which has
 lype double |
| StepSize | 0 to 1 | NLMS step size. It must be a
 scalar between zero and one. |
| Setting this step size value | | |
| to one provides the fastest | | |
| convergence. step defaults to | | |
| one. | | |

To help you compare this algorithm's performance to other LMS-based algorithms, such as BLMS or LMS, this example demonstrates the NLMS adaptive filter in use to identify the coefficients of an unknown FIR filter of order equal to 32 -an example used in other adaptive filter examples.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 1; % NLMS step size
```


adaptfilt.nIms

```
offset = 50; % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);
```


As you see from the figure, the nlms variant again closely matches the actual filter coefficients in the unknown FIR filter.

See Also

adaptfilt.ap, adaptfilt.apru, adaptfilt.lms, adaptfilt.rls, adaptfilt.swrls

| Purpose | Construct partitioned block frequency-domain (PBFDAF) FIR adaptive filter with bin step size normalization | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,offset, coeffs,states)``` | |
| Description | ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,offset, coeffs, states) constructs a partitioned block frequency-domain FIR adaptive filter ha that uses bin step size normalization during adaptation. | |
| | Input Arguments
 Entries in the following table describe the input arguments for adaptfilt.pbfdaf. | |
| | | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. L defaults to 10 . |
| | step | Step size of the adaptive filter. This is a scalar and should lie in the range (0,1]. step defaults to 1 . |
| | leakage | Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, a leaky version of the PBFDAF algorithm is implemented. leakage defaults to 1 - no leakage. |
| | delta | Initial common value of all of the FFT input signal powers. Its initial value should be positive. delta defaults to 1 . |
| | lambda | Averaging factor used to compute the exponentially windowed FFT input signal powers for the coefficient updates. lambda should lie in the range $(0,1]$. lambda defaults to 0.9 . |

adaptfilt.pbfdaf

| Input Argument | Description |
| :--- | :--- |
| blocklen | Block length for the coefficient updates. This
 must be a positive integer such that
 $(1 /$ blocklen) is also an integer. For faster
 execution, blocklen should be a power of two.
 blocklen defaults to two. |
| offset | Offset for the normalization terms in the
 coefficient updates. This can be useful to
 avoid divide by zeros conditions, or dividing by
 very small numbers, if any of the FFT input
 signal powers become very small. offset
 defaults to zero. |
| coeffs | Initial time-domain coefficients of the
 adaptive filter. It should be a vector of
 length l. The PBFDAF algorithm uses these
 coefficients to compute the initial
 frequency-domain filter coefficient matrix via
 FFTs. |
| states | Specifies the filter initial conditions. states
 defaults to a zero vector of length l. |

Properties

Since your adaptfilt.pbfdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input

adaptfilt.pbfdaf

arguments for creating adaptfilt.pbfdaf objects. To show you the properties that apply, this table lists and describes each property for the filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| AvgFactor | | Averaging factor used to
 compute the exponentially
 windowed FFT input signal
 powers for the coefficient
 updates. AvgFactor should lie
 in the range (0,1]. AvgFactor
 defaults to 0.9. Called lambda
 as an input argument. |
| BlockLength | | Block length for the coefficient
 updates. This must be a
 positive integer such that
 (l/blocklen) is also an
 integer. For faster execution,
 blocklen should be a power of
 two. blocklen defaults to |
| two. | | |

adaptfilt.pbfdaf

| Name | Range | Description |
| :---: | :---: | :---: |
| Leakage | 0 to 1 | Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, a leaky version of the PBFDAF algorithm is implemented. leakage defaults to 1 - no leakage. |
| Offset | | Offset for the normalization terms in the coefficient updates. This can be useful to avoid divide by zeros conditions, or dividing by very small numbers, if any of the FFT input signal powers become very small. offset defaults to zero. |
| PersistentMemory | false or true | Determine whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. Defaults to false. |

| Name | Range | Description |
| :--- | :--- | :--- |
| Power | | A vector of 2*1 elements, each
 initialized with the value
 delta from the input
 arguments. As you filter data,
 Power gets updated by the
 filter process. |
| StepSize | 0 to 1 | Step size of the adaptive filter.
 This is a scalar and should lie
 in the range $(0,1]$. step
 defaults to 1. |

Examples

An example of Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr = 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband
                                    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
    r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); %Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
N = 8; % Block size
ha = adaptfilt.pbfdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
```


adaptfilt.pbfdaf

```
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

In the figure shown, the four subplots provide the details of the results of the QPSK process used in the equalization for this example.

See Also
adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blmsfft

adaptfilt.pbfdaf

References J.S. So and K.K. Pang, "Multidelay Block Frequency Domain Adaptive Filter," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp. 373-376, February 1990
J.M. Paez Borrallo and M.G. Otero, "On The Implementation of a Partitioned Block Frequency Domain Adaptive Filter (PBFDAF) For Long Acoustic Echo Cancellation," Signal Processing, vol. 27, no. 3, pp. 301-315, June 1992

adaptfilt.pbufdaf

| Purpose | Construct partitioned block unconstrained frequency-domain (PBUFDAF) FIR adaptive filter with bin step size normalization | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen, offset,coeffs,states)(``` | |
| Description | ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen, offset, coeffs, states) constructs a partitioned block unconstrained frequency-domain FIR adaptive filter ha with bin step size normalization. | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. L defaults to 10 . |
| | step | Step size of the adaptive filter. This is a scalar and should lie in the range $(0,1]$. step defaults to 1. |
| | leakage | Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, a leaky version of the PBFDAF algorithm is implemented. leakage defaults to 1 - no leakage. |
| | delta | Initial common value of all of the FFT input signal powers. Its initial value should be positive. delta defaults to 1 . |
| | lambda | Averaging factor used to compute the exponentially windowed FFT input signal powers for the coefficient updates. lambda should lie in the range $(0,1]$. lambda defaults to 0.9 . |

adaptfilt.pbufdaf

| Input Argument | Description |
| :--- | :--- |
| blocklen | Block length for the coefficient updates. This
 must be a positive integer such that
 $(1 /$ blocklen) is also an integer. For faster
 execution, blocklen should be a power of two.
 blocklen defaults to two. |
| offset | Offset for the normalization terms in the
 coefficient updates. This can be useful to
 avoid divide by zeros conditions, or dividing by
 very small numbers, if any of the FFT input
 signal powers become very small. offset
 defaults to zero. |
| coeffs | Initial time-domain coefficients of the
 adaptive filter. It should be a vector of
 length l. The PBFDAF algorithm uses these
 coefficients to compute the initial
 frequency-domain filter coefficient matrix via
 FFTs. |
| states | Specifies the filter initial conditions. states
 defaults to a zero vector of length l. |

Properties
Since your adaptfilt. pbufdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. pbufdaf objects. To show you the

adaptfilt.pbufdaf

properties that apply, this table lists and describes each property for the filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| AvgFactor | | Averaging factor used to
 compute the exponentially
 windowed FFT input signal
 powers for the coefficient
 updates. AvgFactor should lie
 in the range (0,1]. AvgFactor
 defaults to 0.9. Called lambda
 as an input argument. |
| BlockLength | | Block length for the coefficient
 updates. This must be a
 positive integer such that
 (l/blocklen) is also an |
| integer. For faster execution, | | |
| blocklen should be a power of | | |
| two. blocklen defaults to | | |
| two. | | |

adaptfilt.pbufdaf

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Leakage } & 0 \text { to } 1 & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. When you set } \\ \text { this argument to a value } \\ \text { between zero and one, a leaky } \\ \text { version of the PBFDAF } \\ \text { algorithm is implemented. } \\ \text { leakage defaults to 1- no } \\ \text { leakage. }\end{array} \\ \hline \text { Offset } & & \begin{array}{l}\text { Offset for the normalization } \\ \text { terms in the coefficient } \\ \text { updates. This can be useful to } \\ \text { avoid divide by zeros } \\ \text { conditions, or dividing by very } \\ \text { small numbers, if any of the }\end{array} \\ \text { FFT input signal powers } \\ \text { become very small. offset } \\ \text { defaults to zero. }\end{array}\right\}$

adaptfilt.pbufdaf

| Name | Range | Description |
| :--- | :--- | :--- |
| Power | 2^{*} l element
 vector | A vector of 2*1 elements, each
 initialized with the value
 delta from the input
 arguments. As you filter data,
 Power gets updated by the
 filter process. |
| StepSize | 0 to 1 | Step size of the adaptive filter.
 This is a scalar and should lie
 in the range $(0,1]$. step
 defaults to 1. |

Examples

Demonstrating Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter. To perform the equalization, this example runs for 1000 iterations.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband QPSK
                                    % signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
N = 8; % Block size
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
```


adaptfilt.pbufdaf

```
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

To allow you to compare this algorithm to another, such as the pbfdaf version, we use the same example of QPSK adaptation. The figure shows the results.

See Also
adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blmsfft

adapifilt.pbufdaf

References
J.S. So and K.K. Pang, "Multidelay Block Frequency Domain Adaptive Filter," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp. 373-376, February 1990
J.M. Paez Borrallo and M.G. Otero, "On The Implementation of a Partitioned Block Frequency Domain Adaptive Filter (PBFDAF) for Long Acoustic Echo Cancellation," Signal Processing, vol. 27, no. 3, pp. 301-315, June 1992

Purpose
Syntax ha = adaptfilt.qrdlsl(l, lambda, delta, coeffs, states)
Description
QR-decomposition-based least squares lattice (LSL) adaptive filter object

```
ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states)
```

ha = adaptfilt.qrdlsl(l,lambda,delta, coeffs,states) returns a QR-decomposition-based least squares lattice adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.qrdlsl.

| Input Argument | Description |
| :--- | :--- |
| l | Length of the joint process filter coefficients. It
 must be a positive integer and must be equal
 to the length of the prediction coefficients
 plus one. L defaults to 10. |
| lambda | Forgetting factor of the adaptive filter. This is
 a scalar and should lie in the range (0, 1].
 lambda defaults to 1. lambda = 1 denotes
 infinite memory while adapting to find the
 new filter. |
| delta | Soft-constrained initialization factor in the
 least squares lattice algorithm. It should be
 positive. delta defaults to 1. |
| coeffs | Vector of initial joint process filter coefficients.
 It must be a length l vector. coeffs defaults to
 a length l vector of all zeros. |
| states | Vector of the angle normalized backward
 prediction error states of the adaptive filter |

Properties

Since your adaptfilt. qrdlsl filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input

adaptfilt.qrdlsl

arguments for creating adaptfilt. qrdlsl objects. To show you the properties that apply, this table lists and describes each property for the filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| BkwdPrediction | Returns the predicted samples
 generated during
 adaptation.Refer to [12] in the
 bibliography for details about
 linear prediction. | |
| Coefficients | Vector of
 elements | Vector containing the initial
 filter coefficients. It must be a
 length l vector where l is the
 number of filter coefficients.
 coeffs defaults to length 1
 vector of zeros when you do
 not provide the argument for
 input. |
| FilterLength | Any positive | Reports the length of the filter,
 the number of coefficients or
 taps |
| integer | | Forgetting factor of the
 adaptive filter. This is a
 scalar and should lie in the
 range (0, 1]. It defaults to 1.
 Setting forgetting
 factor = 1 denotes infinite
 memory while adapting to find
 the new filter. Note that this is
 the lambda input argument. |
| | | |

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { FwdPrediction } & & \begin{array}{l}\text { Returns the predicted samples } \\ \text { generated during adaptation } \\ \text { in the forward direction.Refer } \\ \text { to [12] in the bibliography for } \\ \text { details about linear } \\ \text { prediction. }\end{array} \\ \hline \text { InitFactor } & & \begin{array}{l}\text { Soft-constrained initialization } \\ \text { factor. This scalar should be } \\ \text { positive and sufficiently large } \\ \text { to prevent an excessive } \\ \text { number of Kalman gain } \\ \text { rescues. delta defaults to one. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the filter } \\ \text { states get restored to their } \\ \text { starting values for each } \\ \text { filtering operation. The }\end{array} \\ \text { starting values are the values } \\ \text { in place when you create the } \\ \text { filter if you have not changed } \\ \text { the filter since you constructed } \\ \text { it. PersistentMemory returns } \\ \text { to zero any state that the filter } \\ \text { changes during processing. } \\ \text { States that the filter does not } \\ \text { change are not affected. }\end{array}\right\}$

Examples

Implement Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient adaptive filter. To see the results of the equalization process in this example, look at the figure that follows the example code.

adaptfilt.qrdlsl

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband
QPSK % signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
lam = 0.995; % Forgetting factor
del = 1; % Soft-constrained initialization
factor
ha = adaptfilt.qrdlsl(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```


See Also
adaptfilt.qrdrls, adaptfilt.gal, adaptfilt.ftf, adaptfilt.lsl
References
S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991

adaptfilt.qrdrls

| Purpose | Create QR-decomposition-based recursive least squares (RLS) FIR adaptive filter object | |
| :---: | :---: | :---: |
| Syntax | ha = adaptfilt.qrdrls(l, lambda, sqrtcov, coeffs, states) | |
| Description | ha = adaptfilt.qrdrls(l, lambda, sqrtcov, coeffs,states) constructs an FIR QR-decomposition-based recursive-least squares (RLS) adaptive filter object ha. | |
| | Input Arguments | |
| | Entries in the following table describe the input arguments for adaptfilt.qrdrls. | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
| | lambda | RLS forgetting factor. This is a scalar and should lie within the range (0,1]. lambda defaults to 1 . |
| | sqrtcov | Upper-triangular Cholesky (square root) factor of the input covariance matrix. Initialize this matrix with a positive definite upper triangular matrix. |
| | coeffs | Vector of initial filter coefficients. It must be a length 1 vector. coeffs defaults to length 1 vector whose elements are zeros. |
| | states | Vector of initial filter states. It must be a length l-1 vector. states defaults to a length $1-1$ vector of zeros. |

Properties

Since your adaptfilt.qrdrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input
arguments for creating adaptfilt.qrdrls objects. To show you the properties that apply, this table lists and describes each property for the filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | Vector of
 length 1 | Vector containing the initial
 filter coefficients. It must be a
 length l vector where l is the
 number of filter coefficients.
 coeffs defaults to length 1
 vector of zeros when you do
 not provide the argument for
 input. |
| FilterLength | Any positive | Reports the length of the filter,
 integer number of coefficients or
 taps |
| ForgettingFactor | Scalar | Forgetting factor of the
 adaptive filter. This is a
 scalar and should lie in the
 range (0, 1]. It defaults to 1.
 Setting forgetting
 factor = 1 denotes infinite
 memory while adapting to find
 the new filter. Note that this is
 the lambda input argument. |

adaptfilt.qrdrls

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the filter } \\ \text { states get restored to their } \\ \text { starting values for each } \\ \text { filtering operation. The } \\ \text { starting values are the values } \\ \text { in place when you create the } \\ \text { filter if you have not changed } \\ \text { the filter since you constructed } \\ \text { it. PersistentMemory returns } \\ \text { to zero any state that the filter } \\ \text { changes during processing. } \\ \text { States that the filter does not } \\ \text { change are not affected. } \\ \text { Defaults to false. }\end{array} \\ \hline \text { SqrtCov } & & \begin{array}{l}\text { Upper-triangular Cholesky } \\ \text { (square root) factor of the } \\ \text { input covariance matrix. }\end{array} \\ \hline \text { Square } \\ \text { matrix with } \\ \text { each } \\ \text { dimension } \\ \text { equal to the } \\ \text { filter length l }\end{array} \quad \begin{array}{l}\text { Initialize this matrix with a } \\ \text { positive definite upper } \\ \text { triangular matrix. }\end{array}\right\}$

Examples

System Identification of a 32 -coefficient FIR filter (500 iterations).

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
GO = sqrt(.1)*eye(32); % Initial sqrt correlation matrix
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.qrdrls(32,lam,GO);
```

```
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Using this variant of the RLS algorithm successfully identifies the unknown FIR filter, as shown here.

See Also adaptfilt.rls, adaptfilt.hrls, adaptfilt.hswrls, adaptfilt.swrls

adaptfilt.rls

Purpose Construct direct form recursive least squares (RLS) FIR adaptive filter object

```
Syntax ha = adaptfilt.rls(l,lambda,invcov,coeffs,states)
Description ha = adaptfilt.rls(l, lambda, invcov, coeffs, states) constructs an FIR direct form RLS adaptive filter ha.
```


Input Arguments

```
Entries in the following table describe the input arguments for adaptfilt.rls.
```

| Input Argument | Description |
| :--- | :--- |
| 1 | Adaptive filter length (the
 number of coefficients or taps)
 and it must be a positive
 integer. 1 defaults to 10. |
| lambda | RLS forgetting factor. This is
 a scalar and should lie in the
 range (0, 1]. lambda defaults
 to 1. |
| invcov | Inverse of the input signal
 covariance matrix. For best
 performance, you should
 initialize this matrix to be
 a positive definite matrix. |
| coeffs | Vector of initial filter
 coefficients. it must be a length |
| states | l vector. coeffs defaults to
 length l vector with elements
 equal to zero. |
| | Vector of initial filter states for
 the adaptive filter. It must be a
 length l-1 vector. states
 defaults to a length l-1 vector
 of zeros. |

adaptfilt.rls

Properties

Since your adaptfilt.rls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.rls objects. To show you the properties that apply, this table lists and describes each property for the filter object.
$\left.\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Algorithm } & \text { None } & \begin{array}{l}\text { Defines the adaptive filter } \\ \text { algorithm the object uses } \\ \text { during adaptation. }\end{array} \\ \hline \text { Coefficients } & \begin{array}{l}\text { Vector } \\ \text { containing l } \\ \text { elements }\end{array} & \begin{array}{l}\text { Vector containing the initial } \\ \text { filter coefficients. It must be } \\ \text { a length 1 vector where l is } \\ \text { the number of filter } \\ \text { coefficients. coeffs defaults to } \\ \text { length l vector of zeros when } \\ \text { you do not provide the }\end{array} \\ \text { argument for input. }\end{array}\right\} \begin{array}{l}\text { FilterLength } \\ \hline \text { Any positive } \\ \text { integer }\end{array} \begin{array}{l}\text { Reports the length of the filter, } \\ \text { the number of coefficients or } \\ \text { taps. Remember that filter } \\ \text { length is filter order + 1. }\end{array}\right\}$

adaptfilt.rls

| Name | Range | Description | | |
|---|---|---|---|---|
| InvCov | Matrix of size
 l-by-1 | Upper-triangular Cholesky
 (square root) factor of the
 input covariance matrix.
 Initialize this matrix with a
 positive definite upper
 triangular matrix. |
| KalmanGain | Vector of size
 $(1,1)$ | Empty when you construct the
 object, this gets populated
 after you run the filter. |
| PersistentMemory | false or true | Determine whether the filter
 states get restored to their
 starting values for each
 filtering operation. The
 starting values are the values
 in place when you create the
 filter if you have not changed
 the filter since you constructed
 it. PersistentMemory returns
 to zero any state that the filter
 changes during processing.
 Defaults to false. |
| States | | Double array | | Vector of the adaptive filter |
| :--- |
| states. states defaults to a |
| vector of zeros which has |
| length equal to |
| (l + projectord - 2). |

Examples

System Identification of a 32-coefficient FIR filter over 500 adaptation iterations.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
PO = 10*eye(32); % Initial sqrt correlation matrix inverse
```

```
lam = 0.99; % RLS forgetting factor
ha = adaptfilt.rls(32,lam,PO);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient valUe'); grid on;
```

In this example of adaptive filtering using the RLS algorithm to update the filter coefficients for each iteration, the figure shown reveals the fidelity of the derived filter after adaptation.

adaptfilt.rls

See Also

adaptfilt.hrls,adaptfilt.hswrls, adaptfilt.qrdrls

Purpose
Syntax ha = adaptfilt.sd(l,step,leakage, coeffs, states)
Description
Construct FIR adaptive filter object that uses sign-data algorithm
ha = adaptfilt.sd(l,step,leakage,coeffs,states) constructs an FIR sign-data adaptive filter object ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.sd.

| Input Argument | Description |
| :--- | :--- |
| l | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. l defaults to 10. |
| step | SD step size. It must be a nonnegative scalar.
 step defaults to 0.1 |
| | Your SD leakage factor. It must be a scalar
 between 0 and 1. When leakage is less than
 one, adaptfilt. sd implements a leaky SD
 algorithm. When you omit the leakage
 property in the calling syntax, it defaults to 1
 providing no leakage in the adapting
 algorithm. |
| coeffs | Vector of initial filter coefficients. it must be a
 length l vector. coeffs defaults to length l
 vector with elements equal to zero. |
| states | Vector of initial filter states for the adaptive
 filter. It must be a length l-1 vector. states
 defaults to a length l-1 vector of zeros. |

adaptfilt.sd

Properties
In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table lists the properties for sign-data objects, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | Sign-data | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | zeros(1,1) | Vector containing the
 initial filter coefficients. It
 must be a length l vector
 where l is the number of
 filter coefficients. coeffs
 defaults to length l vector
 of zeros when you do not
 provide the argument for
 input. Should be
 initialized with the initial
 coefficients for the FIR
 filter prior to adapting.
 You need l entries in
 coefficients. |
| FilterLength | 10 | Reports the length of the
 filter, the number of
 coefficients or taps |

$\left.\begin{array}{l|ll}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { Leakage } & 0 & \begin{array}{l}\text { Specifies the leakage } \\ \text { parameter. Allows you to } \\ \text { implement a leaky } \\ \text { algorithm. Including a } \\ \text { leakage factor can } \\ \text { improve the results of the } \\ \text { algorithm by forcing the } \\ \text { algorithm to continue to } \\ \text { adapt even after it }\end{array} \\ \text { reaches a minimum value. } \\ \text { Ranges between 0 and 1. } \\ \text { Defaults to 0 }\end{array}\right\}$

adaptfilt.sd

| Property | Default Value | Description |
| :--- | :--- | :--- |
| States | zeros(1-1,1) | Vector of the adaptive
 filter states. states
 defaults to a vector of
 zeros which has length
 equal to (1-1). |
| StepSize | 0.1 | Sets the SD algorithm
 step size used for each
 iteration of the adapting
 algorithm. Determines
 both how quickly and how
 closely the adaptive filter
 converges to the filter
 solution. |

Example

Adaptive line enhancement using a 32 -coefficient FIR filter to perform the enhancement. This example runs for 5000 iterations, as you see in property iter.

```
d = 1; % Number of samples of delay
ntr= 5000; % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal
n = randn(1,ntr+d); % Noise signal
x = v(1:ntr)+n(1:ntr); % Input signal (delayed desired
    % signal)
d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal
mu = 0.0001; % Sign-data step size.
ha = adaptfilt.sd(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));
```

```
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;
```


Each of the variants-sign-data, sign-error, and sign-sign-uses the same example. You can compare the results by viewing the figure shown for each adaptive filter method-adaptfilt.sd, adaptfilt.se, and adaptfilt.ss.

See Also

adaptfilt.sd

References Moschner, J.L., "Adaptive Filter with Clipped Input Data," Ph.D. thesis, Stanford Univ., Stanford, CA, June 1970.
Hayes, M., Statistical Digital Signal Processing and Modeling, New York Wiley, 1996.

Purpose
Syntax ha = adaptfilt.se(l, step,leakage, coeffs, states)
Description
Construct sign-error algorithm FIR adaptive filter object
ha = adaptfilt.se(l,step,leakage,coeffs,states) constructs an FIR sign-error adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.se.

| Input Argument | Description |
| :--- | :--- |
| 1 | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. 1 defaults to 10. |
| step | SE step size. It must be a nonnegative scalar.
 You can use maxstep to determine
 a reasonable range of step size values for the
 signals being processed. step defaults to 0.1 |
| leakage | Your SE leakage factor. It must be a scalar
 between 0 and 1. When leakage is less than
 one, adaptfilt. se implements a leaky SE
 algorithm. When you omit the leakage
 property in the calling syntax, it defaults to 1
 providing no leakage in the adapting
 algorithm. |
| coeffs | Vector of initial filter coefficients. it must be a
 length l vector. coeffs defaults to length 1
 vector with elements equal to zero. |
| states | Vector of initial filter states for the adaptive
 filter. It must be a length l-1 vector. states
 defaults to a length l-1 vector of zeros. |

Properties

In the syntax for creating the adaptfilt object, the input options are properties of the object you create. This table lists the properties for the

adaptfilt.se

sign-error SD object, their default values, and a brief description of the property.
$\left.\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \text { Description } \\ \hline \text { Algorithm } & \text { Sign-error } & \begin{array}{l}\text { Defines the adaptive filter } \\ \text { algorithm the object uses } \\ \text { during adaptation }\end{array} \\ \hline \text { Coefficients } & \text { zeros(1,1) } & \begin{array}{l}\text { Vector containing the initial } \\ \text { filter coefficients. It must be a } \\ \text { length l vector where l is the } \\ \text { number of filter coefficients. } \\ \text { coeffs defaults to length l } \\ \text { vector of zeros when you do } \\ \text { not provide the argument for } \\ \text { input. Should be initialized } \\ \text { with the initial coefficients for } \\ \text { the FIR filter prior to } \\ \text { adapting. }\end{array} \\ \hline \text { FilterLength } & 10 & \begin{array}{l}\text { Reports the length of the } \\ \text { filter, the number of } \\ \text { coefficients or taps }\end{array} \\ \hline \text { Leakage } & 1 & \begin{array}{l}\text { Specifies the leakage } \\ \text { parameter. Allows you to } \\ \text { implement a leaky algorithm. }\end{array} \\ \hline & \begin{array}{l}\text { Including a leakage factor can } \\ \text { improve the results of the } \\ \text { algorithm by forcing the }\end{array} \\ \text { algorithm to continue to } \\ \text { adapt even after it reaches a } \\ \text { minimum value. Ranges } \\ \text { between 0 and 1. Defaults to } \\ \text { one if omitted. }\end{array}\right\}$

| Property | Default Value | Description |
| :--- | :--- | :--- |
| PersistentMemory | false or true | Determine whether the filter
 states and coefficients get
 restored to their starting
 values for each filtering
 operation. The starting values
 are the values in place when
 you create the filter.
 PersistentMemory returns to
 zero any property value that
 the filter changes during
 processing. Property values
 that the filter does not change
 are not affected. Defaults to
 false. |
| States | | Vector of the adaptive filter
 states. states defaults to a
 vector of zeros which has
 length equal to (l -1). |
| StepSize | zeros(l-1,1) | Sets the SE algorithm step
 size used for each iteration of
 the adapting algorithm. |
| | 0.1 | Determines both how quickly
 and how closely the adaptive
 filter converges to the filter
 solution. |

Use inspect (ha) to view or change the object properties graphically using the MATLAB Property Inspector.

Examples

Adaptive line enhancement using a 32-coefficient FIR filter running over 5000 iterations.

```
d = 1; % Number of samples of delay
ntr= 5000; % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % Sinusoidal signal
n = randn(1,ntr+d); % Noise signal
```


adaptfilt.se

```
x = v(1:ntr)+n(1:ntr); % Input signal (delayed desired
                                % signal)
d = v(1+d:ntr+d)+n(1+d:ntr+d); % Desired signal
mu = 0.0001; % Sign-error step size
ha = adaptfilt.se(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx), pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;
```

Compare the figure shown here to the ones for adaptfilt.sd and adaptfilt.ss to see how the variants perform on the same example.

See Also
References
adaptfilt.sd, adaptfilt.ss, adaptfilt.lms
Gersho, A, "Adaptive Filtering With Binary Reinforcement," IEEE Trans. Information Theory, vol. IT-30, pp. 191-199, March 1984.

Hayes, M, Statistical Digital Signal Processing and Modeling, New York, Wiley, 1996.

adaptfilt.ss

Purpose Construct adaptive FIR filter object that uses sign-sign algorithm

```
Syntax ha = adaptfilt.ss(l,step,leakage,coeffs,states)
```

Description ha = adaptfilt.ss(l,step,leakage, coeffs, states) constructs an FIR sign-error adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.ss.

| Input Argument | Description |
| :--- | :--- |
| l | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. 1 defaults to 10. |
| step | SS step size. It must be a nonnegative scalar.
 step defaults to 0.1. |
| | Your SS leakage factor. It must be a scalar
 between 0 and 1. When leakage is less than
 one, adaptfilt. lms implements a leaky SS
 algorithm. When you omit the leakage
 property in the calling syntax, it defaults to 1
 providing no leakage in the adapting
 algorithm. |
| coeffs | Vector of initial filter coefficients. it must be a
 length l vector. coeffs defaults to length 1
 vector with elements equal to zero. |
| states | Vector of initial filter states for the adaptive
 filter. It must be a length l-1 vector. states
 defaults to a length l-1 vector of zeros. |

adaptfilt.ss can be called for a block of data, when x and d are vectors, or in "sample by sample mode" using a For-loop with the method filter:

```
for n = 1:length(x)
ha = adaptfilt.ss(25,0.9);
```

```
[y(n),e(n)] = filter(ha,(x(n),d(n),s));
% The property values of ha may be modified here.
end
```


Properties

In the syntax for creating the adaptfilt object, most of the input options are properties of the object you create. This table lists the properties for sign-sign objects, their default values, and a brief description of the property.

| Property | Default Value | Description |
| :--- | :--- | :--- |
| Algorithm | Sign-sign | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | zeros $(1,1)$ | Vector containing the initial
 filter coefficients. It must be a
 length l vector where l is the
 number of filter coefficients.
 coeffs defaults to length l
 vector of zeros when you do
 not provide the argument for
 input. Should be initialized
 with the initial coefficients for
 the FIR filter prior to
 adapting. |
| FilterLength | 10 | Reports the length of the
 filter, the number of
 coefficients or taps |

adaptfilt.ss

\(\left.$$
\begin{array}{l|l|l}\hline \text { Property } & \text { Default Value } & \text { Description } \\
\hline \text { Leakage } & 1 & \begin{array}{l}\text { Specifies the leakage } \\
\text { parameter. Allows you to } \\
\text { implement a leaky algorithm. } \\
\text { Including a leakage factor can } \\
\text { improve the results of the } \\
\text { algorithm by forcing the } \\
\text { algorithm to continue to } \\
\text { adapt even after it reaches a } \\
\text { minimum value. Ranges } \\
\text { between 0 and 1. 1 is the } \\
\text { default value. }\end{array} \\
\hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the filter } \\
\text { states and coefficients get } \\
\text { restored to their starting } \\
\text { values for each filtering } \\
\text { operation. The starting values } \\
\text { are the values in place when } \\
\text { you create the filter. }\end{array}
$$

PersistentMemory returns to

zero any property value that

the filter changes during

processing. Property values\end{array}\right\}\) that the filter does not change | are not affected. Defaults to |
| :--- |
| false. |

\(\left.$$
\begin{array}{l|l|}\hline \text { Property } & \text { Default Value } \\
\hline \text { States } & \text { zeros(l-1,1) }\end{array}
$$ \begin{array}{l}Vescription

States. states defaults to a

vector of zeros which has

length equal to (l -1).\end{array}\right\}\)| Sets the SE algorithm step |
| :--- |
| size used for each iteration of |
| the adapting algorithm. |
| Determines both how quickly |
| and how closely the adaptive |
| filter converges to the filter |
| solution. |

Examples

Demonstrating adaptive line enhancement using a 32-coefficient FIR filter provides a good introduction to the sign-sign algorithm.

```
d = 1;
ntr= 5000; % number of iterations
v = sin(2*pi*0.05*[1:ntr+d]); % sinusoidal signal
n = randn(1,ntr+d); % noise signal
x = v(1:ntr)+n(1:ntr); % Delayed input signal
d = v(1+d:ntr+d)+n(1+d:ntr+d); % desired signal
mu = 0.0001; % sign-sign step size
ha = adaptfilt.ss(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));
subplot(2,1,2);
plot(om/pi,10*log10([pxx/max(pxx), pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced');
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;
```


adaptfilt.ss

This example is the same as the ones used for the sign-data and sign-error examples. Comparing the figures shown for each of the others lets you assess the performance of each for the same task.

See Also
References
adaptfilt.se, adaptfilt.sd, adaptfilt.lms

Lucky, R.W, "Techniques For Adaptive Equalization of Digital Communication Systems," Bell Systems Technical Journal, vol. 45, pp. 255-286, Feb. 1966

Hayes, M., Statistical Digital Signal Processing and Modeling, New York, Wiley, 1996.

Purpose
Syntax

Description

Construct sliding window fast transversal least squares adaptive filter object

```
ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates,coeffs
    , states)
```

ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates, coeffs, states) constructs a sliding window fast transversal least squares adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.swftf.

| Input Argument | Description |
| :--- | :--- |
| 1 | Adaptive filter length (the number of
 coefficients or taps) and it must be a positive
 integer. l defaults to 10. |
| delta | Soft-constrained initialization factor. This
 scalar should be positive and sufficiently large
 to maintain stability. delta defaults to 1. |
| blocklen | Block length of the sliding window. This must
 be an integer at least as large as the filter
 length 1, which is the default value. |
| gamma | Conversion factor. gamma defaults to the
 matrix [1 -1] that specifies soft-constrained
 initialization. |
| gstates | States of the kalman gain updates. gstates
 defaults to a zero vector of length
 (l + blocklen - 1). |
| dstates | Desired signal states of the adaptive filter.
 dstates defaults to a zero vector of length
 equal to (blocklen - 1). For a default object,
 dstates is (l-1). |

adaptfilt.swftf

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector of initial filter coefficients. It must be
 a length l vector. coeffs defaults to length 1
 vector of all zeros. |
| states | Vector of initial filter states. states defaults
 to a zero vector of length equal to
 $(1+$ blocklen -2$)$. |

Properties

Since your adaptfilt.swftf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.swftf objects. To show you the properties that apply, this table lists and describes each property for the filter object.

| Name | Range |
| :--- | :--- |
| Algorithm | None |
| BkwdPredictions | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| BlockLength | Returns the predicted
 samples generated during
 adaptation.Refer to [12]
 in the bibliography for
 details about linear
 prediction. |
| | Block length of the sliding
 window. This must be an
 integer at least as large
 as the filter length 1,
 which is the default
 value. |

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Coefficients } & \begin{array}{l}\text { Vector of } \\ \text { elements }\end{array} & \begin{array}{l}\text { Vector containing the } \\ \text { initial filter coefficients. It } \\ \text { must be a length l vector } \\ \text { where l is the number of } \\ \text { filter coefficients. coeffs } \\ \text { defaults to length l vector } \\ \text { of zeros when you do not } \\ \text { provide the argument for } \\ \text { input. }\end{array} \\ \hline \text { ConversionFactor } & & \begin{array}{l}\text { Conversion factor. Called } \\ \text { gamma when it is an input } \\ \text { argument, it defaults to }\end{array} \\ \text { the matrix [1-1] that } \\ \text { specifies soft-constrained } \\ \text { initialization. }\end{array}\right\}$

adaptfilt.swftf

| Name | Range |
| :--- | :--- |
| InitFactor | Description
 |
| | Soft-constrained
 initialization factor. This
 scalar should be positive
 and sufficiently large to
 prevent an excessive
 number of Kalman gain
 rescues. delta defaults to
 one. |
| KalmanGain | Empty when you
 construct the object, this
 gets populated after you
 run the filter. |
| KalmanGainStates | Contains the states of the
 Kalman gains for the
 adaptive algorithm. |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

\(\left.\left.$$
\begin{array}{l|ll}\hline \text { Name } & \text { Range } & \text { Description } \\
\hline \text { PersistentMemory } & \text { false or true } & \begin{array}{l}\text { Determine whether the } \\
\text { filter states get restored } \\
\text { to their starting values } \\
\text { for each filtering } \\
\text { operation. The starting } \\
\text { values are the values in } \\
\text { place when you create the }\end{array} \\
\text { filter if you have not } \\
\text { changed the filter since } \\
\text { you constructed it. } \\
\text { PersistentMemory } \\
\text { returns to zero any state }\end{array}
$$\right\} \begin{array}{l}that the filter changes

during processing. States

that the filter does not

change are not affected.\end{array}\right\}\)| Defaults to false. |
| :--- |

Examples

Over 500 iterations, perform a system identification of a 32-coefficient FIR filter.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
L = 32; % Adaptive filter length
del = 0.1; % Soft-constrained initialization factor
N = 64; % block length
ha = adaptfilt.swftf(L,del,N);
[y,e] = filter(ha,x,d);
```


adaptfilt.swftf

```
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

Review the figure for the results of the example. When you evaluate the example you should get the same results, within the differences in the random noise signal you use.

See Also
adaptfilt.ftf, adaptfilt.swrls, adaptfilt.ap, adaptfilt.apru

adaptfilt.swftf

References
D.T.M. Slock and Kailath, T., "A Modular Prewindowing Framework for Covariance FTF RLS Algorithms," Signal Processing, vol. 28, pp. 47-61, 1992
D.T.M. Slock and Kailath, T., "A Modular Multichannel Multi-Experiment Fast Transversal Filter RLS Algorithm," Signal Processing, vol. 28, pp. 25-45, 1992

adaptfilt.swrls

Purpose
Construct sliding window recursive least squares (RLS) FIR adaptive filter

Syntax

ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates, coeffs,states)

Description
ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates, coeffs, states) constructs an FIR sliding window RLS adaptive filter ha.

Input Arguments

Entries in the following table describe the input arguments for adaptfilt.swrls.

| Input Argument | Description |
| :--- | :--- |
| 1 | Adaptive filter length (the number of
 coefficients or taps). It must be a positive
 integer. l defaults to 10. |
| lambda | RLS forgetting factor. This is a scalar and
 should lie within the range (0, 1]. lambda
 defaults to 1. |
| invcov | Inverse of the input signal covariance matrix.
 You should initialize invcov to a positive
 definite matrix. |
| swblocklen | Block length of the sliding window. This
 integer must be at least as large as the filter
 length. swblocklen defaults to 16. |
| dstates | Desired signal states of the adaptive filter.
 dstates defaults to a zero vector with length
 equal to (swblocklen - 1). |

| Input Argument | Description |
| :--- | :--- |
| coeffs | Vector of initial filter coefficients. It must be
 a length l vector. coeffs defaults to length l
 vector of all zeros. |
| states | Vector of initial filter states. states defaults
 to a zero vector of length equal to
 $(l+$ swblocklen -2$)$. |

Properties

Since your adaptfilt.swrls filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt. swrls objects. To show you the properties that apply, this table lists and describes each property for the filter object.

| Name | Range | Description | | |
|---|---|---|---|---|
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| Coefficients | Any vector of | |
| l elements | | | | Vector containing the initial |
| :--- |
| filter coefficients. It must be a |
| length l vector where l is the |
| number of filter coefficients. |
| coeffs defaults to length 1 |
| vector of zeros when you do |
| not provide the argument for |
| input. |

adaptfilt.swrls

| Name | Range | Description |
| :--- | :--- | :--- |
| ForgettingFactor | Scalar | Forgetting factor of the
 adaptive filter. This is a
 scalar and should lie in the
 range (0, 1]. It defaults to 1.
 Setting forgetting
 factor = 1 denotes infinite
 memory while adapting to
 find the new filter. Note that
 this is the lambda input
 argument. |
| InvCov | Matrix | Square matrix with each
 dimension equal to the filter
 length l. |
| KalmanGain | Vector with | |
| dimensions | | |
| $(1,1)$ | Empty when you construct
 the object, this gets populated
 after you run the filter. | |
| PersistentMemory | false or true | Determine whether the filter
 states get restored to their
 starting values for each
 filtering operation. The
 starting values are the values
 in place when you create the
 filter if you have not changed
 the filter since you
 constructed it.
 PersistentMemory returns to
 zero any state that the filter
 changes during processing.
 Defaults to false. |
| | | |

adaptfilt.swrls

| Name | Range | Description |
| :--- | :--- | :--- |
| States | Vector of
 elements,
 data type
 double | Vector of the adaptive filter
 states. states defaults to a
 vector of zeros which has
 length equal to
 $(1+$ swblocklen - 2) |
| SwBlockLength | Integer | Block length of the sliding
 window. This integer must be
 at least as large as the filter
 length. swblocklen defaults
 to 16. |

Examples

System Identification of a 32 -coefficient FIR filter. Use 500 iterations to adapt to the unknown filter. After the example code, you see a figure that plots the results of the running the code.

```
x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
PO = 10*eye(32); % Initial correlation matrix inverse
lam = 0.99; % RLS forgetting factor
N = 64; % Block length
ha = adaptfilt.swrls(32,lam,PO,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
```

In the figure you see clearly that the adaptive filter process successfully identified the coefficients of the unknown FIR filter. But then you knew it had to or many things we take for granted, such as modems on computers, would not work.

adaptfilt.swrls

See Also
adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls

| Purpose | Construct transform-domain (TDAFDCT) adaptive filter object that uses discrete cosine transform | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,coeffs, states)``` | |
| Description | ha = adaptfilt.tdafdct(l, step,leakage,offset,delta,lambda, coeffs, states) constructs a transform-domain adaptive filter ha object that uses the discrete cosine transform to perform filter adaptation. | |
| | Input Arguments | |
| | Entries in the following table describe the input arguments for adaptfilt.tdafdct. | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
| | step | Adaptive filter step size. It must be a nonnegative scalar. You can use maxstep to determine a reasonable range of step size values for the signals being processed. step defaults to 0 . |
| | leakage | Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, you are implementing a leaky version of the TDAFDCT algorithm. leakage defaults to 1 -no leakage. |
| | offset | Offset for the normalization terms in the coefficient updates. You can use this argument to avoid dividing by zero or by very small numbers when any of the FFT input signal powers become very small. offset defaults to zero. |

adaptfilt.tdafdct

| Input Argument | Description |
| :--- | :--- |
| delta | Initial common value of all of the transform
 domain powers. Its initial value should be
 positive. delta defaults to 5. |
| lambda | Averaging factor used to compute the
 exponentially-windowed estimates of the
 powers in the transformed signal bins for the
 coefficient updates. lambda should lie between
 zero and one. For default filter objects, lambda
 equals (1-step). |
| coeffs | Initial time domain coefficients of the adaptive
 filter. Set it to be a length l vector. coeffs
 defaults to a zero vector of length l. |
| states | Initial conditions of the adaptive filter. states
 defaults to a zero vector with length equal to
 $(l-1)$. |

Properties

Since your adaptfilt.tdafdct filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.tdafdct objects. To show you the properties
that apply, this table lists and describes each property for the transform domain filter object.
\(\left.$$
\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\
\hline \text { Algorithm } & \text { None } & \begin{array}{l}\text { Defines the adaptive filter } \\
\text { algorithm the object uses } \\
\text { during adaptation }\end{array} \\
\hline \text { AvgFactor } & \begin{array}{l}\text { Averaging factor used to } \\
\text { compute the } \\
\text { exponentially-windowed } \\
\text { estimates of the powers in } \\
\text { the transformed signal } \\
\text { bins for the coefficient } \\
\text { updates. AvgFactor } \\
\text { should lie between zero } \\
\text { and one. For default filter } \\
\text { objects, AvgFactor equals } \\
\text { (1-step). lambda is the } \\
\text { input argument that } \\
\text { represent AvgFactor. }\end{array} \\
\hline \text { Coefficients } & & \begin{array}{l}\text { Vector containing the } \\
\text { initial filter coefficients. It } \\
\text { must be a length l vector } \\
\text { where l is the number of }\end{array}
$$

filter coefficients. coeffs

defaults to length l vector

of zeros when you do not

provide the argument for\end{array}\right\}\) input. | Vector of |
| :--- |
| elements |

adaptfilt.tdafdct

$\left.\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Leakage } & 0 \text { to } 1 & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. When you } \\ \text { set this argument to a } \\ \text { value between zero and } \\ \text { one, you are } \\ \text { implementing a leaky } \\ \text { version of the TDAFDFT } \\ \text { algorithm. leakage } \\ \text { defaults to 1-no leakage. }\end{array} \\ \hline \text { Offset } & & \begin{array}{l}\text { Offset for the } \\ \text { normalization terms in } \\ \text { the coefficient updates. } \\ \text { You can use this } \\ \text { argument to avoid } \\ \text { dividing by zeros or by } \\ \text { very small numbers when }\end{array} \\ \text { any of the FFT input } \\ \text { signal powers become } \\ \text { very small. offset }\end{array}\right] \begin{array}{ll}\text { defaults to zero. }\end{array}\right\}$

| Name | Range | Description |
| :--- | :--- | :--- |
| Power | 2^{*} l element
 vector | A vector of 2*l elements,
 each initialized with the
 value delta from the
 input arguments. As you
 filter data, Power gets
 updated by the filter
 process. |
| States | Vector of
 elements,
 data type
 double | Vector of the adaptive
 filter states. states
 defaults to a vector of
 zeros which has length
 equal to
 (l + projectord - 2). |
| StepSize | 0 to 1 | Step size. It must be a
 nonnegative scalar,
 greater than zero and less
 than or equal to 1. You
 can use maxstep to
 determine a reasonable
 range of step size values
 for the signals being
 processed. step defaults
 to 0. |

Examples

For checking the values of properties for an adaptive filter object, use get (ha) or enter the object name, without a trailing semicolon, at the MATLAB prompt.

Using 1000 iterations, perform a Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32 -coefficient FIR filter.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
                                    % QPSK signal
```


adaptfilt.tdafdct

```
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.01; % Step size
ha = adaptfilt.tdafdct(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

Compare the plots shown in this figure to those in the other time domain filter variations. The comparison should help you select and understand how the variants differ.

See Also
References
adaptfilt.tdafdft, adaptfilt.fdaf, adaptfilt.blms
S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996.

adaptfilt.tdafdft

| Purpose | Create transform-domain (TDAFDFT) adaptive filter object that uses discrete Fourier transform | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.tdafdft(l,step,leakage,offset,delta,lambda, coeffs,states)``` | |
| Description | ha = adaptfilt.tdafdft(l, step,leakage, offset, delta, lambda, coeffs, states) constructs a transform-domain adaptive filter object ha using a discrete Fourier transform. | |
| | Input Arguments | |
| | Entries in the following table describe the input arguments for adaptfilt.tdafdft. | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
| | step | Adaptive filter step size. It must be a nonnegative scalar. You can use maxstep to determine a reasonable range of step size values for the signals being processed. step defaults to 0 . |
| | leakage | Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, you are implementing a leaky version of the TDAFDFT algorithm. leakage defaults to 1—no leakage. |
| | offset | Offset for the normalization terms in the coefficient updates. YOu can use this argument to avoid dividing by zeros or by very small numbers when any of the FFT input signal powers become very small. offset defaults to zero. |

| Input Argument | Description |
| :--- | :--- |
| delta | Initial common value of all of the transform
 domain powers. Its initial value should be
 positive. delta defaults to 5. |
| lambda | Averaging factor used to compute the
 exponentially-windowed estimates of the
 powers in the transformed signal bins for the
 coefficient updates. lambda should lie between
 zero and one. For default filter objects,
 LAMBDA equals (1-step). |
| coeffs | Initial time domain coefficients of the
 adaptive filter. Set it to be a length l vector.
 coeffs defaults to a zero vector of length l. |
| states | Initial conditions of the adaptive filter. states
 defaults to a zero vector with length equal to
 $(1-1)$. |

Properties

Since your adaptfilt.tdafdft filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input arguments for creating adaptfilt.tdafdft objects. To show you the properties

adaptfilt.tdafdft

that apply, this table lists and describes each property for the transform domain filter object.

| Name | Range | Description |
| :--- | :--- | :--- |
| Algorithm | None | Defines the adaptive filter
 algorithm the object uses
 during adaptation |
| AvgFactor | | Averaging factor used to
 compute the
 exponentially-windowed
 estimates of the powers in
 the transformed signal bins
 for the coefficient updates.
 AvgFactor should lie between
 zero and one. For default
 filter objects, AvgFactor
 equals $(1-$ step). lambda is
 the input argument that
 represent AvgFactor. |
| Coefficients | | Vector containing the initial
 filter coefficients. It must be a
 length l vector where lis the
 number of filter coefficients.
 coeffs defaults to length l
 vector of zeros when you do
 not provide the argument for
 input. |
| FilterLength | elements | |
| | | Any positive
 integer |
| Reports the length of the
 filter, the number of
 coefficients or taps | | |

adaptfilt.tdafdft

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Leakage } & 0 \text { to } 1 & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. When you set } \\ \text { this argument to a value } \\ \text { between zero and one, you } \\ \text { are implementing a leaky } \\ \text { version of the TDAFDFT } \\ \text { algorithm. leakage defaults } \\ \text { to 1-no leakage. }\end{array} \\ \hline \text { Offset } & & \begin{array}{l}\text { Offset for the normalization } \\ \text { terms in the coefficient } \\ \text { updates. You can use this } \\ \text { argument to avoid dividing } \\ \text { by zeros or by very small } \\ \text { numbers when any of the }\end{array} \\ \text { FFT input signal powers } \\ \text { become very small. offset } \\ \text { defaults to zero. }\end{array}\right\}$

adaptfilt.tdafdft

| Name | Range | Description |
| :--- | :--- | :--- |
| Power | 2^{*} l element
 vector | A vector of 2*1 elements,
 each initialized with the
 value delta from the input
 arguments. As you filter
 data, Power gets updated by
 the filter process. |
| States | Vector of
 elements,
 data type
 double | Vector of the adaptive filter
 states. states defaults to a
 vector of zeros which has
 length equal to (1 +
 projectord - 2). |
| StepSize | 0 to 1 | Step size. It must be a
 nonnegative scalar, greater
 than zero and less than or
 equal to 1. step defaults to 0. |

Examples

Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32-coefficient FIR filter (1000 iterations).

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel
a = [1 -0.7]; % Denominator coefficients of channel
ntr= 1000; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband
                                    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
L = 32; % filter length
mu = 0.01; % Step size
ha = adaptfilt.tdafdft(L,mu);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
```

```
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```

All of the time domain adaptive filter reference pages use this QPSK example. By comparing the results for each variation you get an idea of the differences in the way each one performs.

This figure demonstrates the results of running the example code shown.

adaptfilt.tdafdft

See Also
References
adaptfilt.tdafdct, adaptfilt.fdaf, adaptfilt.blms
S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996

| Purpose | Construct unconstrained frequency-domain (UFDAF) FIR adaptive filter with quantized step size normalization | |
| :---: | :---: | :---: |
| Syntax | ```ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,offset,c oeffs,states)``` | |
| Description | ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda, blocklen,offset, c oeffs, states) constructs an unconstrained frequency-domain FIR adaptive filter ha with quantized step size normalization. | |
| | Input Arguments
 Entries in the following table describe the input arguments for adaptfilt.ufdaf. | |
| | | |
| | Input Argument | Description |
| | 1 | Adaptive filter length (the number of coefficients or taps) and it must be a positive integer. 1 defaults to 10 . |
| | step | Adaptive filter step size. It must be a nonnegative scalar. step defaults to 0 . |
| | leakage | Leakage parameter of the adaptive filter. When you set this argument to a value between zero and one, you are implementing a leaky version of the UFDAF algorithm. leakage defaults to 1 -no leakage. |
| | delta | Initial common value of all of the FFT input signal powers. the initial value of delta should should be positive, and it defaults to 1 . |
| | lambda | Specifies the averaging factor used to compute the exponentially-windowed FFT input signal powers for the coefficient updates. lambda should lie in the range $(0,1]$. For default UFDAF filter objects, lambda defaults to 0.9. |

adaptfilt.ufdaf

| Input Argument | Description |
| :--- | :--- |
| blocklen | Block length for the coefficient updates. This
 must be a positive integer. For faster
 execution, (blocklen + 1) should be a power of
 two. blocklen defaults to l. |
| offset | Offset for the normalization terms in the
 coefficient updates. This can help you avoid
 divide by zero conditions, or divide by very
 small numbers conditions, when any of the
 FFT input signal powers become very small. |
| Default value is zero. | |

Properties

Since your adaptfilt.ufdaf filter is an object, it has properties that define its behavior in operation. Note that many of the properties are also input

adaptfilt.ufdaf

arguments for creating adaptfilt.ufdaf objects. To show you the properties that apply, this table lists and describes each property for the filter object.
$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { Algorithm } & \text { None } & \begin{array}{l}\text { Defines the adaptive filter } \\ \text { algorithm the object uses } \\ \text { during adaptation }\end{array} \\ \hline \text { AvgFactor } & & \begin{array}{l}\text { Specifies the averaging factor } \\ \text { used to compute the } \\ \text { exponentially-windowed FFT } \\ \text { input signal powers for the } \\ \text { coefficient updates. } \\ \text { AvgFactor should lie in the } \\ \text { range (0,1]. For default } \\ \text { UFDAF filter objects, }\end{array} \\ \text { AvgFactor defaults to 0.9. } \\ \text { Note that AvgFactor and } \\ \text { lambda are the same thing- } \\ \text { lambda is an input argument } \\ \text { and AvgFactor a property of } \\ \text { the object. }\end{array}\right\}$

adaptfilt.ufdaf

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Range } & \text { Description } \\ \hline \text { FilterLength } & \begin{array}{l}\text { Any positive } \\ \text { integer }\end{array} & \begin{array}{l}\text { Reports the length of the } \\ \text { filter, the number of } \\ \text { coefficients or taps }\end{array} \\ \hline \text { Leakage } & 0 \text { to 1 } & \begin{array}{l}\text { Leakage parameter of the } \\ \text { adaptive filter. When you set } \\ \text { this argument to a value } \\ \text { between zero and one, you } \\ \text { are implementing a leaky } \\ \text { version of the UFDAF } \\ \text { algorithm. leakage defaults } \\ \text { to 1-no leakage. }\end{array} \\ \hline \text { Offset } & & \begin{array}{l}\text { Offset for the normalization } \\ \text { terms in the coefficient } \\ \text { updates. This can help you } \\ \text { avoid divide by zero } \\ \text { conditions, or divide by very } \\ \text { small numbers conditions, } \\ \text { when any of the FFT input } \\ \text { signal powers become very } \\ \text { small. Default value is zero. }\end{array} \\ \hline \text { PersistentMemory } & & \\ & & \text { false or true }\end{array} \begin{array}{l}\text { Determine whether the filter } \\ \text { states get restored to their } \\ \text { starting values for each } \\ \text { filtering operation. The } \\ \text { starting values are the } \\ \text { values in place when you } \\ \text { create the filter. } \\ \text { PersistentMemory returns to } \\ \text { zero any state that the filter } \\ \text { changes during processing. }\end{array}\right\}$

adaptfilt.ufdaf

| Name | Range | Description |
| :--- | :--- | :--- |
| Power | 2^{*} l element
 vector | A vector of 2^{*} l elements,
 each initialized with the
 value delta from the input
 arguments. As you filter
 data, Power gets updated by
 the filter process. |
| StepSize | 0 to 1 | Adaptive filter step size. It
 must be a nonnegative scalar.
 You can use maxstep to
 determine a reasonable
 range of step size values for
 the signals being processed.
 step defaults to 0. |

Examples

Show an example of Quadrature Phase Shift Keying (QPSK) adaptive equalization using a 32-coefficient adaptive filter. For fidelity, use 1024 iterations. The figure that follows the code provides the information you need to assess the performance of the equalization process.

```
D = 16; % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1]; %Numerator coefficients of channel
a = [1-0.7]; % Denominator coefficients of channel
ntr= 1024; % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband
                                    % QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr); % Desired signal (delayed QPSK signal)
del = 1; % Initial FFT input powers
mu = 0.1; % Step size
lam = 0.9; % Averaging factor
ha = adaptfilt.ufdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d);
subplot(2,2,1);
plot(1:1000,real([d(1:1000);y(1:1000);e(1:1000)]));
```


adaptfilt.ufdaf

```
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square');
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
```


See Also

References
adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blms, adaptfilt.blmsfft
J.J. Shynk, "Frequency-domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992

allpassbpc2bpc

Purpose
Syntax
Description

Examples

Allpass filter for complex bandpass transformation
[AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)
[AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the first-order allpass mapping filter for performing a complex bandpass to complex bandpass frequency transformation. This transformation effectively places two features of an original filter, located at frequencies W_{01} and W_{02}, at the required target frequency locations $W_{t 1}$ and $W_{t 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$. In most of the cases the features selected for the transformation are the band edges of the filter passbands. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, F_{1} and F_{2}, with F_{1} preceding F_{2}. Feature F_{1} will still precede F_{2} after the transformation. However, the distance between F_{1} and F_{2} will not be the same before and after the transformation.

This transformation can also be used for transforming other types of filters; e.g., complex notch filters or resonators can be repositioned at two distinct desired frequencies at any place around the unit circle. This is very attractive for adaptive systems.

Design the allpass filter changing the complex bandpass filter with the band edges originally at $W_{01}=0.2$ and $W_{02}=0.4$ to the new band edges of $W_{t 1}=0.3$ and $W_{\mathrm{t} 2}=0.6$ precisely defined:

```
Wo = [0.2, 0.4];
Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[ha, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to π, which is in effect the mapping function $W_{0}\left(W_{t}\right)$:

```
plot(f/pi,angle(ha)/pi, Wt, Wo, 'ro');
```

```
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

To demonstrate, the following figure shows the mapping function between old and new frequencies.

Arguments

Wo
Frequency values to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
AllpassNum
Numerator of the mapping filter

allpassbpc2bpc

> AllpassDen
> Denominator of the mapping filter
> Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

See Also
 iirbpc2bpc, zpkbpc2bpc

Purpose
Syntax
Description

Allpass filter for lowpass to bandpass transformation
[AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real lowpass to real bandpass frequency transformation. This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $\mathrm{W}_{\mathrm{t} 1}$, and the second feature, originally at $+\mathrm{W}_{0}$, at the new location, $\mathrm{W}_{\mathrm{t} 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$. This transformation implements the "DC mobility," which means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of W_{t}.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, F_{1} and F_{2}, with F_{1} preceding F_{2}. Feature F_{1} will still precede F_{2} after the transformation. However, the distance between F_{1} and F_{2} will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and repositioned at two distinct desired frequencies.

Design the allpass filter changing the lowpass filter with cutoff frequency at $W_{0}=0.5$ to the real bandpass filter with cutoff frequencies at $W_{t 1}=0.25$ and $W_{\mathrm{t} 2}=0.375$:

```
Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

[^1]
allpasslp2bp

Plot the phase response normalized to π, which is in effect the mapping function $W_{o}\left(W_{t}\right)$. Please note that the transformation works in the same way for both positive and negative frequencies:

```
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

Shown in the figure, with the x-axis as the new frequency, you see the mapping filter for the example.

Arguments

Wo

Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum

Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also

iirlp2bp, zpklp2bp
References
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

allpasslp2bpc

Purpose
Syntax
Description

Examples

Allpass filter for lowpass to complex bandpass transformation
[AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the first-order allpass mapping filter for performing a real lowpass to complex bandpass frequency transformation. This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $\mathrm{w}_{\mathrm{t} 1}$, and the second feature, originally at $+\mathrm{w}_{0}$, at the new location, $\mathrm{w}_{\mathrm{t} 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, F_{1} and F_{2}, with F_{1} preceding F_{2}. Feature F_{1} will still precede F_{2} after the transformation. However, the distance between F_{1} and F_{2} will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandpass filters for radio receivers from the high-quality prototype lowpass filter.

Design the allpass filter changing the real lowpass filter with the cutoff frequency of $W_{0}=0.5$ into a complex bandpass filter with band edges of $W_{t 1}=0.2$ and $W_{t 2}=0.4$ precisely defined:

```
Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bpc(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to π, which is in effect the mapping function $W_{0}\left(W_{t}\right)$:

```
plot(f/pi, angle(h)/pi, Wt, Wo.*[-1,1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

The figure shown here details the mapping filter provided by the function.

Arguments

Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

allpasslp2bpc

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

See Also iirlp2bpc, zpklp2bpc

Purpose
Syntax
Description

Examples

Allpass filter for lowpass to bandstop transformation
[AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real lowpass to real bandstop frequency transformation. This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $\mathrm{W}_{\mathrm{t} 1}$, and the second feature, originally at $+\mathrm{W}_{0}$, at the new location, $\mathrm{W}_{\mathrm{t} 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$. This transformation implements the "Nyquist Mobility," which means that the DC feature stays at DC, but the Nyquist feature moves to a location dependent on the selection of W_{o} and W_{t}.

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, F_{1} and F_{2}, with F_{1} preceding F_{2}. After the transformation feature F_{2} will precede F_{1} in the target filter. However, the distance between F_{1} and F_{2} will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Design the allpass filter changing the lowpass filter with cutoff frequency at $W_{0}=0.5$ to the real bandstop filter with cutoff frequencies at $W_{t 1}=0.25$ and $W_{\mathrm{t} 2}=0.375$:

```
Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to π, which is in effect the mapping function $W_{0}\left(W_{t}\right)$. Please note that the transformation works in the same way for both positive and negative frequencies:

allpasslp2bs

```
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

In the figure, you find the mapping filter function as determined by the example. Note the response is normalized to π, as mentioned earlier.

Arguments

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also

References
iirlp2bs, zpklp2bs
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

allpasslp2bsc

Purpose
Syntax
Description

Examples Design the allpass filter changing the real lowpass filter with the cutoff

 frequency of $w_{0}=0.5$ into a complex bandstop filter with band edges of $W_{t 1}=0.2$ and $W_{t 2}=0.4$ precisely defined:```
Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{o}\left(W_{t}\right)$ :

```
plot(f/pi, angle(h)/pi, Wt, Wo.*[1,-1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

We plot the resulting allpass mapping function response in this figure.


## Arguments

## Wo

Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

## allpasslp2bsc

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirlp2bsc, zpklp2bsc

Purpose
Syntax
Description

## Examples

Allpass filter for lowpass to highpass transformation
[AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the first-order allpass mapping filter for performing a real lowpass to real highpass frequency transformation. This transformation effectively places one feature of an original filter, located originally at frequency, $w_{0}$, at the required target frequency location, $W_{t}$, at the same time rotating the whole frequency response by half of the sampling frequency. Result is that the DC and Nyquist features swap places.

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. After the transformation feature $F_{2}$ will precede $F_{1}$ in the target filter. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way by using the lowpass to highpass transformation.

Design the allpass filter changing the lowpass filter to the highpass filter with its cutoff frequency moved from $W_{0}=0.5$ to $W_{t}=0.25$ :

```
Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```


## allpasslp2hp

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{o}\left(W_{t}\right)$. Please note that the transformation works in the same way for both positive and negative frequencies:

```
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

For transforming your lowpass filter to an highpass variation, the mapping function shown in this figure does the job.


## Arguments

## Wo

Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

## AllpassNum

Numerator of the mapping filter

## AllpassDen

Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

## See Also

iirlp2hp, zpklp2hp
References
[1] Constantinides, A.G., "Spectral transformations for digital filters," $I E E$ Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Frequency transformations for digital filters," Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

## allpasslp21p

Purpose
Syntax
Description

Examples Design the allpass filter changing the lowpass filter cutoff frequency originally at $W_{0}=0.5$ to $W_{t}=0.25$ :

```
Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{o}\left(W_{t}\right)$. Please note that the transformation works in the same way for both positive and negative frequencies:

```
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
```

```
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```



As shown in the figure, allpasslp2lp generates a mapping function that converts your prototype lowpass filter to a target lowpass filter with different passband specifications.

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
AllpassNum
Numerator of the mapping filter

## allpasslp2lp

AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

## See Also <br> iirlp2lp, zpklp2lp

## References

[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Frequency transformations for digital filters," Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

Purpose
Syntax

Description

## Examples

Allpass filter for lowpass to M-band transformation

```
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)
```

[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass mapping filter for performing a real lowpass to real multipassband frequency transformation. Parameter $M$ is the number of times an original feature is replicated in the target filter. This transformation effectively places one feature of an original filter, located at frequency $W_{0}$, at the required target frequency locations, $\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tm}}$. By default the DC feature is kept at its original location.
[AllpassNum,AllpassDen]=allpasslp2mb(Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC , the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations without redesigning them. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Design the allpass filter changing the real lowpass filter with the cutoff frequency of $W_{0}=0.5$ into a real multiband filter with band edges of $W_{t}=[1: 2: 9] / 10$ precisely defined:

## allpasslp2mb

```
Wo = 0.5;
Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{o}\left(W_{t}\right)$. Please note that the transformation works in the same way for both positive and negative frequencies:

```
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

As the figure shows, the mapping function, or mapping filter, creates more than one band from your prototype.


Arguments
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
Pass
Choice ('pass'/'stop') of passband/stopband at DC, `pass' being the default
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

## allpasslp2mb

Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

## See Also

References
iirlp2mb, zpklp2mb
[1] Franchitti, J.C., "All-pass filter interpolation and frequency transformation problems," MSc Thesis, Dept. of Electrical and Computer Engineering, University of Colorado, 1985.
[2] Feyh, G., J.C. Franchitti and C.T. Mullis, "All-pass filter interpolation and frequency transformation problem," Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, Reading, Massachusetts, Addison-Wesley, 1987.
[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm for frequency transformations, Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

## Purpose

Syntax
Description

## Examples

Allpass filter for lowpass to complex M-band transformation
[AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass mapping filter for performing a real lowpass to complex multipassband frequency transformation. Parameter $M$ is the number of times an original feature is replicated in the target filter. This transformation effectively places one feature of an original filter, located at frequency $W_{0}$, at the required target frequency locations, $\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC , the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations without the need to design them again. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Design the allpass filter changing the real lowpass filter with the cutoff frequency of $W_{0}=0.5$ into a complex multiband filter with band edges of $W_{t}=[-3+1: 2: 9] / 10$ precisely defined:

```
Wo = 0.5;
Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mbc(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

[^2]
## allpasslp2mbc

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{0}\left(W_{t}\right)$. Please note that the transformation works in the same way for both positive and negative frequencies:

```
plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

In this example, the resulting mapping function converts real filters to multiband complex filters.


## Arguments

## Wo

Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirlp2mbc, zpklp2mbc

## allpasslp2xc

Purpose
Syntax
Description

## Examples

Design the allpass filter moving four features of an original complex filter given in $W_{o}$ to the new independent frequency locations $W_{t}$. Please note that the transformation creates N replicas of an original filter around the unit circle, where $N$ is the order of the allpass mapping filter:

$$
\begin{aligned}
& \text { Wo }=[-0.2,0.3,-0.7,0.4] ; \\
& \text { Wt }=[0.3,0.5,0.7,0.9] ;
\end{aligned}
$$

```
[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{0}\left(W_{t}\right)$ :

```
plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

Mapping Function Wo(Wt)


As shown, the mapping function copies four features of interest in your prototype to multiple, independent locations in your target filter.

## allpasslp2xc

Arguments ..... WoFrequency values to be transformed from the prototype filter
WtDesired frequency locations in the transformed target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1, with 1 correspondingto half the sample rate.
See Also ..... iirlp2xc, zpklp2xc

Purpose
Syntax

## Description

Allpass filter for lowpass to N-point transformation

```
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)
```

[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass mapping filter, where N is the allpass filter order, for performing a real lowpass to real multipoint frequency transformation. Parameter $N$ also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places $N$ features of an original filter, located at frequencies $\mathrm{W}_{01}, \ldots, \mathrm{~W}_{\mathrm{ON}}$, at the required target frequency locations, $\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}$. By default the DC feature is kept at its original location.
[AllpassNum,AllpassDen]=allpasslp2xn(Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation. For DC mobility feature $F_{2}$ will precede $F_{1}$ after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating $N$ bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations without the need of designing them again. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

## allpasslp2xn

Arguments	Wo
	Frequency values to be transformed from the prototype filter
	Wt
	Desired frequency locations in the transformed target filter
	Pass
	Choice ('pass'/'stop') of passband/stopband at DC, `pass' being the default
	AllpassNum
	Numerator of the mapping filter
	AllpassDen
	Denominator of the mapping filter
	Frequencies must be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.
See Also	iirlp2xn, zpklp2xn
References	[1] Cain, G.D., A. Krukowski and I. Kale, "High Order Transformations for Flexible IIR Filter Design," VII European Signal Processing Conference (EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 1994.
	[2] Krukowski, A., G.D. Cain and I. Kale, "Custom designed high-order frequency transformations for IIR filters," 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

## Purpose

Syntax
Description

Allpass filter for integer upsample transformation
[AllpassNum,AllpassDen] = allpassrateup(N)
[AllpassNum,AllpassDen] = allpassrateup(N) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass mapping filter for performing the rateup frequency transformation, which creates $N$ equal replicas of the prototype filter frequency response.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Design the allpass filter creating the effect of upsampling the digital filter four times:

$$
N=4 ;
$$

Choose any feature from an original filter, say at $W_{0}=0.2$ :

```
Wo = 0.2;
Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{o}\left(W_{t}\right)$ :

```
plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

While this creates the effect of upsampling your prototype filter, compare the results to cicinterp for another approach to upsampling.

## allpassrateup



Arguments
N
Frequency replication ratio (upsampling ratio)
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

## See Also

Purpose
Syntax
Description

## Examples

[AllpassNum,AllpassDen] = allpassshift(Wo,Wt)
[AllpassNum,AllpassDen] = allpassshift(Wo,Wt) returns the numerator, AllpassNum, and the denominator, AllpassDen, of the second-order allpass mapping filter for performing a real frequency shift transformation. This transformation places one selected feature of an original filter, located at frequency $W_{0}$, at the required target frequency location, $W_{t}$. This transformation implements the "DC mobility," which means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of $W_{0}$ and $W_{t}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be moved to a different frequency by applying a shift transformation. In such a way you can avoid designing the filter from the beginning.

Design the allpass filter precisely shifting one feature of the lowpass filter originally at $W_{0}=0.5$ to the new frequencies of $W_{t}=0.25$ :

```
Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```


## allpassshift

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{o}\left(W_{t}\right)$. Please note that the transformation works in the same way for both positive and negative frequencies:

```
plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```



## Arguments

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also iirshift, zpkshift

## allpassshiftc

## Purpose Allpass filter for complex shift transformation

```
Syntax
[AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)
```

[AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt) returns the numerator, AllpassNum, and denominator, AllpassDen, vectors of the allpass mapping filter for performing a complex frequency shift of the frequency response of the digital filter by an arbitrary amount.
[AllpassNum,AllpassDen]=allpassshiftc(0,0.5) calculates the allpass filter for doing the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an original filter in the frequency domain.
[AllpassNum,AllpassDen]=allpassshiftc(0,-0.5) calculates the allpass filter for doing an inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an original filter in the frequency domain.

## Examples

Design the allpass filter precisely rotating the whole filter by the amount defined by the location of the selected feature from an original filter, $\mathrm{w}_{0}=0.5$, and its required position in the target filter, $\mathrm{w}_{\mathrm{t}}=0.25$ :

```
Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);
```

Calculate the frequency response of the mapping filter in the full range:

```
[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
```

Plot the phase response normalized to $\pi$, which is in effect the mapping function $W_{o}\left(W_{t}\right)$ :

```
plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');
```

The figure shows you that the transformation by the mapping filter does exactly what you intend.


Arguments

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

See Also<br>iirshiftc, zpkshiftc

## allpassshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall International Inc., 1989.
[2] Dutta-Roy, S.C. and B. Kumar, "On Digital Differentiators, Hilbert Transformers, and Half-band Low-pass Filters," IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.

Purpose	Generate Signal Processing Blockset block from floating-point or fixed-point multirate (mfilt) filter objects	
Syntax	block(hm,'propertyname1', propertyvalue1,'propertyname2',... propertyvalue2,...)	
Description	block(hm,'propertyname1', propertyvalue1,' propertyname2',... propertyvalue2,...) generates a Signal Processing Blockset block using the options specified in the property name/property value pairs. The valid properties and their values are	
	Property Name	Description and Values
	Destination	Determines which Simulink model gets the block. Choose either current or new. Specifying new opens a new Simulink model and adds the block. Current adds the block to your current Simulink model. Current is the default setting.
	Blockname	Specifies the name of the generated block. The name appears below the block in the model. When you do not specify a block name, the default is filter.

## block

Property Name	Description and Values
OverwriteBlock	Tells block whether to overwrite an existing   block of the same name, or create a new block.   Off is the default setting—block does not   overwrite existing blocks with matching names.   Switching from off to on directs block to   overwrite existing blocks.
MapStates	Specifies whether to apply the current filter   states to the new block. This lets you save states   from a filter object you may have used or   configured in a specific way. The default setting   of off means the states are not transferred to   the block. Choosing on preserves the current   filter states in the block.

## Using block to Realize Fixed-Point Multirate Filters

When the source filter hm is fixed-point, such as an FIR decimator with fixed-point arithmetic, block maps the fixed-point properties for hm to the new block according to a set of rules:

- The input word and fraction lengths for the block are derived from the block input signal. The realization process ignores the input word and input fraction lengths that are part of the source filter object, choosing to inherit the settings from the input data. You see a warning message in MATLAB that points this out.
- Rounding modes that the block does not support-fix, ceil, and convergent-convert to nearest in the filter block. Supported rounding modes do not change. MATLAB warns you about this change.

Other fixed-point properties map directly to settings for word and fraction length in the realized block.

Examples Two examples of using block demonstrate the syntax capabilities. Both examples start from an mfilt object with interpolation factor of three. In the first example, use block with the default syntax, letting the function determine the block name and configuration.

```
l = 3; % Interpolation factor
hm = mfilt.firdecim(l);
```

Now use the default syntax to create a block.

```
block(hm);
```

In this second example, define the block name to meet your needs by using the property name/property value pair input arguments.

```
block(hm, 'blockname', 'firdecim');
```

The figure below shows the blocks in a Simulink model. When you try these examples, you see that the second block writes over the first block location. You can avoid this by moving the first block before you generate the second, always naming your block with the blockname property, or setting the Destination property to new which puts the filter block in a new Simulink model.


Filter


See Also Refer to the Realize Model option in FDATool, and realizemdl

```
Purpose Design Butterworth IIR digital filter using the specifications in filter specification object
Syntax hd = design(d,'butter')
hd = design(d,'butter',designoption,value,designoption,value,...)
Description hd = design(d,'butter') designs a Butterworth IIR digital filter using the specifications supplied in the object d.
hd = design(d,'butter',designoption, value) returns a Butterworth IIR filter where you specify a design option and value.
To determine the available design options, use designopts with the specification object and the design method as input arguments as shown.
```

```
designopts(d,'method')
```

designopts(d,'method')
For complete help about using butter, refer to the command line help system. For example, to get specific information about using butter with $d$, the specification object, enter the following at the MATLAB prompt.

```
```

help(d,'butter')

```
help(d,'butter')
The first example constructs a default lowpass filter specification object and uses it to design a Butterworth filter.
```

```
d = fdesign.lowpass;
```

d = fdesign.lowpass;
designopts(d,'butter')
designopts(d,'butter')
ans =
ans =
FilterStructure: 'df2sos'
FilterStructure: 'df2sos'
MatchExactly: 'stopband'
MatchExactly: 'stopband'
hd = design(d,'butter','matchexactly','stopband');

```
hd = design(d,'butter','matchexactly','stopband');
```

Example 2 constructs a highpass filter specification object with order ( $n$ ) and cutoff frequency ( fc ) specifications, and then designs a Butterworth filter from the object.

```
d = fdesign.highpass('n,fc',8,.6);
design(d,'butter');
```



[^3]
## Purpose Convert coupled allpass filter form to transfer function forms

## Syntax

```
[b,a] = ca2tf(d1,d2)
[b,a] = ca2tf(d1,d2,beta)
[b,a,bp] = ca2tf(d1,d2)
[b,a,bp] = ca2tf(d1,d2,beta)
```


## Description

$[b, a]=c a 2 t f(d 1, d 2)$ returns the vector of coefficients $b$ and the vector of coefficients a corresponding to the numerator and the denominator of the transfer function

$$
H(z)=B(z) / A(z)=\frac{1}{2}[H 1(z)+H 2(z)]
$$

d1 and d2 are real vectors corresponding to the denominators of the allpass filters $\mathrm{H} 1(\mathrm{z})$ and $\mathrm{H} 2(\mathrm{z})$.
$[b, a]=c a 2 t f(d 1, d 2, b e t a)$ where $d 1$, d2 and beta are complex, returns the vector of coefficients $b$ and the vector of coefficients a corresponding to the numerator and the denominator of the transfer function

$$
H(z)=B(z) / A(z)=\frac{1}{2}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
$$

$[b, a, b p]=c a 2 t f(d 1, d 2)$, where $d 1$ and d2 are real, returns the vector bp of real coefficients corresponding to the numerator of the power complementary filter G(z)

$$
G(z)=B p(z) / A(z)=\frac{1}{2}[H 1(z)-H 2(z)]
$$

$[b, a, b p]=c a 2 t f(d 1, d 2, b e t a)$, where $d 1, d 2$ and beta are complex, returns the vector of coefficients bp of real or complex coefficients that correspond to the numerator of the power complementary filter $G(z)$

$$
G(z)=B p(z) / A(z)=\frac{1}{2 j}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
$$

## Examples

Create a filter, convert the filter to coupled allpass form, and convert the result back to the original structure (create the power complementary filter as well).

```
[b,a]=cheby1(10,.5,.4);
[d1,d2,beta]=tf2ca(b,a); % tf2ca returns the
% denominators of the
% allpasses.
[num,den,numpc]=ca2tf(d1,d2,beta); % Reconstruct the original
% filter plus the power
% complementary one.
[h,w,s]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
freqzplot([h hpc],w,s); % Plot the mag response of the
% original filter and the
% power complementary one.
```


## cheby 1

## Purpose Design Chebyshev Type I digital filter using filter specification object

```
Syntax hd = design(d,'cheby1')
hd = design(d,'cheby1',designoption,value,designoption,value,...)
```

Description

## Examples

These examples use filter specification objects to construct Chebyshev type I filters. In the first example, you use the matchexactly option to ensure the performance of the filter in the passband.

```
d = fdesign.lowpass
designopts(d,'cheby1')
ans =
 FilterStructure: 'df2sos'
 MatchExactly: 'passband'
hd = design(d,'cheby1','matchexactly','passband')
d =
 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
```

```
 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 1
 Astop: 60
hd =
```

```
FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [5x6 double]
 ScaleValues: [6x1 double]
PersistentMemory: false
```

cheby1 also design highpass filters, among others. Specify the filter order, passband edge frequency. and the passband ripple to get the filter exactly as required.

```
d = fdesign.highpass('n,fp,ap',7,20,.4,50)
hd = design(d,'cheby1')
d =
 Response: 'Highpass'
 Specification: 'N,Fp,Ap'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 50
 FilterOrder: 7
 Fpass: 20
 Apass: 0.4
hd =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
PersistentMemory: false
```


## cheby 1

Use fvtool to view the resulting filter.
fvtool(hd)


By design, cheby 1 returns filters that use second-order sections. For many applications, and for most fixed-point applications, SOS filters are particularly well-suited.

See Also
butter, cheby2, ellip

## Purpose

## Syntax <br> Description

## Examples

Design Chebyshev Type II digital filter using filter specification object

```
hd = design(d,'cheby2')
hd = design(d,'cheby2',designoption,value,designoption,value,...)
```

hd = design(d,'cheby2') designs a Chebyshev II IIR digital filter using the specifications supplied in the object d.
hd = design(d,'cheby2', designoption, value, designoption, value, ...) returns a Chebyshev II IIR filter where you specify design options as input arguments.

To determine the available design options, use designopts with the specification object and the design method as input arguments as shown.

```
designopts(d,'method')
```

For complete help about using cheby1, refer to the command line help system. For example, to get specific information about using cheby 2 with $d$, the specification object, enter the following at the MATLAB prompt.

```
help(d,'cheby2')
```

These examples use filter specification objects to construct Chebyshev type I filters. In the first example, you use the matchexactly option to ensure the performance of the filter in the passband.

```
d = fdesign.lowpass;
hd = design(d,'cheby2','matchexactly','passband')
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [5x6 double]
 ScaleValues: [6x1 double]
PersistentMemory: false
```


## cheby2

cheby2 also design highpass, bandpass, and bandstop filters. Here is a highpass filter where you specify the filter order, the stopband edge frequency. and the stopband attenuation to get the filter exactly as required.

```
d = fdesign.highpass('n,fst,ast',5,20,55,50)
d =
 Response: 'Highpass'
 Specification: 'N,Fst,Ast'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 50
 FilterOrder: 5
 Fstop: 20
 Astop: 55
hd=design(d,'cheby2')
hd =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [3x6 double]
 ScaleValues: [0.199517233712056;0.0879972176933622;0.145046319812257;1]
 PersistentMemory: false
```

The Filter Visualization Tool shows the highpass filter meets the specifications.
fvtool(hd)


By design, cheby2 returns filters that use second-order sections. For many applications, and for most fixed-point applications, SOS filters are particularly well-suited for use.

See Also
butter, cheby1, ellip

## Purpose Convert coupled allpass lattice to transfer function form

Syntax $\quad[b, a]=\operatorname{cl2tf}(k 1, k 2)$
[b,a] = cl2tf(k1,k2,beta)
[b,a,bp] = cl2tf(k1,k2)
[b,a,bp] = cl2tf(k1,k2,beta)

## Description

$[b, a]=c l 2 t f(k 1, k 2)$ returns the numerator and denominator vectors of coefficients $b$ and a corresponding to the transfer function

$$
H(z)=B(z) / A(z)=\frac{1}{2}[H 1(z)+H 2(z)]
$$

where $H 1(z)$ and $H 2(z)$ are the transfer functions of the allpass filters determined by k1 and k2, and k1 and k2 are real vectors of reflection coefficients corresponding to allpass lattice structures.
$[b, a]=c l 2 t f(k 1, k 2, b e t a)$ where $k 1, k 2$ and beta are complex, returns the numerator and denominator vectors of coefficients $b$ and a corresponding to the transfer function

$$
H(z)=B(z) / A(z)=\frac{1}{2}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
$$

$[b, a, b p]=c l 2 t f(k 1, k 2)$ where $k 1$ and $k 2$ are real, returns the vector $b p$ of real coefficients corresponding to the numerator of the power complementary filter $G(z)$

$$
G(z)=B p(z) / A(z)=\frac{1}{2}[H 1(z)-H 2(z)]
$$

$[b, a, b p]=c l 2 t f(k 1, k 2, b e t a)$ where $k 1, k 2$ and beta are complex, returns the vector of coefficients bp of possibly complex coefficients corresponding to the numerator of the power complementary filter $G(z)$

$$
G(z)=B p(z) / A(z)=\frac{1}{2 j}[-(\bar{\beta}) \bullet H 1(z)+\beta \bullet H 2(z)]
$$

## Examples

```
[b,a]=cheby1(10,.5,.4);
[k1,k2,beta]=tf2cl(b,a); %TF2CL returns the reflection coeffs
```

```
% Reconstruct the original filter
% plus the power complementary one.
[num, den, numpc]=cl2tf(k1,k2,beta);
[h,w, s1]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
% Plot the mag response of the original filter and the power
% complementary one.
freqzplot([h hpc],w,s1);
```

See Also tf2cl, tf2ca, ca2tf, tf2latc, latc2tf, iirpowcomp

## coefficients

## Purpose Filter coefficients for adaptive filters, discrete-time filters, and multirate filters

```
Syntax c = coefficients(ha)
coefficients(ha)
c = coefficients(hd)
coefficients(hd)
c = coefficients(hm)
coefficients(hm)
```

Description The next sections describe common coefficients operation with adaptive, discrete-time, and multirate filters.

## Adaptive Filters

$c=$ coefficients(ha) returns a cell array c containing the coefficients of adaptive filter ha. These are the instantaneous filter coefficients available at the time you use the function.
coefficients(ha) without an output argument opens FVTool in the coefficients analysis mode displaying the filter coefficients.

## Discrete-Time Filters

c = coefficients(hd) returns a cell array c that contains the coefficients of discrete-time filter hd.
coefficients(hd) without an output argument opens FVTool in the coefficients analysis mode displaying the filter coefficients.

## Multirate Filters

$\mathrm{c}=$ coefficients(hm) returns c , a cell array containing the coefficients of discrete-time filter hm. CIC-based filters do not have coefficients and this function does not work with constructors like mfilt.cicdecim.
coefficients(hm) with no output argument opens FVTool in the coefficients analysis mode displaying the filter coefficients.

Examples
coefficients works the same way for all filters. This example uses a multirate filter hm to demonstrate the function.

```
hm=mfilt.firdecim(3)
hm =
 FilterStructure: 'Direct-Form FIR Polyphase Decimator'
 Numerator: [1x72 double]
 DecimationFactor: 3
 PersistentMemory: false
 States: [69x1 double]
c=coefficients(hm)
c =
 [1x72 double]
c{1}
ans =
 Columns 1 through 8
 llllllllll
 Columns 9 through 16
 -0.0007 0
 Columns 17 through 24
 0.0040 0.0048 0
 Columns 25 through 32
 0
 Columns 33 through 40
 -0.0659 0
 Columns 41 through 48
\begin{tabular}{llllllll}
-0.0659 & -0.0513 & 0 & 0.0342 & 0.0287 & 0 & -0.0207 & -0.0177
\end{tabular}
 Columns 49 through 56
\begin{tabular}{llllllll}
0 & 0.0129 & 0.0111 & 0 & -0.0080 & -0.0068 & 0 & 0.0048
\end{tabular}
 Columns 57 through 64
```

$$
\begin{array}{llllllll}
0.0040 & 0 & -0.0028 & -0.0022 & 0 & 0.0014 & 0.0011 & 0
\end{array}
$$

Columns 65 through 72
$\begin{array}{llllllll}-0.0007 & -0.0005 & 0 & 0.0003 & 0.0002 & 0 & -0.0001 & -0.0000\end{array}$
coefficients(hm)

Figure 1: Filter Yisualization Tool - Filter Coefficients

File Edit Analysis Insert Yiew Window Help v



Numerator:	
0.000000000000000	
-0.000043020495400	
-0.000076013438760	
0.000000000000000	
0.000184871246191	
0.000267535810089	
0.000000000000000	
-0.000509707834263	
-0.000678795935585	
0.000000000000000	
0.001140769019931	
0.001446427823464	
0.000000000000000	
-0.002243697907841	
-0.002752126048140	
0.000000000000000	
0.004037513419562	
0.004837668133744	
0.000000000000000	
-0.006824052783861	
-0.008046417641326	
0.000000000000000	
0.011070838087278	
0.012941029950154	
0.000000000000000	
-0.017654667293030	
-0.020661234151835	

## coefficients

## See Also

adaptfilt, freqz, grpdelay, impz, info, phasez, stepz, zerophase, zplane
Purpose Read Xilinx CORE Generator ${ }^{\text {TM }}$ coefficient (.COE) file

[^4]See Also coewrite, dfilt, dfilt.dffir

## Purpose

Write Xilinx CORE Generator ${ }^{\text {TM }}$ coefficient (.COE) file

Syntax<br>Description

## Examples

coewrite(hd)
coewrite(hd, radix)
coewrite(...,filename)
coewrite (hd) writes a XILINX Distributed Arithmetic FIR filter coefficient .COE file which can be loaded into the XILINX CORE Generator. The coefficients are extracted from the fixed-point dfilt object hd. Your fixed-point filter must be a direct form FIR structure dfilt object with one section and whose Arithmetic property is set to fixed. You cannot export single-precision, double-precision, or floating-point filters as .coe files, nor multiple-section filters. To enable you to provide a name for the file, coewrite displays a dialog where you fill in the file name. If you do not specify the name of the output file, the default file name is untitled.coe.
coewrite(hd, radix) indicates the radix (number base) used to specify the FIR filter coefficients. Valid radix values are 2 for binary, 10 for decimal, and 16 for hexadecimal (default).
coewrite(..., filename) writes a XILINX.COE file to filename. If you omit the file extension, coewrite adds the .coe extension to the name of the file.
coewrite generates an ASCII text file that contains the filter coefficients in a format the XILINX CORE Generator can read and load. In this example, you create a 30th-order fixed-point filter and generate the .coe file that include the filter coefficients as well as associated information about the filter.

```
b = firceqrip(30,0.4,[0.05 0.03]);
hq = dfilt.dffir(b);
set(hq,'arithmetic','fixed');
coewrite(hq,10,'mycoefile');
```

When you look at mycoefile.coe, you see the following:

```
;
; XILINX CORE Generator(tm) Distributed Arithmetic FIR filter
coefficient (.COE) File
; Generated by MATLAB(tm) and the Filter Design Toolbox.
;
```


## coewrite

```
; Generated on: 4-Dec-2003 13:47:15
;
Radix = 10;
Coefficient_Width = 16;
CoefData = -41,
 -851,
 -366,
 308,
 651,
 22,
 -873,
 -658,
 749,
 1504,
 21,
-2367,
-2012,
3014,
9900,
```

coewrite puts the filter coefficients in column-major order and reports the radix, the coefficient width, and the coefficients. These represent the minimum set of data needed in a .coe file.

See Also coeread, dfilt, dfilt.dffir

## Purpose

Syntax $\quad \begin{aligned} h q & =\text { convert (hq, newstruct) } \\ h m & =\text { convert }(h m, \text { newstruct })\end{aligned}$

## Description

```
hm = convert(hm,newstruct)
```


## Discrete-Time Filters

Convert filter structures of discrete-time and multirate filters
hq = convert(hq, newstruct) returns a quantized filter whose structure has been transformed to the filter structure specified by string newstruct. You can enter any one of the following quantized filter structures:

- 'antisymmetricfir': Antisymmetric finite impulse response (FIR).
- 'df1': Direct form I.
- 'df1t': Direct form I transposed.
- 'df2': Direct form II.
- 'df2t ': Direct form II transposed. Default filter structure.
- 'dffir': FIR.
- 'dffirt': Direct form FIR transposed.
- 'latcallpass': Lattice allpass.
- 'latticeca': Lattice coupled-allpass.
- 'latticecapc ': Lattice coupled-allpass power-complementary.
- 'latticear': Lattice autoregressive (AR).
- 'latticema': Lattice moving average (MA) minimum phase.
- 'latcmax': Lattice moving average (MA) maximum phase.
- 'latticearma': Lattice ARMA.
- 'statespace': Single-input/single-output state-space.
- 'symmetricfir': Symmetric FIR. Even and odd forms.

All filters can be converted to the following structures:

- df1
- df1t
- df2
- df2t
- statespace
- latticearma

For the following filter classes, you can specify other conversions as well:

- Minimum phase FIR filters can be converted to latticema
- Maximum phase FIR filters can be converted to latcmax
- Allpass filters can be converted to latcallpass
convert generates an error when you specify a conversion that is not possible.


## Multirate Filters

$\mathrm{hm}=$ convert(hm, newstruct) returns a multirate filter whose structure has been transformed to the filter structure specified by string newstruct. You can enter any one of the following multirate filter structures, defined by the strings shown, for newstruct:

## Cascaded Integrator-Comb Structures

- cicdecim—CIC-based decimator
- cicdecimzerolat-CIC-based decimator that exhibits no latency
- cicinterp-CIC-based interpolator
- cicinterpzerolat-CIC-based interpolater that does not induce latency


## FIR Structures

- firdecim-FIR decimator
- firtdecim—transposed FIR decimator
- firfracdecim—FIR fractional decimator
- firinterp-FIR interpolator
- firfracinterp-FIR fractional interpolator
- firsrc-FIR sample rate change filter
- firholdinterp-FIR interpolator that uses hold interpolation between input samples
- firlinearinterp-FIR interpolator that uses linear interpolation between input samples
- fftfirinterp-FFT-based FIR interpolator

You cannot convert between the FIR and CIC structures.

```
[b,a]=ellip(5,3,40,.7);
hq = dfilt.df2t(b,a);
hq2 = convert(hq,'df1')
hq2 =
```

    FilterStructure: 'Direct-Form I'
            Arithmetic: 'double'
    Numerator: [ 0.19800 .78861 .42361 .42360 .78860 .1980 ]
    Denominator: [ \(\begin{aligned} & 1 \\ & 1.4339 \\ & 1.8021 \\ & 0.6139 \\ & 0.2047\end{aligned}\)-0.2342]
    PersistentMemory: false
States: Numerator: [5x1 double]
Denominator:[5x1 double]

For an example of changing the structure of a multirate filter, try the following conversion from a CIC interpolator to a CIC interpolator with zero latency.

```
hm = mfilt.cicinterp(2,2,3,8,8)
hm =
 FilterStructure: 'Cascaded Integrator-Comb Interpolator'
 Arithmetic: 'int'
 DifferentialDelay: 2
 NumberOfSections: 3
 InterpolationFactor: 2
 RoundMode: 'floor'
 PersistentMemory: false
 States: Integrator: [3\times1 States]
 Comb: [3\times1 States]
 InputWordLength: 8
 SectionWordLengthMode: 'MinWordLengths'
 OutputWordLength: 8
hm2=convert(hm,'cicinterpzerolat')
hm2 =
 FilterStructure: 'Zero-Latency Cascaded Integrator-Comb Interpolator'
 Arithmetic: 'int'
 DifferentialDelay: 2
 NumberOfSections: 3
 InterpolationFactor: 2
 RoundMode: 'floor'
 PersistentMemory: false
 States: Integrator: [3\times1 States]
 Comb: [3x1 States]
```


## InputWordLength: 8

SectionWordLengthMode: 'MinWordLengths'
OutputWordLength: 8
See Also
mfilt
dfilt in the Signal Processing Toolbox documentation

Purpose

## Syntax

Description

Estimate cost of using discrete-time or multirate filter
$c=\operatorname{cost}(h d)$
$c=\operatorname{cost}(\mathrm{hm})$
$c=\operatorname{cost}(h d)$ and $c=\operatorname{cost}(h m)$ return a cost estimate $c$ for the filter hd or hm. The returned cost estimate contains the following fields.

Estimated Value	Property	Description
Number of   Multiplications	nmult	Number of   multiplications   during the filter run.   nmult ignores   multiplications by -1,   0, and 1 in the total   multiple.
Number of Additions	nadd	Number of additions   during the filter run.
Number of States	nstates	Number of states the   filter uses.
MultPerInputSample	multperinputsample	Number of   multiplication   operations performed   for each input sample
AddPerInputSample	addperinputsample	Number of addition   operations performed   for each input sample

## Examples

These examples show you the cost method applied to dfilt and mfilt objects.

```
 hd = design(fdesign.lowpass);
 c = cost(hd)
 c =
```

```
Number of Multipliers : 43
Number of Adders : 42
Number of States : 42
MultPerInputSample : 43
AddPerInputSample : 42
hd
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1\times43 double]
PersistentMemory: false
```

When you are using a multirate filter object, cost works the same way.

```
d = fdesign.decimator(4,'cic');
hm = design(d,'multisection')
hm =
 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 1
 NumberOfSections: 2
 DecimationFactor: 4
 PersistentMemory: false
```

InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'FullPrecision'

```
c=cost(hm)
C =
Number of Multipliers : O
Number of Adders : 4
Number of States : 4
```

$$
\begin{array}{ll}
\text { MultPerInputSample } & : 0 \\
\text { AddPerInputSample } & : 2.5
\end{array}
$$

See Also report

## Purpose Vector of filters for cumulative sections

```
Syntax h = cumsec(hd)
h = cumsec(hd,indices)
h = cumsec(hd,indices,secondary)
cumsec(hd)
```


## Description

Examples
$\mathrm{h}=$ cumsec (hd) returns a vector h of SOS filter objects with the cumulative sections. Each element in h is a filter with the structure of the original filter. The first element is the first filter section of hd. The second element of $h$ is a filter that represents the combination of the first and second sections of hd. The third element of h is a filter which combines sections 1,2 , and 3 of hd. this pattern continues until the final element of $h$ contains all the sections of hd and should be identical to hd.
$\mathrm{h}=\mathrm{cumsec}(\mathrm{hd}$, indices) returns a vector h of SOS filter objects whose indices into the original filter are in the vector indices. Now you can specify the filter sections cumsec uses to compute the cumulative responses.
h = cumsec (hd,indices, secondary) when secondary is true, cumsec uses the secondary scaling points in the sections to determine where the sections should be split. This option applies only when hd is a df2sos and df1tsos filter. For these second-order section structures, the secondary scaling points refer to the scaling locations between the recursive and the nonrecursive parts of the section (the "middle" of the section). Argument secondary accepts either true or false. By default, secondary is false.
cumsec (hd, ...) without an output arguments uses FVTool to plot the magnitude response of the cumulative sections.

To demonstrate how cumsec works, this example plots the relative responses of the sections of a sixth-order filter SOS filter with three sections. Each curve adds one more section to form the filter response.

```
hs = fdesign.lowpass('n,fc',6,.4);
hd = butter(hs);
h = cumsec(hd);
hfvt = fvtool(h);
```

```
legend(hfvt,'First Section','First Two Sections','Overall
Filter');
```



Purpose Undo filter coefficient and gain changes caused by normalize

## Syntax denormalize(hq)

Description denormalize( hq ) reverses the coefficient changes you make when you use normalize with hq. The filter coefficients do not change if you call denormalize(hq) before you use normalize(hq). Calling denormalize more than once on a filter does not change the coefficients after the first denormalize call.

Make a quantized filter hq and normalize the filter coefficients. After normalizing the coefficients, restore them to their original values by reversing the effects of the normalize function.

```
d=fdesign.highpass('n,fc',14,0.45)
d =
 Response: 'Highpass'
 Specification: 'N,Fc'
 Description: {'Filter Order';'Cutoff Frequency'}
 NormalizedFrequency: true
 FilterOrder: 14
 Fcutoff: 0.45
hd = butter(d)
hd =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [7x6 double]
 ScaleValues: [8x1 double]
 PersistentMemory: false
hd.arithmetic='fixed'
hd =
```

    FilterStructure: 'Direct-Form II, Second-Order Sections'
    ```
 Arithmetic: 'fixed'
 sosMatrix: [7x6 double]
 ScaleValues: [8x1 double]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 StageInputWordLength: 16
 StageInputAutoScale: true
 StageOutputWordLength: 16
 StageOutputAutoScale: true
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 StateWordLength: 16
 StateFracLength: 15
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
hq=hd;
g=normalize(hq)'
g =
 2 2 2 2 2 % 2 % 2 l
```

hq. SosMatrix
ans =

| 0.5000 | -1.0000 | 0.5000 | 1.0000 | -0.2817 | 0.8008 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.5000 | -1.0000 | 0.5000 | 1.0000 | -0.2359 | 0.5081 |
| 0.5000 | -1.0000 | 0.5000 | 1.0000 | -0.2051 | 0.3110 |
| 0.5000 | -1.0000 | 0.5000 | 1.0000 | -0.1842 | 0.1776 |
| 0.5000 | -1.0000 | 0.5000 | 1.0000 | -0.1704 | 0.0892 |
| 0.5000 | -1.0000 | 0.5000 | 1.0000 | -0.1619 | 0.0350 |
| 0.5000 | -1.0000 | 0.5000 | 1.0000 | -0.1579 | 0.0093 |

denormalize(hq)
hq.SosMatrix
ans =

| 1.0000 | -2.0000 | 1.0000 | 1.0000 | -0.2817 | 0.8008 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1.0000 | -2.0000 | 1.0000 | 1.0000 | -0.2359 | 0.5081 |
| 1.0000 | -2.0000 | 1.0000 | 1.0000 | -0.2051 | 0.3110 |
| 1.0000 | -2.0000 | 1.0000 | 1.0000 | -0.1842 | 0.1776 |
| 1.0000 | -2.0000 | 1.0000 | 1.0000 | -0.1704 | 0.0892 |
| 1.0000 | -2.0000 | 1.0000 | 1.0000 | -0.1619 | 0.0350 |
| 1.0000 | -2.0000 | 1.0000 | 1.0000 | -0.1579 | 0.0093 |

## See Also

normalize
Purpose Implement FIR or IIR filter from discrete-time or multirate filter specification object
Syntax $\quad h=\operatorname{design}(d)$
h = design(d,designmethod)
h = design(d,designmethod,specname,specvalue,....)
Description $\quad h=$ design(d) uses specifications object $d$ to generate a filter $h$. When you do not provide a design method as an input argument, design chooses the design method to use by following these rules in the order listed.
1 Use equiripple if it applies to the object d.
2 When equiripple does not apply to d, use another FIR design method, such as firls.
3 If FIR design methods do not apply to d, use ellip.
4 When ellip does not apply to d, use another IIR design method, such as butter or cheby2, that applies to the object d.
More rules apply.

- design uses an FIR filter design method before using an IIR design method.
- fdesign.nyquist specifications objects use the kaiserwin design method as the first design choice, rather than equiripple, because kaiserwin produces better filters than equiripple.
- For decimators, interpolators, and rational sample rate changers that use fdesign. nyquist objects, the default design method is kaiserwin. Otherwise, those objects use the equiripple design method by default.
For more guidance about using design to design filters, refer to "Designing Fixed-Point Filters" on page 2-3 of the Filter Design Toolbox User's Guide. In this section you find some examples that use design to design filters and use methods in the toolbox to analyze them.
$h=$ design(d, designmethod) lets you specify a valid design method to design the filter as an input string. Note that the filter returned by design changes depending on the design method you choose. For more information about the filter that a design method returns, refer to the help for the design method.


## design

The design method you provide as the designmethod input argument must be one of the methods returned by

```
designmethods(d)
```

for the specifications object d.
Valid entries depend on d. This is the complete set of design methods. The methods that apply to a specific specifications object usually represent a subset of this list.

- butter
- cheby1
- cheby2
- ciccomp
- ellip
- equiripple
- firls
- ifir
- iirhilbert
- iirlinphase
- isinclp
- kaiserwin
- multistage
- window

To help you design filters more quickly, the input argument designmethod accepts a variety of special keywords that force design to behave in different
ways. The following table presents the keywords you can use for designmethod and how design responds to the keyword.

| Designmethod Keyword | Description of the design Response |
| :--- | :--- |
| fir | Forces design to produce an FIR filter. When <br> no FIR design method exists for object d, <br> design returns an error. |
| iir | Forces design to produce an IIR filter. When <br> no IIR design method exists for object d, <br> design returns an error. |
| allfir | Produces filters from every applicable FIR <br> design method for the specifications in d, one <br> filter for each design method. As a result, <br> design returns multiple filters in the output <br> object. |
| alliir | Produces filters from every applicable IIR <br> design method for the specifications in d, one <br> filter for each design method. As a result, <br> design returns multiple filters in the output <br> object. |
| all | Designs filters using all applicable design <br> methods for the specifications object d. As a <br> result, design returns multiple filters, one for <br> each design method. design uses the design <br> methods in the order that designmethods (d) <br> returns them. Refer to Examples to see this in <br> use. |

Keywords are not case sensitive and must be enclosed in single quotation marks like any string input.

When design returns multiple filters in the output object, use indexing to see the individual filters. For example, to see the third filter in h, enter
h(3)

## design

at the MATLAB prompt.
h = design(d,designmethod, specname, specvalue,...) with this syntax you can specify not only the designmethod but also values for the filter specifications in the method. Provide the specifications in the order of the name of the specification, such as the FilterOrder, followed by the value to assign to the specification. Enter as many specname/specvalue pairs as you need to define your filter. Any specification you do not define uses the default specification value. To use the specname/specvalue syntax, you must provide the design method to use in designmethod.

## Examples

To demonstrate some of the design options, these examples use a few different input arguments and output arguments. For the first example, use design to return the default filter based on the default design method equiripple.

```
d = fdesign.lowpass(.2,.22);
hd = design(d) % Uses the default equiripple method.
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x202 double]
 PersistentMemory: false
```

In this example, use the allfir keyword with design to return an FIR filter for each valid design method for the specifications in specifications object $d$.

```
designmethods(d)
```

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
butter
cheby 1
cheby2
ellip
equiripple
ifir
kaiserwin

```
multistage
hallfir=design(d,'allfir')
hallfir =
 dfilt.basefilter: 1-by-4
```

hallfir contains filters designed using the ellip, equiripple, ifir, and multistage design methods, in the order shown by designmethods(d). The first filter in hallfir comes from the ellip design method; the second from the equiripple method; the third from using ifir to design the filter; and the fourth from using multistage.

To see an individual filter, use an index with the filter object. For example, to see the second filter in hallfir, enter hallfir(2)

```
hallfir(2)
ans =
 FilterStructure: Cascade
 Stage(1): Direct-Form FIR
 Stage(2): Direct-Form FIR
 PersistentMemory: false
```

Here is the multistage filter hallfir (4)
hallfir(4)
ans =

| FilterStructure: | Cascade |
| ---: | :--- |
| Stage(1): Direct-Form FIR Polyphase Decimator |  |
| Stage(2): Direct-Form FIR Polyphase Decimator |  |
| Stage(3): Direct-Form FIR Polyphase Decimator |  |
| Stage(4): Direct-Form FIR Polyphase Interpolator |  |
| Stage(5): Direct-Form FIR Polyphase Interpolator |  |
| Stage(6): Direct-Form FIR Polyphase Interpolator |  |

## design

This final example uses equiripple to design an FIR filter with the density factor set to 20 by using the specname/specvalue syntax.

```
[hd,res,err] = design(d,'equiripple','densityfactor',20);
hd
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x202 double]
 PersistentMemory: false
res
res =
 0.9903
err
err =
 order: 201
 fgrid: [2060x1 double]
 H: [2060x1 double]
 error: [2060x1 double]
 des: [2060x1 double]
 wt: [2060x1 double]
 iextr: [102x1 double]
 fextr: [102x1 double]
 iterations: 12
 evals: 12905
 edgeCheck: [4x1 double]
 returnCode: 0
```

res and err are optional output arguments that design returns when you specify the density factor with the equiripple design method.

## See Also

designmethods, butter, cheby1, cheby2, ellip, equiripple, firls, fdesign.halfband, kaiserwin, fdesign. nyquist, fdesign.rsrc

## designmethods

Purpose
Design methods available for designing filter from filter specification object

## Syntax

Description

```
m = designmethods(d)
m = designmethods(d,'default')
m = designmethods(d,type)
m = designmethods(d,'full')
```

$\mathrm{m}=$ designmethods(d) returns a list of the design methods available for the filter specification object d with its Specification. When you change the Specification for a filter specification object, the methods available to design filters from the object change.

Here are all the design methods and the filters they produce.

| Design Method | Filter Result |
| :--- | :--- |
| butter | IIR |
| cheby1 | IIR |
| cheby2 | IIR |
| ellip | IIR |
| equiripple | FIR |
| firls | FIR |
| ifir | Interpolated FIR |
| iirhilbert | IIR Hilbert filter |
| iirlinphase | IIR filter with linear phase |
| iirlpnorm | IIR filter from an arbitrary magnitude <br> specifications object. Compare to iirls. <br> iirlsIIR filter from an arbitrary magnitude <br> and phase specifications object. Compare <br> to iirlpnorm. |
| kaiserwin | FIR with Kaiser window |

## designmethods

| Design Method | Filter Result |
| :--- | :--- |
| multistage | Multistage filter that cascades multiple <br> filters |
| window | FIR with windowed impulse response |

$m=$ designmethods(d,'default') returns the default design method for the filter specification object $d$ and its current Specification.
$m=$ designmethods(d, type) returns either the FIR or IIR design methods that apply to d, as specified by the type string, either fir or iir. By default, designmethods returns all the valid design methods when you omit the type string.
m = designmethods(d,'full') returns the full name for each of the available design methods. For example, designmethods with the full argument returns Butterworth for the butter method.

## Examples

Construct a lowpass filter specification object and determine the design methods available to design a filter from the object.

```
d=fdesign.lowpass('n,fc',10,12000,48000)
d =
 Response: 'Lowpass'
 Specification: 'N,Fc'
 Description: {'Filter Order';'Cutoff Frequency'}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff: 12000
designmethods(d)
Design Methods for class fdesign.lowpass (N,Fc):
```


## designmethods

```
window
hd=window(d)
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x11 double]
PersistentMemory: false
```

Now change the Specification string for d to 'fp,fst,ap, ast' and determine the design methods that apply to your modified specifications object.

```
set(d,'specification','fp,fst,ap,ast');
d
d =
 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 Fpass: 10800
 Fstop: 13200
 Apass: 1
 Astop: 60
m2 = designmethods(d)
m3 = designmethods(d, 'iir')
m4 = designmethods(d, 'iir', 'full')
m2 =
 'butter'
 'cheby1'
 'cheby2'
 'ellip'
 'equiripple'
 'ifir'
```


## designmethods

```
 'kaiserwin'
'multistage'
m3 =
 'butter'
 'cheby1'
 'cheby2'
 'ellip'
m4 =
 'Butterworth'
 'Chebyshev Type I'
 'Chebyshev Type II'
 'Elliptic'
```

Now you can get specific help on a particular design method for the specifications object. This example returns the help for the first design method for the m 2 set of methods-butter.

```
help(d,m2{1})
```

This is the same as help(d,'butter').
See Also butter, cheby1, cheby2, designopts, ellip, equiripple, kaiserwin, multistage
Purpose Input arguments and default values applicable to filter specification object and method

```
Syntax
options = designopts(d,'designmethod')
```

options = designopts(d,'designmethod') returns the structure options
with the default design parameters used by the design method designmethod,
specific to the response you defined for $d$. Replace designmethod with one of the
strings returned by designmethods.
Use help(d,designmethod) to get a description of the design parameters. For example, to see the help for designing a highpass Chebyshev II filter from a specifications object d, enter

```
help(d,'cheby2')
```

at the prompt. MATLAB responds with help for Chebyshev II filter designs that use the specification Fst, Fp,Ast,Ap, as shown here.

```
help(d,'cheby2') % Get the help for design Chebyshev II filters.
DESIGN Design a Chebyshev Type II iir filter.
HD = DESIGN(D, 'cheby2') designs a Chebyshev Type II filter
specified by the FDESIGN object H.
HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter
with the structure STRUCTURE. STRUCTURE is 'df2sos' by default
and can be any of the following.
'df1sos'
'df2sos'
'df1tsos'
'df2tsos'
HD = DESIGN(..., 'MatchExactly', MATCH) designs a Chebyshev Type
II filter and matches the frequency and magnitude specification
for the band MATCH exactly. The other band will exceed the
specification. MATCH can be 'stopband' or 'passband' and is
'passband' by default.
```


## designopts

## Examples

Design a minimum order, lowpass Butterworth filter. Use designmethods to determine the appropriate input arguments. Start by creating a lowpass filter specification object d.

```
d = fdesign.lowpass;
```

Because you want information about the input arguments for designing a filter using a design method, use designmethods (d) to get the list of valid methods.

```
designmethods(d)
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage
```

Pick one method and determine the design options for that method.

```
options = designopts(d,'butter')
options =
 FilterStructure: 'df2sos'
 MatchExactly: 'stopband'
```

In this example, the filter structure is Direct-Form II with second-order sections, and the design seeks to match the desired stopband performance exactly. As you see by reading the help, FilterStructure and MatchExactly are input arguments for designing the Butterworth filter.

Get help for designing a filter from d using the butter design method to see the arguments.

```
help(d,'butter')
DESIGN Design a Butterworth IIR filter.
```

HD = DESIGN(D, 'butter') designs a Butterworth filter specified by the FDESIGN object H .

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be any of the following.
'df1sos'
'df2sos'
'df1tsos'
'df2tsos'
HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth filter and matches the frequency and magnitude specification for the band MATCH exactly. The other band will exceed the specification. MATCH can be 'stopband' or 'passband' and is 'stopband' by default.

See Also design, designmethods, fdesign

## Purpose Discrete-time filters

```
Syntax hd = dfilt.structure(input1,...)
hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]
hd = design(d,'designmethod')
Description hd = dfilt.structure(input1,...) returns a discrete-time filter, hd, of type structure. Each structure takes one or more inputs. When you specify a dfilt.structure with no inputs, a default filter is created.
```

Note You must use a structure with dfilt.
hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...] returns a vector containing dfilt filters.

## Structures

Structures for dfilt.structure specify the type of filter structure. Available types of structures for dfilt are shown below.

| dfilt.structure | Description |
| :--- | :--- |
| dfilt.allpass | Allpass filter |
| dfilt.cascadeallpass | Cascade of allpass filter sections |
| dfilt.cascadewdfallpass | Cascade of allpass wave digital filters |
| dfilt.delay | Delay |
| dfilt.df1 | Direct-form I |
| dfilt.df1sos | Direct-form I, second-order sections |
| dfilt.df1t | Direct-form I transposed |
| dfilt.df1tsos | Direct-form I transposed, second-order sections |
| dfilt.df2 | Direct-form II |
|  |  |


| dfilt.structure | Description |
| :--- | :--- |
| dfilt.df2sos | Direct-form II, second-order sections |
| dfilt.df2t | Direct-form II transposed |
| dfilt.df2tsos | Direct-form II transposed, second-order sections |
|  |  |
| dfilt.dffir | Direct-form FIR |
| dfilt.dffirt | Direct-form FIR transposed |
| dfilt.dfsymfir | Direct-form symmetric FIR |
| dfilt.dfasymfir | Direct-form antisymmetric FIR |
| dfilt.fftfir | Overlap-add FIR |
|  | Lattice allpass |
| dfilt.latticeallpass | Lattice autoregressive (AR) |
| dfilt.latticear | Lattice autoregressive moving- average (ARMA) |
| dfilt.latticearma | Lattice moving-average (MA) for maximum phase |
| dfilt.latticemamax | Lattice moving-average (MA) for minimum phase |
| dfilt.latticemamin | Coupled, allpass lattice |
|  | Coupled, allpass lattice with power complementary output |
| dfilt.calattice | Scalar gain object |
| dfilt.calatticepc | Allpass wave digital filter object |
|  |  |


| dfilt.structure | Description |
| :--- | :--- |
| dfilt.cascade | Filters arranged in series |
| dfilt. parallel | Filters arranged in parallel |

For more information on each structure, refer to its reference page.
hd = design(d,'designmethod') returns the dfilt object hd resulting from the filter specification object $d$ and the design method you specify in designmethod. When you omit the designmethod argument, design uses the default design method to construct a filter from the object $d$.

With this syntax, you design filters by
1 Specifying the filter specifications, such as the response shape (perhaps highpass) and details (passband edges and attenuation).
2 Selecting a method (such as equiripple) to design the filter.
3 Applying the method to the specifications object with design(d,'designmethod).

Using the specification-based technique can be more effective than the coefficient-based filter design techniques.

## Design Methods for design Syntax

When you use the hd = design(d,'designmethod') syntax, you have a range of design methods available depending on $d$, the filter specification object. The table below lists all of the design methods in the toolbox.

| Design Method String | Filter Design Result |
| :--- | :--- |
| butter | Butterworth IIR |
| cheby1 | Chebyshev Type I IIR |
| cheby2 | Chebyshev Type II IIR |
| ellip | Elliptic IIR |


| Design Method String | Filter Design Result |
| :--- | :--- |
| equiripple | Equiripple with the same ripple in the pass <br> and stopbands |
| firls | Least-squares FIR |
| freqsamp | Frequency-Sampled FIR |
| ifir | Interpolated FIR |
| iirlpnorm | Least Pth norm IIR |
| iirls | Least-Squares IIR |
| kaiserwin | Kaiser-windowed FIR |
| multistage | Multistage FIR |
| window | Windowed FIR |

As specifications object d changes, the methods that apply for designing filters from d change. For instance, if d is a lowpass filter, these are the applicable methods:

```
d=fdesign.lowpass % Create an object to design a lowpass filter.
d =
 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 1
 Astop: 60
designmethods(d) % What design methods apply to object d?
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
```

```
butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage
```

When d is a bandstop filter, the design methods change.

```
d=fdesign.bandstop % Create a default bandstop specifications
object.
```

d $=$
Response: 'Bandstop'
Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
Description: \{7x1 cell\}
NormalizedFrequency: true
Fpass1: 0.35
Fstop1: 0.45
Fstop2: 0.55
Fpass2: 0.65
Apass1: 1
Astop: 60
Apass2: 1
designmethods(d) \% Find out which design methods apply to d.
Design Methods for class fdesign.bandstop
(Fp1,Fst1, Fst2, Fp2, Ap1,Ast, Ap2):
butter
cheby 1
cheby2
ellip

```
equiripple
kaiserwin
```

Notice that ifir and multistage design methods do not apply to this bandstop specifications object d.

## Analysis Methods

Methods provide ways of performing functions directly on your dfilt object without having to specify the filter parameters again. You can apply these methods directly on the variable you assigned to your dfilt object.

For example, if you create a dfilt object, hd, you can check whether it has linear phase with islinphase(hd), view its frequency response plot with fvtool(hd), or obtain its frequency response values with $h=f r e q z(h d) . Y o u$ can use all of the methods below in this way.

Note If your variable hd is a 1-D array of dfilt filters, the method is applied to each object in the array. Only freqz, grpdelay, impz, is*, order, and stepz methods can be applied to arrays. The zplane method can be applied to an array only if zplane is used without outputs.

Some of the methods listed below have the same name as functions in the Signal Processing or Filter Design Toolboxes. They behave similarly.

| Method | Description |
| :---: | :---: |
| addstage | Adds a stage to a cascade or parallel object, where a stage is a separate, modular filter. Refer to dfilt.cascade and dfilt. parallel. |
| block | (Available only with the Signal Processing Blockset) <br> block (hd) creates a Signal Processing Blockset block of the dfilt object. The block method can specify these properties/values: <br> 'Destination ' indicates where to place the block. 'Current' places the block in the current Simulink model. 'New' creates a new model. Default value is 'Current'. <br> 'Blockname' assigns the entered string to the block name. Default name is 'Filter'. <br> 'OverwriteBlock'indicates whether to overwrite the block generated by the block method ('on') and defined by Blockame. Default is 'off'. <br> 'MapStates' specifies initial conditions in the block (' on '). Default is 'off'. Refer to "Using Filter States" in the Signal Processing Toolbox documentation. |
| cascade | Returns the series combination of two dfilt objects. Refer to dfilt.cascade. |
| coeffs | Returns the filter coefficients in a structure containing fields that use the same property names as those in the original dfilt. |
| convert | Converts a dfilt object from one filter structure, to another filter structure |


| Method | Description |
| :---: | :---: |
| fcfwrite | Writes a filter coefficient ASCII file. The file can contain a single filter or a vector of objects. If the Filter Design Toolbox is installed, the file can contain multirate filters (mfilt) or adaptive filters (adaptfilt). Default filename is untitled.fcf. <br> fcfwrite(hd,filename) writes to a disk file named filename in the current working directory. The .fcf extension is added automatically. <br> fcfwrite(...,fmt) writes the coefficients in the format fmt, where valid fmt strings are: <br> 'hex' for hexadecimal <br> 'dec' for decimal <br> 'bin' for binary representation. |
| fftcoeffs | Returns the frequency-domain coefficients used when filtering with a dfilt.fftfir |
| filter | Performs filtering using the dfilt object |
| firtype | Returns the type (1-4) of a linear phase FIR filter |
| freqz | Plots the frequency response in fvtool. Note that unlike the freqz function, this dfilt freqz method has a default length of 8192 . |
| grpdelay | Plots the group delay in fvtool |
| impz | Plots the impulse response in fvtool |
| impzlength | Returns the length of the impulse response |
| info | Displays dfilt information, such as filter structure, length, stability, linear phase, and, when appropriate, lattice and ladder length. |
| isallpass | Returns a logical 1 (i.e., true) if the dfilt object in an allpass filter or a logical 0 (i.e., false) if it is not |


| Method | Description |
| :--- | :--- |
| iscascade | Returns a logical 1 if the dfilt object is cascaded <br> or a logical 0 if it is not |
| isfir | Returns a logical 1 if the dfilt object has finite <br> impulse response (FIR) or a logical 0 if it does not |
| islinphase | Returns a logical 1 if the dfilt object is linear <br> phase or a logical 0 if it is not |
| ismaxphase | Returns a logical 1 if the dfilt object is <br> maximum-phase or a logical 0 if it is not |
| isminphase | Returns a logical 1 if the dfilt object is <br> minimum-phase or a logical 0 if it is not |
| isparallel | Returns a logical 1 if the dfilt object has parallel <br> stages or a logical 0 if it does not |
| isreal | Returns a logical 1 if the dfilt object has <br> real-valued coefficients or a logical 0 if it does not |
| isscalar | Returns a logical 1 if the dfilt object is a scalar or <br> a logical 0 if it is not scalar |
| issos | Returns a logical 1 if the dfilt object has <br> second-order sections or a logical 0 if it does not |
| isstable | Returns a logical 1 if the dfilt object is stable or a <br> logical 0 if it are not |
| nsections | Returns the number of sections in a second-order <br> sections filter. If a multistage filter contains <br> stages with multiple sections, using nsections <br> returns the total number of sections in all the <br> stages (a stage with a single section returns 1). |
| nstages | Returns the number of stages of the filter, where a <br> stage is a separate, modular filter |
|  | Returns the number of states for an object |
|  |  |


| Method | Description |
| :--- | :--- |
| order | Returns the filter order. If hd is a single-stage <br> filter, the order is given by the number of delays <br> needed for a minimum realization of the filter. If <br> hd has multiple stages, the order is given by the <br> number of delays needed for a minimum <br> realization of the overall filter. |
| parallel | Returns the parallel combination of two dfilt <br> filters. Refer to dfilt. parallel. |
| phasez | Plots the phase response in fvtool |

## Method Description

realizemdl
(Available only with Simulink )
realizemdl(hd) creates a Simulink model containing a subsystem block realization of your dfilt.
realizemdl(hd,p1,v1,p2,v2,...) creates the block using the properties p1, p2,... and values v1, v2,... specified.

The following properties are available:
'Blockname' specifies the name of the block. The default value is 'Filter'.
'Destination' specifies whether to add the block to a current Simulink model or create a new model. Valid values are 'Current' and 'New'.
'OverwriteBlock' specifies whether to overwrite an existing block that was created by realizemdl or create a new block. Valid values are 'on' and 'off'. Note that only blocks created by realizemdl are overwritten.

The following properties optimize the block structure. Specifying ' on ' turns the optimization on and 'off' creates the block without optimization. The default for each block is 'off'.
'OptimizeZeros' removes zero-gain blocks.
' OptimizeOnes ' replaces unity-gain blocks with a direct connection.
'OptimizeNegOnes' replaces negative unity-gain blocks with a sign change at the nearest summation block.
' OptimizeDelayChains ' replaces cascaded chains of delay block with a single integer delay block set to the appropriate delay.

| Method | Description |
| :---: | :---: |
| removestage | Removes a stage from a cascade or parallel dfilt. Refer to dfilt.cascade and dfilt.parallel. |
| setstage | Overwrites a stage of a cascade or parallel dfilt. Refer to dfilt.cascade and dfilt.parallel. |
| sos | Converts the dfilt to a second-order sections dfilt. If hd has a single section, the returned filter has the same class. <br> sos(hd,flag) specifies the ordering of the second-order sections. If flag= 'UP ', the first row contains the poles closest to the origin, and the last row contains the poles closest to the unit circle. If flag= 'down ', the sections are ordered in the opposite direction. The zeros are always paired with the poles closest to them. <br> sos(hd,flag, scale) specifies the scaling of the gain and the numerator coefficients of all second-order sections. scale can be 'none', 'inf' (infinity-norm) or 'two ' (2-norm). Using infinity-norm scaling with up ordering minimizes the probability of overflow in the realization. Using 2 -norm scaling with down ordering minimizes the peak roundoff noise. |
| ss | Converts the dfilt to state-space. To see the separate $A, B, C, D$ matrices for the state-space model, use $[A, B, C, D]=s s(h d)$. |


| Method | Description |
| :--- | :--- |
| stepz | Plots the step response in fvtool |
|  | stepz (hd, $n$ ) computes the first $n$ samples of the <br> step response. |
|  | stepz (hd, $\mathrm{n}, \mathrm{Fs}$ ) separates the time samples by <br> $\mathrm{T}=1 / \mathrm{Fs}$, where Fs is assumed to be in Hz. |
| tf | Converts the dfilt to a transfer function |
| zerophase | Plots the zero-phase response in fvtool |
| zpk | Converts the dfilt to zeros-pole-gain form |
| zplane | Plots a pole-zero plot in fvtool |

## Viewing Properties

As with any object, use get to view a dfilt properties. To see a specific property, use

```
get(hd,'property')
```

To see all properties for an object, use
get(hd)

Note If you have the Filter Design Toolbox, dfilt objects include an arithmetic property. You can change the internal arithmetic of the filter from double- precision to single-precision using:
hd.arithmetic = 'single'
If you have both the Filter Design Toolbox and the Fixed-Point Toolbox, you can change the arithmetic property to fixed-point using:
hd.arithmetic = 'fixed'

## Changing Properties

To set specific properties, use

```
set(hd,'property1',value,'property2',value,...)
```

Note that you must use single quotation marks around the property name. Use single quotation marks around the value argument when the value is a string, such as specifyall or fixed.

## Copying an Object

To create a copy of an object, use the copy method.

```
h2 = copy(hd)
```

Note Using the syntax H2 = hd copies only the object handle and does not create a new, independent object.

## Converting Between Filter Structures

To change the filter structure of a dfilt object hd, use

```
hd2 = convert(hd,'structure_string');
```

where structure_string is any valid structure name in single quotation marks. If hd is a cascade or parallel structure, each stage is converted to the new structure.

## Using Filter States

Two properties control the filter states:

- states-stores the current states of the filter. Before the filter is applied, the states correspond to the initial conditions and after the filter is applied, the states correspond to the final conditions. For df1, df 1 t , df 1 sos and df 1 tsos structures, states returns a filtstates object.
- PersistentMemory-controls whether filter states are saved. The default value is 'false', which causes the initial conditions to be reset to zero before filtering and turns off the display of states information. Setting PersistentMemory to 'true' allows the filter to use your initial conditions
or to reuse the final conditions from a previous filtering operation as the initial conditions of the next filtering operation. The true setting also displays information about the filter states.

Note If you set the states and want to use them for filtering, you must set PersistentMemory to 'true' before you use the filter.

Examples Create a direct-form I filter and use a method to see if it is stable.

```
[b,a] = butter(8,0.25);
hd = dfilt.df1(b,a)
hd =
 FilterStructure: 'Direct-Form I'
 Numerator: [1x9 double]
 Denominator: [1x9 double]
 PersistentMemory: false
isstable(hd)
ans =
 1
```

If a dfilt's numerator values do not fit on a single line, a description of the vector is displayed. To see the specific numerator values for this example, use

```
get(hd,'numerator')
ans =
Columns }1\mathrm{ through 6
```



```
 Columns }7\mathrm{ through 9
 0.0030 0.0009 0.0001
```

Create an array containing two dfilt objects, apply a method and verify that the method acts on both objects, and use a method to test whether the objects are FIR objects.

```
b = fir1(5,.5);
hd = dfilt.dffir(b); % create an FIR object
```

```
[b,a] = butter(5,.5);
hd(2) = dfilt.df2t(b,a); % Create a DF2T object and place
 % it in the second column of hd.
[h,w] = freqz(hd);
size(h) % Verify that resulting h is
ans =
 8192 2
size(w)
 8192 1
test_fir = isfir(hd)
test_fir =
 1 0
% 2 columns.
% Verify that resulting w is
% 1 column.
% hd(1) is FIR and hd(2) is not.
```

Refer to the reference pages for each structure for more examples.
See Also
dfilt, design, fdesign, realizemdl, sos, stepz
dfilt.cascade, dfilt.df1, dfilt.df1t, dfilt.df2, dfilt.df2t, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax, dfilt.latticemamin, dfilt.parallel, dfilt.statespace, filter, freqz, grpdelay, impz, zplane in the Signal Processing Toolbox documentation

Purpose Construct allpass filter object

```
Syntax hd = dfilt.allpass(c)
```

Description

## Properties

The following table provides a list of all the properties associated with an allpass dfilt object.

| Property Name | Brief Description |
| :--- | :--- |
| AllpassCoefficients | Contains the coefficients for the allpass filter <br> object |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that <br> perform operations during filtering-gains, <br> delays, sums, products, and input/output. |


| Property Name | Brief Description |
| :--- | :--- |
| PersistentMemory | Specifies whether to reset the filter states and <br> memory before each filtering operation. Lets <br> you decide whether your filter retains states <br> from previous filtering runs. False is the <br> default setting. |
| States | This property contains the filter states before, <br> during, and after filter operations. States act <br> as filter memory between filtering runs or <br> sessions. They also provide linkage between <br> the sections of a multisection filter, such as a <br> cascade filter. For details, refer to filtstates <br> in your Signal Processing Toolbox <br> documentation or in the Help system. |

## Examples

This example constructs and displays the information about a second-order allpass filter that uses the minimum number of multipliers.

```
c = [1.5, 0.7];
hd = dfilt.allpass(c) % Creates a second-order dfilt object.
hd =
 FilterStructure: 'Minimum-Multiplier Allpass'
 AllpassCoefficients: [1.5 0.7]
 PersistentMemory: false
 States: [0;0;0;0]
info(hd) % Gets information about the filter.
Discrete-Time IIR Filter (real)
Filter Structure : Minimum-Multiplier Allpass
Number of Multipliers : 2
Stable : Yes
Linear Phase : No
Implementation Cost
Number of Multipliers : 2
Number of Adders : 4
```

| Number of States | $: 4$ |
| :--- | :--- |
| MultPerInputSample | $: 2$ |
| AddPerInputSample | $: 4$ |

See Also dfilt, dfilt.cascadeallpass, dfilt.cascadewdfallpass, dfilt.latticeallpass, mfilt.iirdecim, mfilt.iirinterp

Purpose
Syntax $\quad \begin{aligned} \text { hd } & =\text { dfilt.calattice (k1, k2, beta) } \\ \text { hd } & =\text { dfilt.calattice }\end{aligned}$
Description
Construct discrete-time, coupled-allpass, lattice filter object
hd = dfilt.calattice(k1,k2,beta) returns a discrete-time, coupled-allpass, lattice filter object hd, which is two allpass, lattice filter structures coupled together. The lattice coefficients for each structure are vectors k1 and k2. Input argument beta is shown in the diagram below.
hd = dfilt.calattice returns a default, discrete-time coupled-allpass, lattice filter object, hd. The default values are k1 = k2 = [], which is the default value for dfilt.latticeallpass, and beta $=1$. This filter passes the input through to the output unchanged.


Example
Specify a third-order lattice coupled-allpass filter structure for a dfilt filter, hd with the following code.

```
k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calattice(k1,k2,beta)
k1 =
 0.9511 + 0.3088i
 0.7511 + 0.1158i
```

```
k2 =
 0.7502 - 0.1218i
beta =
 0.1385 + 0.9904i
hd =
 FilterStructure: 'Coupled-Allpass Lattice'
 Allpass1: [2x1 double]
 Allpass2: 0.7502- 0.1218i
 Beta: 0.1385+ 0.9904i
PersistentMemory: false
 States: [3x1 double]
```

Notice that the Allpass1 and Allpass2 properties store vectors of coefficients.
hd.Allpass1
ans $=$
$0.9511+0.3088 i$
$0.7511+0.1158 i$

See Also
dfilt.calatticepc
dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox documentation

| Purpose | Construct discrete-time, coupled-allpass, power-complementary lattice filter <br> object |
| :--- | :--- |
| Syntax | hd = dfilt.calatticepc (k1, k2, beta) <br> hd = dfilt.calatticepc |
| Description | hd = dfilt.calatticepc (k1, k2) returns a discrete-time, coupled-allpass, <br> lattice filter object hd, with power-complementary output. This object is two <br> allpass lattice filter structures coupled together to produce complementary <br> output. The lattice coefficients for each structure are vectors, k1 and k2, <br> respectively. beta is shown in the diagram below |
| hd = dfilt. calatticepc returns a default, discrete-time, coupled-allpass, <br> lattice filter object hd, with power-complementary output. The default values <br> are $k 1=k 2=[]$, which is the default value for the dfilt.latticeallpass. The <br> default for beta=1. This filter passes the input through to the output <br> unchanged. |  |

calatticepc
(Coupled Allpass Lattice, Power Complementary output)


## Example

Specify a third-order lattice coupled-allpass power complementary filter structure for a filter hd with the following code. You see from the returned properties that Allpass1 and Allpass2 contain vectors of coefficients for the constituent filters.

```
k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calatticepc(k1,k2,beta)
k1 =
0.9511 + 0.3088i
0.7511 + 0.1158i
```

```
k2 =
 0.7502 - 0.1218i
beta =
 0.1385 + 0.9904i
hd =
 FilterStructure: 'Coupled-Allpass Lattice, Power
Complementary Output'
 Allpass1: [2x1 double]
 Allpass2: 0.7502- 0.1218i
 Beta: 0.1385+ 0.9904i
PersistentMemory: false
 States: [3x1 double]
```

To see the coefficients for Allpass1, check the property values.

```
get(hd,'Allpass1')
ans =
 0.9511 + 0.3088i
 0.7511 + 0.1158i
```


## See Also

dfilt.calattice
dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox documentation

## Purpose

Construct cascade of discrete-time filter objects
Syntax Refer to dfilt.cascade in the Signal Processing Toolbox for more information.

## Examples

hd = dfilt.cascade(filterobject1,filterobject2,...) returns a discrete-time filter object hd of type cascade, which is a serial interconnection of two or more filter objects filterobject1, filterobject2, and so on. dfilt.cascade accepts any combination of dfilt objects (discrete time filters), to cascade.

You can use the standard notation to cascade one or more filters:

```
cascade(hd1,hd2,...)
```

where hd1, hd2, and so on can be mixed types, such as dfilt objects and mfilt objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the cascade must be the same arithmetic format-double, single, or fixed. hd, the filter object returned, inherits the format of the cascaded filters.

Cascade a lowpass filter and a highpass filter to produce a bandpass filter.

```
[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
h1=dfilt.df2t(b1,a1);
h2=dfilt.df2t(b2,a2);
hcas=dfilt.cascade(h1,h2) % Bandpass with passband 0.4-0.6
hcas =
 Filterstructure: Cascade
 Section(1): Direct Form II Transposed
 Section(2): Direct Form II Transposed
 PersistentMemory: false
```

To view the details of one filter section, use

```
hcas.section(1)
ans =
```

FilterStructure: 'Direct Form II Transposed' Arithmetic: 'double'
Numerator: [1x9 double]
Denominator: [1x9 double]
PersistentMemory: false
States: [8x1 double]
See Also dfilt, dfilt.parallel, dfilt.scalar

## dfilt.cascadeallpass

## Purpose Construct cascade of allpass discrete-time filter objects

```
Syntax hd = dfilt.cascadeallpass(c1,c2,...)
```


## Properties In the next table, the row entries are the filter properties and a brief description of each property.

| Property Name | Brief Description |
| :--- | :--- |
| AllpassCoefficients | Contains the coefficients for the allpass filter <br> object |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that <br> perform operations during filtering-gains, <br> delays, sums, products, and input/output. |


| Property Name | Brief Description |
| :--- | :--- |
| PersistentMemory | Specifies whether to reset the filter states and <br> memory before each filtering operation. Lets <br> you decide whether your filter retains states <br> from previous filtering runs. False is the <br> default setting. |
| States | This property contains the filter states before, <br> during, and after filter operations. States act <br> as filter memory between filtering runs or <br> sessions. They also provide linkage between <br> the sections of a multisection filter, such as a <br> cascade filter. For details, refer to filtstates <br> in your Signal Processing Toolbox <br> documentation or in the Help system. |

## Examples

Two examples show how dfilt. cascadeallpass works in very different applications-designing a halfband IIR filter and constructing an allpass cascade of dfilt objects.

First, design the IIR halfband filter using cascaded allpass filters. Each branch of the parallel cascade construction is a cascadeallpas filter object.

```
tw = 100; % Transition width of filter to be designed, 100 Hz.
ast = 80; % Stopband attenuation of filter to be designed, 80dB.
fs = 2000; % Sampling frequency of signal to be filtered.
% Store halfband design specs in the specifications object d.
d = fdesign.halfband('tw,ast',tw,ast,fs);
```

Now perform the actual filter design. hd contains two dfilt.cascadeallpass objects.

```
hd = design(d,'ellip','filterstructure','cascadeallpass');
% Get summary information about one dfilt.cascadeallpass stage.
hd.Stage(2).Stage(1)
ans =
FilterStructure:'CascadeMinimum-MultiplierAllpass'
 AllpassCoefficients: Section1: [0 0.0602973909571244]
 Section2: [0 0.412590720361056]
 Section3: [0 0.772715653742923]
```

```
 PersistentMemory: false
 States:[0;0;0;0;0;0;0;0]
NumSamplesProcessed:0
hd
hd =
 FilterStructure: Cascade
 Stage(1): Scalar
 Stage(2): Parallel
 Stage(1): Cascade Minimum-Multiplier Allpass
 Stage(2): Cascade
 Stage(1): Delay
 Stage(2): Cascade Minimum-Multiplier Allpass
PersistentMemory: false
```

This second example constructs a dfilt. cascadeallpass filter object directly given allpass coefficients for the input vectors.

```
section1 = 0.8;
section2 = [1.2,0.7];
section3 = [1.3,0.9];
hd = dfilt.cascadeallpass(section1,section2,section3);
info(hd) % Get information about the filter.
fvtool(hd) % Visualize the filter.
```

hd looks like this, showing both the magnitude and phase responses in FVTool. Note the units for the magnitude response on the left $y$-axis. Clearly this is an allpass filter.


See Also
dfilt, dfilt.allpass, dfilt.cascadewdfallpass, mfilt.iirdecim, mfilt.iirinterp

## dfilt.cascadewdfallpass

\(\left.$$
\begin{array}{ll}\text { Purpose } & \begin{array}{l}\text { Construct allpass wave digital filter (WDF) object by cascading allpass WDF } \\
\text { filter objects }\end{array}
$$ <br>

Syntax \& hd=dfilt. cascadewdfallpass ( \mathrm{c} 1, \mathrm{c} 2, ··· )\end{array}\right]\)| hd = dfilt. cascadewdfallpass ( $\mathrm{c} 1, \mathrm{c} 2, \ldots$ ) constructs a cascade of allpass |
| :--- |
| wave digital filters given the allpass coefficients in the vectors c1, c2, and so on. |
| Each c vector contains the coefficients for one section of the cascaded filter. c |
| vectors must have one, two, or four elements (coefficients). Three element |
| vectors are not supported. |
| When the c vector has four elements, the first and third elements of the vector |
| must be 0. Each section of the cascade is an allpass wave digital filter, from |
| dfilt.wdfallpass, with the coefficients given by the corresponding c vector. |
| That is, the first section has coefficients from vector c1, the second section |
| coefficients come from c2, and on until all of the c vectors are used. |
| You can mix the lengths of the c vectors. They do not need to be the same |
| length. For example, you can cascade several fourth-order sections |
| (length(c) = 4) with first or second-order sections. |
| Wave digital filters are usually used to create other filters. This toolbox uses |
| them to implement halfband filters, which the first example in Examples |
| demonstrates. They are most often building blocks for filters. |

## Properties

PersistentMemory

States description of each property.

In the next table, the row entries are the filter properties and a brief

| Property Name | Brief Description |
| :--- | :--- |
| AllpassCoefficients | Contains the coefficients for the allpass wave <br> digital filter object |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that <br> perform operations during filtering-gains, <br> delays, sums, products, and input/output. |
| PersistentMemory | Specifies whether to reset the filter states and <br> memory before each filtering operation. Lets <br> you decide whether your filter retains states <br> from previous filtering runs. False is the <br> default setting. |
| States | This property contains the filter states before, <br> during, and after filter operations. States act <br> as filter memory between filtering runs or <br> sessions. They also provide linkage between <br> the sections of a multisection filter, such as a <br> cascade filter. For details, refer to filtstates <br> in your Signal Processing Toolbox |
| documentation or in the Help system. |  |

## Examples

To demonstrate two approaches to using dfilt.cascadewdfallpass to design a filter, these examples show both direct construction and construction as part of another filter.

The first design shown creates an IIR halfband filter that uses lattice wave digital filters. Each branch of the parallel connetion in the lattice is an allpass cascade wave digital filter.

```
tw = 100; % Transition width of filter to designe, 100 Hz.
ast = 80; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
d = fdesign.halfband('tw,ast',tw,ast,fs); % Store halfband specs.
```


## dfilt.cascadewdfallpass

Now perform the actual halfband design process. hd contains two dfilt.cascadewdfallpass filters.

```
hd = design(f,'ellip','filterstructure','cascadewdfallpass');
hd.stage(2).stage(1) % Summary info on dfilt.cascadewdfallpass.
realizemdl(hd.stage(2).stage(1)) % Requires Simulink to realize model.
```

This example demonstrates direct construction of a dfilt.cascadewdfallpass filter with allpass coefficients.

```
section1 = 0.8;
section2 = [1.5,0.7];
section3 = [1.8,0.9];
hd = dfilt.cascadewdfallpass(section1,section2,section3);
info(hd) % Show information about the filter.
fvtool(hd) % Visualize the filter.
```

Using FVTool lets you view the filter response.


See Also dfilt, dfilt.wdfallpass

Fixed-Point Filter Structure

## Purpose

Syntax Refer to dfilt.df1 in the Signal Processing Toolbox.
Construct discrete-time, direct-form I filter object
hd = dfilt. df1 returns a default discrete-time, direct-form I filter object that uses double-precision arithmetic. By default, the numerator and denominator coefficients $b$ and a are set to 1 . With these coefficients the filter passes the input to the output without changes.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd, 'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.

Note a(1), the leading denominator coefficient, cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

The figure below shows the signal flow for the direct-form I filter implemented by dfilt.df1. To help you see how the filter processes the coefficients, input, output, and states of the filter, as well as numerical operations, the figure includes the locations of the arithmetic and data type format elements within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| DenAccumFormat | AccumWordLength | DenAccumFracLength | AccumMode, <br> CastBeforeSum |
| DenFormat | CoeffWordLength | DenFracLength | CoeffAutoScale, <br> Signed, Denominator |
| DenProdFormat | CoeffWordLength | DenProdFracLength | ProductMode, <br> ProductWordLength |
| InputFormat | InputWordLength | InputFracLength |  |
| NumAccumFormat | AccumWordLength | NumAccumFracLength | AccumMode, <br> CastBeforeSum |
| NumFormat | CoeffWordLength | NumFracLength | CoeffAutoScale, <br> Signed, Numerator |
| NumProdFormat | CoeffWordLength | NumProdFracLength | ProductWordLength, <br> ProductMode |
| OutputFormat | OutputWordLength | OutputFracLength | OutputMode |

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties In this table you see the properties associated with df1 implementations of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

| Property Name | Brief Description |
| :--- | :--- |
| AccumMode | Determines how the accumulator outputs stored <br> values. Choose from full precision <br> (FullPrecision), or whether to keep the most <br> significant bits (KeepMSB) or least significant bits <br> (KeepLSB) when output results need shorter <br> word length than the accumulator supports. To <br> let you set the word length and the precision (the <br> fraction length) used by the output from the <br> accumulator, set AccumMode to <br> SpecifyPrecision. |
| AccumWordLength | Sets the word length used to store data in the <br> accumulator/buffer. |
| Arithmetic | Defines the arithmetic the filter uses. Gives you <br> the options double, single, and fixed. In short, <br> this property defines the operating mode for <br> your filter. |
| CastBeforeSum | Specifies whether to cast numeric data to the <br> appropriate accumulator format (as shown in <br> the signal flow diagrams) before performing sum <br> operations. |


| Property Name | Brief Description |
| :--- | :--- |
| CoeffAutoScale | Specifies whether the filter automatically <br> chooses the proper fraction length to represent <br> filter coefficients without overflowing. Turning <br> this off by setting the value to false enables you <br> to change the NumFracLength and <br> DenFracLength properties to specify the <br> precision used. |
| CoeffWordLength | Specifies the word length to apply to filter <br> coefficients. |
| DenAccumFracLength | Specifies the fraction length the filter algorithm <br> uses to interpret the results of product <br> operations involving denominator coefficients. <br> You can change the value for this property when <br> you set AccumMode to SpecifyPrecision. |
| DenFracLength | Set the fraction length the filter uses to <br> interpret denominator coefficients. <br> DenFracLength is always available, but it is <br> read-only until you set CoeffAutoScale to <br> false. |
| Denominator | Stores the denominator coefficients for the IIR <br> filter. |
| DenProdFracLength | Specifies how the filter algorithm interprets the <br> results of product operations involving <br> denominator coefficients. You can change this <br> property value when you set ProductMode to <br> SpecifyPrecision. |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that perform <br> operations during filtering-gains, delays, sums, <br> products, and input/output. |
|  | Specifies the fraction length the filter uses to <br> interpret input data. |
|  | InputFracLength |


| Property Name | Brief Description |
| :--- | :--- |
| InputWordLength | Specifies the word length applied to interpret <br> input data. |
| NumAccumFracLength | Specifies how the filter algorithm interprets the <br> results of addition operations involving <br> numerator coefficients. You can change the value <br> of this property after you set AccumMode to <br> SpecifyPrecision. |
| Numerator | Holds the numerator coefficient values for the <br> filter. |
| NumFracLength | Sets the fraction length used to interpret the <br> value of numerator coefficients. |
| OutputFracLength | Specifies how the filter algorithm interprets the <br> results of product operations involving <br> numerator coefficients. Available to be changed <br> when you set ProductMode to <br> SpecifyPrecision. |
| Determines how the filter interprets the filter <br> output data. You can change the value of <br> OutputFracLength when you set OutputMode to <br> SpecifyPrecision. |  |
| OutputWordLength | Determines the word length used for the output <br> data. |


| Property Name | Brief Description |
| :--- | :--- |
| OverflowMode | Sets the mode used to respond to overflow <br> conditions in fixed-point arithmetic. Choose from <br> either saturate (limit the output to the largest <br> positive or negative representable value) or wrap <br> (set overflowing values to the nearest <br> representable value using modular arithmetic). <br> The choice you make affects only the <br> accumulator and output arithmetic. Coefficient <br> and input arithmetic always saturates. Finally, <br> products never overflow-they maintain full <br> precision. |
| ProductMode | Determines how the filter handles the output of <br> product operations. Choose from full precision <br> (FullPrecision), or whether to keep the most <br> significant bit (KeepMSB) or least significant bit <br> (KeepLSB) in the result when you need to shorten <br> the data words. For you to be able to set the <br> precision (the fraction length) used by the output <br> from the multiplies, you set ProductMode to <br> SpecifyPrecision. |
| ProductWordLength | Specifies the word length to use for <br> multiplication operation results. This property <br> becomes writable (you can change the value) <br> when you set ProductMode to |
| SpecifyPrecision. |  |


| Property Name | Brief Description |
| :--- | :--- |
| RoundMode | Sets the mode the filter uses to quantize <br> numeric values when the values lie between <br> representable values for the data format (word <br> and fraction lengths). |
|  | - convergent—Round up to the next allowable <br> quantized value. |
|  | - ceil—Round to the nearest allowable <br> quantized value. Numbers that are exactly |
|  | halfway between the two nearest allowable <br> quantized values are rounded up only if the |
| least significant bit (after rounding) would be |  |
| set to 1. |  |


| Property Name | Brief Description |
| :--- | :--- |
| Signed | Specifies whether the filter uses signed or <br> unsigned fixed-point coefficients. Only <br> coefficients reflect this property setting. |
| States | This property contains the filter states before, <br> during, and after filter operations. States act as <br> filter memory between filtering runs or sessions. <br> Notice that the states use fi objects, with the <br> associated properties from those objects. For <br> details, refer to filtstates in your Signal <br> Processing Toolbox documentation or in the Help <br> system. |

Specify a second-order direct-form I structure for a dfilt object, hd, with the following code:

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1(b,a)
hd =
```

```
FilterStructure: 'Direct-Form I'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]
```

Now convert hd to a fixed-point filter:

```
set(hd,'arithmetic','fixed')
hd
hd =
```

```
 FilterStructure: 'Direct-Form I'
```

    FilterStructure: 'Direct-Form I'
    Arithmetic: 'fixed'
    ```
 Arithmetic: 'fixed'
```

Numerator: [0.3000 0.6000 0.3000]
Denominator: [1 0 0.2000]
PersistentMemory: false
States: Numerator: [2x1 fi]
Denominator:[2x1 fi]
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputFracLength: ..... 15
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'dfilt, dfilt.df1t, dfilt.df2, dfilt.df2t
See Also
Syntax
Description
Purpose

Construct discrete-time, direct-form I filter object that uses second-orderRefer to dfilt.df1sos in the Signal Processing Toolbox. sections

Refer to dfilt.df1sos in the Signal Processing Toolbox.
hd = dfilt.df1sos(s) returns a discrete-time, second-order section, direct-form I filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.df1sos(b1,a1,b2, a2, ...) returns a discrete-time, second-order section, direct-form I filter object hd, with coefficients for the first section given in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, and so on.
hd = dfilt.df1sos(...,g) includes a gain vector $g$. The elements of $g$ are the gains for each section. The maximum length of $g$ is the number of sections plus one. When you do not specify $g$, all gains default to one.
hd = dfilt.df1sos returns a default, discrete-time, second-order section, direct-form I filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point Filter Structure

The figure below shows the signal flow for the direct-form I filter implemented in second-order sections by dfilt.df1sos. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode,   CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale,   Signed, Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
DenStateFormat	DenStateWordLength	DenStateFracLength	CastBeforeSum,   States
InputFormat	InputWordLength	InputFracLength	NumAccumFracLength
NumAccumFormat	AccumWordLength	AccumMode,   CastBeforeSum	
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale,   Signed, Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength,   ProductMode
NumStateFormat	NumStateWordLength	NumStateFracLength	States
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ScaleValueFormat	CoeffWordLength	ScaleValueFracLength	CoeffAutoScale,   ScaleValues

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the

DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties

In this table you see the properties associated with SOS implementation of direct-form I dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.


Property Name	Brief Description
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to the   appropriate accumulator format (as shown   in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the
CoeffWordLength	NumFracLength and DenFracLength   properties to specify the precision used.
DenAccumFracLength	Specifies the word length to apply to filter   coefficients.
DenFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you
set AccumMode to SpecifyPrecision.	


Property Name	Brief Description
DenStateFracLength	Specifies the fraction length used to   interpret the states associated with   denominator coefficients in the filter.
DenStateWordLength	Specifies the word length used to represent   the states associated with denominator   coefficients in the filter.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
NnputWordLength	Specifies the word length applied to   interpret input data.
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set
AccumMode to SpecifyPrecision.	

$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\ \text { filter output data. You can change the value } \\ \text { of OutputFracLength when you set } \\ \text { OutputMode to SpecifyPrecision. }\end{array} \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - Avoid0verflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\} \begin{array}{l}\text { SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. False is   the default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil—Round to the nearest allowable   quantized value. Numbers that are exactly   halfway between the two nearest allowable
	quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	

$\left.\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { Signed } & \begin{array}{l}\text { Specifies whether the filter uses signed or } \\ \text { unsigned fixed-point coefficients. Only } \\ \text { coefficients reflect this property setting. }\end{array} \\ \hline \text { SosMatrix } & \begin{array}{l}\text { Holds the filter coefficients as property } \\ \text { values. Displays the matrix in the format } \\ \text { [sections x coefficients/section datatype]. }\end{array} \\ \text { A [15x6 double] SOS matrix represents a } \\ \text { filter with 6 coefficients per section and 15 } \\ \text { sections, using data type double to represent } \\ \text { the coefficients. }\end{array}\right] \begin{array}{l}\text { This property contains the filter states } \\ \text { before, during, and after filter operations. } \\ \text { States } \\ \text { States act as filter memory between filtering } \\ \text { runs or sessions. Notice that the states use } \\ \text { fi objects, with the associated properties } \\ \text { from those objects. For details, refer to } \\ \text { filtstates in your Signal Processing } \\ \text { Toolbox documentation or in the Help } \\ \text { system. }\end{array}\right]$

## Examples

Specify a fixed-point, second-order section, direct-form I dfilt object with the following code:

```
b=[[0.3 0.6 0.3];
a=[1 0 0.2];
hd=dfilt.df1sos(b,a)
hd =
```

```
FilterStructure: 'Direct-Form I, Second-Order Sections'
Arithmetic: 'double'
 sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
 ScaleValues: [2x1 double]
```

```
 PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Direct-Form I, Second-Order Sections'
 ScaleValues: [2x1 double]
 Arithmetic: 'fixed'
 sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
PersistentMemory: false
 States: Numerator: [2x1 fi]
 Denominator:[2x1 fi]
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 NumStateWordLength: 16
 NumStateFracLength: 15
 DenStateWordLength: 16
 DenStateFracLength: 15
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
```

dfilt, dfilt.df2tsos

## Purpose

Syntax Refer to dfilt.df1t in the Signal Processing Toolbox.
Description

Fixed-Point
Filter Structure
Construct discrete-time, direct-form I transposed filter object
hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter object hd, with numerator coefficients $b$ and denominator coefficients $a$.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed filter object hd, with $b=1$ and $a=1$. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

The figure below shows the signal flow for the transposed direct-form I filter implemented by dfilt.df1t. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed,   Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
DenStateFormat	DenStateWordLength	DenStateFracLength	CastBeforeSum, States
InputFormat	InputWordLength	InputFracLength	CastBeforeSum
MultiplicandFormat	MultiplicandWordLength	MultiplicandFracLength	AccumMode, CastBeforeSum
NumAccumFormat	AccumWordLength	NumAccumFracLength	CoeffAutoScale, Signed,   Numerator
NumFormat	CoeffWordLength	NumFracLength	ProductWordLength,   ProductMode
NumProdFormat	CoeffWordLength	NumProdFracLength	States
NumStateFormat	NumStateWordLength	NumStateFracLength	OutputMode
OutputFormat	OutputWordLength	OutputFracLength	Outh

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

In this table you see the properties associated with df1t implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.


Property Name	Brief Description
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.
DenFracLength is always available, but it is	
read-only until you set CoeffAutoScale to	
false.	


Property Name	Brief Description
DenStateFracLength	Specifies the fraction length used to   interpret the states associated with   denominator coefficients in the filter.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
MultiplicandFracLength	Sets the fraction length for values   (multiplicands) used in multiply operations   in the filter.
MultiplicandWordLength	Sets the word length applied to the values   input to a multiply operation (the   multiplicands).
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set
AccumMode to SpecifyPrecision.	

$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { NumProdFracLength } & \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\ \text { the results of product operations involving } \\ \text { numerator coefficients. Available to be } \\ \text { changed when you set ProductMode to } \\ \text { SpecifyPrecision. }\end{array} \\ \hline \text { NumStateFracLength } & \begin{array}{l}\text { For IIR filters, this defines the binary point } \\ \text { location applied to the numerator states of } \\ \text { the filter. Specifies the fraction length used } \\ \text { to interpret the states associated with } \\ \text { numerator coefficient operations in the filter. }\end{array} \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\ \text { filter output data. You can change the value } \\ \text { of OutputFracLength when you set } \\ \text { OutputMode to SpecifyPrecision. }\end{array} \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. }\end{array}\right\} \begin{array}{l}\text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. } \\ \text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
OverflowMode	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose   from either saturate (limit the output to the   largest positive or negative representable   value) or wrap (set overflowing values to the   nearest representable value using modular   arithmetic). The choice you make affects   only the accumulator and output arithmetic.   Coefficient and input arithmetic always   saturates. Finally, products never overflow-   they maintain full precision.
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.
	For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to
SpecifyPrecision.	


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if
	the least significant bit (after rounding)
would be set to 1.	


Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a second-order direct-form I transposed filter structure for a dfilt object, hd, with the following code:

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)
hd =
```

```
FilterStructure: 'Direct-Form I Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
PersistentMemory: false
 States: Numerator: [2x1 double]
 Denominator:[2x1 double]
```

Now convert the filter to single-precision filtering arithmetic.

```
set(hd,'arithmetic','single')
hd
hd =
 FilterStructure: 'Direct-Form I Transposed'
```

Arithmetic: 'fixed'Numerator: [0.3000 0.6000 0.3000]Denominator: [1 0 0.2000]PersistentMemory: false
States: Numerator: [2x1 fi]
Denominator:[2x1 fi]
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow
MultiplicandWordLength: ..... 16
MultiplicandFracLength: ..... 15
StateWordLength: ..... 16
StateAutoScale: true
ProductMode: 'FullPrecision
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
See Alsodfilt, dfilt.df1, dfilt.df2, dfilt.df2t
Syntax
Description
Purpose

Construct discrete-time, second-order section, direct-form I transposed filterRefer to dfilt.df1tsos in the Signal Processing Toolbox. object

Refer to dfilt.df1tsos in the Signal Processing Toolbox.
hd = dfilt.df1tsos(s) returns a discrete-time, second-order section, direct-form I, transposed filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.df1tsos(b1,a1, b2, a2,...) returns a discrete-time, second-order section, direct-form I, transposed filter object hd, with coefficients for the first section given in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.
hd = dfilt.df1tsos(..., g) includes a gain vector $g$. The elements of $g$ are the gains for each section. The maximum length of $g$ is the number of sections plus one. If g is not specified, all gains default to one.
hd = dfilt.df1tsos returns a default, discrete-time, second-order section, direct-form I, transposed filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point Filter Structure

The figure below shows the signal flow for the direct-form I transposed filter implemented using second-order sections by dfilt.df1tsos. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word
length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed,   Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
DenStateFormat	DenStateWordLength	DenStateFracLength	CastBeforeSum, States
InputFormat	InputWordLength	InputFracLength	
MultiplicandFormat	MultiplicandWordLength	MultiplicandFracLength	CastBeforeSum
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode, CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale, Signed,   Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength,   ProductMode
NumStateFormat	NumStateWordLength	NumStateFracLength	States
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ScaleValueFormat	CoeffWordLength	ScaleValueFracLength	CoeffAutoScale, ScaleValues
StageInputFormat	StageInputWordLength	StageInputFracLength	StageInputAutoScale
StageOutputFormat	StageOutputWordLength	StageOutputFracLength	StageOutputAutoScale

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties

In this table you see the properties associated with SOS implementation of transposed direct-form I dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.


Property Name	Brief Descripfion
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.
DenFracLength is always available, but it is	
read-only until you set CoeffAutoScale to	
false.	


Property Name	Brief Description
DenStateFracLength	Specifies the fraction length used to   interpret the states associated with   denominator coefficients in the filter.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
MultiplicandFracLength	Sets the fraction length for values   (multiplicands) used in multiply operations   in the filter.
MultiplicandWordLength	Sets the word length applied to the values   input to a multiply operation (the   multiplicands)
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set
AccumMode to SpecifyPrecision.	


Property Name	Brief Description
NumStateFracLength	For IIR filters, this defines the binary point location applied to the numerator states of the filter. Specifies the fraction length used to interpret the states associated with numerator coefficient operations in the filter.
NumStateWordLength	For IIR filters, this defines the word length applied to the numerator states of the filter. Specifies the word length used to interpret the states associated with numerator coefficient operations in the filter.
OutputFracLength	Determines how the filter interprets the filter output data. You can change the value of OutputFracLength when you set OutputMode to SpecifyPrecision.
OutputMode	Sets the mode the filter uses to scale the filtered data for output. You have the following choices:   - AvoidOverflow-directs the filter to set the output data word length and fraction length to avoid causing the data to overflow.   - BestPrecision—directs the filter to set the output data word length and fraction length to maximize the precision in the output data.   - SpecifyPrecision-lets you set the word and fraction lengths used by the output data from filtering.
OutputWordLength	Determines the word length used for the output data.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OverflowMode } & \begin{array}{l}\text { Sets the mode used to respond to overflow } \\ \text { conditions in fixed-point arithmetic. Choose } \\ \text { from either saturate (limit the output to the } \\ \text { largest positive or negative representable } \\ \text { value) or wrap (set overflowing values to the } \\ \text { nearest representable value using modular } \\ \text { arithmetic). The choice you make affects } \\ \text { only the accumulator and output arithmetic. } \\ \text { Coefficient and input arithmetic always } \\ \text { saturates. Finally, products never overflow- } \\ \text { they maintain full precision. }\end{array} \\ \hline \text { ProductMode } & \begin{array}{l}\text { Determines how the filter handles the } \\ \text { output of product operations. Choose from } \\ \text { full precision (FullPrecision), or whether to } \\ \text { keep the most significant bit (KeepMSB) or }\end{array} \\ \text { least significant bit (KeepLSB) in the result } \\ \text { when you need to shorten the data words. } \\ \text { For you to be able to set the precision (the } \\ \text { fraction length) used by the output from the } \\ \text { multiplies, you set ProductMode to }\end{array}\right\}$

Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths).   - convergent-Round up to the next allowable quantized value.   - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 .   - fix-Round negative numbers up and positive numbers down to the next allowable quantized value.   - floor-Round down to the next allowable quantized value.   - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.   The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflowthey maintain full precision.
ScaleValueFracLength	Scale values work with SOS filters. Setting this property controls how your filter interprets the scale values by setting the fraction length. Only available when you disable AutoScaleMode by setting it to false.


Property Name	Brief Description
ScaleValues	Scaling for the filter objects in SOS filters.
Signed	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.
SosMatrix	Holds the filter coefficients as property   values. Displays the matrix in the format   [sections x coefficients/section datatype].   A [15x6 double] SOS matrix represents a   filter with 6 coefficients per section and 15   sections, using data type double to represent   the coefficients.
StageInputAutoScale	Tells the filter whether to set the stage input   data format to minimize the occurrence of   overflow conditions.
StageInputFracLength	Lets you set the fraction length for stage   inputs in SOS filters, if you set   StageInputAutoScale to false.
StageInputWordLength	Lets you set the word length for stage inputs   in SOS filters, if you set   StageInputAutoScale to false.
StageOutputAutoScale	Tells the filter whether to set the stage   output data format to minimize the   occurrence of overflow conditions.
StageOutputFracLength	Lets you set the fraction length for stage   outputs in SOS filters, if you set   StageOutputAutoScale to false.
StageOutputWordLength	Lets you set the word length for stage   outputs in SOS filters, if you set   StageOutputAutoScale to false.


Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

With the following code, this example specifies a second-order section, direct-form I transposed dfilt object for a filter. Then we convert the filter to fixed-point operation.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)
hd =
```

                    FilterStructure: 'Direct-Form I Transposed'
                Arithmetic: 'double'
                Numerator: [0.3000 0.6000 0.3000]
            Denominator: [1 0 0.2000]
            PersistentMemory: false
            States: Numerator: [2x1 double]
                                    Denominator:[2x1 double]
    set(hd,'arithmetic','fixed')
hd
hd =
FilterStructure: 'Direct-Form I Transposed'Arithmetic: 'fixed'Numerator: [0.3000 0.6000 0.3000]Denominator: [1 0 0.2000]
PersistentMemory: false
States: Numerator: [2x1 fi]
Denominator:[2x1 fi]
CoeffWordLength: ..... 16
CoeffAutoScale: trueSigned: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode 'AvoidOverflow
MultiplicandWordLength: ..... 16
MultiplicandFracLength: ..... 15
StateWordLength: ..... 16
StateAutoScale: true
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: ..... true
RoundMode: 'convergentOverflowMode: 'wrap'
See Also dfilt, dfilt.df1sos, dfilt.df2sos, dfilt.df2tsos

## Purpose Construct discrete-time, direct-form II filter object

Syntax Refer to dfilt.df2 in the Signal Processing Toolbox.
Description hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter object hd, with numerator coefficients $b$ and denominator coefficients $a$.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic', 'fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.df2 returns a default, discrete-time, direct-form II filter object hd, with $b=1$ and $a=1$. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point The figure below shows the signal flow for the direct-form II filter implemented Filter Structure by dfilt.df2. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.
For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode,   CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale,   Signed, Denominator


Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
InputFormat	InputWordLength	InputFracLength	
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode,   CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale,   Signed, Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength,   ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties In this table you see the properties associated with the df2 implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.


Property Name	Brief Description
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.   DenFracLength is always available, but it is   read-only until you set CoeffAutoScale to   false.
Denominator	Holds the denominator coefficients for IIR   filters.
DenProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   denominator coefficients. You can change   this property value when you set   ProductMode to SpecifyPrecision.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
	Specifies the fraction length the filter uses to   interpret input data.


Property Name	Brief Description
InputWordLength	Specifies the word length applied to   interpret input data.
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set   AccumMode to SpecifyPrecision.
Numerator	Holds the numerator coefficient values for   the filter.
NumFracLength	Sets the fraction length used to interpret the   value of numerator coefficients.
NumProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   numerator coefficients. Available to be   changed when you set ProductMode to
SpecifyPrecision.	

$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - AvoidOverflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\} \begin{array}{l}\text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. False is   the default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil—Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if   the least significant bit (after rounding)
would be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a second-order direct-form II filter structure for a dfilt object, hd, with the following code:

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2(b,a)
hd =
 FilterStructure: 'Direct Form II'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 NumberOfSamplesProcessed: 0
 ResetStates: 'on'
 States: [2x1 double]
```

To convert the filter to fixed-point arithmetic, change the value of the Arithmetic property

```
set(hd,'arithmetic','fixed')
```

to specify the fixed-point option.

## See Also

```
dfilt, dfilt.df1, dfilt.df1t, dfilt.df2t
```


## Purpose

Syntax Refer to dfilt.df2sos in the Signal Processing Toolbox.
Description
Construct discrete-time, second-order section, direct-form II filter object
hd = dfilt.df2sos(s) returns a discrete-time, second-order section, direct-form II filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.df2sos(b1, a1, b2, a2, ...) returns a discrete-time, second-order section, direct-form II object, hd, with coefficients for the first section given in the b 1 and a 1 vectors, for the second section given in the b 2 and a 2 vectors, etc.
hd = dfilt.df2sos(...,g) includes a gain vector $g$. The elements of $g$ are the gains for each section. The maximum length of $g$ is the number of sections plus one. If $g$ is not specified, all gains default to one.
hd = dfilt.df2sos returns a default, discrete-time, second-order section, direct-form II filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point
Filter Structure

The figure below shows the signal flow for the direct-form II filter implemented with second-order sections by dfilt.df2sos. To help you see how the filter
processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed,   sosMatrix
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength,   sosMatrix
InputFormat	InputWordLength	InputFracLength	
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode, CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale, Signed,   sosMatrix
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength,   ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ScaleValueFormat	CoeffWordLength	ScaleValueFracLength	CoeffAutoScale, ScaleValues
StageInputFormat	StageInputWordLength	StageInputFracLength	StageInputAutoScale
StageOutputFormat	StageOutputWordLength	StageOutputFracLength	StageOutputAutoScale
StateFormat	StateWordLength	StateFracLength	CastBeforeSum, States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties

In this table you see the properties associated with second-order section implementation of direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.


Property Name	Brief Description
CastBeforeSum	Specifies whether to cast numeric data to the   appropriate accumulator format (as shown   in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.
DenFracLength is always available, but it is	
read-only until you set CoeffAutoScale to	
false.	


Property Name	Brief Description
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set   AccumMode to SpecifyPrecision.
NumFracLength	Sets the fraction length used to interpret the   value of numerator coefficients.
NumProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   numerator coefficients. Available to be   changed when you set ProductMode to
SpecifyPrecision.	

$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ & \text { - AvoidOverflow—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. False is   the default setting.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { RoundMode } & \begin{array}{l}\text { Sets the mode the filter uses to quantize } \\ \text { numeric values when the values lie between } \\ \text { representable values for the data format } \\ \text { (word and fraction lengths). }\end{array} \\ & \begin{array}{l}\text { - convergent-Round up to the next } \\ \text { allowable quantized value. }\end{array} \\ & \begin{array}{l}\text { - ceil-Round to the nearest allowable } \\ \text { quantized value. Numbers that are exactly }\end{array} \\ & \begin{array}{l}\text { halfway between the two nearest allowable } \\ \text { quantized values are rounded up only if the }\end{array} \\ \text { least significant bit (after rounding) would } \\ \text { be set to 1. }\end{array}\right\}$
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { Signed } & \begin{array}{l}\text { Specifies whether the filter uses signed or } \\ \text { unsigned fixed-point coefficients. Only } \\ \text { coefficients reflect this property setting. }\end{array} \\ \hline \text { SosMatrix } & \begin{array}{l}\text { Holds the filter coefficients as property } \\ \text { values. Displays the matrix in the format } \\ \text { [sections x coefficients/section datatype]. }\end{array} \\ \text { A [15x6 double] SOS matrix represents a } \\ \text { filter with 6 coefficients per section and 15 } \\ \text { sections, using data type double to represent } \\ \text { the coefficients. }\end{array}\right\}$

Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a second-order section, direct-form II dfilt object for a Butterworth filter converted to second-order sections, with the following code:

```
[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(s,g)
hd =
```

```
FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2\times15 double]
```

With the SOS filter constructed, now change the filter operation to single-precision filtering, and then to fixed-point filtering.

```
set(hd,'arithmetic','single')
hd
hd =
```

FilterStructure: 'Direct-Form II, Second-Order Sections' Arithmetic: 'single'

```
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [2x15 single]
hd.arithmetic='fixed'
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections' Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 StageInputWordLength: 16
 StageInputAutoScale: true
 StageOutputWordLength: 16
 StageOutputAutoScale: true
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
```

StateWordLength: ..... 16
StateFracLength: 15
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2tsos

## Purpose

Syntax Refer to dfilt.df2t in the Signal Processing Toolbox.
Description

Fixed-Point
Filter Structure
Construct discrete-time, direct-form II transposed filter object
hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed filter object hd, with numerator coefficients $b$ and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed filter object $h d$, with $b=1$ and $a=1$. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

The figure below shows the signal flow for the direct-form II transposed filter implemented by dfilt.df2t. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length Property	Fraction Length Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed, Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode, ProductWordLength
InputFormat	InputWordLength	InputFracLength	
NumAccumFormat	AccumWordLength	NumAccumFracLength	AccumMode, CastBeforeSum
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale, Signed, Numerator
NumProdFormat	CoeffWordLength	NumProdFracLength	ProductWordLength, ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that include denominator coefficients. From reviewing the table, you see that the

## Properties

DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

In this table you see the properties associated with df2t implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { Arithmetic } & \begin{array}{l}\text { Defines the arithmetic the filter uses. Gives } \\ \text { you the options double, single, and fixed. } \\ \text { In short, this property defines the operating } \\ \text { mode for your filter. }\end{array} \\ \hline \text { CastBeforeSum } & \begin{array}{l}\text { Specifies whether to cast numeric data to the } \\ \text { appropriate accumulator format (as shown } \\ \text { in the signal flow diagrams) before } \\ \text { performing sum operations. }\end{array} \\ \hline \text { CoeffAutoScale } & \begin{array}{l}\text { Specifies whether the filter automatically } \\ \text { chooses the proper fraction length to } \\ \text { represent filter coefficients without } \\ \text { overflowing. Turning this off by setting the } \\ \text { value to false enables you to change the }\end{array} \\ \text { NumFracLength and DenFracLength } \\ \text { properties to specify the precision used. }\end{array}\right\}$
$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { DenProdFracLength } & \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\ \text { the results of product operations involving } \\ \text { denominator coefficients. You can change } \\ \text { this property value when you set } \\ \text { ProductMode to SpecifyPrecision. }\end{array} \\ \hline \text { FilterStructure } & \begin{array}{l}\text { Describes the signal flow for the filter object, } \\ \text { including all of the active elements that } \\ \text { perform operations during filtering-gains, } \\ \text { delays, sums, products, and input/output. }\end{array} \\ \hline \text { InputFracLength } & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\ \text { interpret input data. }\end{array} \\ \hline \text { InputWordLength } & \begin{array}{l}\text { Specifies the word length applied to } \\ \text { interpret input data. }\end{array} \\ \hline \text { NumAccumFracLength } & \begin{array}{l}\text { Specifies how the filter algorithm interprets } \\ \text { the results of addition operations involving } \\ \text { numerator coefficients. You can change the } \\ \text { value of this property after you set }\end{array} \\ \hline \text { AccumMode to SpecifyPrecision. }\end{array}\right\}$

Property Name	Brief Description
OutputMode	Sets the mode the filter uses to scale the filtered data for output. You have the following choices:   - AvoidOverflow-directs the filter to set the output data word length and fraction length to avoid causing the data to overflow.   - BestPrecision-directs the filter to set the output data word length and fraction length to maximize the precision in the output data.   - SpecifyPrecision-lets you set the word and fraction lengths used by the output data from filtering.
OutputWordLength	Determines the word length used for the output data.
OverflowMode	Sets the mode used to respond to overflow conditions in fixed-point arithmetic. Choose from either saturate (limit the output to the largest positive or negative representable value) or wrap (set overflowing values to the nearest representable value using modular arithmetic). The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always saturates. Finally, products never overflowthey maintain full precision.


Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. False is   the default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly   halfway between the two nearest allowable
	quantized values are rounded up only if the   least significant bit (after rounding) would
be set to 1.	


Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

Examples
Create a fixed-point filter by specifying a second-order direct-form II transposed filter structure for a dfilt object, and then converting the double-precision arithmetic setting to fixed-point.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t(b,a)
hd =
 FilterStructure: 'Direct-Form II Transposed'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [2x1 double]
set(hd,'arithmetic','fixed')
```

hd
hd =
FilterStructure: 'Direct-Form II Transposed'
Arithmetic: 'fixed'
Numerator: [0.3000 0.6000 0.3000]
Denominator: [1 0 0.2000]
PersistentMemory: false
States: [1x1 embedded.fi]
CoeffWordLength: 16
CoeffAutoScale: true
Signed: true
InputWordLength: 16
InputFracLength: 15
OutputWordLength: 16
OutputFracLength: 15
StateWordLength: 16
StateAutoScale: true
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2
Purpose Construct discrete-time, second-order section direct-form II transposed filterobject
Refer to dfilt.df2tsos in the Signal Processing Toolbox.
hd = dfilt.df2sos(s) returns a discrete-time, second-order section,direct-form II, transposed filter object hd, with coefficients given in the matrix s.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd, 'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.df2tsos(b1, a1, b2, a2, ...) returns a discrete-time, second-order section, direct-form II, transposed filter object hd, with coefficients for the first section given in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.
hd = dfilt.df2tsos(...,g) includes a gain vector $g$. The elements of $g$ are the gains for each section. The maximum length of $g$ is the number of sections plus one. If g is not specified, all gains default to one.
hd = dfilt.df2tsos returns a default, discrete-time, second-order section, direct-form II, transposed filter object, hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0 . To allow you to change the arithmetic setting to fixed or single, a(1) must be equal to 1 .

Fixed-Point Filter Structure

The figure below shows the signal flow for the second-order section transposed direct-form II filter implemented by dfilt.dftsos. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
DenAccumFormat	AccumWordLength	DenAccumFracLength	AccumMode, CastBeforeSum
DenFormat	CoeffWordLength	DenFracLength	CoeffAutoScale, Signed,   Denominator
DenProdFormat	CoeffWordLength	DenProdFracLength	ProductMode,   ProductWordLength
InputFormat	InputWordLength	InputFracLength	AccumMode, CastBeforeSum
NumAccumFormat	AccumWordLength	NumAccumFracLength	CoeffAutoScale, Signed,   Numerator
NumFormat	CoeffWordLength	NumFracLength	ProductWordLength,   ProductMode
NumProdFormat	CoeffWordLength	NumProdFracLength	OutputMode
OutputFormat	OutputWordLength	OutputFracLength	CoeffAutoScale,   ScaleValues
ScaleValueFormat	CoeffWordLength	ScaleValueFracLength	StageInputAutoScale
StageInputFormat	StageInputWordLength	StageInputFracLength	StageOutputAutoScale
StageOutputFormat	StageOutputWordLength	StageOutputFracLength	States   StateFormat
StateWordLength	StateFracLength		

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label DenProdFormat, which always follows a denominator coefficient multiplication element in the signal flow. The label indicates that denominator coefficients leave the multiplication element with the word length and fraction length associated with product operations that
include denominator coefficients. From reviewing the table, you see that the DenProdFormat refers to the properties ProdWordLength, ProductMode and DenProdFracLength that fully define the denominator format after multiply (or product) operations.

## Properties

In this table you see the properties associated with second-order section implementation of transposed direct-form II dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to   SpecifyPrecision.
AccumWordLength	Sets the word length used to store data in   the accumulator/buffer.


Property Name	Brief Description
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to   the appropriate accumulator format (as   shown in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   NumFracLength and DenFracLength   properties to specify the precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
DenAccumFracLength	Specifies the fraction length used to   interpret data in the accumulator used to   hold the results of sum operations. You can   change the value for this property when you   set AccumMode to SpecifyPrecision.
DenFracLength	Set the fraction length the filter uses to   interpret denominator coefficients.   DenFracLength is always available, but it is   read-only until you set CoeffAutoScale to   false.
DenProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   denominator coefficients. You can change   this property value when you set   ProductMode to SpecifyPrecision.
	Prod


Property Name	Brief Description
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
NumAccumFracLength	Specifies how the filter algorithm interprets   the results of addition operations involving   numerator coefficients. You can change the   value of this property after you set   AccumMode to SpecifyPrecision.
NumFracLength	Sets the fraction length used to interpret the   value of numerator coefficients.
NumProdFracLength	Specifies how the filter algorithm interprets   the results of product operations involving   numerator coefficients. Available to be   changed when you set ProductMode to   SpecifyPrecision.
OutputFracLength	Determines how the filter interprets the   filter output data. You can change the value   of OutputFracLength when you set   OutputMode to SpecifyPrecision.


Property Name	Brief Description
OutputMode	Sets the mode the filter uses to scale the   filtered data for output. You have the   following choices:
- AvoidOverflow—directs the filter to set	
the output data word length and fraction	
length to avoid causing the data to	
overflow.	
-BestPrecision—directs the filter to set   the output data word length and fraction   length to maximize the precision in the   output data.	
$\quad$SpecifyPrecision-lets you set the   word and fraction lengths used by the   output data from filtering.	
OutputWordLength	Determines the word length used for the   output data.
OverflowMode	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose   from either saturate (limit the output to the   largest positive or negative representable   value) or wrap (set overflowing values to the   nearest representable value using modular   arithmetic). The choice you make affects   only the accumulator and output arithmetic.   Coefficient and input arithmetic always   saturates. Finally, products never overflow-   they maintain full precision.


Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. False is   the default setting.

$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { RoundMode } & \begin{array}{l}\text { Sets the mode the filter uses to quantize } \\ \text { numeric values when the values lie between } \\ \text { representable values for the data format } \\ \text { (word and fraction lengths). }\end{array} \\ & \begin{array}{l}\text { - convergent-Round up to the next } \\ \text { allowable quantized value. }\end{array} \\ & \begin{array}{l}\text { - ceil-Round to the nearest allowable } \\ \text { quantized value. Numbers that are exactly }\end{array} \\ & \begin{array}{l}\text { halfway between the two nearest allowable }\end{array} \\ & \text { quantized values are rounded up only if } \\ \text { the least significant bit (after rounding) }\end{array}\right\}$
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { ScaleValues } & \text { Scaling for the filter objects in SOS filters. } \\ \hline \text { Signed } & \begin{array}{l}\text { Specifies whether the filter uses signed or } \\ \text { unsigned fixed-point coefficients. Only } \\ \text { coefficients reflect this property setting. }\end{array} \\ \hline \text { SosMatrix } & \begin{array}{l}\text { Holds the filter coefficients as property } \\ \text { values-you use set and get to modify } \\ \text { them. Displays the matrix in the format } \\ \text { [sections x coefficients/section data type]. } \\ \text { A [15x6 double] SOS matrix represents } \\ \text { a filter with 6 coefficients per section and 15 } \\ \text { sections, using data type double to represent } \\ \text { the coefficients. }\end{array} \\ \hline \text { StageInputFracLength } & \begin{array}{l}\text { Lets you set the fraction length for stage } \\ \text { inputs in SOS filters, if you set } \\ \text { StageInputAutoScale to false. }\end{array} \\ \hline \text { StageInputWordLength } & \begin{array}{l}\text { Lets you set the word length for stage inputs } \\ \text { in SOS filters, if you set }\end{array} \\ \text { StageInputAutoScale to false. }\end{array}\right\}$

Property Name	Brief Description
StateAutoScale	Setting autoscaling for filter states to true   reduces the possibility of overflows occurring   during fixed-point operations. Set to false,   StateAutoScale lets the filter select the   fraction length to limit the overflow   potential.
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions.
StateWordLength	Sets the word length used to represent the   filter states.

Examples
Construct a second-order section Butterworth filter for fixed-point filtering. Start by specifying a Butterworth filter, and then convert the filter to second-order sections, with the following code:

```
[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2tsos(s,g)
hd =
```

```
FilterStructure: [1x48 char]
 Arithmetic: 'double'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
PersistentMemory: false
 States: [2x15 double]
```

Now change the setting of the property Arithmetic to convert the filter to fixed-point operation.

```
hd.arithmetic='fixed'
hd =
 FilterStructure: [1x48 char]
 Arithmetic: 'fixed'
 sosMatrix: [15x6 double]
 ScaleValues: [16x1 double]
PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 StageInputWordLength: 16
 StageInputFracLength: 15
 StageOutputWordLength: 16
 StageOutputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 StateWordLength: 16
 StateAutoScale: true
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
```


## OverflowMode: 'wrap'

See Also<br>dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2sos

## Purpose

Syntax Refer to dfilt.dfasymfir in the Signal Processing Toolbox.
Description
Construct discrete-time, direct-form antisymmetric FIR filter object
hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form, antisymmetric FIR filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic', 'single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, antisymmetric FIR filter object hd, with $b=1$. This filter passes the input through to the output unchanged.

Note Only the coefficients in the first half of vector b are used because dfilt.dfasymfir assumes the coefficients in the second half are antisymmetric to those in the first half. For example, in the figure coefficients, $b(4)=-b(3), b(5)=-b(2)$, and $b(6)=-b(1)$.

Fixed-Point Filter Structure

The figure below shows the signal flow for the odd-order antisymmetric FIR filter implemented by dfilt.dfasymfir. The even-order filter uses similar flow. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.

## dfilt.dfasymfir



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	
InputFormat	InputWordLength	InputFracLength	
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale,   Signed, Numerator
OutputFormat	OutputWordLength	OutputFracLength	
ProductFormat	ProductWordLength	ProductFracLength	
TapSumFormat	InputWordLength	InputFracLength	InputFormat

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with an antisymmetric FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Name	Values	Description
AccumFracLength	Any positive or   negative integer   number of bits   [27]	Specifies the fraction length used to interpret   data output by the accumulator.
AccumWordLength	Any integer   number of bits [33]	Sets the word length used to store data in the   accumulator.
Arithmetic	fixed for   fixed-point filters	Setting this to fixed allows you to modify other   filter properties to customize your fixed-point   filter.
CoeffAutoScale	[true], false	Specifies whether the filter automatically   chooses the proper fraction length to represent   filter coefficients without overflowing. Turning   this off by setting the value to false enables you   to change the NumFracLength property value to   specify the precision used.
CoeffWordLength	Any integer   number of bits   $[16]$	Specifies the word length to apply to filter   coefficients.

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterInternals } & \begin{array}{l}\text { [FullPrecision], } \\ \text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Controls whether the filter automatically sets } \\ \text { the output word and fraction lengths, product } \\ \text { word and fraction lengths, and the accumulator } \\ \text { word and fraction lengths to maintain the best } \\ \text { precision results during filtering. The default } \\ \text { value, FullPrecision, sets automatic word and } \\ \text { fraction length determination by the filter. } \\ \text { SpecifyPrecision makes the output and } \\ \text { accumulator-related properties available so you } \\ \text { can set your own word and fraction lengths for } \\ \text { them. }\end{array} \\ \hline \text { InputFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits } \\ \text { [15] }\end{array} & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\ \text { interpret input data. Also controls } \\ \text { TapSumFracLength. }\end{array} \\ \hline \text { InputWordLength } & \begin{array}{l}\text { Any integer } \\ \text { number of bits } \\ \text { [16] }\end{array} & \begin{array}{l}\text { Specifies the word length applied to interpret } \\ \text { input data. Also determines TapSumWordLength. }\end{array} \\ \hline \text { NumFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits [14] }\end{array} & \begin{array}{l}\text { Sets the fraction length used to interpret the } \\ \text { numerator coefficients. }\end{array} \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits } \\ \text { [29] }\end{array} & \begin{array}{l}\text { Determines how the filter interprets the filter } \\ \text { output data. You can change the value of } \\ \text { OutputFracLength when you set }\end{array} \\ \text { FilerInternals to SpecifyPrecision. }\end{array}\right\}$

Name	Values	Description
OverflowMode	saturate, [wrap]	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose from   either saturate (limit the output to the largest   positive or negative representable value) or wrap   (set overflowing values to the nearest   representable value using modular arithmetic).   The choice you make affects only the   accumulator and output arithmetic. Coefficient   and input arithmetic always saturates. Finally,   products never overflow-they maintain full   precision.
ProductFracLength	Any positive or   negative integer   number of bits [27]	Specifies the fraction length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.
ProductWordLength	Any integer   number of bits   [33]	Specifies the word length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.


Name	Values	Description
RoundMode	[convergent], ceil,fix,floor, round	Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths).   - convergent-Round up to the next allowable quantized value.   - ceil—Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1.   - fix-Round negative numbers up and positive numbers down to the next allowable quantized value.   - floor-Round down to the next allowable quantized value.   - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.   The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.


Name	Values	Description
Signed	[true], false	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.
States	fi object to match   the filter   arithmetic setting	Contains the filter states before, during, and   after filter operations. States act as filter   memory between filtering runs or sessions.   Notice that the states use fi objects, with the   associated properties from those objects. For   details, refer to fixed-point objects in your   Fixed-Point Toolbox documentation or in the   online Help system.

## Examples

## Odd Order

Specify a fifth-order direct-form antisymmetric FIR filter structure for a dfilt object, hd, with the following code:

```
b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hd = dfilt.dfasymfir(b)
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]
 PersistentMemory: false
set(hd,'arithmetic','fixed')
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0080 0.0600-0.4400 0.4400 -0.0600 0.0080]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
```


## InputWordLength: 16

InputFracLength: 15

FilterInternals: 'FullPrecision'
Now look at the coefficients after converting hd to fixed-point format.

```
get(hd,'numerator')
ans =
 -0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080
```


## Even Order

Specify a fourth-order direct-form antisymmetric FIR filter structure for dfilt object hd, with the following code:

```
b = [-0.01 0.1 0.0 -0.1 0.01];
hd = dfilt.dfasymfir(b)
hd =
 FilterStructure: 'Direct-Form Antisymmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
 PersistentMemory: false
hd.arithmetic='fixed'
hd =
```

    FilterStructure: 'Direct-Form Antisymmetric FIR'
            Arithmetic: 'fixed'
            Numerator: \([-0.01000 .10000-0.1000\) 0.0100]
    PersistentMemory: false
    CoeffWordLength: 16
        CoeffAutoScale: true
            Signed: true
    ```
 InputWordLength: 16
 InputFracLength: 15
 FilterInternals: 'FullPrecision'
get(hd,'numerator')
ans =
 -0.0100 0.1000 0 -0.1000 0.0100
```

See Also
dfilt, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir

## Purpose

## Fixed-Point Filter Structure

Syntax Refer to dfilt.dffir in the Signal Processing Toolbox.
Description $\quad$ hd $=$ dfilt.dffir(b) returns a discrete-time, direct-form finite impulse response (FIR) filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd, 'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter object hd, with $\mathrm{b}=1$. This filter passes the input through to the output unchanged.
Construct discrete-time direct-form FIR filter object
ung.
The figure below shows the signal flow for the direct-form FIR filter implemented by dfilt.dffir. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| AccumFormat | AccumWordLength | AccumFracLength |  |
| InputFormat | InputWordLength | InputFracLength |  |
| NumFormat | CoeffWordLength | NumFracLength | CoeffAutoScale, <br> Signed, Numerator |
| OutputFormat | OutputWordLength | OutputFracLength |  |
| ProductFormat | ProductWordLength | ProductFracLength |  |

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with direct-form FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

| Name | Values | Description |
| :--- | :--- | :--- |
| AccumFracLength | Any positive or <br> negative integer <br> number of bits <br> [30] | Specifies the fraction length used to interpret <br> data output by the accumulator. |
| AccumWordLength | Any integer <br> number of bits[34] | Sets the word length used to store data in the <br> accumulator. |
| Arithmetic | fixed for <br> fixed-point filters | Setting this to fixed allows you to modify other <br> filter properties to customize your fixed-point <br> filter. |
| CoeffAutoScale | [true], false | Specifies whether the filter automatically <br> chooses the proper fraction length to represent <br> filter coefficients without overflowing. Turning <br> this off by setting the value to false enables you <br> to change the NumFracLength property value to <br> specify the precision used. |
| CoeffWordLength | Any integer <br> number of bits <br> $[16]$ | Specifies the word length to apply to filter <br> coefficients. |

$\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterInternals } & \begin{array}{l}\text { [FullPrecision], } \\ \text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Controls whether the filter automatically sets } \\ \text { the output word and fraction lengths, product } \\ \text { word and fraction lengths, and the accumulator } \\ \text { word and fraction lengths to maintain the best } \\ \text { precision results during filtering. The default } \\ \text { value, FullPrecision, sets automatic word and } \\ \text { fraction length determination by the filter. } \\ \text { SpecifyPrecision makes the output and } \\ \text { accumulator-related properties available so you } \\ \text { can set your own word and fraction lengths for } \\ \text { them. }\end{array} \\ \hline \text { InputFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits } \\ \text { [15] }\end{array} & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\ \text { interpret input data. }\end{array} \\ \hline \text { InputWordLength } & \begin{array}{l}\text { Any integer } \\ \text { number of bits } \\ \text { [16] }\end{array} & \begin{array}{l}\text { Specifies the word length applied to interpret } \\ \text { input data. }\end{array} \\ \hline \text { NumFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits [14] }\end{array} & \begin{array}{l}\text { Sets the fraction length used to interpret the } \\ \text { numerator coefficients. }\end{array} \\ \hline \text { OutputFracLength } & \begin{array}{l}\text { Any positive or } \\ \text { negative integer } \\ \text { number of bits } \\ \text { [32] }\end{array} & \begin{array}{l}\text { Determines how the filter interprets the filter } \\ \text { output data. You can change the value of } \\ \text { OutputFracLength when you set }\end{array} \\ \text { FilerInternals to SpecifyPrecision. }\end{array}\right\}$

| Name | Values | Description |
| :--- | :--- | :--- |
| OverflowMode | saturate, [wrap] | Sets the mode used to respond to overflow <br> conditions in fixed-point arithmetic. Choose from <br> either saturate (limit the output to the largest <br> positive or negative representable value) or wrap <br> (set overflowing values to the nearest <br> representable value using modular arithmetic). <br> The choice you make affects only the <br> accumulator and output arithmetic. Coefficient <br> and input arithmetic always saturates. Finally, <br> products never overflow-they maintain full <br> precision. |
| ProductFracLength | Any positive or <br> negative integer <br> number of bits [30] | Specifies the fraction length to use for <br> multiplication operation results. This property <br> becomes writable (you can change the value) <br> when you set ProductMode to SpecifyPrecision. |
| ProductWordLength | Any integer <br> number of bits <br> [32] | Specifies the word length to use for <br> multiplication operation results. This property <br> becomes writable (you can change the value) <br> when you set ProductMode to SpecifyPrecision. |


| Name | Values | Description |
| :---: | :---: | :---: |
| RoundMode | [convergent], ceil,fix,floor, round | Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). <br> - convergent-Round up to the next allowable quantized value. <br> - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 . <br> - fix-Round negative numbers up and positive numbers down to the next allowable quantized value. <br> - floor-Round down to the next allowable quantized value. <br> - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. <br> The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision. |


| Name | Values | Description |
| :--- | :--- | :--- |
| Signed | [true], false | Specifies whether the filter uses signed or <br> unsigned fixed-point coefficients. Only <br> coefficients reflect this property setting. |
| States | fi object to match <br> the filter <br> arithmetic setting | Contains the filter states before, during, and <br> after filter operations. States act as filter <br> memory between filtering runs or sessions. <br> Notice that the states use fi objects, with the <br> associated properties from those objects. For <br> details, refer to fixed-point objects in your <br> Fixed-Point Toolbox documentation or in the <br> online Help system. |

## Examples

Specify a second-order direct-form FIR filter structure for a dfilt object hd, with the following code that constructs the filter in double-precision format and then converts the filter to fixed-point operation:

```
b = [0.05 0.9 0.05];
hd = dfilt.dffir(b)
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
hd.arithmetic='fixed'
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
```

```
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 FilterInternals: 'FullPrecision'
hd.filterInternals='specifyPrecision'
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 FilterInternals: 'SpecifyPrecision'
 OutputWordLength: 34
 OutputFracLength: 30
 ProductWordLength: 32
 ProductFracLength: 30
 AccumWordLength: 34
 AccumFracLength: 30
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
```

See Also
dfilt, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir

## Purpose Construct discrete-time, direct-form FIR transposed filter object

## Syntax Refer to dfilt.dffirt in the Signal Processing Toolbox.

Description hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed filter object hd, with numerator coefficients $b$.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR transposed filter object hd, with $b=1$. This filter passes the input through to the output unchanged.


## Fixed-Point Filter Structure

The figure below shows the signal flow for the transposed direct-form FIR filter implemented by dfilt.dffirt. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Relared Properties |
| :--- | :--- | :--- | :--- |
| AccumFormat | AccumWordLength | AccumFracLength |  |
| InputFormat | InputWordLength | InputFracLength |  |
| NumFormat | CoeffWordLength | NumFracLength | CoeffAutoScale, Signed, <br> Numerator |
| OutputFormat | OutputWordLength | OutputFracLength |  |
| ProductFormat | ProductWordLength | ProductFracLength |  |

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the transposed direct-form FIR implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

| Name | Values | Description |
| :--- | :--- | :--- |
| AccumFracLength | Any positive or <br> negative integer <br> number of bits <br> [30] | Specifies the fraction length used to interpret <br> data output by the accumulator. |
| AccumWordLength | Any integer <br> number of bits [34] | Sets the word length used to store data in the <br> accumulator. |
| Arithmetic | fixed for <br> fixed-point filters | Setting this to fixed allows you to modify other <br> filter properties to customize your fixed-point <br> filter. |
| CoeffAutoScale | [true], false | Specifies whether the filter automatically <br> chooses the proper fraction length to represent <br> filter coefficients without overflowing. Turning <br> this off by setting the value to false enables you <br> to change the NumFracLength property value to <br> specify the precision used. |
| CoeffWordLength | Any integer <br> number of bits <br> $[16]$ | Specifies the word length to apply to filter <br> coefficients. |


| Name | Values | Description |
| :--- | :--- | :--- |
| FilterInternals | [FullPrecision], <br> SpecifyPrecision | Controls whether the filter automatically sets <br> the output word and fraction lengths, product <br> word and fraction lengths, and the accumulator <br> word and fraction lengths to maintain the best <br> precision results during filtering. The default <br> value, FullPrecision, sets automatic word and <br> fraction length determination by the filter. <br> SpecifyPrecision makes the output and <br> accumulator-related properties available so you <br> can set your own word and fraction lengths for <br> them. |
| InputFracLength | Any positive or <br> negative integer <br> number of bits <br> [15] | Specifies the fraction length the filter uses to <br> interpret input data. |
| InputWordLength | Any integer <br> number of bits <br> [16] | Specifies the word length applied to interpret <br> input data. |
| NumFracLength | Any positive or <br> negative integer <br> number of bits [14] | Sets the fraction length used to interpret the <br> numerator coefficients. |
| OutputFracLength | Any positive or <br> negative integer <br> number of bits <br> [30] | Determines how the filter interprets the filter <br> output data. You can change the value of <br> OutputFracLength when you set <br> FilerInternals to SpecifyPrecision. |
| OutputWordLength | Any integer <br> number of bits <br> [34] | Determines the word length used for the output <br> data. You make this property editable by setting <br> Filter Internals to SpecifyPrecision. |


| Name | Values | Description |
| :--- | :--- | :--- |
| OverflowMode | saturate, [wrap] | Sets the mode used to respond to overflow <br> conditions in fixed-point arithmetic. Choose from <br> either saturate (limit the output to the largest <br> positive or negative representable value) or wrap <br> (set overflowing values to the nearest <br> representable value using modular arithmetic). <br> The choice you make affects only the |
|  |  | accumulator and output arithmetic. Coefficient <br> and input arithmetic always saturates. Finally, <br> products never overflow-they maintain full <br> precision. |
|  |  |  |


| Name | Values | Description |
| :---: | :---: | :---: |
| RoundMode | [convergent], ceil,fix,floor, round | Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). <br> - convergent-Round up to the next allowable quantized value. <br> - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1. <br> - fix-Round negative numbers up and positive numbers down to the next allowable quantized value. <br> - floor-Round down to the next allowable quantized value. <br> - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. <br> The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision. |


| Name | Values | Description |
| :--- | :--- | :--- |
| Signed | [true ], false | Specifies whether the filter uses signed or <br> unsigned fixed-point coefficients. Only <br> coefficients reflect this property setting. |
| States | fi object to match <br> the filter <br> arithmetic setting | Contains the filter states before, during, and <br> after filter operations. States act as filter <br> memory between filtering runs or sessions. <br> Notice that the states use fi objects, with the <br> associated properties from those objects. For <br> details, refer to fixed-point objects in your <br> Fixed-Point Toolbox documentation or in the <br> online Help system. |

## Examples

Specify a second-order direct-form FIR transposed filter structure for a dfilt object, hd, with the following code:

```
b = [0.05 0.9 0.05];
hd = dfilt.dffirt(b)
hd =
 FilterStructure: 'Direct-Form FIR Transposed'
 Arithmetic: 'double'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
```

Now use the filter property Arithmetic to change the filter to fixed-point format.

```
set(hd,'arithmetic','fixed')
hd
hd =
 FilterStructure: 'Direct-Form FIR Transposed'
 Arithmetic: 'fixed'
 Numerator: [0.0500 0.9000 0.0500]
 PersistentMemory: false
```

CoeffWordLength: ..... 16
CoeffAutoScale: ..... true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'FullPrecision
hd.filterInternals='specifyPrecision'
hd =
FilterStructure: 'Direct-Form FIR Transposed'

```Arithmetic: 'fixed'
```

Numerator: [0.0500 0.9000 0.0500]
PersistentMemory: false
CoeffWordLength: ..... 16
CoeffAutoScale ..... true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'SpecifyPrecision
OutputWordLength: ..... 34
OutputFracLength: ..... 30
ProductWordLength: ..... 32
ProductFracLength: ..... 30
AccumWordLength: ..... 34
AccumFracLength: ..... 30
RoundMode: 'convergent'
OverflowMode: 'wrap'

See Also<br>dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dfsymfir

Purpose
Syntax
Description

Construct discrete-time, direct-form symmetric FIR filter object
Refer to dfilt.dfsymfir in the Signal Processing Toolbox.
hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR filter object hd, with numerator coefficients $b$.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter set(hd, 'arithmetic', 'single');
- To change to fixed-point filtering, enter
set(hd, 'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric FIR filter object hd, with $b=1$. This filter passes the input through to the output unchanged.

Note Only the coefficients in the first half of vector $b$ are used because dfilt.dfsymfir assumes the coefficients in the second half are symmetric to those in the first half. In the figure below, for example, $b(3)=0, b(4)=b(2)$ and $\mathrm{b}(5)=\mathrm{b}(1)$.

In the following figure you see the signal flow diagram for the symmetric FIR filter that dfilt.dfsymfir implements.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	
InputFormat	InputWordLength	InputFracLength	
NumFormat	CoeffWordLength	NumFracLength	CoeffAutoScale,   Signed, Numerator
OutputFormat	OutputWordLength	OutputFracLength	
ProductFormat	ProductWordLength	ProductFracLength	
TapSumFormat	InputWordLength	InputFracLength	

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength and ProductWordLength that fully define the coefficient format after multiply (or product) operations.
$\begin{array}{ll}\text { Properties } & \text { In this table you see the properties associated with the symmetric FIR } \\ \text { implementation of dfilt objects. }\end{array}$

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3..

Name	Values	Description
AccumFracLength	Any positive or   negative integer   number of bits   [27]	Specifies the fraction length used to interpret   data output by the accumulator.
AccumWordLength	Any integer   number of bits[33]	Sets the word length used to store data in the   accumulator.
Arithmetic	fixed for   fixed-point filters	Setting this to fixed allows you to modify other   filter properties to customize your fixed-point   filter.
[true], false	Specifies whether the filter automatically   chooses the proper fraction length to represent   filter coefficients without overflowing. Turning   this off by setting the value to false enables you   to change the NumFracLength property value to   specify the precision used.	
CoeffWordLength	Any integer   number of bits   [16]	Specifies the word length to apply to filter   coefficients.


Name	Values	Description
FilterInternals	[FullPrecision],   SpecifyPrecision	Controls whether the filter automatically sets   the output word and fraction lengths, product   word and fraction lengths, and the accumulator   word and fraction lengths to maintain the best   precision results during filtering. The default   value, FullPrecision, sets automatic word and   fraction length determination by the filter.   SpecifyPrecision makes the output and   accumulator-related properties available so you   can set your own word and fraction lengths for   them.
InputFracLength	Any positive or   negative integer   number of bits   [15]	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Any integer   number of bits   [16]	Specifies the word length applied to interpret   input data.
NumFracLength	Any positive or   negative integer   number of bits [14]	Sets the fraction length used to interpret the   numerator coefficients.
OutputFracLength	Any positive or   negative integer   number of bits   [29]	Determines how the filter interprets the filter   output data. You can change the value of   OutputFracLength when you set   FilerInternals to SpecifyPrecision.
OutputWordLength	Any integer   number of bits   [33]	Determines the word length used for the output   data. You make this property editable by setting   Filter Internals to SpecifyPrecision.


Name	Values	Description
OverflowMode	saturate, [wrap]	Sets the mode used to respond to overflow   conditions in fixed-point arithmetic. Choose from   either saturate (limit the output to the largest   positive or negative representable value) or wrap   (set overflowing values to the nearest   representable value using modular arithmetic).   The choice you make affects only the   accumulator and output arithmetic. Coefficient   and input arithmetic always saturates. Finally,   products never overflow-they maintain full   precision.
ProductFracLength	Any positive or   negative integer   number of bits [29]	Specifies the fraction length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.
ProductWordLength	Any integer   number of bits   [33]	Specifies the word length to use for   multiplication operation results. This property   becomes writable (you can change the value)   when you set ProductMode to SpecifyPrecision.


Name	Values	Description
RoundMode	[convergent], ceil,fix,floor, round	Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths).   - convergent-Round up to the next allowable quantized value.   - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 .   - fix-Round negative numbers up and positive numbers down to the next allowable quantized value.   - floor-Round down to the next allowable quantized value.   - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.   The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.


Name	Values	Description
Signed	[true ], false	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.
States	fi object to match   the filter   arithmetic setting	Contains the filter states before, during, and   after filter operations. States act as filter   memory between filtering runs or sessions.   Notice that the states use fi objects, with the   associated properties from those objects. For   details, refer to fixed-point objects in your   Fixed-Point Toolbox documentation or in the   online Help system.

## Examples

## Odd Order

Specify a fifth-order direct-form symmetric FIR filter structure for a dfilt object hd, with the following code:

```
b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd = dfilt.dfsymfir(b)
hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
 PersistentMemory: false
set(hd,'arithmetic','fixed')
hd
hd =
```

```
 FilterStructure: 'Direct-Form Symmetric FIR'
```

    FilterStructure: 'Direct-Form Symmetric FIR'
            Arithmetic: 'fixed'
            Arithmetic: 'fixed'
            Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
            Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
    PersistentMemory: false
    ```
 PersistentMemory: false
```

CoeffWordLength: ..... 16
CoeffAutoScale: ..... true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'FullPrecision'
hd.filterinternals='specifyPrecision'
hd =
FilterStructure: 'Direct-Form Symmetric FIR'
Arithmetic: 'fixed'
Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600-0.0080]
PersistentMemory: false
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'SpecifyPrecision
OutputWordLength: ..... 36
OutputFracLength: ..... 31
ProductWordLength: ..... 33
ProductFracLength: ..... 31
AccumWordLength: ..... 36
AccumFracLength: ..... 31
RoundMode: 'convergent
OverflowMode: 'wrap'

To use hd for fixed-point filtering, change the value of the property Arithmetic to fixed with the following command:

```
hd.arithmetic = 'fixed'
```


## Even Order

Specify a fourth-order, fixed-point, direct-form symmetric FIR filter structure for a dfilt object hd, with the following code:

```
b = [-0.01 0.1 0.8 0.1 -0.01];
hd = dfilt.dfsymfir(b)
hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'double'
 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]
 PersistentMemory: false
set(hd,'arithmetic','fixed')
hd
hd =
 FilterStructure: 'Direct-Form Symmetric FIR'
 Arithmetic: 'fixed'
 Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]
 PersistentMemory: false
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 FilterInternals: 'FullPrecision'
hd.filterinternals='specifyPrecision'
```


## dfilt.dfsymfir

hd =FilterStructure: 'Direct-Form Symmetric FIR'Arithmetic: 'fixed'Numerator: [-0.0100 0.1000 0.80000 .1000 -0.0100]
PersistentMemory: false
CoeffWordLength: ..... 16
CoeffAutoScale: true
Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
FilterInternals: 'SpecifyPrecision'
OutputWordLength: ..... 36
OutputFracLength: ..... 30
ProductWordLength: ..... 33
ProductFracLength: ..... 30
AccumWordLength ..... 36
AccumFracLength: ..... 30
RoundMode: 'convergent'OverflowMode: 'wrap'
See Alsodfilt, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt

## Purpose

## Fixed-Point Filter Structure

Syntax Refer to dfilt.latticeallpass in the Signal Processing Toolbox.
Description $\quad$ hd $=d f i l t . l a t t i c e a l l p a s s(k)$ returns a discrete-time, lattice allpass filter object hd, with lattice coefficients, k .

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass filter object hd, with $k=[]$. This filter passes the input through to the output unchanged.
Construct discrete-time, lattice allpass filter object
ung.
The figure below shows the signal flow for the allpass lattice filter implemented by dfilt.latticeallpass. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| AccumFormat | AccumWordLength | AccumFracLength | AccumMode |
| InputFormat | InputWordLength | InputFracLength |  |


| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| LatticeFormat | CoeffWordLength | LatticeFracLength | CoeffAutoScale |
| OutputFormat | OutputWordLength | OutputFracLength | OutputMode |
| ProductFormat | ProductWordLength | ProductFracLength | ProductMode |
| StateFormat | StateWordLength | StateFracLength | States |

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the allpass lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

## dfilt.latticeallpass

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.
$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { AccumFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\ \text { interpret data output by the accumulator. } \\ \text { This is a property of FIR filters and lattice } \\ \text { filters. IIR filters have two similar } \\ \text { properties-DenAccumFracLength and } \\ \text { NumAccumFracLength-that let you set the } \\ \text { precision for numerator and denominator } \\ \text { operations separately. }\end{array} \\ \hline \text { AccumMode } & \begin{array}{l}\text { Determines how the accumulator outputs } \\ \text { stored values. Choose from full precision } \\ \text { (FullPrecision), or whether to keep the } \\ \text { most significant bits (KeepMSB) or least } \\ \text { significant bits (KeepLSB) when output } \\ \text { results need shorter word length than the } \\ \text { accumulator supports. To let you set the } \\ \text { word length and the precision (the fraction } \\ \text { length) used by the output from the } \\ \text { accumulator, set AccumMode to }\end{array} \\ \text { SpecifyPrecision. }\end{array}\right\}$

| Property Name | Brief Description |
| :--- | :--- |
| CoeffAutoScale | Specifies whether the filter automatically <br> chooses the proper fraction length to <br> represent filter coefficients without <br> overflowing. Turning this off by setting the <br> value to false enables you to change the <br> LatticeFracLength property value to <br> specify the precision used. |
| CoeffWordLength | Specifies the word length to apply to filter <br> coefficients. |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that <br> perform operations during filtering-gains, <br> delays, sums, products, and input/output. |
| InputFracLength | Specifies the fraction length the filter uses to <br> interpret input data. |
| InputWordLength | Specifies the word length applied to <br> interpret input data. |
| Lattice | Any lattice structure coefficients. No default <br> value. |
| LatticeFracLength | Sets the fraction length applied to the lattice <br> coefficients. |
| OutputFracLength | Determines how the filter interprets the <br> filter output data. You can change the value <br> of OutputFracLength when you set <br> OutputMode to SpecifyPrecision. |

## dfilt.latticeallpass

$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ & \text { - Avoid0verflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\}$

| Property Name | Brief Description |
| :--- | :--- |
| ProductMode | Determines how the filter handles the <br> output of product operations. Choose from <br> full precision (FullPrecision), or whether to <br> keep the most significant bit (KeepMSB) or <br> least significant bit (KeepLSB) in the result <br> when you need to shorten the data words. <br> For you to be able to set the precision (the <br> fraction length) used by the output from the <br> multiplies, you set ProductMode to |
| SpecifyPrecision. |  |

## dfilt.latticeallpass

| Property Name | Brief Description |
| :--- | :--- |
| RoundMode | Sets the mode the filter uses to quantize <br> numeric values when the values lie between <br> representable values for the data format <br> (word and fraction lengths). |
|  | - convergent-Round up to the next <br> allowable quantized value. |
|  | - ceil—Round to the nearest allowable <br> quantized value. Numbers that are exactly |
|  | halfway between the two nearest allowable <br> quantized values are rounded up only if the |
| least significant bit (after rounding) would |  |
| be set to 1. |  |


| Property Name | Brief Description |
| :--- | :--- |
| StateFracLength | When you set StateAutoScale to false, you <br> enable the StateFracLength property that <br> lets you set the fraction length applied to <br> interpret the filter states. |
| States | This property contains the filter states <br> before, during, and after filter operations. <br> States act as filter memory between filtering <br> runs or sessions. Notice that the states use <br> fi objects, with the associated properties <br> from those objects. For details, refer to <br> filtstates in your Signal Processing <br> Toolbox documentation or in the Help <br> system. |
| StateWordLength | Sets the word length used to represent the <br> filter states. |

## Examples

Specify a third-order lattice allpass filter structure for a dfilt object hd, with the following code:

```
k = [.66 .7 .44];
hd=dfilt.latticeallpass(k);
```

Now convert hd to fixed-point arithmetic form.

```
hd.arithmetic='fixed'
hd =
```

```
 FilterStructure: 'Lattice Allpass'
```

    FilterStructure: 'Lattice Allpass'
            Arithmetic: 'fixed'
            Arithmetic: 'fixed'
            Lattice: [0.6600 0.7000 0.4400]
            Lattice: [0.6600 0.7000 0.4400]
                PersistentMemory: false
                PersistentMemory: false
            States: [1x1 embedded.fi]
            States: [1x1 embedded.fi]
                CoeffWordLength: 16
                CoeffWordLength: 16
            CoeffAutoScale: true
            CoeffAutoScale: true
            Signed: true
    ```
 Signed: true
```


## dfilt.latticeallpass

InputWordLength: 16<br>InputFracLength: 15<br>OutputWordLength: 16<br>OutputMode: 'AvoidOverflow'<br>StateWordLength: 16<br>StateFracLength: 15<br>ProductMode: 'FullPrecision'<br>AccumMode: 'KeepMSB'<br>AccumWordLength: 40<br>CastBeforeSum: true<br>RoundMode: 'convergent'<br>OverflowMode: 'wrap'<br>See Also<br>dfilt, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax, dfilt.latticemamin

## Purpose

## Fixed-Point Filter Structure

Syntax Refer to dfilt.latticear in the Signal Processing Toolbox.
Description $\quad h d=d f i l t . l a t t i c e a r(k)$ returns a discrete-time, lattice autoregressive filter object hd, with lattice coefficients, $k$.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive filter object hd, with $\mathrm{k}=[$ ]. This filter passes the input through to the output unchanged.
Construct discrete-time, lattice, autoregressive filter object
.
The figure below shows the signal flow for the autoregressive lattice filter implemented by dfilt. latticear. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	AccumMode
InputFormat	InputWordLength	InputFracLength	


Signal Flow Label	Word Length   Property	Fraction Length   Property	Relared Properties
LatticeFormat	CoeffWordLength	LatticeFracLength	CoeffAutoScale
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ProductFormat	ProductWordLength	ProductFracLength	ProductMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the autoregressive lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

Property Name	Brief Description
AccumFracLength	Specifies the fraction length used to   interpret data output by the accumulator.   This is a property of FIR filters and lattice   filters. IIR filters have two similar   properties-DenAccumFracLength and   NumAccumFracLength-that let you set the   precision for numerator and denominator   operations separately.
AccumMode	Determines how the accumulator outputs   stored values. Choose from full precision   (FullPrecision), or whether to keep the   most significant bits (KeepMSB) or least   significant bits (KeepLSB) when output   results need shorter word length than the   accumulator supports. To let you set the   word length and the precision (the fraction   length) used by the output from the   accumulator, set AccumMode to
SpecifyPrecision.	


Property Name	Brief Description
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   LatticeFracLength to specify the precision   used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
Lattice	Any lattice structure coefficients.
LatticeFracLength	Sets the fraction length applied to the lattice   coefficients.
OutputFracLength	Determines how the filter interprets the   filter output data. You can change the value   of OutputFracLength when you set   OutputMode to SpecifyPrecision.

$\left.\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - Avoid0verflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\} \begin{array}{l}\text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. False is   the default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil—Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a third-order lattice autoregressive filter structure for a dfilt object, hd, with the following code that creates a fixed-point filter.

```
k = [.66 .7 .44];
hd1=dfilt.latticear(k)
hd1 =
 FilterStructure: 'Lattice Autoregressive (AR)'
 Arithmetic: 'double'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [3x1 double]
hd1.arithmetic='fixed'
hd1 =
 FilterStructure: 'Lattice Autoregressive (AR)'
```

```
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: true
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 StateWordLength: 16
 StateFracLength: 15
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
specifyall(hd1)
hd1
hd1 =
 FilterStructure: 'Lattice Autoregressive (AR)'
 Arithmetic: 'fixed'
 Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: false
LatticeFracLength: 15
```

Signed: true
InputWordLength: ..... 16
InputFracLength: ..... 15
OutputWordLength: ..... 16
OutputMode: 'SpecifyPrecision
OutputFracLength: ..... 12
StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'SpecifyPrecision'
ProductWordLength: ..... 32
ProductFracLength: ..... 30
AccumMode: 'SpecifyPrecision'
AccumWordLength: ..... 40
AccumFracLength: ..... 30
CastBeforeSum: true
RoundMode: 'convergent'OverflowMode: 'wrap'
See Alsodfilt, dfilt.latticeallpass, dfilt.latticearma, dfilt.latticemamax,dfilt.latticemamin

## Purpose

Syntax Refer to dfilt.latticearma in the Signal Processing Toolbox.
Description

Fixed-Point
Filter Structure
Construct discrete-time, lattice, autoregressive, moving-average filter object
hd = dfilt.latticearma(k) returns a discrete-time, lattice moving-average autoregressive filter object hd, with lattice coefficients, $k$.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic', 'single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
hd = dfilt.latticearma returns a default, discrete-time, lattice moving-average, autoregressive filter object hd, with $\mathrm{k}=[$ ]. This filter passes the input through to the output unchanged.

The figure below shows the signal flow for the autoregressive lattice filter implemented by dfilt. latticearma. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to
the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length Property	Related Properties
InputFormat	InputWordLength	InputFracLength	
LadderAccumFormat	AccumWordLength	LadderAccumFracLength	AccumMode
LadderFormat	CoeffWordLength	LadderFracLength	CoeffAutoScale
LadderProdFormat	ProductWordLength	LadderProdFracLength	ProductMode
LatticeAccumFormat	AccumWordLength	LatticeAccumFracLength	AccumMode
LatticeFormat	CoeffWordLength	LatticeFracLength	CoeffAutoScale
LatticeProdFormat	ProductWordLength	LatticeProdFracLength	ProductMode
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label LatticeProdFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that lattice coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the LatticeProdFormat refers to the properties ProductWordLength, LatticeProdFracLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the autoregressive moving-average lattice implementation of dfilt objects.

[^5]
## dfilt.latticearma

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { AccumFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\ \text { interpret data output by the accumulator. } \\ \text { This is a property of FIR filters and lattice } \\ \text { filters. IIR filters have two similar } \\ \text { properties-DenAccumFracLength and } \\ \text { NumAccumFracLength--that let you set the } \\ \text { precision for numerator and denominator } \\ \text { operations separately. }\end{array} \\ \hline \text { AccumMode } & \begin{array}{l}\text { Determines how the accumulator outputs } \\ \text { stored values. Choose from full precision } \\ \text { (FullPrecision), or whether to keep the }\end{array} \\ \text { most significant bits (KeepMSB) or least } \\ \text { significant bits (KeepLSB) when output } \\ \text { results need shorter word length than the } \\ \text { accumulator supports. To let you set the } \\ \text { word length and the precision (the fraction } \\ \text { length) used by the output from the } \\ \text { accumulator, set AccumMode to }\end{array}\right\}$

Property Name	Brief Description
Arithmetic	Defines the arithmetic the filter uses. Gives   you the options double, single, and fixed.   In short, this property defines the operating   mode for your filter.
CastBeforeSum	Specifies whether to cast numeric data to the   appropriate accumulator format (as shown   in the signal flow diagrams) before   performing sum operations.
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   LatticeFracLength property to specify the   precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
Ladder	Stores the ladder coefficients for lattice   ARMA (dfilt. latticearma) filters.
	SRE

\(\left.\left.$$
\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\
\hline \text { LadderAccumFracLength } & \begin{array}{l}\text { Sets the fraction length used to interpret the } \\
\text { output from sum operations that include the } \\
\text { ladder coefficients. You can change this } \\
\text { property value after you set AccumMode to } \\
\text { SpecifyPrecision. }\end{array} \\
\hline \text { LadderFracLength } & \begin{array}{l}\text { Determines the precision used to represent } \\
\text { the ladder coefficients in ARMA lattice } \\
\text { filters. }\end{array} \\
\hline \text { Lattice } & \begin{array}{l}\text { Stores the lattice structure coefficients. }\end{array} \\
\hline \text { LatticeFracLength } & \begin{array}{l}\text { Sets the fraction length applied to the lattice } \\
\text { coefficients. }\end{array} \\
\hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\
\text { filter output data. You can change the value } \\
\text { of OutputFracLength when you set } \\
\text { OutputMode to SpecifyPrecision. }\end{array} \\
\hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\
\text { filtered data for output. You have the } \\
\text { following choices: }\end{array} \\
\hline \text { - AvoidOverflow-directs the filter to set } \\
\text { the output data word length and fraction } \\
\text { length to avoid causing the data to } \\
\text { overflow. }\end{array}
$$\right\} \begin{array}{l}- BestPrecision-directs the filter to set <br>
the output data word length and fraction <br>
length to maximize the precision in the <br>
output data. <br>
- SpecifyPrecision-lets you set the <br>
word and fraction lengths used by the <br>

output data from filtering.\end{array}\right\}\)| Determines the word length used for the |
| :--- |
| output data. |

$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OverflowMode } & \begin{array}{l}\text { Sets the mode used to respond to overflow } \\ \text { conditions in fixed-point arithmetic. Choose } \\ \text { from either saturate (limit the output to the } \\ \text { largest positive or negative representable } \\ \text { value) or wrap (set overflowing values to the } \\ \text { nearest representable value using modular } \\ \text { arithmetic). The choice you make affects } \\ \text { only the accumulator and output arithmetic. } \\ \text { Coefficient and input arithmetic always } \\ \text { saturates. Finally, products never overflow- } \\ \text { they maintain full precision. }\end{array} \\ \hline \text { ProductFracLength } & \begin{array}{l}\text { For the output from a product operation, this } \\ \text { sets the fraction length used to interpret the } \\ \text { data. This property becomes writable (you } \\ \text { can change the value) when you set }\end{array} \\ \text { ProductMode to SpecifyPrecision. }\end{array}\right\}$

Property Name	Brief Description
PersistentMemory	Specifies whether to reset the filter states and memory before each filtering operation. Lets you decide whether your filter retains states from previous filtering runs. False is the default setting.
RoundMode	Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths).   - convergent-Round up to the next allowable quantized value.   - ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1 .   - fix-Round negative numbers up and positive numbers down to the next allowable quantized value.   - floor-Round down to the next allowable quantized value.   - round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up.   The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflowthey maintain full precision.


Property Name	Brief Description
Signed	Specifies whether the filter uses signed or   unsigned fixed-point coefficients. Only   coefficients reflect this property setting.
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

See Also
dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticemamin, dfilt.latticemamin

Purpose	Construct discrete-time, lattice, moving-average filter object with maximum phase
Syntax	Refer to dfilt.latticemamax in the Signal Processing Toolbox.
Description	hd = dfilt.latticemamax(k) returns a discrete-time, lattice, moving-average filter object hd, with lattice coefficients k .
	Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:
	- To change to single-precision filtering, enter set(hd, 'arithmetic','single');
	- To change to fixed-point filtering, enter set(hd,'arithmetic','fixed');
	For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
	Note When the k coefficients define a maximum phase filter, the resulting filter in this structure is maximum phase. When your coefficients do not define a maximum phase filter, placing them in this structure does not produce a maximum phase filter.
	hd = dfilt.latticemamax returns a default discrete-time, lattice, moving-average filter object hd, with $\mathrm{k}=[$ ]. This filter passes the input through to the output unchanged.
Fixed-Point Filter Structure	The figure below shows the signal flow for the maximum phase implementation of a moving-average lattice filter implemented by dfilt.latticemamax. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.



## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

Signal Flow Label	Word Length   Property	Fraction Length   Property	Related Properties
AccumFormat	AccumWordLength	AccumFracLength	AccumMode
InputFormat	InputWordLength	InputFracLength	
LatticeFormat			


Signal Flow Label	Word Length   Property	Fraction Length   Property	Relared Properties
OutputFormat	OutputWordLength	OutputFracLength	OutputMode
ProductFormat	ProductWordLength	ProductFracLength	ProductMode
StateFormat	StateWordLength	StateFracLength	States

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the maximum phase, moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.
$\left.\begin{array}{ll}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { AccumFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\ \text { interpret data output by the accumulator. } \\ \text { This is a property of FIR filters and lattice } \\ \text { filters. IIR filters have two similar } \\ \text { properties-DenAccumFracLength and } \\ \text { NumAccumFracLength-that let you set the } \\ \text { precision for numerator and denominator } \\ \text { operations separately. }\end{array} \\ \hline \text { AccumMode } & \begin{array}{l}\text { Determines how the accumulator outputs } \\ \text { stored values. Choose from full precision } \\ \text { (FullPrecision), or whether to keep the }\end{array} \\ \text { most significant bits (KeepMSB) or least } \\ \text { significant bits (KeepLSB) when output } \\ \text { results need shorter word length than the } \\ \text { accumulator supports. To let you set the } \\ \text { word length and the precision (the fraction } \\ \text { length) used by the output from the } \\ \text { accumulator, set AccumMode to } \\ \text { SpecifyPrecision. }\end{array}\right\}$

Property Name	Brief Description
CoeffAutoScale	Specifies whether the filter automatically   chooses the proper fraction length to   represent filter coefficients without   overflowing. Turning this off by setting the   value to false enables you to change the   LatticeFracLength property to specify the   precision used.
CoeffWordLength	Specifies the word length to apply to filter   coefficients.
FilterStructure	Describes the signal flow for the filter object,   including all of the active elements that   perform operations during filtering-gains,   delays, sums, products, and input/output.
InputFracLength	Specifies the fraction length the filter uses to   interpret input data.
InputWordLength	Specifies the word length applied to   interpret input data.
Lattice	Any lattice structure coefficients.
LatticeFracLength	Sets the fraction length applied to the lattice   coefficients.
OutputFracLength	Determines how the filter interprets the   filter output data. You can change the value   of OutputFracLength when you set   OutputMode to SpecifyPrecision.


Property Name	Brief Description
OutputMode	Sets the mode the filter uses to scale the filtered data for output. You have the following choices:   - AvoidOverflow-directs the filter to set the output data word length and fraction length to avoid causing the data to overflow.   - BestPrecision-directs the filter to set the output data word length and fraction length to maximize the precision in the output data.   - SpecifyPrecision-lets you set the word and fraction lengths used by the output data from filtering.
OutputWordLength	Determines the word length used for the output data.
OverflowMode	Sets the mode used to respond to overflow conditions in fixed-point arithmetic. Choose from either saturate (limit the output to the largest positive or negative representable value) or wrap (set overflowing values to the nearest representable value using modular arithmetic). The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always saturates. Finally, products never overflowthey maintain full precision.
ProductFracLength	For the output from a product operation, this sets the fraction length used to interpret the data. This property becomes writable (you can change the value) when you set ProductMode to SpecifyPrecision.


Property Name	Brief Description
ProductMode	Determines how the filter handles the   output of product operations. Choose from   full precision (FullPrecision), or whether to   keep the most significant bit (KeepMSB) or   least significant bit (KeepLSB) in the result   when you need to shorten the data words.   For you to be able to set the precision (the   fraction length) used by the output from the   multiplies, you set ProductMode to   SpecifyPrecision.
ProductWordLength	Specifies the word length to use for   multiplication operation results. This   property becomes writable (you can change   the value) when you set ProductMode to   SpecifyPrecision.
PersistentMemory	Specifies whether to reset the filter states   and memory before each filtering operation.   Lets you decide whether your filter retains   states from previous filtering runs. False is   the default setting.


Property Name	Brief Description
RoundMode	Sets the mode the filter uses to quantize   numeric values when the values lie between   representable values for the data format   (word and fraction lengths).
	- convergent-Round up to the next   allowable quantized value.
	- ceil-Round to the nearest allowable   quantized value. Numbers that are exactly
	halfway between the two nearest allowable   quantized values are rounded up only if the
least significant bit (after rounding) would	
be set to 1.	


Property Name	Brief Description
StateFracLength	When you set StateAutoScale to false, you   enable the StateFracLength property that   lets you set the fraction length applied to   interpret the filter states.
States	This property contains the filter states   before, during, and after filter operations.   States act as filter memory between filtering   runs or sessions. Notice that the states use   fi objects, with the associated properties   from those objects. For details, refer to   filtstates in your Signal Processing   Toolbox documentation or in the Help   system.
StateWordLength	Sets the word length used to represent the   filter states.

## Examples

Specify a fourth-order lattice, moving-average, maximum phase filter structure for a dfilt object, hd, with the following code:

```
k = [.66 .7 .44 .33];
hd = dfilt.latticemamax(k)
hd =
```

```
 FilterStructure: 'Lattice maximum phase'
```

            FilterStructure: 'Lattice maximum phase'
                        Lattice: [1x4 double]
                        Lattice: [1x4 double]
    NumberOfSamplesProcessed: 0
    NumberOfSamplesProcessed: 0
            ResetStates: 'on'
            ResetStates: 'on'
                States: [4x1 double]
    ```
 States: [4x1 double]
```

[^6]| Purpose | Construct discrete-time, lattice, moving-average filter object with minimum <br> phase |
| :--- | :--- |
| Syntax | Refer to dfilt. latticemamin in the Signal Processing Toolbox. |
| Description | hd = dfilt. latticemamin (k) returns a discrete-time, lattice, <br> moving-average, minimum phase, filter object hd, with lattice coefficients k. <br> Make this filter a fixed-point or single-precision filter by changing the value of <br> the Arithmetic property for the filter hd as follows: |
| - To change to single-precision filtering, enter |  |
| set (hd, ' arithmetic ' , 'single ' ); |  |

hd = dfilt.latticemamin returns a default discrete-time, lattice, moving-average, minimum phase, filter object hd, with $\mathrm{k}=$ [ ]. This filter passes the input through to the output unchanged.

Fixed-Point Filter Structure

The figure below shows the signal flow for the minimum phase implementation of a moving-average lattice filter implemented by dfilt.latticemamin. To help you see how the filter processes the coefficients, input, and states of the filter, as well as numerical operations, the figure includes the locations of the formatting objects within the signal flow.


## Notes About the Signal Flow Diagram

To help you understand where and how the filter performs fixed-point arithmetic during filtering, the figure shows various labels associated with data flow and functional elements in the filter. The following table describes each label in the signal flow and relates the label to the filter properties that are associated with it.

You see that the labels use a common format-a prefix followed by the word "format." In this use, "format" means the word length and fraction length associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction length used to interpret the data input to the filter. The format properties InputWordLength and InputFracLength (as shown in the table) store the word length and the fraction length in bits. Or consider NumFormat, which refers to the word and fraction lengths (CoeffWordLength, NumFracLength) associated with representing filter numerator coefficients.

| Signal Flow Label | Word Length <br> Properfy | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| AccumFormat | AccumWordLength | AccumFracLength | AccumMode |
| InputFormat | InputWordLength | InputFracLength |  |
| LatticeFormat |  |  |  |


| Signal Flow Label | Word Length <br> Property | Fraction Length <br> Property | Related Properties |
| :--- | :--- | :--- | :--- |
| OutputFormat | OutputWordLength | OutputFracLength | OutputMode |
| ProductFormat | ProductWordLength | ProductFracLength | ProductMode |
| StateFormat | StateWordLength | StateFracLength | States |

Most important is the label position in the diagram, which identifies where the format applies.

As one example, look at the label ProductFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the ProductFormat refers to the properties ProductFracLength, ProductWordLength, and ProductMode that fully define the coefficient format after multiply (or product) operations.

## Properties

In this table you see the properties associated with the minimum phase, moving average lattice implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.
$\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { AccumFracLength } & \begin{array}{l}\text { Specifies the fraction length used to } \\ \text { interpret data output by the accumulator. } \\ \text { This is a property of FIR filters and lattice } \\ \text { filters. IIR filters have two similar } \\ \text { properties-DenAccumFracLength and } \\ \text { NumAccumFracLength-that let you set the } \\ \text { precision for numerator and denominator } \\ \text { operations separately. }\end{array} \\ \hline \text { AccumMode } & \begin{array}{l}\text { Determines how the accumulator outputs } \\ \text { stored values. Choose from full precision } \\ \text { (FullPrecision), or whether to keep the }\end{array} \\ \text { most significant bits (KeepMSB) or least } \\ \text { significant bits (KeepLSB) when output } \\ \text { results need shorter word length than the } \\ \text { accumulator supports. To let you set the } \\ \text { word length and the precision (the fraction } \\ \text { length) used by the output from the } \\ \text { accumulator, set AccumMode to }\end{array}\right\}$

## dfilt.latticemamin

| Property Name | Brief Description |
| :--- | :--- |
| CoeffAutoScale | Specifies whether the filter automatically <br> chooses the proper fraction length to <br> represent filter coefficients without <br> overflowing. Turning this off by setting the <br> value to false enables you to change the <br> LatticeFracLength property to specify the <br> precision used. |
| CoeffWordLength | Specifies the word length to apply to filter <br> coefficients. |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that <br> perform operations during filtering-gains, <br> delays, sums, products, and input/output. |
| InputFracLength | Specifies the fraction length the filter uses to <br> interpret input data. |
| InputWordLength | Specifies the word length applied to <br> interpret input data. |
| Lattice | Any lattice structure coefficients. |

$\left.\left.\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\ \hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\ \text { filtered data for output. You have the } \\ \text { following choices: }\end{array} \\ \text { - Avoid0verflow-directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to avoid causing the data to } \\ \text { overflow. } \\ \text { - BestPrecision—directs the filter to set } \\ \text { the output data word length and fraction } \\ \text { length to maximize the precision in the } \\ \text { output data. }\end{array}\right\} \begin{array}{l}\text { - SpecifyPrecision-lets you set the } \\ \text { word and fraction lengths used by the } \\ \text { output data from filtering. }\end{array}\right\}$

| Property Name | Brief Description |
| :--- | :--- |
| ProductMode | Determines how the filter handles the <br> output of product operations. Choose from <br> full precision (FullPrecision), or whether to <br> keep the most significant bit (KeepMSB) or <br> least significant bit (KeepLSB) in the result <br> when you need to shorten the data words. <br> For you to be able to set the precision (the <br> fraction length) used by the output from the <br> multiplies, you set ProductMode to <br> SpecifyPrecision. |
| ProductWordLength | Specifies the word length to use for <br> multiplication operation results. This <br> property becomes writable (you can change <br> the value) when you set ProductMode to <br> SpecifyPrecision. |
| PersistentMemory | Specifies whether to reset the filter states <br> and memory before each filtering operation. <br> Lets you decide whether your filter retains <br> states from previous filtering runs. False is <br> the default setting. |


| Property Name | Brief Description |
| :--- | :--- |
| RoundMode | Sets the mode the filter uses to quantize <br> numeric values when the values lie between <br> representable values for the data format <br> (word and fraction lengths). |
|  | - convergent-Round up to the next <br> allowable quantized value. |
|  | - ceil-Round to the nearest allowable <br> quantized value. Numbers that are exactly |
|  | halfway between the two nearest allowable <br> quantized values are rounded up only if the |
| least significant bit (after rounding) would |  |
| be set to 1. |  |

## dfilt.latticemamin

| Property Name | Brief Description |
| :--- | :--- |
| StateFracLength | When you set StateAutoScale to false, you <br> enable the StateFracLength property that <br> lets you set the fraction length applied to <br> interpret the filter states. |
| States | This property contains the filter states <br> before, during, and after filter operations. <br> States act as filter memory between filtering <br> runs or sessions. Notice that the states use <br> fi objects, with the associated properties <br> from those objects. For details, refer to <br> filtstates in your Signal Processing <br> Toolbox documentation or in the Help <br> system. |
| StateWordLength | Sets the word length used to represent the <br> filter states. |

## Examples

Specify a third-order lattice, moving-average, minimum phase, filter structure for a dfilt object, hd, with the following code:
k = [. 66 . 7 . 44];
hd = dfilt.latticemamin(k)
hd =
FilterStructure: 'Lattice Moving-Average (MA) For Minimum Phase'

Arithmetic: 'double'
Lattice: [0.6600 0.7000 0.4400]
PersistentMemory: false
States: [3x1 double]
set(hd,'arithmetic','fixed')
specifyall(hd)
hd
hd =
FilterStructure: 'Lattice Moving-Average (MA) For Minimum
Phase'

```
 Arithmetic: 'fixed'
 Lattice: [0.6600 0.7000 0.4400]
 PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: false
LatticeFracLength: 15
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
OutputWordLength: 16
 OutputMode: 'SpecifyPrecision'
OutputFracLength: 12
```

    StateWordLength: 16
    StateFracLength: 15
            ProductMode: 'SpecifyPrecision'
    ProductWordLength: 32
ProductFracLength: 30
AccumMode: 'SpecifyPrecision'
AccumWordLength: 40
AccumFracLength: 30
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'

## See Also

dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax

Purpose Construct discrete-time, parallel structure filter object
Syntax Refer to dfilt. parallel in the Signal Processing Toolbox.
Description hd = dfilt.parallel(hd1,hd2,...) returns a discrete-time filter object hd, which is a structure of two or more dfilt filter objects, hd1, hd2, and so on arranged in parallel.

You can also use the standard notation to combine filters into a parallel structure.

```
parallel(hd1,hd2,...)
```

In this syntax, hd1, hd2, and so on can be a mix of dfilt objects, mfilt objects, and adaptfilt objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the parallel structure must be the same arithmetic format-double, single, or fixed. hd, the filter returned, inherits the format of the individual filters.

## See Also

dfilt, dfilt.cascade
dfilt.cascade, dfilt. parallel in your Signal Processing Toolbox documentation

## Properties

Description

## Purpose

Syntax Refer to dfilt.scalar in the Signal Processing Toolbox.
Construct discrete-time, scalar filter object
dfilt.scalar(g) returns a discrete-time, scalar filter object with gaing, where $g$ is a scalar.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hd as follows:

- To change to single-precision filtering, enter
set(hd, 'arithmetic', 'single');
- To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');
For more information about the property Arithmetic, refer to "Arithmetic" on page 7-20.
dfilt.scalar returns a default, discrete-time scalar gain filter object hd, with gain 1.

In this table you see the properties associated with the scalar implementation of dfilt objects.

Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use get(hd)
where hd is a filter.

For further information about the properties of this filter or any dfilt object, refer to "Fixed-Point Filter Properties" on page 7-3.

| Property Name | Brief Description |
| :--- | :--- |
| Arithmetic | Defines the arithmetic the filter uses. Gives <br> you the options double, single, and fixed. <br> In short, this property defines the operating <br> mode for your filter. |
| CastBeforeSum | Specifies whether to cast numeric data to <br> the appropriate accumulator format (as <br> shown in the signal flow diagrams) before <br> performing sum operations. |
| CoeffAutoScale | Specifies whether the filter automatically <br> chooses the proper fraction length to <br> represent filter coefficients without <br> overflowing. Turning this off by setting the <br> value to false enables you to change the <br> CoeffFracLength property to specify the <br> precision used. |
| CoeffFracLength | Set the fraction length the filter uses to <br> interpret coefficients. CoeffFracLength is <br> always available, but it is read-only until <br> you set CoeffAutoScale to false. |
| CoeffWordLength | Specifies the word length to apply to filter <br> coefficients. |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that <br> perform operations during filtering-gains, <br> delays, sums, products, and input/output. |
| Gain | Returns the gain for the scalar filter. Scalar <br> filters do not alter the input data except by <br> adding gain. |

\(\left.$$
\begin{array}{l|l}\hline \text { Property Name } & \text { Brief Description } \\
\hline \text { InputFracLength } & \begin{array}{l}\text { Specifies the fraction length the filter uses to } \\
\text { interpret input data. }\end{array} \\
\hline \text { InputWordLength } & \begin{array}{l}\text { Specifies the word length applied to } \\
\text { interpret input data. }\end{array} \\
\hline \text { OutputFracLength } & \begin{array}{l}\text { Determines how the filter interprets the } \\
\text { filter output data. You can change the value } \\
\text { of OutputFracLength when you set } \\
\text { OutputMode to SpecifyPrecision. }\end{array} \\
\hline \text { OutputMode } & \begin{array}{l}\text { Sets the mode the filter uses to scale the } \\
\text { filtered data for output. You have the } \\
\text { following choices: }\end{array}
$$ <br>
- Avoid0verflow-directs the filter to set <br>
the output data word length and fraction <br>
length to avoid causing the data to <br>
overflow. <br>
- BestPrecision-directs the filter to set <br>
the output data word length and fraction <br>
length to maximize the precision in the <br>

output data.\end{array}\right\}\)| = SpecifyPrecision-lets you set the |
| :--- |
| word and fraction lengths used by the |
| output data from filtering. |


| Property Name | Brief Description |
| :--- | :--- |
| OverflowMode | Sets the mode used to respond to overflow <br> conditions in fixed-point arithmetic. Choose <br> from either saturate (limit the output to the <br> largest positive or negative representable <br> value) or wrap (set overflowing values to the <br> nearest representable value using modular <br> arithmetic). The choice you make affects <br> only the accumulator and output arithmetic. <br> Coefficient and input arithmetic always <br> saturates. Finally, products never overflow- <br> they maintain full precision. |
| PersistentMemory | Specifies whether to reset the filter states <br> and memory before each filtering operation. <br> Lets you decide whether your filter retains <br> states from previous filtering runs. False is <br> the default setting. |


| Property Name | Brief Description |
| :--- | :--- |
| RoundMode | Sets the mode the filter uses to quantize <br> numeric values when the values lie between <br> representable values for the data format <br> (word and fraction lengths). |
|  | - convergent-Round up to the next |
| allowable quantized value. |  |
| - ceil—Round to the nearest allowable |  |
|  | quantized value. Numbers that are exactly |
| halfway between the two nearest allowable |  |
| quantized values are rounded up only if |  |
| the least significant bit (after rounding) |  |
| would be set to 1. |  |


| Property Name | Brief Description |
| :--- | :--- |
| Signed | Specifies whether the filter uses signed or <br> unsigned fixed-point coefficients. Only <br> coefficients reflect this property setting. |
| States | This property contains the filter states <br> before, during, and after filter operations. <br> States act as filter memory between filtering <br> runs or sessions. Notice that the states use <br> fi objects, with the associated properties <br> from those objects. For details, refer to <br> filtstates in your Signal Processing <br> Toolbox documentation or in the Help |
| system. |  |

## Example

Create a direct-form I filter object hd_filt and a scalar object with a gain of 3 hd_gain and cascade them together.

```
b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd_filt = dfilt.df1(b,a)
hd_gain = dfilt.scalar(3)
hd=cascade(hd_gain,hd_filt)
fvtool(hd_filt,hd_gain,hd)
hd_filt =
 FilterStructure: 'direct-form I'
 Arithmetic: 'double'
 Numerator: [0.3000 0.6000 0.3000]
 Denominator: [1 0 0.2000]
 PersistentMemory: false
 States: [4x1 double]
hd_gain =
 FilterStructure: 'Scalar'
 Arithmetic: 'double'
 Gain: 3
 PersistentMemory: false
 States: []
```

hd =

$$
\begin{aligned}
& \text { FilterStructure: Cascade } \\
& \text { Section(1): Scalar } \\
& \text { Section(2): Direct Form I } \\
& \text { PersistentMemory: false }
\end{aligned}
$$

| - Figure No. 1: Filter Visualization Tool - Magnitude Response (dB) | - |
| :---: | :---: |
| File Edit Analysis Insert View Window Help |  |
|  |  |
|  |  |



To view the sections of the cascaded filter, use
hd.section(1)
ans =
FilterStructure: 'Scalar'
Arithmetic: 'double'

Gain: 3
PersistentMemory: false
States: []
and
hd.section(2)
ans =
FilterStructure: 'Direct Form I'
Arithmetic: 'double'
Numerator: [0.3000 0.6000 0.3000]
Denominator: [1 0 0.2000]
PersistentMemory: false
States: [4×1 double]
See Also dfilt, dfilt.cascade

## Purpose

Syntax $\quad$ hd $=$ dfilt.wdfallpass(c)
Description
Construct wave digital allpass filter object
hd = dfilt.wdfallpass(c) constructs an allpass wave digital filter structure given the allpass coefficients in vector $c$.

Vector c must have, one, two, or four elements (filter coefficients). Filters with three coefficients are not supported. When you use c with four coefficients, the first and third coefficients must be 0 .

Given the coefficients in c , the transfer function for the wave digital allpass filter is defined by

$$
H(z)=\frac{c(n)+c(n-1) z^{-1}+\ldots+z^{-n}}{1+c(1) z^{-1}+\ldots+c(n) z^{-n}}
$$

Internally, the allpass coefficients are converted to wave digital filters for filtering. Note that dfilt.wdfallpass allows only stable filters. Also note that the leading coefficient in the denominator, a 1 , does not need to be included in vector c .

Use the constructor dfilt.cascadewdfallpass to cascade wdfallpass filters.
To compare these filters to other similar filters, dfilt.wdfallpass and dfilt.cascadewdfallpass filters have the same number of multipliers as the non-wave digital filters dfilt. allpass and dfilt.cascadeallpass. However, the wave digital filters use fewer states and they may require more adders in the filter structure.

Wave digital filters are usually used to create other filters. This toolbox uses them to implement halfband filters, which the first example in Examples demonstrates. They are most often building blocks for filters.

## Properties

In the next table, the row entries are the filter properties and a brief description of each property.

| Property Name | Brief Description |
| :--- | :--- |
| AllpassCoefficients | Contains the coefficients for the allpass wave <br> digital filter object |
| FilterStructure | Describes the signal flow for the filter object, <br> including all of the active elements that <br> perform operations during filtering-gains, <br> delays, sums, products, and input/output. |
| PersistentMemory | Specifies whether to reset the filter states and <br> memory before each filtering operation. Lets <br> you decide whether your filter retains states <br> from previous filtering runs. False is the <br> default setting. |
| States | This property contains the filter states before, <br> during, and after filter operations. States act <br> as filter memory between filtering runs or <br> sessions. They also provide linkage between <br> the sections of a multisection filter, such as a <br> cascade filter. For details, refer to filtstates <br> in your Signal Processing Toolbox <br> documentation or in the Help system. |

Filter Structure
When you change the order of the wave digital filters in the cascade, the filter structure changes as well.

As shown in this example, realizemdl lets you see the filter structure used for your filter, if you have Simulink installed.

```
section11=0.8;
section12=[1.5,0.7];
section13=[1.8,0.9];
hd1=dfilt.cascadewdfallpass(section11,section12,section13);
realizemdl(hd1)
```

```
section21=[0.8,0.4];
section22=[0,1.5,0,0.7];
section23=[0,1.8,0,0.9];
hd2=dfilt.cascadewdfallpass(section21,section22,section23);
realizemdl(hd2)
```

hd1 has this filter structure with three sections.


The filter structure for hd2 is somewhat different, with the different orders and interconnections between the three sections.


## Examples

Construct a second-order wave digital allpass filter with two coefficients.

```
c = [1.5,0.7];
hd = dfilt.wdfallpass(c);
info(hd)
```

```
Discrete-Time IIR Filter (real)
Filter Structure : Wave Digital Filter Allpass
Number of Multipliers : 2
Stable : Yes
Linear Phase : No
Implementation Cost
Number of Multipliers : 2
Number of Adders : 6
Number of States : 2
MultPerInputSample : 2
AddPerInputSample : 6
```

realizemdl(hd) \% Requires Simulink to build the filter model.

With Simulink installed, realizemdl returns this structure for hd.


## See Also

dfilt, dfilt.allpass, dfilt.latticeallpass, dfilt.cascadewdfallpass, dfilt.cascadeallpass, mfilt.iirdecim, mfilt.iirinterp

## Purpose Filter object with properties and values

Syntax | $\operatorname{disp}(h d)$ |
| ---: |
| $\operatorname{disp}(h a)$ |
| $\operatorname{disp}(h m)$ |

Description Similar to omitting the closing semicolon from an expression on the command line, except that disp does not display the variable name. disp lists the property names and property values for any filter object, such as a dfilt object or adaptfilt object.

The following examples illustrate the default display for an adaptive filter ha and a multirate filter hm .

```
ha=adaptfilt.rls
ha =
 Algorithm: 'Direct Form FIR RLS Adaptive Filter'
 FilterLength: 10
 Coefficients: [0 0 0 0 0 0 0 0 O 0]
 States: [9x1 double]
 ForgettingFactor: 1
 KalmanGain: []
 InvCov: [10x10 double]
 PersistentMemory: false
disp(ha)
 Algorithm: 'Direct-Form FIR RLS Adaptive Filter'
 FilterLength: 10
 Coefficients: [0 0 0 0 0 0 0 0 0 0]
 States: [9x1 double]
 ForgettingFactor: 1
 KalmanGain: []
 InvCov: [10x10 double]
 PersistentMemory: false
hm=mfilt.cicdecim(6)
hm =
```

FilterStructure: 'Cascaded Integrator-Comb Decimator'Arithmetic: 'fixed'
DifferentialDelay:
NumberOfSections: 2
DecimationFactor: 6
PersistentMemory: false
InputWordLength: ..... 16
InputFracLength: ..... 15
SectionWordLengthMode: 'MinWordLengths
OutputWordLength: ..... 16
disp(hm)
FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: ..... 1
NumberOfSections: ..... 2
DecimationFactor: ..... 6
PersistentMemory: ..... false
InputWordLength: ..... 16
InputFracLength: ..... 15
SectionWordLengthMode: 'MinWordLengths
OutputWordLength: ..... 16
See Also ..... set

Purpose
Cast fixed-point filter to filter that uses double-precision arithmetic

## Syntax <br> hd = double(h)

Description

## Examples

hd = double( h ) returns a new filter hd that has the same structure and coefficients as h , but whose arithmetic property is set to double to use double-precision arithmetic for filtering. double(h) is not the same as the reffilter(h) function:

- hd, the filter returned by double has the quantized coefficients of h represented in double-precision floating-point format
- The reference filter returned by reffilter has double-precision, floating-point coefficients that have not been quantized.

You might find double(h) useful to isolate the effects of quantizing the coefficients of a filter by using double to create a filter hd that operates in double-precision but uses the quantized filter coefficients.

Use the same filter, once with fixed-point arithmetic and once with floating-point, to compare fixed-point filtering with double-precision floating-point filtering.

```
h = dfilt.dffir(firgr(27,[0 .4 .6 1],
[1 1 0 0])); % Lowpass filter.
h.arithmetic = 'fixed'; % Set h to use fixed-point arithmetic
 % to filter. Quantize the coeffs.
hd = double(h); % Cast h to double-precision
 % floating-point coefficients.
n = 0:99; x = sin(0.7*pi*n(:)); % Set up an input signal.
y = filter(h,x); % Fixed-point output.
yd = filter(hd,x); % Floating-point output.
norm(yd-double(y),inf)
ans =
 9.2014e-004
```

norm shows that the largest difference (maximum error) between the output values from the fixed versus floating filtering comparison is about 0.0009 either good or less good depending on your application.
See Also reffilter

## Purpose Design elliptical or Cauer digital filter using filter specification object

```
Syntax hd = design(d,'ellip')
hd = design(d,'ellip',designoption,value,designoption,value,...)
```

Description

## Examples

These example demonstrate using ellip to design filters based on filter specification objects.

Example 1—construct the default bandpass filter specification object and design an elliptic filter.

```
d = fdesign.bandpass;
designopts(d,'ellip')
ans =
 FilterStructure: 'df2sos'
 MatchExactly: 'both'
hd = design(d,'ellip','matchexactly','both');
hd =
```

    FilterStructure: 'Direct-Form II, Second-Order Sections'
    ```
 Arithmetic: 'double'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
PersistentMemory: false
```

Example 2-construct a lowpass object with order, passband-edge frequency, stopband-edge frequency, and passband ripple specifications, and then design an elliptic filter.

```
d = fdesign.lowpass('n,fp,fst,ap',6,20,25,.8,80);
design(d,'ellip'); % Starts FVtool to display the filter.
```



Example 3-construct a lowpass object with filter order, passband edge frequency, passband ripple, and stopband attenuation specifications, and then design an elliptic filter.
$d=$ fdesign.lowpass('n,fp,ap,ast' $6,20, .8,60,80) ;$ design(d,'ellip'); \% Starts FVTool to display the filter.


See Also
butter, cheby1, cheby2

## Purpose

## Syntax

Description

## Examples

Use an FIR fractional decimator, with $\mathrm{L}=5$ and $\mathrm{M}=7$, to show what euclidfactors does.

```
hm=mfilt.firfracdecim(5,7)
hm =
 FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
 Numerator: [1x168 double]
 RateChangeFactors: [5 7]
 PersistentMemory: false
 States: [62x1 double]
[lo,mo]=euclidfactors(hm)
lo =
 4
mo =
 3
Indeed, (lo*L)-(mo*M) = (4*5)-(3*7) = -1.
```

Purpose	Design equiripple single-rate or multirate FIR filter from filter specification object
Syntax	```hd = design(d,'equiripple') hd = design(d,'equiripple',designoption,value,designoption,... value,...)```
=Description	hd = design(d, 'equiripple') designs an equiripple FIR digital filter or multirate filter using the specifications supplied in the object d. Equiripple filter designs minimize the maximum ripple in the pass- and stopbands.   hd is either a dfilt object (a single-rate digital filter) or an mfilt object (a multirate digital filter) depending on the Specification property of the filter specification object d and the specifications object type-halfband or interpolator.
	When you use equiripple with Nyquist filter specification objects, you might encounter design cases where the filter design does not converge. Convergence errors occur mostly at large filter orders, or small transition widths, or large stopband attenuations. These specifications, alone or combined, can cause design failures. For more information, refer to fdesign. nyquist in the online Help system.   hd = design(d,'equiripple', designoption, value, designoption,... value, ...) returns an equiripple FIR filter where you specify design options as input arguments.
	To determine the available design options, use designopts with the specification object and the design method as input arguments as shown.   designopts(d,'method')
	For complete help about using equiripple, refer to the command line help system. For example, to get specific information about using equiripple with d , the specification object, enter the following at the MATLAB prompt.   help(d,'equiripple')
Examples	Here is an example of designing a single-rate equiripple filter from a halfband filter specification object.   d = fdesign.halfband

```
designopts(d,'equiripple')
ans =
 FilterStructure: 'dffir'
 MinPhase: 0
 StopbandShape: 'flat'
 StopbandDecay: 0
hd = design(d,'equiripple','stopbandshape','flat');
fvtool(hd);
```

Displaying the filter in FVTool shows the equiripple nature of the filter.

equiripple also designs multirate filters. This example generates a halfband interpolator filter.

## equiripple

```
d = fdesign.interpolator(2);
hd = design(d,'equiripple');
hd
hd =
 FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
 Arithmetic: 'double'
 Numerator: [1x95 double]
InterpolationFactor: 2
PersistentMemory: false
```

This final example designs an equiripple filter with a direct-form structure by specifying the filterstructure argument.

```
d = fdesign.lowpass('fp,fst,ap,ast');
designopts(d,'equiripple')
ans =
 FilterStructure: 'dffir'
 DensityFactor: 16
 MinPhase: 0
 MinOrder: 'any'
 StopbandShape: 'flat'
 StopbandDecay: 0
hd = design(d,'equiripple','filterstructure','dffir');
hd
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x43 double]
 PersistentMemory: false
```


## See Also

fdesign. nyquist, firls, kaiserwin

## Purpose Implement Farrow filter

Syntax hd = farrow.structure(delay,...)
Description
hd = farrow.structure(delay, ...) returns a Farrow filter hd that associates delay, the fractional delay, with a filter structure specified by structure.

More information about Farrow filters is available in References.
In contrast to most single-rate filters, Farrow filters use two inputs-the input data and the fractional delay. You can change the fractional delay input value as you filter by assigning a new value to delay before you filter with hd. Thus Farrow filters provide delay tunability when your input signals have time-varying delays.

Digital fractional delay filters are useful tools for fine-tuning the sampling instants of signals, such as implementing the required bandlimited interpolation. They can be found in the synchronization of digital modems where the delay parameter varies over time, or in wireless communications systems where the signal delay changes with location and distance from the transmitter. Farrow filters are one such fractional delay filter that allows the user to vary the delay.

Provide the fractional delay as a decimal part of an input sample, such as 0.2 . delay must be positive and between 0 and 1 .
structure accepts the following strings that describe the filter structure to use:

structure String	Description
fd	Generic fractional delay Farrow filter
linearfd	Linear fractional delay Farrow filter

In the farrow.fd syntax

```
hd = farrow.fd(delay,...)
```

you must specify the coefficients as input arguments. Start with basic coefficients from Lagrange polynomials (also called interpolation polynomials). for more information about the coefficients, refer to References.

Farrow filters support numerous functions for analyzing and simulating the filter, and for generating code from the filter. To learn about the functions you use with Farrow filters, enter
help farrow/functions
at the Command prompt to see the complete list of functions.
The functions that you use most often with digital filters are

Function	Description
cost	Estimate the hardware   implementation cost in terms of   mathematical operations like add   and multiply
filter	Execute the filter by using it to   filter data
fvtool	Display and analyze the filter
freqz	Compute the instantaneous   frequency response of the filter
realizemdl	Generate a Simulink subsystem   model of the filter as a block   (Requires Simulink)

## Examples

Construct a filter with linear fractional delay of 0.4 samples. Use linearfd for the structure and set delay equal to 0.4 .

```
delay = 0.4;
hd = farrow.linearfd(delay);
fvtool(hd) % Analyze the filter.
```

realizemdl produces this model from basic Signal Processing blockset blocks.


## References

See Also
[1] Erup, L., Floyd M. Gardner, and Robert A. Harris, "Interpolation in Digital Modems-Part II: Implementation and Performance," IEEE Transactions on Communications, vol. 41, No. 6, June 1993, pp. 998-1008.
[2] Marvasti, F., Nonuniform Sampling—Theory and Practice, Kluwer Academic/Plenum Publishers, New York, 2001.
adaptfilt, dfilt,fdesign, mfilt

## fcfwrite

Purpose	Write file containing filter coefficients for multirate, adaptive, or discrete-time   filter objects
Syntax	fcfwrite (h)   fcfwrite (h, filename)   fcfwrite(..., fmt ' )
Description	fcfwrite (h) writes a filter coefficient ASCII file to a directory you choose, or   your current MATLAB working directory. h can be a single filter object or a   vector of filter objects. On execution, fcfwrite opens the Export Filter   Coefficients to .FCF File dialog to let you assign a file name for the output file.
You can choose the destination directory within this dialog as well.	

```
d=fdesign.lowpass
d =
 Response: 'Lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fpass: 0.45
```

```
 Fstop: 0.55
 Apass: 1
 Astop: 60
hd=butter(d)
hd =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double
 sosMatrix: [13x6 double]
 ScaleValues: [14x1 double]
 PersistentMemory: false
set(hd,'arithmetic','fixed');
fcfwrite(hd,'iirfilter.fcf');
```

Here is the output from fcfwrite as it appears in the MATLAB editor. Not shown here is the filename-iirfilter.fcf as specified and some comments at the top of the file.

```
%
%
% Coefficient Format: Decimal
%
% Discrete-Time IIR Filter (real)
% ----------------------------
% Filter Structure : Direct-Form II, Second-Order Sections
% Number of Sections : 13
% Stable : Yes
% Linear Phase : No
% Arithmetic : fixed
% Numerator : s16,13 -> [-4 4)
% Denominator : s16,14 -> [-2 2)
% Scale Values : s16,14 -> [-2 2)
% Input : s16,15 -> [-1 1)
% Section Input : s16,8 -> [-128 128)
% Section Output : s16,10 -> [-32 32)
% Output : s16,10 -> [-32 32)
```


## fcfwrite

\% State	s16,15 -> [ $\left.\begin{array}{l}-1 \\ 1\end{array}\right)$
\% Numerator Prod	s32,28 -> [-8 8)
\% Denominator Prod	s32,29 -> [-4 4)
\% Numerator Accum	: s40,28 -> [-2048 2048)
\% Denominator Accum	s40,29 -> [-1024 1024)
\% Round Mode	convergent
\% Overflow Mode	wrap
\% Cast Before Sum	true

SOS matrix:

1	2	1	1	-0.22222900390625	0.88262939453125
1	2	1	1	-0.19903564453125	0.68621826171875
1	2	1	1	-0.18060302734375	0.5303955078125
1	2	1	1	-0.1658935546875	0.40570068359375
1	2	1	1	-0.154052734375	0.305419921875
1	2	1	1	-0.14453125	0.22479248046875
1	2	1	1	-0.136962890625	0.16015625
1	2	1	1	-0.13092041015625	0.10906982421875
1	2	1	1	-0.126220703125	0.06939697265625
1	2	1	1	-0.12274169921875	0.0399169921875
1	2	1	1	-0.12030029296875	0.01947021484375
1	2	1	1	-0.118896484375	0.0074462890625
1	1	0	1	-0.0592041015625	0

Scale Values:
0.41510009765625
0.371826171875
0.33746337890625
0.3099365234375
0.287841796875
0.27008056640625
0.25579833984375
0.2445068359375
0.23577880859375
0.22930908203125
0.22479248046875
0.22216796875
0.47039794921875

1

To write two or more filters out to one file, provide the filters as a vector to fcfwrite:

```
fcfwrite([hd hd1 hd2])
```

See Also
adaptfilt, mfilt
dfilt in the Signal Processing Toolbox documentation

## Purpose Open Filter Design and Analysis Tool

## Syntax <br> fdatool

Description
fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to:

- Design filters
- Quantize filters (with Filter Design Toolbox installed)
- Analyze filters
- Modify existing filter designs
- Create multirate filters (with Filter Design Toolbox installed)
- Realize Simulink models of quantized, direct-form, FIR filters (with Filter Design Toolbox installed)
- Import filters into FDATool
- Perform digital frequency transformations of filters (with Filter Design Toolbox installed)

Refer to "Using FDATool with the Filter Design Toolbox" for more information about using the analysis, design, and quantization features of FDATool. For general information about using FDATool, refer to "Filter Design and Analysis Tool" in your Signal Processing Toolbox documentation.

When you open FDATool and you have Filter Design Toolbox installed, FDATool incorporates features that are added by Filter Design Toolbox. With Filter Design Toolbox installed, FDATool lets you design and analyze quantized filters, as well as convert quantized filters to various filter structures, transform filters, design multirate filters, and realize models of filters.


Use the buttons on the sidebar to configure the design area to use various tools in FDATool.

Set Quantization Parameters-provides access to the properties of the quantizers that compose a quantized filter. When you click Set Quantization Parameters, you see FDATool displaying the quantization options at the bottom of the dialog (the design area), as shown in the figure.

Transform Filter-clicking this button opens the Frequency Transformations pane so you can use digital frequency transformations to change the magnitude response of your filter.

Create a multirate filter-clicking this button switches FDATool to multirate filter design mode so you can design interpolators, decimators, and fractional rate change filters.

Realize Model-starting from your quantized, direct-form, FIR filter, clicking this button creates a Simulink model of your filter structure in new model window.


Other options in the menu bar let you convert the filter structure to a new structure, change the order of second-order sections in a filter, or change the scaling applied to the filter, among many possibilities.

## Remarks By incorporating many advanced filter design methods from Filter Design Toolbox, FDATool provides more design methods than the SPTool Filter Designer.

See Also fdatool, fvtool, sptool in your Signal Processing Toolbox documentation

## Purpose Create filter specification object

```
Syntax d = fdesign.response
d = fdesign.response(spec)
d = fdesign.response(spec,specvalue1,specvalue2,...)
d = fdesign.response(...,fs)
d = fdesign.response(..., magunits)
```


## Description

## Filter Specification Objects

d = fdesign.response returns a filter specification object d, of filter response response. To create filters from d, use one of the design methods listed in "Using Filter Design Methods With Specification Objects" on page 8-544.

Here is how you design filters using fdesign.
1 Use fdesign.response to construct a filter specification object.
2 Use designmethods to determine which filter design methods work for your new filter specification object.

3 Use design to apply your filter design method from step 2 to your filter specification object to construct a filter object.
4 Use FVTool to inspect and analyze your filter object.

Note fdesign does not create filters. fdesign returns a filter specification object that contains the specifications for a filter, such as the passband cutoff or attenuation in the stopband.

To design a filter hd from a filter specification object $d$, use $d$ with a filter design method such as butter-hd = design(d,'butter').

For more guidance about using fdesign to design filters, refer to "Designing Fixed-Point Filters" on page 2-3 of the Filter Design Toolbox User's Guide. This section provides examples that use fdesign to design filters and that use methods in the toolbox to analyze them.
reponse can be one of the entries in the following table that specify the filter response desired, such as a bandstop filter or an interpolator.

fdesign Response String	Description
arbmag	fdesign. arbmag creates an object to   design IIR filters that have arbitrary   magnitude responses defined by the input   arguments.
arbmagnphase	fdesign. arbmagnphase creates an object   to design IIR filters that have arbitrary   magnitude and phase responses defined   by the input arguments.
bandpass	fdesign.bandpass creates an object to   design bandpass filters.
bandstop	fdesign.bandstop creates an object to   design bandstop filters.
ciccomp	fdesign.ciccomp creates an object to   design filters that compensate for the CIC   decimator or interpolator response   curves.
decimator	fdesign. decimator creates an object to   design decimators.
differentiator	fdesign. differentiator creates an   object to design differentiators.
halfband	fdesign. halfband creates an object to   design halfband filters.
highpass	fdesign. highpass creates an object to   design highpass filters.
hilbert	fdesign. hilbert creates an object to   design Hilbert filters.

## fdesign

fdesign Response String	Description
interpolator	fdesign.interpolator creates an object   to design interpolators.
isinclp	fdesign.isinclp creates an object to   design lowpass filters that use   inverse-sinc form.
lowpass	fdesign.lowpass creates an object to   design lowpass filters.
nyquist	fdesign. nyquist creates an object to   design nyquist filters.
rsrc	fdesign.rsrc creates an object to design   rational-factor sample-rate convertors.

Use the doc fdesign.response syntax at the MATLAB prompt to get help on a specific structure. Using doc in a syntax like

```
doc fdesign.lowpass
doc fdesign.bandstop
```

gets more information about the lowpass or bandstop structure objects.
Each response has a property Specification that defines the specifications to use to design your filter. You can use defaults or specify the Specification property when you construct the specifications object.

With the strings for the Specification property, you provide filter constraints such as the filter order or the passband attenuation to use when you construct your filter from the specification object.

## Properties

fdesign returns a filter specification object. Every filter specification object has the following properties.
$\left.\begin{array}{l|l|l}\hline \text { Property Name } & \text { Default Value } & \text { Description } \\ \hline \text { Response } & \begin{array}{l}\text { Depends on the chosen } \\ \text { type }\end{array} & \begin{array}{l}\text { Defines the type of } \\ \text { filter to design, such } \\ \text { as an interpolator or } \\ \text { bandpass filter. This is } \\ \text { a read-only value. }\end{array} \\ \hline \text { Specification } & \begin{array}{l}\text { Depends on the chosen } \\ \text { type }\end{array} & \begin{array}{l}\text { Defines the filter } \\ \text { characteristics used to } \\ \text { define the desired } \\ \text { filter performance, } \\ \text { such as the cutoff } \\ \text { frequency Fstop or the } \\ \text { filter order N. }\end{array} \\ \hline \text { Description } & \begin{array}{l}\text { Depends on the filter } \\ \text { type you choose }\end{array} & \begin{array}{l}\text { Contains descriptions } \\ \text { of the filter } \\ \text { specifications used to } \\ \text { define the object, and } \\ \text { the filter specifications } \\ \text { you use when you } \\ \text { create a filter from the } \\ \text { object. This is a } \\ \text { read-only value. }\end{array} \\ \hline \text { NormalizedFrequency } & \text { Logical true } & \begin{array}{l}\text { Determines whether } \\ \text { the filter calculation } \\ \text { uses normalized } \\ \text { frequency from 0 to 1, }\end{array} \\ \text { or the frequency band } \\ \text { from 0 to Fs/2, the } \\ \text { sampling frequency. } \\ \text { Accepts either true or } \\ \text { false without single } \\ \text { quotation marks. }\end{array}\right\}$

## fdesign

In addition to these properties, filter specification objects may have other properties as well, depending on whether they design dfilt objects or mfilt objects.

Added Properties for mfilt Objects	Description
DecimationFactor	Specifies the amount to decrease   the sampling rate. Always   a positive integer.
InterpolationFactor	Specifies the amount to increase   the sampling rate. Always   a positive integer.
PolyphaseLength	Polyphase length is the length of   each polyphase subfilter that   composes the decimator or   interpolator or rate-change factor   filters. Total filter length is the   product of pl and the rate change   factors. pl must be an even   integer.

d = fdesign.type(spec) In spec, you specify the variables to use that define your filter design, such as the passband frequency or the stopband attenuation. These variables are applied to the filter design method you choose to design your filter.

For example, when you create a default lowpass filter specification object d, fdesign sets the passband frequency Fpass, the stopband frequency Fstop, the stopband attenuation Astop, and the passband attenuation Apass (ripple in the passband) for d :

```
d = fdesign.lowpass
d =
```

```
 Response: 'Lowpass'
```

            Response: 'Lowpass'
    Specification: 'Fp,Fst,Ap,Ast'
Specification: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}

```
 Description: {4x1 cell}
```

```
NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 1
 Astop: 60
```

However, lowpass design syntax accepts any one of the following Spec strings (among others) to define the filter response:

Spec String	Description
Fp, Fst, Ap, Ast	Define the filter by specifying the passband   cutoff, the stopband cutoff, the ripple in the   passband, and the attenuation in the stopband.   This is the default string for a lowpass filter.
N, Fc	Set the filter order and the cutoff frequency to   define the filter.
N, Fp, Ap	Set the filter order, passband cutoff frequency,   and passband ripple.
N, Fst, Ast	Define the filter by setting the order, stopband   frequency, and stopband attenuation.
N, Fp, Ap, Ast	Set the order, passband cutoff frequency,   passband ripple, and stopband attenuation.
N, Fp, Fst, Ap	Set the filter order, passband cutoff frequency,   stopband frequency, and passband ripple.

Other filter object types, such as Nyquist or highpass, accept a different set of strings for Spec. Refer to the Help system for details about the strings for each filter type.

One important note is that the Spec string you choose controls which design method works for the specifications object.

For the lowpass filter specification object d from earlier, you can use butter, cheby1, cheby2, or ellip (to name a few) to design a filter. However, if the Spec
string had been ' $n, f p, f s t, a p$ ', you could only use the ellip design method to design your filter.

When you implement this lowpass filter hd using a filter design method such as Butterworth (the butter design function), the constraints in $f p, f s t$, ap, and ast (the default string and filter specification) define the response of the final minimum-order lowpass filter:

```
hd = design(d,'butter')
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [13x6 double]
 ScaleValues: [14x1 double]
PersistentMemory: false
```

FVTool shows that hd is a lowpass filter that meets the design specification.
d = fdesign.type(..., fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.type(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of

- linear-specify the magnitude in linear units
- $d B$-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in $d B$. Note that fdesign stores all magnitude specifications in $d B$ (converting to dB when necessary) regardless of how you specify the magnitudes.

## Using Filter Design Methods With Specification Objects

After you create a filter specification object, you use a filter design method to implement your filter with a selected algorithm. The following methods are available for filter specification objects, but all methods do not apply to all
object types. Also, the specification string you use to define the object changes the algorithms available to design a filter. Enter doc butter, for example, to get more information about using the Butterworth design method with your filter specification object.

Design Function	Description
butter	Implement a Butterworth filter   resulting in an SOS filter with   direct-form II structure.
cheby1	Implement a Chebysher Type I   filter, resulting in a direct-form II   second-order filter.
cheby2	Implement a Chebyshev Type II   filter, resulting in an SOS filter   with direct-form II structure
ellip	Implement an elliptic filter   resulting in an SOS filter with   direct-form II structure
equiripple	Implement an equiripple filter.
firls	Implement a least-squares filter.
kaiserwin	Implement a filter that uses a   Kaiser window.
multistage	Implement a multistage filter

When you use any of the design methods without providing an output argument, the resulting filter design appears in FVTool by default.

## fdesign

Along with filter design methods, fdesign works with supporting methods that help you create filter specification objects or determine which design methods work for a given specifications object.

Supporting Function	Description
setspecs	Set all of the specifications simultaneously.
designmethods	Return the design methods.
designopts	Return the input arguments and default values   that apply to a specifications object and   method

You can set filter specification values by passing them after the Specification argument, or by passing the values without the Specification string.

Filter object constructors take the input arguments in the same order as setspecs and the order in the strings for Specification. Enter doc setspecs at the prompt for more information about using setspecs.

When the first input to fdesign is not a valid Specification string like ' $\mathrm{n}, \mathrm{fc}$ ', fdesign assumes that the input argument is a filter specification and applies it using the default Specification string-fp,fst, ap, ast for a lowpass object, for example.

## Examples

These examples show a few default filter objects constructed from the MATLAB command prompt, and how to design a Butterworth filter.

Example 1—Halfband filter specification object with filter order and stopband attenuation provided as input arguments. Add the linear magunits option so you specify the attenuation in decimal-0.0001.

```
n = 80;
ast = 1e-4;
fs = 48000
d=fdesign.halfband('n,ast',n,ast,fs,'linear') % specifications
object.
d =
```

```
 Response: [1x51 char]
 Specification: 'N,Ast'
 Description: {2x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 80
 Astop: 80
 d.description
 ans =
 'Filter Order'
 'Stopband Attenuation (dB)'
Example 2-Interpolator filter specification object
 d = fdesign.interpolator % A specifications object.
 d =
 Response: 'Minimum-order halfband'
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 InterpolationFactor: 2
 NormalizedFrequency: true
 Fs: 'Normalized'
 TransitionWidth: 0.1000
 Astop: 80
 d.Description
 ans =
 'Transition Width'
 'Stopband Attenuation (dB)'
Example 3-Highpass filter specification object
```


## fdesign

```
d=fdesign.highpass % Creates a specifications object.
d =
 Response: 'Minimum-order highpass'
 Specification : 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fstop: 0.4500
 Fpass: 0.5500
 Astop: 60
 Apass: 1
d.Description
ans =
 'Stopband Frequency'
 'Passband Frequency'
 'Stopband Attenuation (dB)'
 'Passband Ripple (dB)'
```

Notice the correspondence between the properties Specification and Description-in Description you see in words the definitions of the variables shown in Specification.

Example 4-Lowpass Butterworth filter specification object
Use a filter specification object to construct a lowpass Butterworth filter with default Specification fp,fst, ap, ast-the edge frequencies of the passband and stopband, the attenuation in the passband, and the attenuation in the stopband. Start by creating the specifications object d and providing the filter order and cutoff frequency values.

```
d = fdesign.lowpass(0.4,0.5,1,80);
d
d =
```

Response: 'Minimum-order lowpass'

```
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass: 0.4000
 Fstop: 0.5000
 Apass: 1
 Astop: 80
```

Determine which design methods apply to d.
designmethods(d)
Design Methods for class fdesign.lowpass:
butter
cheby 1
cheby2
ellip

Now use d and the butter design method to design a Butterworth filter. hd = design(d,'butter','matchexactly','passband'); \% A filter. fvtool(hd);

The resulting filter magnitude response shown by FVTool appears below.

## fdesign



If you had a default Nyquist filter specification object d d = fdesign.nyquist you could find out which design methods apply to d by entering designmethods(d)

Design methods for class fdesign.nyquist:
kaiserwin
Notice that only the Kaiser window-based design method applies to default Nyquist filter objects.

See Also<br>butter, cheby1, cheby2, designmethods, ellip, equiripple, fdatool, fdesign.bandpass, fdesign.bandstop, fdesign.decimator, fdesign.halfband, fdesign.highpass, fdesign.interpolator, fdesign. lowpass, fdesign.nyquist, fdesign.rsrc, firls, fvtool, kaiserwin, setspecs

## fdesign.arbmag

Purpose	Construct filter specification object for designing arbitrary response magnitude filters	
Syntax	d = fdesign.arbmag   d = fdesign.arbmag   d = fdesign.arbmag   d = fdesign.arbmag   d = fdesign.arbmag	```ication) ication, specvalue1,specvalue2,...) alue1,specvalue2,specvalue3) )```
Description	d = fdesign.arbmag(specification) initializes the Specification property for specifications object $d$ to the string in specification. The input argument specification must be one of the following strings. Specification strings are not case sensitive and must be entered as shown.	
	Specification String	Description of Resulting Filter
	n, f, a	Single band design (default). FIR and IIR ( $n$ is the order for both numerator and denominator).
	$\mathrm{n}, \mathrm{b}, \mathrm{f}, \mathrm{a}$	Multiband design where $b$ defines the number of bands. FIR and IIR ( n is the order for both numerator and denominator).
	nb, na, f, a	IIR single band design.
	$n \mathrm{n}, \mathrm{na}, \mathrm{b}, \mathrm{f}, \mathrm{a}$	IIR multiband design where $b$ defines the number of bands

## fdesign.arbmag

The arguments in the strings are

Argument	Description
a	Amplitude vector. Values in a define the filter   amplitude at frequency points you specify in $f$,   the frequency vector. If you use a, you must   use f as well. Amplitude values must be real.   For complex values designs, use   fdesign. arbmagnphase.
b	Number of bands in the multiband filter.
f	Frequency vector. Frequency values in $f$   specify locations where you provide specific   filter response amplitudes. When you provide   f you must also provide a.
n	Filter order for FIR filters and the numerator   and denominator orders for IIR filters.
nb	Numerator order for IIR filters.
na	Denominator order for IIR filter designs.

By default, this method assumes that all frequency specifications are supplied in normalized frequency.

## Specifying $f$ and $a$

$f$ and a are the input arguments you use to define the filter response desired. Each frequency value you specify in $f$ must have a corresponding response value in a. Here is an example that creates a filter with two passbands ( $b=4$ )and shows how $f$ and a are related. This example is for illustration only. It is not a real filter.

Define the frequency vector $f$ as $\left[\begin{array}{lllllllll}0 & 0.1 & 0.2 & 0.4 & 0.5 & 0.6 & 0.9 & 1.0\end{array}\right]$
Define the reponse vector a as $\left[\begin{array}{llllllll}0 & 0.5 & 0.5 & 0.1 & 0.1 & 0.8 & 0.8 & 0\end{array}\right]$

## fdesign.arbmag

With those specifications, $f$ and a are connected as follows:

$\mathbf{f}$ (normalized frequency)	$\mathbf{a}$ (response desired at $\mathbf{f}$ )
0	0
0.1	0.5
0.2	0.5
0.4	0.1
0.5	0.1
0.6	0.8
0.9	0.8
1.0	0.0

A response with two passbands-one roughly between 0.1 and 0.2 and the second between 0.6 and 0.9 -results from the mapping between $f$ and a. A filter that used $f$ and a might look like this


Different specification types often have different design methods available. Use designmethods (d) to get a list of design methods available for a given specification string and specifications object.
d = fdesign.arbmag(specification,specvalue1,specvalue2,...) initializes the filter specification object specifications with specvalue1, specvalue2, and so on. Use get (d, 'description') for descriptions of the various specifications specvalue1, specvalue2,...specn.
d = fdesign.arbmag(specvalue1,specvalue2,specvalue3) uses the default specification string $n, f, a$, setting the filter order, filter frequency vector, and the amplitude vector to the values specvalue1, specvalue2, and specvalue3.

## fdesign.arbmag

$d=$ fdesign.arbmag(...,fs) specifies the sampling frequency in Hz. All other frequency specifications are also assumed to be in Hz when you specify fs.

## Examples

These three examples introduce designing filters that have arbitrary filter response shapes. In this first example, use fdesign. arbmag to design a single-band, arbitrary-magnitude FIR filter. Notice that the design process uses the default design method for the $n, f, a$ specification.

```
n = 120;
f = linspace(0,1,100); % 100 frequency points.
as = ones(1,100)-f*0.2;
absorb = [ones(1,30),(1-0.6*bohmanwin(10))', ...
ones(1,5), (1-0.5*bohmanwin(8))',ones(1,47)];
a = as.*absorb; % Optical absorption of atomic Rubidium 87 vapor.
d = fdesign.arbmag(n,f,a);
hd1 = design(d,'freqsamp');
```

Next, design a single-band, arbitrary-magnitude IIR filter and display the magnitude response in FVTool. Use $f$ and a from the previous example as input arguments for this case. Display the response from the previous example in FVTool as well, because the FIR and IIR filters are similar.

To demonstrate that the same specification generates both FIR and IIR filters, use the same specifications object d, but change the design method to iirlpnorm.
d.filterorder=10
$d=$

```
Response: 'Arbitrary Magnitude'
Specification: 'N,F,A'
Description: \{'Filter Order';'Frequency Vector';'Amplitude Vector'\}
NormalizedFrequency: true FilterOrder: 10
Frequencies: [1x100 double]
Amplitudes: [1×100 double]
hd2=design(d,'iirlpnorm') \% Design an IIR filter from the same object.
hd2 =
```

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [5x6 double]
ScaleValues: [0.85714867585342;1;1;1;1;1]
PersistentMemory: false

```
fvtool(hd1,hd2)
```

FVTool returns the following plot for the filters.


For the third example, design a multiband filter for noise shaping when you are simulating the Rayleigh fading phenomenon in a wireless communications channel. This example uses the default design method for fdesign. arbmag specifications objects with the nb, na, nbands specification-iirlpnorm.

```
nb = 4; % Numerator order.
na = 6; % Denominator order.
nbands = 2; % Number of filter bands.
f1 = 0:0.01:0.4; % Frequency vector values.
a1 = 1.0 ./ (1 - (f1./0.42).^2).^0.25; % Amplitude values.
f2 = [.45 1];
a2 = [0 0];
```


## fdesign.arbmag

```
d = fdesign.arbmag('nb,na,b,f,a',nb,na,nbands,f1,a1,f2,a2);
design(d); % Starts FVTool to display the filter response.
```



The filter response shows the characteristic shape for noise shapingincreasing gain with increasing frequency in the passband, and a narrow transition region.

See Also
design, designopts, fdesign, setspecs

## fdesign.arbmagnphase

Purpose	Design discrete-time filter specification object for arbitrary magnitude and phase response	
Syntax	$d=$ fdesign.arbmagn   d = fdesign.arbmagn   d = fdesign.arbmagn   d = fdesign.arbmagn   d = fdesign.arbmagn	```specification) specification,specvalue1,specvalue2,...) specvalue1,specvalue2,specvalue3) ...,fs)```
Description	d = fdesign.arbmag(specification) initializes the Specification property for specifications object $d$ to the string in specification. The input argument specification must be one of the following strings. Specification strings are not case sensitive and must be entered as shown.	
	Specification String	Description of Resulting Filter
	$\mathrm{n}, \mathrm{f}, \mathrm{h}$	Single band design (default). FIR and IIR ( $n$ is the order for both numerator and denominator).
	$\mathrm{n}, \mathrm{b}, \mathrm{f}, \mathrm{h}$	Multiband design where $b$ defines the number of bands. FIR and IIR ( n is the order for both numerator and denominator).
	$n \mathrm{nb}, \mathrm{na}, \mathrm{f}, \mathrm{h}$	IIR single band design.

## fdesign.arbmagnphase

The arguments in the strings are

Argument	Description
b	Number of bands in the multiband filter.
f	Frequency vector. Frequency values in   f specify locations where you provide specific   filter response amplitudes. When you provide   f you must also provide h which contains the   reponse values.
h	Complex frequency response values.
n	Filter order for FIR filters and the numerator   and denominator orders for IIR filters (when   not specified by nb and na).
nb	Numerator order for IIR filters.
na	Denominator order for IIR filter designs.

By default, this method assumes that all frequency specifications are supplied in normalized frequency.

## Specifying $f$ and $h$

$f$ and $h$ are the input arguments you use to define the filter response desired. Each frequency value you specify in f must have a corresponding response value in $h$. Here is an example that creates a filter with two passbands ( $b=4$ ) and shows how $f$ and $h$ are related. This example is for illustration only. It is not a real filter.

Define the frequency vector $f$ as $\left[\begin{array}{llllllllll}0 & 0.1 & 0.2 & 0.4 & 0.5 & 0.6 & 0.9 & 1.0\end{array}\right]$


## fdesign.arbmagnphase

With those specifications, $f$ and $h$ are connected as follows:

$\mathbf{f}$ (normalized frequency)	$\mathbf{h}$ (response desired at $\mathbf{f}$ )
0	0
0.1	0.5
0.2	0.5
0.4	0.1
0.5	0.1
0.6	0.8
0.9	0.8
1.0	0.0

A response with two passbands-one roughly between 0.1 and 0.2 and the second between 0.6 and 0.9 -results from the mapping between $f$ and $h$. Plotting $f$ and $h$ yeilds this figure that resembles a filter with two passbands.

## fdesign.arbmagnphase



The second example in Examples shows this in more detail with a complex filter response for $h$. In the example, $h$ uses complex values for the response.

Different specification types often have different design methods available. Use designmethods (d) to get a list of design methods available for a given specification string and specifications object.
d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,...) initializes the filter specification object with specvalue1, specvalue2, and so on. Use get ( $d$, 'description') for descriptions of the various specifications specvalue1, specvalue2,...specn.
$d=$ fdesign.arbmagnphase(specvalue1, specvalue2, specvalue3) uses the default specification string $n, f, h$, setting the filter order, filter frequency

## fdesign.arbmagnphase

vector, and the complex frequency response vector to the values specvalue1, specvalue2, and specvalue3.
d = fdesign.arbmagnphase(...,fs) specifies the sampling frequency in Hz . All other frequency specifications are also assumed to be in Hz when you specify fs.

## Examples

Use fdesign. arbmagnphase to model a complex analog filter.

```
d=fdesign.arbmagnphase('n,f,h',100); %N=100, f and h set to defaults.
design(d,'freqsamp');
```

For a more complex example, design a bandpass filter with low group delay by specifying the desired delay and using $f$ and $h$ to define the filter bands.

```
n = 50; % Group delay of a linear phase filter would be 25.
gd = 12; % Set the desired group delay for the filter.
f1=linspace(0,.25,30); % Define the first stopband frequencies.
f2=linspace(.3,.56,40);% Define the passband frequencies.
f3=linspace(.62,1,30); % Define the second stopband frequencies.
h1 = zeros(size(f1)); % Specify the filter response at the freqs in f1.
h2 = exp(-j*pi*gd*f2); % Specify the filter response at the freqs in f2.
h3 = zeros(size(f3)); % Specify the response at the freqs in f3.
d=fdesign.arbmagnphase('n,b,f,h',50,3,f1,h1,f2,h2,f3,h3);
design(d,'equiripple')
```

Displaying the filter in FVTool shows both the magnitude response and the nearly linear phase.

## fdesign.arbmagnphase



## See Also

fdesign, design, designmethods, setspecs

Purpose
Syntax

Description

Construct bandpass filter specification object

```
d = fdesign.bandpass
d = fdesign.bandpass(spec)
d = fdesign.bandpass(spec,specvalue1,specvalue2,...)
d = fdesign.bandpass(specvalue1,specvalue2,specvalue3,specvalue4,
 specvalue4, specvalue5, specvalue6, specvalue7)
d = fdesign.bandpass(...,fs)
d = fdesign.bandpass(..., magunits)
```

d = fdesign. bandpass constructs a bandpass filter specification object d, applying default values for the properties Fstop1, Fpass1, Fpass2, Fstop2, Astop1, Apass, and Astop2-one possible set of values you use to specify a bandpass filter.

Using fdesign.bandpass with a design method generates a dfilt object.
d = fdesign.bandpass(spec) constructs object d and sets its Specification property to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown below and used to define the bandpass filter. The strings are not case sensitive.

```
- fst1,fp1,fp2,fst2,ast1,ap,ast2 (default spec)
- n, f3dB1,f3dB2
- n,f3dB1,f3dB2,ap
- n, f3dB1,f3dB2,ast
- n,f3dB1,f3dB2,ast1,ap,ast2
- n,f3dB1,f3dB2,bwp
- n,f3dB1,f3dB2,bwst
- n,fc1,fc2
- n,fp1,fp2,ap
- n,fp1,fp2,ast1,ap,ast2
- n,fst1,fp1,fp2,fst2
- n,fst1,fp1,fp2,fst2,ap
```


## fdesign.bandpass

- n,fst1,fst2,ast
- nb, na,fst1,fp1,fp2,fst2

The string entries are defined as follows:

- ap-amount of ripple allowed in the pass band. Also called Apass.
- ast1—attenuation in the first stop band in dB (the default units). Also called Astop1.
- ast2-attenuation in the second stop band in dB (the default units). Also called Astop2.
- bwp-bandwidth of the filter passband. Specified in normalized frequency units.
- bwst—bandwidth of the filter stopband. Specified in normalized frequency units.
- f3dB1—cutoff frequency for the point 3dB point below the passband value for the first cutoff. Specified in normalized frequency units. (IIR filters)
- f3dB2—cutoff frequency for the point 3dB point below the passband value for the second cutoff. Specified in normalized frequency units. (IIR filters)
- fc1-cutoff frequency for the point 3dB point below the passband value for the first cutoff. Specified in normalized frequency units. (FIR filters)
- fc2-cutoff frequency for the point 3 dB point below the passband value for the second cutoff. Specified in normalized frequency units. (FIR filters)
- fp1-frequency at the edge of the start of the pass band. Specified in normalized frequency units. Also called Fpass1.
- fp2-frequency at the edge of the end of the pass band. Specified in normalized frequency units. Also called Fpass2.
- fst1-frequency at the edge of the start of the first stop band. Specified in normalized frequency units. Also called Fstop1.
- fst2-frequency at the edge of the start of the second stop band. Specified in normalized frequency units. Also called Fstop2.
- n-filter order for FIR filters. Or both the numerator and denominator orders for IIR filters when na and nb are not provided.
- na-denominator order for IIR filters
- nb-numerator order for IIR filters


## fdesign.bandpass

Graphically, the filter specifications look like this.


Regions between specification values like fst1 and fp1 are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandpass filter specification object change depending on the Specification string.Use designmethods to determine which design method applies to an object and its specification string.
d = fdesign.bandpass(spec, specvalue1, specvalue2,...) constructs an object $d$ and sets its specifications at construction time.
d = fdesign.bandpass(specvalue1,specvalue2,specvalue3, specvalue4, specvalue4, specvalue5, specvalue6) constructs d, an object with the default Specification property string, using the values you provide as input arguments for specvalue1, specvalue2, specvalue3, specvalue4, specvalue 4 , specvalue5,specvalue6 and specvalue7.
$\mathrm{d}=\mathrm{fdesign}$. bandpass (...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.bandpass(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of

- linear-specify the magnitude in linear units


## fdesign.bandpass

- dB-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

## Examples

These examples show how to construct a bandpass filter specification object. First, create a default specifications object without using input arguments.

```
d = fdesign.bandpass
d =
```

```
 Response: 'Minimum-order bandpass'
```

            Response: 'Minimum-order bandpass'
            Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}
            Description: {7x1 cell}
    NormalizedFrequency: true
    NormalizedFrequency: true
            Fstop1: 0.3500
            Fstop1: 0.3500
            Fpass1: 0.4500
            Fpass1: 0.4500
            Fpass2: 0.5500
            Fpass2: 0.5500
            Fstop2: 0.6500
            Fstop2: 0.6500
            Astop1: 60
            Astop1: 60
            Apass: 1
            Apass: 1
                    Astop2: 60
    ```
 Astop2: 60
```

Now, pass the filter specifications that correspond to the default Specification-fst1,fp1,fp2,fst2,ast1,ap,ast2-without specifying the Specification string. Notice that we add fs as the final input argument to specify the sampling frequency of 48 Hz .

```
d = fdesign.bandpass(10, 12, 14, 16, 80, .5, 60, 48)
d =
 Response: 'Minimum-order bandpass'
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
 NormalizedFrequency: false
 Fs: 48
 Fstop1: 10
 Fpass1: 12
```


## fdesign.bandpass

Fpass2: 14
Fstop2: 16
Astop1: 80
Apass: 0.5000
Astop2: 60
Next create a specifications object by passing a specification type string ' $\mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2$ '—the resulting object uses default values for $\mathrm{n}, \mathrm{fc} 1$, and fc 2 .
$d=$ fdesign.bandpass('n,fc1,fc2')
$\mathrm{d}=$
Response: 'Bandpass with cutoff'
Specification: 'N,Fc1,Fc2'
Description: $\{3 x 1$ cell\}
NormalizedFrequency: true
FilterOrder: 10
Fcutoff1: 0.4000
Fcutoff2: 0.6000
Create the same filter, passing the specification values to the object rather than accepting the default values for $n$, fc1, and fc2. Notice that you can include the sampling frequency $f s$ as the final input argument, and that you specify the cutoff frequencies in Hz since $\mathrm{f} s$ is in Hz .

```
d = fdesign.bandpass('n,fc1,fc2', 10, 9600, 14400, 48000)
d =
 Response: 'Bandpass with cutoff'
 Specification: 'N,Fc1,Fc2'
 Description: {3x1 cell}
 NormalizedFrequency: false
 Fs: 48000
 FilterOrder: 10
 Fcutoff1: 9600
 Fcutoff2: 14400
```

See Also fdesign, fdesign.bandstop, fdesign.highpass, fdesign.lowpass

## fdesign.bandstop

Purpose
Construct bandstop filter specification object

```
Syntax d = fdesign.bandstop
d = fdesign.bandstop(spec)
d = fdesign.bandstop(spec,specvalue1,specvalue2,...)
d = fdesign.bandstop(specvalue1,specvalue2,specvalue3,specvalue4,
 specvalue4,specvalue5,specvalue6,specvalue7)
d = fdesign.bandstop(...,fs)
d = fdesign.bandstop(...,magunits)
```

Description d = fdesign.bandstop constructs a bandstop filter specification object d, applying default values for the properties Fpass1, Fstop1, Fstop2, Fpass2, Apass1, Astop1 and Apass2.

Using fdesign.bandstop with a design method generates a dfilt object.
d = fdesign.bandstop(spec) constructs object d and sets its 'Specification' to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown below. The strings are not case sensitive.

- fp1,fst1,fst2,fp2,ap1,ast,ap2 (default spec)
- $n, f 3 \mathrm{~dB} 1, f 3 \mathrm{dB2}$
- $n, f 3 d B 1, f 3 d B 2, a p$
- n,f3dB1,f3dB2, ap, ast
- n,f3dB1,f3dB2, ast
- n,f3dB1,f3dB2, bwp
- $n, f 3 d B 1, f 3 d B 2, b w s t$
- $n, f c 1, f c 2$
- n,fp1,fp2,ap
- n,fp1,fp2,ap,ast
- $n, f p 1, f s t 1, f s t 2, f p 2$
- $n, f p 1, f s t 1, f s t 2, f p 2, a p$
- $n, f s t 1, f s t 2, a s t$
- nb, na,fp1,fst1,fst2,fp2

The string entries are defined as follows:

## fdesign.bandstop

- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast-attenuation in the first stop band in dB (the default units). Also called Astop1.
- bwp-bandwidth of the filter passband. Specified in normalized frequency units.
- bwst—bandwidth of the filter stopband. Specified in normalized frequency units.
- f3dB1—cutoff frequency for the point 3dB point below the passband value for the first cutoff. Specified in normalized frequency units.
- f3dB2-cutoff frequency for the point 3dB point below the passband value for the second cutoff. Specified in normalized frequency units.
- fp1-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass1.
- fp2-frequency at the end of the pass band. Specified in normalized frequency units. Also called Fpass2.
- fst1-frequency at the end of the first stop band. Specified in normalized frequency units. Also called Fstop1.
- fst2-frequency at the start of the second stop band. Specified in normalized frequency units. Also called Fstop2.
- n-filter order.
- na-denominator order for IIR filters
- nb-numerator order for IIR filters.

Graphically, the filter specifications look like this:

## fdesign.bandstop



Regions between specification values like fp1 and fst1 are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a bandstop filter specification object change depending on the Specification string. Use designmethods to determine which design method applies to an object and its specification string.
d = fdesign.bandstop(spec,specvalue1,specvalue2,...) constructs an object d and sets its specifications at construction time.
d = fdesign.bandstop(fpass1,fstop1,fstop2,fpass2,apass1,... astop, apass2) constructs an object d with the default Specification property string, using the values you provide for specvalue1, specvalue2, specvalue3, specvalue4, specvalue4, specvalue5,specvalue6 and specvalue7.
$\mathrm{d}=\mathrm{fdesign}$. bandstop(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.bandstop(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of

- linear-specify the magnitude in linear units
- dB-specify the magnitude in dB (decibels)


## fdesign.bandstop

- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

## Examples

These examples show how to construct a bandpass filter specification object. First, create a default specifications object without using input arguments.

```
d = fdesign.bandstop
d =
 Response: 'Minimum-order bandstop'
 Description: {7x1 cell}
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
NormalizedFrequency: true
 Fpass1: 0.3500
 Fstop1: 0.4500
 Fstop2: 0.5500
 Fpass2: 0.6500
 Apass1: 1
 Astop: 60
 Apass2: 1
```

Now create an object by passing a specification type string 'n,fc1,fc2'-the resulting object uses default values for n , fc 1 , and fc 2 .

```
d=fdesign.bandstop('n,f3dB1,f3dB2')
d =
 Response: 'Bandstop with cutoff'
 Specification: 'N,F3dB1,F3dB2'
 Description: {3x1 cell}
 NormalizedFrequency: true
 FilterOrder: 10
 Fcutoff1: 0.4000
 Fcutoff2: 0.6000
designmethods(d)
```


## fdesign.bandstop

```
Design Methods for class fdesign.bandstop:
butter
cheby1
cheby2
ellip
```

Create another bandstop filter, passing the specification values to the object rather than accepting the default values for $\mathrm{n}, \mathrm{f} 3 \mathrm{db} 1$, and fc2. Notice that you can add fs as the final input argument to specify the sampling frequency of 48 kHz .

```
d = fdesign.bandstop('n,f3db1,f3db2', 10, 9600, 14400, 48000)
```

d $=$

Response: 'Bandstop with cutoff'
Specification: 'N,F3dB1,F3dB2'
Description: $\{3 \times 1$ cell\}
NormalizedFrequency: false
Fs: 48000
FilterOrder: 10
Fcutoff1: 9600
Fcutoff2: 14400
For this bandstop filter, pass the filter specifications that correspond to the default Specification-fp1,fst1,fst2,fp2,ap1,ast,ap2.
d = fdesign.bandstop(0.3,0.4,0.6,0.7,0.5,60,1)
d $=$

```
Response: 'Minimum-order bandstop'
Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
Description: \{7x1 cell\}
NormalizedFrequency: true
Fpass1: 0.3000
Fstop1: 0.4000
Fstop2: 0.6000
Fpass2: 0.7000
```


## fdesign.bandstop

Apass1: 0.5000
Astop: 60
Apass2: 1
And for the final example, pass the magnitude specifications in squared units, using the magunits option squared.

```
d = fdesign.bandstop(0.4,0.5,0.6,0.7,0.98,0.01,0.99,'squared')
d =
Response: 'Minimum-order bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fpass1: 0.4000
 Fstop1: 0.5000
 Fstop2: 0.6000
 Fpass2: 0.7000
 Apass1: 0.0877
 Astop: 20
 Apass2: 0.0436
```


## fdesign.ciccomp

```
Purpose Construct filter cascaded-integrator comb (CIC) compensator filter specification object
Syntax
h = fdesign.ciccomp
h = fdesign.ciccomp(d,nsections)
h = fdesign.ciccomp(...,spec)
h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...)
```


## Description

h = fdesign.ciccomp constructs a CIC compensator specifications object d, applying default values for the properties Fpass, Fstop, Apass, and Astop. In this syntax, the filter has two sections and the differential delay is 1 .

Using fdesign.ciccomp with a design method creates a dfilt object, a single-rate discrete-time filter.
h = fdesign.ciccomp(d,nsections) constructs a CIC compensator specifications object with the filter differential delay set to $d$ and the number of sections in the filter set to nsections. By default, d and nsections are 1 and 2 if you omit them as input arguments.
h = fdesign.ciccomp(...,spec) constructs a CIC Compensator specifications object and sets its Specification property to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown in the list below. The strings are not case sensitve.

- fp,fst,ap,ast (default spec)
- $n, f c, a p, a s t$
- n,fp,ap, ast
- $n, f p, f s t$
- n,fst, ap, ast

The string entries are defined as follows:

- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast-attenuation in the stop band in dB (the default units). Also called Astop.


## fdesign.ciccomp

- fc-cutoff frequency for the point 3 dB point below the passband value. Specified in normalized frequency units.
- fp-frequency at the end of the pass band. Specified in normalized frequency units. Also called Fpass.
- fst-frequency at the start of the stop band. Specified in normalized frequency units. Also called Fstop.
- n-filter order.

In graphic form, the filter specifications look like this:


Regions between specification values like fp and fst are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a CIC compensator specifications object change depending on the Spcification string. Use designmethods to determine which design method applies to an object and its specification string.
h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...) constructs an object and sets the specifications in the order they are specified in the spec input when you construct the object.

## Designing CIC Compensators

Typically, when they develop filters, designers want flat passbands and transition regions that are as narrow as possible. CIC filters present a $(\sin x / x)$ profile in the passband and relatively wide transitions.

## fdesign.ciccomp

To compensate for this fall off in the passband, and to try to reduce the width of the transition region, you can use a CIC compensator filter that demonstrates an $(x / \sin x)$ profile in the passband. fdesign.ciccomp is specifically tailored to designing CIC compensators.

Here is a plot of a CIC filter and a compensator for that filter. The example that produces these filters follows the plot.


Given a CIC filter, how do you design a compensator for that filter? CIC compensators share three defining properties with the CIC filter-differential delay, d; number of sections, numberofsections; and the usable passband frequency, Fpass.

By taking the number of sections, passband, and differential delay from your CIC filter and using them in the definition of the CIC compensator, the
resulting compensator filter effectively corrects for the passband droop of the CIC filter, and narrows the transition region.

As a demonstration of this concept, this example creates a CIC decimator and its compensator.

```
fs = 96e3; % Input sampling frequency.
fpass = 4e3; % Frequency band of interest.
m = 6; % Decimation factor.
hcic = design(fdesign.decimator(m,'cic',1,fpass,60,fs));
hd = cascade(dfilt.scalar(1/gain(hcic)),hcic);
hd(2) = design(fdesign.ciccomp(hcic.differentialdelay, ...
 hcic.numberofsections,fpass,4.5e3,.1,60,fs/m));
fvtool(hd(1),hd(2),cascade(hd(1),hd(2)),'Fs',[96e3 96e3/m 96e3])
```

You see the results in the preceeding plot.

## Examples

Designed to compensate for the roll-off inherent in CIC filters, CIC compensators can improve the performance of your CIC design. This example designs a compensator d with five sections and a differential delay equal to one. The plot displayed after the code shows the increasing gain in the passband that is characteristic of CIC compensators, to overcome the droop in the CIC filter passband. Ideally, cascading the CIC compensator with the CIC filter results in a lowpass filter with flat passband response and narrow transition region.

```
h = fdesign.ciccomp;
set(h, 'NumberOfSections', 5, 'DifferentialDelay', 1);
hd = equiripple(h);
fvtool(hd);
```


## fdesign.ciccomp



This compensator would work for a decimator or interpolator that had diffential delay of 1 and 5 sections.

## See Also

## fdesign.decimator

Purpose
Syntax

Description

Construct decimator filter specification object

```
d = fdesign.decimator(m)
d = fdesign.decimator(m,design)
d = fdesign.decimator(m,design,spec)
d = fdesign.decimator(...,spec,specvalue1,specvalue2,...
d = fdesign.decimator(...,fs)
d = fdesign.decimator(...,magunits)
```

d = fdesign.decimator(m) constructs a decimating filter specification object $d$, applying default values for the properties $f p$, fst, ap, and ast and using the default design, Nyquist. Specify m, the decimation factor, as an integer. When you omit the input argument m , fdesign. decimator sets the decimation factor m to 2 .

Using fdesign.decimator with a design method generates an mfilt object.
d = fdesign.decimator(m,design) constructs a decimator with the decimation factor $m$ and the design type you specify in design. By using the design input argument, you can choose the sort of filter that results from using the decimator specifications object. design accepts the following strings that define the filter response.

| design String | Description |
| :--- | :--- |
| bandpass | Sets the design for the decimator <br> specifications object to bandpass. |
| bandstop | Sets the design for the decimator <br> specifications object to bandstop. |
| cic | Sets the design for the decimator <br> specifications object to CIC filter. |
| ciccomp | Sets the design for the decimator <br> specifications object to CIC compensator. |
| halfband | Sets the design for the decimator <br> specifications object to halfband. |

## fdesign.decimator

| design String (Continued) | Description |
| :--- | :--- |
| highpass | Sets the design for the decimator <br> specifications object to highpass. |
| isinclp | Sets the design for the decimator <br> specifications object to inverse-sinc <br> lowpass. |
| lowpass | Sets the design for the decimator <br> specifications object to lowpass. |
| nyquist | Sets the design for the decimator <br> specifications object to Nyquist. |

Notice the entries in the first column. They match the design method names. However, when you create your specifications object, the Response property contains the full name of the response, such as CIC Compensator or Inverse-Sinc Lowpass, rather than the shorter method names isinclp or ciccomp. So, when you seek to design a new filter object, use the design method name shown in the table. To change the Response property value for an existing specifications object, use the full response name.
d = fdesign.decimator(m,design,spec) constructs object d and sets its Specification property to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input argument.

Because you are designing multirate filters, the specification strings available are not the same as the specifications for designing single-rate filters with such design methods as fdesign. lowpass. The strings are not case sensitive.

## fdesign.decimator

Notice that the decimation factor $m$ is not in the specification strings. Various design types provide different specifications, as shown in this table. .

| Design Type | Valid Specification Strings |
| :---: | :---: |
| Bandpass | - fst1,fp1,fp2,fst2,ast1, ap, ast2 (default string) <br> - $\mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2$ <br> - $n, f s t 1, f p 1, f p 2, f s t 2$ |
| Bandstop | - $n, f c 1, f c 2$ <br> - $n, f p 1, f s t 1, f s t 2, f p 2$ <br> - fp1,fst1,fst2,fp2,ap1,ast,ap2 (default string) |
| CIC | - fp, ast (default and only string) |
| CIC Compensator | - fp,fst,ap, ast (default string) <br> - $n, f c, a p, a s t$ <br> - $n, f p, a p, a s t$ <br> - $n, f p, f s t$ <br> - n,fst, ap, ast |
| Halfband | - tw, ast (default string) <br> - $n$, tw <br> - n <br> - $n$, ast |

## fdesign.decimator

| Design Type | Valid Specification Strings |
| :---: | :---: |
| Highpass | - fst,fp,ast,ap (default string) <br> - $\mathrm{n}, \mathrm{fc}$ <br> - $n, f c, a s t, a p$ <br> - $n, f p, a s t, a p$ <br> - $n, f s t, f p, a p$ <br> - n,fst,fp, ast <br> - n,fst, ast, ap <br> - $n, f s t, f p$ |
| Inverse-Sinc Lowpass | - $f p, f s t$,ap, ast (default string) <br> - $n, f c, a p, a s t$ <br> - n, fst, ap, ast <br> - $n, f p, a p$, ast <br> - $n, f p, f s t$ |
| Lowpass | - $f p, f s t, a p$, ast (default string) <br> - $\mathrm{n}, \mathrm{fc}$ <br> - $n, f c, a p, a s t$ <br> - $n, f p, a p, a s t$ <br> - $n, f p, f s t$ <br> - $n, f p, f s t, a p$ <br> - $n, f p, f s t$, ast <br> - n,fst, ap, ast |
| Nyquist | - tw, ast (default string) <br> - $n$, tw <br> - $n$ <br> - n, ast |

The string entries are defined as follows:

- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.


## fdesign.decimator

- ap1-amount of ripple allowed in the pass band in dB (the default units). Also called Apass1. Bandpass and bandstop filters use this option.
- ap2-amount of ripple allowed in the pass band in dB (the default units). Also called Apass2. Bandpass and bandstop filters use this option.
- ast-attenuation in the first stop band in dB (the default units). Also called Astop.
- ast1-attenuation in the first stop band in dB (the default units). Also called Astop1. Bandpass and bandstop filters use this option.
- ast2—attenuation in the first stop band in dB (the default units). Also called Astop2. Bandpass and bandstop filters use this option.
- fc1-cutoff frequency for the point 3 dB point below the passband value for the first cutoff. Specified in normalized frequency units. Bandpass and bandstop filters use this option.
- fc2-cutoff frequency for the point 3 dB point below the passband value for the second cutoff. Specified in normalized frequency units. Bandpass and bandstop filters use this option.
- fp1-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass1. Bandpass and bandstop filters use this option.
- fp2-frequency at the end of the pass band. Specified in normalized frequency units. Also called Fpass2. Bandpass and bandstop filters use this option.
- fst1-frequency at the end of the first stop band. Specified in normalized frequency units. Also called Fstop1. Bandpass and bandstop filters use this option.
- fst2-frequency at the start of the second stop band. Specified in normalized frequency units. Also called Fstop2. Bandpass and bandstop filters use this option.
- n-filter order.
- tw-width of the transition region between the pass and stop bands. Both halfband and Nyquist filters use this option.
d = fdesign.decimator(...,spec,specvalue1,specvalue2,...) constructs an object d and sets its specifications at construction time.


## fdesign.decimator

d = fdesign.decimator(...,fs) adds the argument fs, specified in Hz , to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.decimator(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of

- linear-specify the magnitude in linear units.
- dB-specify the magnitude in dB (decibels).
- squared-specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

## Examples

These examples show how to construct decimating filter specification objects. First, create a default specifications object without using input arguments except for the decimation factor m .

```
d = fdesign.decimator(2,0.1,80) % Set tw=0.1, and ast=80.
d =
 MultirateType: 'Decimator'
 Response: 'Nyquist'
 DecimationFactor: 2
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
NormalizedFrequency: true
 TransitionWidth: 0.1
 Astop: 80
```

Now create an object by passing a specification type string 'fst1,fp1,fp2,fst2, ast1, ap, ast2' and a design-the resulting object uses default values for the filter specifications. You must provide the design input argument, bandpass in this example, when you include a specification.

```
d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')
d =
```


## fdesign.decimator

```
 MultirateType: 'Decimator'
 Response: 'Bandpass'
 DecimationFactor: 8
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
NormalizedFrequency: true
 Fstop1: 0.35
 Fpass1: 0.45
 Fpass2: 0.55
 Fstop2: 0.65
 Astop1: 60
 Apass: 1
 Astop2: 60
```

Create another decimating filter specification object, passing the specification values to the object rather than accepting the default values for $f p, f s t$,ap,ast.

```
d=fdesign.decimator(3,'lowpass',.45,0.55,.1,60)
d =
 MultirateType: 'Decimator'
 Response: 'Lowpass'
 DecimationFactor: 3
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
NormalizedFrequency: true
 Fpass: 0.45
 Fstop: 0.55
 Apass: 0.1
 Astop: 60
```

Now pass the filter specifications that correspond to the specificationsn,fc,ap,ast.
d=fdesign.decimator(3,'cic compensator','n,fc,ap,ast',...
20,0.45,.05,50)
d $=$

## fdesign.decimator

```
 MultirateType: 'Decimator'
 Response: 'CIC Compensator'
 DecimationFactor: 3
 Specification: 'N,Fc,Ap,Ast'
 Description: {4x1 cell}
 NumberOfSections: 2
DifferentialDelay: 1
NormalizedFrequency: true
 FilterOrder: 20
 Fcutoff: 0.45
 Apass: 0.05
 Astop: 50
```

Now design a decimator using the kaiserwin design method.

```
hm = kaiserwin(d)
```

Pass a new specification type for the filter, specifying the filter order. Note that the inputs must include the differential delay dd with the CIC input argument to design a CIC specification object.

```
m = 5;
dd = 2;
d = fdesign.decimator(m,'cic',dd,'fp,ast',0.55,55)
d =
 MultirateType: 'Decimator'
 Response: 'CIC'
 DecimationFactor: 5
 Specification: 'Fp,Ast'
 Description: {'Passband Frequency';'Stopband Attenuation(dB)'}
 DifferentialDelay: 2
NormalizedFrequency: true
 Fpass: 0.55
```

In this example, you specify a sampling frequency as the last input argument.

```
d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,...
ap,ast2',0.25,0.35,.55,.65,50,.05,50,1e3) % Fs = 1000 Hz.
d =
 MultirateType: 'Decimator'
```

```
 Response: 'Bandpass'
 DecimationFactor: 8
 Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
 Description: {7x1 cell}
NormalizedFrequency: false
 Fs: }100
 Fstop1: 0.25
 Fpass1: 0.35
 Fpass2: 0.55
 Fstop2: 0.65
 Astop1: 50
 Apass: 0.05
 Astop2: 50
```

In this, the last example, use the linear option for the filter specification object and specify the stopband ripple attenuation in linear format.

```
hs = fdesign.decimator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,50,\ldots.
 1e-3,'linear') % 1e-3 = 60dB.
hs =
 Response: 'Lowpass decimator'
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 DecimationFactor: 4
 NormalizedFrequency: false
 Fs: 500
 TransitionWidth: 0.1
 Astop: 60
```

Design the filter and display the magnitude response in FVTool.

```
designmethods(hs);
equiripple(hs); % Starts FVTool to display the response.
```


## fdesign.decimator



[^7]Purpose

```
Syntax d = fdesign.differentiator
```

d = fdesign.differentiator(spec)

```
d = fdesign.differentiator(spec)
d = fdesign.differentiator(spec,specvalue1,specvalue2,...)
d = fdesign.differentiator(spec,specvalue1,specvalue2,...)
d = fdesign.differentiator(specvalue1)
d = fdesign.differentiator(specvalue1)
d = fdesign.differentiator(...,fs)
d = fdesign.differentiator(...,fs)
d = fdesign.differentiator(...,magunits)
```

```
d = fdesign.differentiator(...,magunits)
```

```

\section*{Description}

Construct differentiator filter specification object
d = fdesign.differentiator constructs a default differentiator filter designer \(d\) the filter order, set to 31 .
d = fdesign.differentiator(spec) initializes the filter designer Specification property to spec. You provide one of the following strings as input to replace spec. The string you provide is not case sensitive:
- n -full band differentiator (default).
- \(n, f p, f s t-p a r t i a l ~ b a n d ~ d i f f e r e n t i a t o r . ~\)
- ap-minimum-order full band differentiator.
- fp,fst,ap,ast-minimum-order partial band differentiator.

The string entries are defined as follows:
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast—attenuation in the stop band in dB (the default units). Also called Astop.
- fp-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass.
- fst-frequency at the end of the stop band. Specified in normalized frequency units. Also called Fstop.
- n-filter order.

By default, fdesign.differentiator assumes that all frequency specifications are provided in normalized frequency units. Also, dB is the default for all magnitude specifications.

\section*{fdesign.differentiator}

Different specification strings may have different design methods available. Use designmethods (d) to get a list of the design methods available for a given specification string.
d = fdesign.differentiator(spec,specvalue1,specvalue2, ...) initializes the filter designer specifications in spec with specvalue1, specvalue2, and so on. To get a description of the specifications specvalue1, specvalue2, and more, enter
get(d,'description')
at the Command prompt.
d = fdesign.differentiator(specvalue1) assumes the default specification string \(n\), setting the filter order to the value you provide.
d = fdesign.differentiator(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.differentiator(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

Examples The toolbox lets you design a range of differentiators. These examples present a few possible designs. The first example designs a 33 rd-order full band differentiator. The FVTool plot following the code shows the resulting 33 rd-order filter.
```

d = fdesign.differentiator(33); % N is the filter order of 33.
designmethods(d);

```
```

hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange',...
'[-pi, pi)')
Design Methods for class fdesign.differentiator (N):
equiripple
firls

```


For the second example, design a narrow band differentiator. Differentiate the first 25 percent of the frequencies in the Nyquist range and filter the higher frequencies.

\section*{fdesign.differentiator}
```

d = fdesign.differentiator('n,fp,fst', 54,.25,.3);
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase');
set(hf,'frequencyrange','[-fs/2, fs/2]')

```

Here is the view from FVTool.

Finally, design a minimum-order, wide-band differentiator.
```

d = fdesign.differentiator('fp,fst,ap,ast',.8,.9,1,80);
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange')

```

FVTool returns this plot.

See Also
design, fdesign, setspecs

\section*{fdesign.halfband}

Purpose
Construct halfband filter specification object
Syntax
Description
```

d = fdesign.halfband
d = fdesign.halfband(spec)
d = fdesign.halfband(spec,specvalue1,specvalue2,...)
d = fdesign.halfband(specvalue1,specvalue2)
d = fdesign.halfband(...,fs)
d = fdesign.halfband(..., magunits)

```
applying default values for the properties tw and ast.

Using fdesign. halfband with a design method generates a dfilt object.
d = fdesign.halfband (spec) constructs object d and sets its 'Specification' to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown below. The strings are not case sensitive.
- tw,ast (default spec)
- n,tw
- n
- n,ast

The string entries are defined as follows:
- ast-attenuation in the stop band in dB (the default units).
- n-filter order.
- tw-width of the transition region between the pass and stop bands.

Specified in normalized frequency units.
The filter design methods that apply to a halfband filter specification object change depending on the Specification string. Use designmethods to determine which design method applies to an object and its specification string.
d = fdesign.halfband(spec,specvalue1,specvalue2,...) constructs an object \(d\) and sets its specifications at construction time.
\(d=\) fdesign.halfband(specvalue1, specvalue2) constructs an object \(d\) assuming the default Specification property string tw, ast, using the values
you provide for the input arguments specvalue1 and specvalue2 for tw and ast.
d = fdesign.halfband(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.halfband(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

\section*{Examples}

These examples show how to construct a halfband filter specification object. First, create a default specifications object without using input arguments.
```

d=fdesign.halfband
d =
Response: 'Minimum-order halfband'
Specification: 'TW,Ast'
Description: {2x1 cell}
NormalizedFrequency: true
TransitionWidth: 0.1000
Astop: 80

```

Now create an object by passing a specification type string ' \(n\),ast'-the resulting object uses default values for \(n\) and ast.
```

d=fdesign.halfband('n,ast')
d =
Response: 'Halfband with filter order and stopband attenuation' Specification: 'N,Ast
Description: $\{2 \times 1$ cell\}

```

\section*{fdesign.halfband}

> NormalizedFrequency: true
> FilterOrder: 10
> Astop: 80

Create another halfband filter object, passing the specification values to the object rather than accepting the default values for n and ast.
```

d = fdesign.halfband('n,ast', 42, 80)
d =
Response: 'Halfband with filter order and stopband attenuation' Specification: 'N,Ast'
Description: \{2x1 cell\}
NormalizedFrequency: true
FilterOrder: 42
Astop: 80

```

For another example, pass the filter values that correspond to the default Specification-n,ast.
d = fdesign.halfband(.01, 80)
d =
```

                    Response: 'Minimum-order halfband'
            Specification: 'TW,Ast'
            Description: {2x1 cell}
    NormalizedFrequency: true
TransitionWidth: 0.0100
Astop: 80%

```

This example designs an equiripple FIR filter, starting by passing a new specification type and specification values to fdesign.halfband.
```

hs = fdesign.halfband('n,ast',80,70);
hs
hs =
Response: [1x51 char]
Specification: 'N,Ast'
Description: {2x1 cell}
NormalizedFrequency: true
FilterOrder: 80
Astop: 70

```
```

equiripple(hs); % Opens FVTool automatically.

```

In the final example, pass the for the filter, and then design a least-squares FIR filter from the object, using firls as the design method.
```

hs = fdesign.halfband('n,tw', 42, .04)
hs =

```
 Response: [1x47 char]
 Specification: 'N,TW'
 Description: \(\{2 \times 1\) cell\}
 NormalizedFrequency: true
 FilterOrder: 42
 TransitionWidth: 0.0400
designmethods(hs)
Design Methods for class fdesign.halfband:
equiripple
kaiserwin
firls
hd=firls(hs)
hd =
```

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1\times43 double]
PersistentMemory: false
States: [42x1 double]

```

\section*{fdesign.highpass}

Purpose Construct highpass filter specification object
```

Syntax d = fdesign.highpass
d = fdesign.highpass(spec)
d = fdesign.highpass(spec,specvalue1,specvalue2,...)
d = fdesign.highpass(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.highpass(...,fs)
d = fdesign.highpass(...,magunits)

```

Description \(d=\) fdesign.highpass constructs a highpass filter specification object \(d\), applying default values for the properties \(f s t, f p\), ast and ap.

Using fdesign. highpass with a design method generates a dfilt object.
d = fdesign.highpass(spec) constructs object d and sets its 'Specification' to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown below. The strings are not case sensitive.
- fst, fp, ast, ap (default spec)
- \(n, f 3 d b\)
- \(n, f 3 d b, a p\)
- \(n, f 3 d b\), ast
- \(n, f 3 d b, a s t, a p\)
- \(n, f 3 d b, f p\)
- \(\mathrm{n}, \mathrm{fc}\)
- n,fc,ast,ap
- \(n, f p, a p\)
- n,fp, ast, ap
- \(n\),fst, ast
- n,fst, ast, ap
- \(n, f s t, f 3 d b\)
- \(n, f s t, f p\)
- n,fst,fp,ap
- n,fst,fp, ast
- nb, na,fst,fp

The string entries are defined as follows:
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast-attenuation in the stop band in dB (the default units). Also called Astop.
- f3db—cutoff frequency for the point 3 dB point below the passband value. Specified in normalized frequency units.
- fc-cutoff frequency for the point 3 dB point below the passband value. Specified in normalized frequency units.
- fp-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass.
- fst-frequency at the end of the stop band. Specified in normalized frequency units. Also called Fstop.
- n—filter order.
- na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look like this:

Regions between specification values like fst1 and fp are transition regions where the filter response is not explicitly defined.

\section*{fdesign.highpass}

The filter design methods that apply to a highpass filter specification object change depending on the Specification string. Use designmethods to determine which design method applies to an object and its specification string.
d = fdesign.highpass(spec,specvalue1, specvalue2,...) constructs an object \(d\) and sets its specification values at construction time.
d = fdesign.highpass(specvalue1,specvalue2,specvalue3,specvalue4) constructs an object \(d\) with the values for the default Specification property string, using the specifications you provide as input arguments specvalue1, specvalue2, specvalue3, specvalue4.
d = fdesign.highpass(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.highpass(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

\section*{Examples}

These examples how to construct a highpass filter specification object. First, create a default specifications object without using input arguments.
```

d=fdesign.highpass
d =

```
```

            Response: 'Minimum-order highpass'
    ```
 Response: 'Minimum-order highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 Description: {4x1 cell}
 NormalizedFrequency: true
 NormalizedFrequency: true
 Fstop: 0.4500
```

            Fstop: 0.4500
    ```

\section*{fdesign.highpass}

Fpass: 0.5500
Astop: 60
Apass: 1
This time, pass the specifications that correspond to the default Specification string.
```

hs = fdesign.highpass(.4,.5,80,1);
hs =

```
```

            Response: 'Minimum-order highpass'
            Specification: 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}
    NormalizedFrequency: true
Fstop: 0.4000
Fpass: 0.5000
Astop: 80
Apass: 1

```

Now create an object by passing a specification type string ' \(n, f c\) '- the resulting object uses default values for \(n\) and fc.
```

d=fdesign.highpass('n,fc')
d =
Response: 'Highpass with cutoff'
Specification: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true
FilterOrder: 10
Fcutoff: 0.5000

```

Create the same filter, passing the values for n and fc rather than accepting the default values. Notice that you can add include the sampling frequency fs as the final input argument. Adding fs puts all the frequency specifications into linear frequency format, rather than normalized frequency.
```

d=fdesign.highpass('n,fc',10,9600,48000)
d =

```

\section*{fdesign.highpass}
```

    Response: 'Highpass with cutoff'
    Specification: 'N,Fc'
    Description: {2x1 cell}
    NormalizedFrequency: false
Fs: 48000
FilterOrder: 10
Fcutoff: 9600

```

Finally, pass values for the filter specifications that match the default Specification string-fp \(=10\), fst \(=12\), ast \(=80\) and \(a p=0.5\). Add the sampling frequency on the end.
```

d=fdesign.highpass(10,12, 80, 0.5,48000)
d =
Response: 'Minimum-order highpass'
Specification: 'Fst,Fp,Ast,Ap'
Description: {4x1 cell}
NormalizedFrequency: false
Fs: 48000
Fstop: 10
Fpass: 12
Astop: 80

```

To demonstrate the magunits input option, pass the magnitude specifications in squared units and include the squared input argument for magunits.
```

hs = fdesign.highpass(.4, .5, .02, .98, 'squared');
hd = cheby1(hs);
fvtool(hd,'MagnitudeDisplay','Magnitude Squared');

```

The figure below shows the filter response.

See Also
fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.lowpass

\section*{fdesign.hilbert}

\section*{Purpose Construct Hilbert filter specification object}
```

Syntax d = fdesign.hilbert
d = fdesign.hilbert(specvalue1,specvalue2)
d = fdesign.hilbert(spec)
d = fdesign.hilbert(spec,specvalue1,specvalue2)
d = fdesign.hilbert(....fs)
d = fdesign.hilbert(...,magunits)

```

Description \(d=\) fdesign.hilbert constructs a default Hilbert filter designer \(d\) with \(n\), the filter order, set to 31 .
d = fdesign.hilbert(specvalue1, specvalue2) constructs a Hilbert filter designer \(d\) assuming the default specification string \(n\), tw. You input specvalue1 and specvalue2 for \(n\) and \(t w\).
d = fdesign.hilbert(spec) initializes the filter designer Specification property to spec. You provide one of the following strings as input to replace spec. The string you provide is not case sensitive:
- n , tw-default spec string.
- tw, ap-minimum-order Hilbert filter.

The string entries are defined as follows:
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- n-filter order.
- tw-width of the transition region between the pass and stop bands.

By default, fdesign.hilbert assumes that all frequency specifications are provided in normalized frequency units. Also, dB is the default for all magnitude specifications.

Different specification strings may have different design methods available. Use designmethods (d) to get a list of the design methods available for a given specification string.

\section*{fdesign.hilbert}
d = fdesign.hilbert(spec,specvalue1,specvalue2) initializes the filter designer specifications in spec with specvalue1, specvalue2, and so on. To get a description of the specifications specvalue1 and specvalue2, enter
```

get(d,'description')

```
at the Command prompt.
d = fdesign.hilbert(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.hilbert(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

\section*{Examples}

The toolbox lets you design a range of Hilbert filters. These examples present a few possible designs. The first example designs a 30th-order type III Hilbert transformer filter. The FVTool plot following the code shows the resulting filter.
```

d = fdesign.hilbert(30,0.2); % n,tw specification string.
designmethods(d);
hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange',...
'[-pi, pi)')
Design Methods for class fdesign.hilbert (N,TW):
ellip
iirlinphase

```

\section*{fdesign.hilbert}
```

equiripple
firls

```


For the second example, design a 35th-order type IV Hilbert transformer.
```

d = fdesign.hilbert('n,tw',35,0.1);
designmethods(d);
hd = design(d,'equiripple');
hf = fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange')
set(hf,'frequencyrange','[-fs/2, fs/2]')

```

Here is the view from FVTool.

Finally, design a minimum-order transformer that has a sampling frequency of 100 Hz -add Fs as an input argument in Hz .
```

d = fdesign.hilbert('tw,ap',1,0.1,100); % Fs = 100 Hz.
designmethods(d);
hd = design(d,'equiripple');
fvtool(hd,'magnitudedisplay','zero-phase');
set(hf,'frequencyrange','[-fs/2, fs/2]')

```

FVTool returns this plot.

\section*{fdesign.hilbert}

See Also
design, fdesign, setspecs

Purpose

\section*{Syntax \\ Description}

Design quasi-linear phase IIR filter from halfband filter specification object
```

hd = design(d,'iirlinphase')
hd = design(d,'iirlinphase','filterstructure',structure)

```
hd = design(d,'iirlinphase') designs a quasi-linear phase filter hd specified by the filter specification object d.
hd = design(...,'filterstructure', structure) returns a filter with the structure specified by structure. By default, the filter structure is df2sos (direct-form II with second-order sections). You can substitute one of the following strings for structure to specify the structure of hd.
\begin{tabular}{l|l}
\hline Structure String & Filter Structure \\
\hline\(d f 1\) sos & \begin{tabular}{l}
Direct-form I IIR filter with second-order \\
sections
\end{tabular} \\
\hline\(d f 2\) sos & \begin{tabular}{l}
Direct-form II IIR filter with second-order \\
sections
\end{tabular} \\
\hline\(d f 1\) tsos & \begin{tabular}{l}
Transposed direct-form I IIR filter with \\
second-order sections
\end{tabular} \\
\hline df2tsos & \begin{tabular}{l}
Transposed direct-form II IIR filter with \\
second-order sections
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Design a quasi-linear phase, minimum-order halfband IIR filter with transition width of 0.36 and stopband attenuation of at least 80 dB .
```

tw = 0.36;
ast = 80;
d = fdesign.halfband('tw,ast',tw,ast); % Transition width,
% stopband attenuation.
hd = design(d,'iirlinphase');
fvtool(hd)

```

Notice the characteristic halfband nature of the ripple in the stopband. If you measure the resulting filter, you see it meets the specifications.

\section*{iirlinphase}
```

    measure(hd)
    ans =
    Sampling Frequency : N/A (normalized frequency)
    Passband Edge : 0.32
    3-dB Point : 0.5
    6-dB Point : 0.51911
    Stopband Edge : 0.68
    Passband Ripple : 4.0866e-008 dB
    Stopband Atten. : 80.2642 dB
    Transition Width : 0.36
    ```


See Also
fdesign. nyquist

\section*{fdesign.interpolator}

Purpose
Syntax

Description

Construct interpolator filter specification object
```

d = fdesign.interpolator(l)
d = fdesign.interpolator(l,design)
d = fdesign.interpolator(l,design,spec)
d = fdesign.interpolator(...,spec,specvalue1,specvalue2,...
d = fdesign.interpolator(...,fs)
d = fdesign.interpolator(...,magunits)

```
\(d=\) fdesign.interpolator (l) constructs an interpolating filter specification object d, applying default values for the properties fp, fst, ap, and ast and using the default design, Nyquist. Specify l, the interpolation factor, as an integer. When you omit the input argument l, fdesign. interpolator sets the interpolation factor 1 to 3 .

Using fdesign. interpolator with a design method generates an mfilt object.
d = fdesign.interpolator(l,design) constructs an interpolator with the interpolation factor \(l\) and the response you specify in design. By using the design input argument, you can choose the sort of filter that results from using the interpolator specifications object. design accepts the following strings that define the filter response.
\begin{tabular}{l|l}
\hline design String & Description \\
\hline Bandpass & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to bandpass.
\end{tabular} \\
\hline Bandstop & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to bandstop.
\end{tabular} \\
\hline CIC & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to CIC filter.
\end{tabular} \\
\hline CIC Compensator & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to CIC compensator.
\end{tabular} \\
\hline Halfband & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to halfband.
\end{tabular} \\
\hline
\end{tabular}

\section*{fdesign.interpolator}
\begin{tabular}{l|l}
\hline design String (Continued) & Description \\
\hline Highpass & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to highpass.
\end{tabular} \\
\hline Inverse-Sinc Lowpass & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to inverse-sinc \\
lowpass.
\end{tabular} \\
\hline Lowpass & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to lowpass.
\end{tabular} \\
\hline Nyquist & \begin{tabular}{l}
Sets the response for the interpolator \\
specifications object to Nyquist.
\end{tabular} \\
\hline
\end{tabular}
d = fdesign.interpolator(l,design,spec) constructs object d and sets its Specification property to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input argument.

Because you are designing multirate filters, the specification strings available are not the same as the specifications for designing single-rate filters with such design methods as fdesign. lowpass. The strings are not case sensitive.

Notice that the interpolation factor 1 is not in the specification strings. Various design types provide different specifications, as shown in this table.
\begin{tabular}{ll}
\hline Design Type & Valid Specification Strings \\
\hline Arbitrary Magnitude & \(\bullet \mathrm{n}, \mathrm{b}, \mathrm{f}, \mathrm{a}\) \\
& \(\bullet \mathrm{n}, \mathrm{f}, \mathrm{a}\) \\
& \(\bullet \mathrm{fst} 1, \mathrm{fp} 1, \mathrm{fp} 2, \mathrm{fst} 2, \mathrm{ast} 1, \mathrm{ap}\), ast2 (default \\
Bandpass & string) \\
& \(\bullet \mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2\) \\
& \(\bullet \mathrm{n}, \mathrm{fst} 1, \mathrm{fp} 1, \mathrm{fp} 2, \mathrm{fst2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Design Type & Valid Specification Strings \\
\hline Bandstop & \begin{tabular}{l}
- \(n, f c 1, f c 2\) \\
- \(n, f p 1, f s t 1, f s t 2, f p 2\) \\
- fp1,fst1,fst2,fp2,ap1,ast,ap2 (default string)
\end{tabular} \\
\hline CIC & - fp, ast (default and only string) \\
\hline CIC Compensator & \begin{tabular}{l}
- fp,fst,ap,ast (default string) \\
- \(n, f c, a p, a s t\) \\
- \(n, f p, a p, a s t\) \\
- \(n, f p, f s t\) \\
- n,fst, ap, ast
\end{tabular} \\
\hline Halfband & \begin{tabular}{l}
- tw, ast (default string) \\
- \(n\), tw \\
- n \\
- \(n\), ast
\end{tabular} \\
\hline Highpass & \begin{tabular}{l}
- fst,fp,ast,ap (default string) \\
- n , fc \\
- \(n, f c, a s t, a p\) \\
- \(n, f p, a s t, a p\) \\
- \(n, f s t, f p, a p\) \\
- n,fst,fp, ast \\
- \(n\),fst, ast, ap \\
- n,fst,fp
\end{tabular} \\
\hline Inverse-Sinc Lowpass & \begin{tabular}{l}
- fp,fst,ap, ast (default string) \\
- \(n, f c, a p, a s t\) \\
- n,fst, ap, ast \\
- \(n, f p, a p, a s t\) \\
- n,fp,fst
\end{tabular} \\
\hline
\end{tabular}

\section*{fdesign.interpolator}
\begin{tabular}{|c|c|}
\hline Design Type & Valid Specification Strings \\
\hline Lowpass & \begin{tabular}{l}
- fp,fst, ap, ast (default string) \\
- \(\mathrm{n}, \mathrm{fc}\) \\
- \(n, f c, a p, a s t\) \\
- \(n, f p, a p, a s t\) \\
- \(n, f p, f s t\) \\
- \(n, f p, f s t, a p\) \\
- n, fp,fst, ast \\
- n, fst, ap, ast
\end{tabular} \\
\hline Nyquist & \begin{tabular}{l}
- tw, ast (default string) \\
- \(n\), tw \\
- \(n\) \\
- n, ast
\end{tabular} \\
\hline
\end{tabular}

The string entries are defined as follows:
- a-magnitude response at the frequencies in f. Usually this is a vector of values with the same length as \(f\).
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ap1—amount of ripple allowed in the pass band in dB (the default units). Also called Apass1. Bandpass and bandstop filters use this option.
- ap2-amount of ripple allowed in the pass band in dB (the default units). Also called Apass2. Bandpass and bandstop filters use this option.
- ast-attenuation in the first stop band in dB (the default units). Also called Astop.
- ast1-attenuation in the first stop band in dB (the default units). Also called Astop1. Bandpass and bandstop filters use this option.
- ast2-attenuation in the first stop band in dB (the default units). Also called Astop2. Bandpass and bandstop filters use this option.
- \(b\)-number of filter bands.

\section*{fdesign.interpolator}
- \(f\)-vector of specific frequency points in the filter response. In combination with a, this specifies the desired filter response.
- fc1-cutoff frequency for the point 3 dB point below the passband value for the first cutoff. Specified in normalized frequency units. Bandpass and bandstop filters use this option.
- fc2-cutoff frequency for the point 3 dB point below the passband value for the second cutoff. Specified in normalized frequency units. Bandpass and bandstop filters use this option.
- fp1-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass1. Bandpass and bandstop filters use this option.
- fp2-frequency at the end of the pass band. Specified in normalized frequency units. Also called Fpass2. Bandpass and bandstop filters use this option.
- fst1-frequency at the end of the first stop band. Specified in normalized frequency units. Also called Fstop1. Bandpass and bandstop filters use this option.
- fst2-frequency at the start of the second stop band. Specified in normalized frequency units. Also called Fstop2. Bandpass and bandstop filters use this option.
- n-filter order.
- tw-width of the transition region between the pass and stop bands.

Halfband, Hilbert, and Nyquist filters use this option.
d = fdesign.interpolator(...,spec,specvalue1,specvalue2,...)
constructs an object \(d\) and sets its specifications at construction time.
d = fdesign.interpolator(...,fs) adds the argument fs, specified in Hz , to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.interpolator(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units.
- dB—specify the magnitude in dB (decibels).

\section*{fdesign.interpolator}
- squared-specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

\section*{Examples}

These examples show how to construct interpolating filter specification objects. First, create a default specifications object without using input arguments except for the interpolation factor 1.
```

l = 2;
d = fdesign.interpolator(2)
d =
MultirateType: 'Interpolator'
Response: 'Nyquist'
DecimationFactor: 2
Specification: 'TW,Ast'
Description: {'Transition Width';'Stopband Attenuation (dB)'}
NormalizedFrequency: true
TransitionWidth: 0.1
Astop: 80

```

Now create an object by passing a specification string 'fst1,fp1,fp2,fst2, ast1, ap, ast2' and a design-the resulting object uses default values for all of the filter specifications. You must provide the design input argument when you include a specification.
```

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')
d =
MultirateType: 'Interpolator'
Response: 'Bandpass'
DecimationFactor: 8
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
Description: {7x1 cell}
NormalizedFrequency: true
Fstop1: 0.35
Fpass1: 0.45

```

\section*{fdesign.interpolator}
```

Fpass2: 0.55
Fstop2: 0.65
Astop1: 60
Apass: 1
Astop2: 60

```

Create another interpolating filter object, passing the specification values to the object rather than accepting the default values for, in this case, fp,fst,ap,ast.
d=fdesign.interpolator(3,'lowpass', .45,0.55,.1,60)
\(\mathrm{d}=\)

MultirateType: 'Interpolator'
Response: 'Lowpass'
DecimationFactor: 3
Specification: 'Fp,Fst,Ap,Ast'
Description: \{4x1 cell\}
NormalizedFrequency: true
Fpass: 0.45
Fstop: 0.55
Apass: 0.1
Astop: 60
Now pass the filter specifications that correspond to the specificationsn,fc,ap,ast.
d=fdesign.interpolator(3,'cic compensator','n,fc,ap,ast',... 20,0.45,.05,50)
d \(=\)
```

            MultirateType: 'Interpolator'
                    Response: 'CIC Compensator'
            DecimationFactor: 3
            Specification: 'N,Fc,Ap,Ast'
                    Description: {4x1 cell}
            NumberOfSections: 2
            DifferentialDelay: 1
    NormalizedFrequency: true

```

\section*{fdesign.interpolator}

FilterOrder: 20
Fcutoff: 0.45
Apass: 0.05
Astop: 50
With the specifications object in your workspace, design an interpolator using the kaiserwin design method.
```

hm = design(d,'kaiserwin')

```

Pass a new specification type for the filter, specifying the filter order.
```

d = fdesign.interpolator(5,'CIC','fp,ast',0.55,55)
d =
MultirateType: 'Interpolator'
Response: 'CIC'
DecimationFactor: 5
Specification: 'Fp,Aa'
Description: {'Passband Frequency';'Stopband Attenuation(dB)'}
DifferentialDelay: 1
NormalizedFrequency: true
Fpass: 0.55

```

In this example, you specify a sampling frequency as the rightmost input argument.
```

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,...
ap,ast2',0.25,0.35,.55,.65,50,.05,50,1e3) % Fs = 1000 Hz.
d =
MultirateType: 'Interpolator'
Response: 'Bandpass'
DecimationFactor: 8
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
Description: {7x1 cell}
NormalizedFrequency: false
Fs: }100
Fstop1: 0.25
Fpass1: 0.35
Fpass2: 0.55
Fstop2: 0.65

```

\section*{fdesign.interpolator}

Astop1: 50
Apass: 0.05
Astop2: 50
In this, the last example, use the linear option for the filter specification object and specify the stopband ripple attenuation in linear form.
```

d = fdesign.interpolator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,···.
50,1e3,'linear') % 1e3 = 60dB.
d =

```
```

            Response: 'Lowpass interpolator'
    ```
 Response: 'Lowpass interpolator'
 Specification: 'TW,Ast'
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 DecimationFactor: 4
 DecimationFactor: 4
 NormalizedFrequency: false
 NormalizedFrequency: false
 Fs: 500
 Fs: 500
 TransitionWidth: 0.1
 TransitionWidth: 0.1
 Astop: 60
```

                            Astop: 60
    ```

Design the filter and display the magnitude response in FVTool.
```

designmethods(d);
design(d,'equiripple'); % Opens FVTool to display the response.

```

Now design a CIC interpolator for a signal sampled at 19200 Hz . Specify the differential delay of 2 and set the attenuation of information beyond 50 Hz to be at least 80 dB .

Notice that the filter object sampling frequency is (\(1 \times f s\)) where fs is the sampling frequency of the input signal.
```

dd = 2; % Differential delay.
fp = 50; % Passband of interest.
ast = 80; %Minimum attenuation of alias components in passband.
fs = 600; % Sampling frequency for input signal.
l = 32; % Interpolation factor.
d = fdesign.interpolator(l,'cic',dd,'fp,ast',fp,ast,l*fs);
d =
MultirateType: 'Interpolator'
InterpolationFactor: 32
Response: 'CIC'
Specification: 'Fp,Ast'
Description: {'Passband Frequency';'Imaging Attenuation(dB)'}
DifferentialDelay: 2
NormalizedFrequency: false

```

\section*{fdesign.interpolator}
```

                        Fs: 19200
                    Fs_in: 600
                                    Fs out: 19200
                        Fpass: 50
                            Astop: 80
    hm = design(d); %Use the default design method.
hm
hm =
FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 2
NumberOfSections: 2
InterpolationFactor: 32
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'FullPrecision'

```

This next example results in a minimum-order CIC compensator that interpolates by 4 and compensates for the droop in the passband for the CIC
filter hm from the previous example.
```

nsecs = hm.numberofsections;
d = fdesign.interpolator(4,'ciccomp',dd,nsecs,...
50,100,0.1,80,fs);
hmc = design(d,'equiripple');
hmc.arithmetic = 'fixed';

```
hmc is designed to compensate for hm . To see the effect of the compensating CIC filter, use FVTool to analyze both filters individually and include the compound filter response by cascading hm and hmc .
```

fvtool(hmc,hm, cascade(hmc,hm),'fs',[fs,l*fs,l*fs],...
'showreference', 'off');
legend('CIC Compensator','CIC Interpolator',...
'Overall Response');

```

FVTool returns with this plot.

For the third example, use fdesign. interpolator to design a minimum-order Nyquist interpolator that uses a Kaiser window. For comparison, design a multistage interpolator as well and compare the responses.
```

l = 15; % Set the interpolation factor and the Nyquist band.
tw = 0.05; % Specify the normalized transition width.
ast = 40; % Set the minimum stopband attenuation in dB.
d = fdesign.interpolator(l,'nyquist',l,tw,ast);
hm = design(d,'kaiserwin');
hm2 = design(d,'multistage'); % Design the multistage interpolator.
fvtool(hm,hm2);
legend('Kaiser Window','Multistage')

```

FVTool shows both responses.

\section*{fdesign.interpolator}

Design a lowpass interpolator for an interpolation factor of 8. Compare the single-stage equiripple design to a multistage design with the same interpolation factor.
```

l = 8; % Interpolation factor.
d = fdesign.interpolator(l,'lowpass');
hm(1) = design(d,'equiripple');
hm(2) = design(d,'multistage','usehalfbands',true); % Use...
% halfband filters whenever possible.
fvtool(hm);
legend('Single-Stage Equiripple','Multistage')

```


\section*{See Also}
fdesign, fdesign.decimator, fdesign.rsrc, setspecs

\section*{fdesign.isinclp}

\section*{Purpose Construct inverse-sinc filter specification object}
```

Syntax d = fdesign.isinclp
d = fdesign.isinclp(spec)
d = fdesign.isinclp(spec,specvalue1,specvalue2,...)
d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.isinclp(....fs)
d = fdesign.isinclp(...,magunits)

```

Description \(d=\) fdesign.isinclp constructs an inverse-sinc lowpass filter specification object d , applying default values for the properties tw and ast.

Using fdesign.isinclp with a design method generates a dfilt object.
d = fdesign.isinclp(spec) constructs object d and sets its 'Specification' to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown below. The strings are not case sensitive.
- fp,fst,ap,ast (default spec)
- n,fst,ap,ast
- n,fp,fst

The string entries are defined as follows:
- ast-attenuation in the first stop band in dB (the default units). Also called Astop.
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- fp-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass.
- fst-frequency at the end of the first stop band. Specified in normalized frequency units. Also called Fstop.
- n-filter order.

The filter design methods that apply to an inverse-sinc lowpass filter specification object change depending on the Specification string. Use designmethods to determine which design method applies to an object and its specification string.
d = fdesign.isinclp(spec,specvalue1,specvalue2,...) constructs an object \(d\) and sets its specifications at construction time.
d = fdesign.isinclp(specvalue1, specvalue2, specvalue3, specvalue4) constructs an object d assuming the default Specification property string \(\mathrm{fp}, \mathrm{fst}, \mathrm{ap}\), ast, using the values you provide in specvalue1, specvalue2, specvalue3, and specvalue4.
d = fdesign.isinclp(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.isinclp(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in \(d B\). Note that fdesign stores all magnitude specifications in \(d B\) (converting to dB when necessary) regardless of how you specify the magnitudes.

\section*{Examples}

Pass the specifications for the default specification-fp, fst, ap, ast—as input arguments to the specifications object.
```

d = fdesign.isinclp(.4,.5,.01,40);
designmethods(d)
hd = design(d,'equiripple');
fvtool(hd);

```

FVTool shows the classic inverse-sinc filter response.
See Also
fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.halfband, fdesign.highpass, fdesign. lowpass, fdesign.nyquist

\section*{fdesign.lowpass}

Purpose Construct lowpass filter specification object
```

Syntax d = fdesign. lowpass
d = fdesign.lowpass(spec)
d = fdesign.lowpass(spec,specvalue1,specvalue2, )
d = fdesign.lowpass(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.lowpass(....fs)
d = fdesign.lowpass(...,magunits)

```

Description \(d=\) fdesign. lowpass constructs a lowpass filter specification object \(d\), applying default values for the properties fp , fst , ap, and ast.

Using fdesign. lowpass with a design method generates a dfilt object.
d = fdesign.lowpass (spec) constructs object d and sets its 'Specification' to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown below. The strings are not case sensitive.
```

- fp,fst,ap,ast (default spec)
- $\mathrm{n}, \mathrm{f} 3 \mathrm{db}$
- n, f3db, ap
- n, f3db, ap, ast
- n, f3db, ast
- $n, f 3 d b, f s t$
- $\mathrm{n}, \mathrm{fc}$
- $n, f c, a p, a s t$
- $n, f p, a p$
- n,fp,ap,ast
- n,fp,fst,ap
- $n, f p, f 3 d b$
- $n, f p, f s t$
- n,fp,fst,ap
- $n, f p, f s t, a s t$
- n,fst,ap,ast
- n, fst, ast
- nb, na,fp,fst

```

The string entries are defined as follows:
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ast-attenuation in the stop band in dB (the default units). Also called Astop.
- f3db-cutoff frequency for the point 3 dB point below the passband value. Specified in normalized frequency units.
- fc-cutoff frequency for the point 3 dB point below the passband value. Specified in normalized frequency units.
- fp-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass.
- fst-frequency at the end of the stop band. Specified in normalized frequency units. Also called Fstop.
- n-filter order.
- na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look like this:

Regions between specification values like fp and fst are transition regions where the filter response is not explicitly defined.

The filter design methods that apply to a lowpass filter specification object change depending on the Specification string. Here are all the valid strings for lowpass filter specification objects.
- fp,fst, ap,ast

\section*{fdesign.lowpass}
- n, f3dB
- n,f3dB, Ap
- n, f3dB, Ap,Ast
- \(n, f 3 \mathrm{~dB}\), Ast
- \(\mathrm{n}, \mathrm{f3} \mathrm{~dB}\), Fst
- \(\mathrm{n}, \mathrm{fc}\)
- n,fc,Ap,Ast
- \(n, f p, a p\)
- \(n, f p, a p, a s t\)
- \(n, f p, f 3 d b\)
- \(n, f p, f s t\)
- n,fp,fst,ap
- n,fp,fst, ast
- n,fst, ap, ast
- n,fst, ast
- n,fp, ap, ast
- nb, na,fp,fst
d = fdesign.lowpass(spec,specvalue1,specvalue2,...) constructs an object d and sets its specification values at construction time.
d = fdesign.lowpass(fp,fst,ap,ast) constructs an object d with values for the default Specification property string \(f p, f s t, a p\), ast using the specifications you provide as input arguments specvalue1, specvalue2, specvalue3, specvalue4.
d = fdesign.lowpass(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.lowpass(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB

\section*{Examples}
(converting to dB when necessary) regardless of how you specify the magnitudes.

These examples how to construct a lowpass filter specification object. First, create a default lowpass filter object without using input arguments.
```

d=fdesign.lowpass
d =
Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fpass: 0.4500
Fstop: 0.5500
Apass: 1
Astop: 60

```

Now create an object by passing specifications for the passband and stopband edge frequencies and the passband and stopband attenuations-the resulting object uses the input values for fp , fst, ap, and ast.
```

hs = fdesign.lowpass(.4,.5,1,80);
hs
hs =
Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80

```

Create another filter object, passing the values for n and fc rather than accepting the default values. Notice that you can add include the sampling frequency fs as the final input argument.

\section*{fdesign.lowpass}
```

d=fdesign.lowpass('n,fc',10, 9600,48000)
d =
Response: 'Lowpass with cutoff'
Specification: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: false
Fs: 48000
FilterOrder: 10
Fcutoff: 9600

```

Finally, pass values for the filter specifications that match the default Specification string entries-fp \(=0.4\), fst \(=0.5\), ast \(=80\) and \(a p=1.0\). Add the sampling frequency on the end.
```

hs = fdesign.lowpass(.4,.5,1,80)
hs =
Response: 'Minimum-order lowpass'
Specification: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fpass: 0.4000
Fstop: 0.5000
Apass: 1
Astop: 80

```

Finally, the next examples add the sampling frequency specification in Hz , and then the magunits option.
```

hs = fdesign.lowpass('N,Fp,Ap', 10, 9600, .5, 48000);

```
and
```

hsmag = fdesign.lowpass(.4, .5, .98, .02, 'squared');

```

Using the last example filter object, create a highpass filter.
```

hd = design(hsmag,'cheby1';

```

See Also
fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.highpass

\section*{fdesign.nyquist}

Purpose
Syntax
Description

Construct Nyquist filter specification object
```

d = fdesign.nyquist
d = fdesign.nyquist(l,spec)
d = fdesign.nyquist(l,spec,specvalue1,specvalue2, )
d = fdesign.nyquist(l,specvalue1,specvalue2)
d = fdesign.nyquist(...,fs)
d = fdesign.nyquist(...,magunits)

```
d = fdesign.nyquist constructs a Nyquist or L-band filter specification object d, applying default values for the properties tw and ast. By default, the filter object designs a minimum-order half-band (\(\mathrm{L}=2\)) Nyquist filter.

Using fdesign. nyquist with a design method generates a dfilt object.
d = fdesign.nyquist (l,spec) constructs object d and sets its Specification property to spec. Use 1 to specify the desired value for \(L\). \(L=2\) design a half-band FIR filter, L=3 a third-band FIR filter, and so on. When you use a Nyquist filter as an interpolator, \(l\) or \(L\) is the interpolation factor. The first input argument must be \(l\) when you are not using the default syntax d = fdesign.nyquist.

Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec are shown below. The strings are not case sensitive.
- tw, ast (default spec)
- n,tw
- n
- n,ast

The string entries are defined as follows:
- ast-attenuation in the stop band in dB (the default units).
- n-filter order.
- tw-width of the transition region between the pass and stop bands. Specified in normalized frequency units.

The filter design methods that apply to an interpolating filter specification object change depending on the Specification string. Paired with each string

\section*{fdesign.nyquist}
in the following table are the design methods for interpolating filter specification objects that use that string.
\begin{tabular}{l|l}
\hline Specification String & Applicable Design Method \\
\hline tw, ast & kaiserwin \\
\hline\(n, t w\) & kaiserwin \\
\hline\(n\) & window \\
\hline\(n\), ast & kaiserwin \\
\hline
\end{tabular}
d = fdesign.nyquist(l,spec,specvalue1,specvalue2,...) constructs an object d and sets its specification to spec, and the specification values to specvalue1, specvalue2, and so on at construction time.
d = fdesign.nyquist(l,specvalue1, specvalue2) constructs an object d with the values you provide in 1 , specvalue1, specvalue2 as the values for 1 , tw and ast.
d = fdesign.nyquist(...,fs) adds the argument fs, specified in Hz to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.nyquist(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units
- \(d B\)-specify the magnitude in dB (decibels)
- squared-specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes are in dB . Note that fdesign stores all magnitude specifications in dB (converting to dB when necessary) regardless of how you specify the magnitudes.

\section*{Limitations of the Nyquist fdesign Object}

Using Nyquist filter specification objects with the equiripple design method imposes a few limitations on the resulting filter, caused by the equiripple design algorithm.
- When you request a minimum-order design from equiripple with your Nyquist object, the design algorithm might not converge and can fail with a filter convergence error.
- When you specify the order of your desired filter, and use the equiripple design method, the design might not converge.
- Generally, the following specifications, alone or in combination with one another, can cause filter convergence problems with Nyquist objects and the equiripple design method.
- very high order
- small transition width
- very large stopband attenuation

Note that halfband filters (filters where band \(=2\)) do not exhibit convergence problems.

When convergence issues arise, either in the cases mentioned or in others, you might be able to design your filter with the kaiserwin method.

In addition, if you use Nyquist objects to design decimators or interpolators (where the interpolation or decimation factor is not a prime number), using multistage filter designs might be your best approach.

\section*{Examples}

These examples show how to construct a Nyquist filter specification object. First, create a default specifications object without using input arguments.
```

d=fdesign.nyquist
d =

```
```

            Response: 'Nyquist'
    ```
 Response: 'Nyquist'
 Specification: 'TW,Ast'
 Specification: 'TW,Ast'
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 Description: {'Transition Width';'Stopband Attenuation (dB)'}
 Band: 2
 Band: 2
 NormalizedFrequency: true
 NormalizedFrequency: true
 TransitionWidth: 0.1
 TransitionWidth: 0.1
 Astop: 80
```

            Astop: 80
    ```

\section*{fdesign.nyquist}

Now create an object by passing a specification type string ' \(n\), ast'-the resulting object uses default values for \(n\) and ast.
```

d=fdesign.nyquist(2,'n,ast')
d =
Response: 'Nyquist'
Specification: 'N,Ast'
Description: {'Filter Order';'Stopband Attenuation (dB)'}
Band: 2
NormalizedFrequency: true
FilterOrder: 10
Astop: 80

```

Create another Nyquist filter object, passing the specification values to the object rather than accepting the default values for \(n\) and ast.
```

d=fdesign.nyquist(3,'n, ast', 42, 80)
d =

```
```

            Response: 'Nyquist'
    ```
 Response: 'Nyquist'
 Specification: 'N,Ast'
 Specification: 'N,Ast'
 Description: {'Filter Order';'Stopband Attenuation (dB)'}
 Description: {'Filter Order';'Stopband Attenuation (dB)'}
 Band: 3
 Band: 3
 NormalizedFrequency: true
 NormalizedFrequency: true
 FilterOrder: 42
 FilterOrder: 42
 Astop: 80
```

            Astop: 80
    ```

Finally, pass the filter specifications that correspond to the default Specification-tw, ast. When you pass only the values, fdesign. nyquist assumes the default Specification string.
```

d = fdesign.nyquist(4,.01,80)
d =
Response: 'Nyquist'
Specification: 'TW,Ast'
Description: {'Transition Width';'Stopband Attenuation (dB)'}
Band: 4
NormalizedFrequency: true
TransitionWidth: 0.01
Astop: 80

```

Now design a Nyquist filter using the kaiserwin design method.
```

hd = design(d,'kaiserwin')

```

\section*{fdesign.nyquist}
```

hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x1005 double]
PersistentMemory: false

```

\section*{See Also}
fdesign, fdesign.interpolator, fdesign. halfband, fdesign.interpolator, fdesign.rsrc

\section*{Purpose Construct rational-factor sample-rate converter specifications object}
```

Syntax
d = fdesign.rsrc(l,m)
d = fdesign.rsrc(...,design)
d = fdesign.rsrc(...,design,spec)
d = fdesign.rsrc(l,m,design,spec,specvalue1,specvalue2)
$d=$ fdesign.rsrc(...,fs)
d = fdesign.rsrc(..., magunits)

```

Description d = fdesign.rsrc (l,m) constructs a rational-factor sample-rate convertor filter specification object d, applying default values for the properties tw and ast and using the default design, Nyquist. Specify 1 and m, the interpolation and decimation factors, as integers.
\(1 / m\) is the rational-factor for the rate change. When you omit the input argument \(l\) or \(m\) or both, fdesign. rsrc sets the values to defaults-the interpolation factor (if omitted) to 3 and the decimation factor (if omitted) to 2. The default rate change factor is \(3 / 2\).

Using fdesign.rsrc with a design method generates an mfilt object.
d = fdesign.rsrc(..., design) constructs an rational-factor sample-rate converter with the interpolation factor 1 , decimation factor m , and the response you specify in design. Using the design input argument lets you choose the sort of filter that results from using the rational-factor sample-rate converter specifications object. design accepts the following strings that define the filter response.
\begin{tabular}{l|l}
\hline design String & Description \\
\hline Bandpass & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to bandpass.
\end{tabular} \\
\hline Bandstop & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to bandstop.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline design String (Continued) & Description \\
\hline CIC & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to CIC filter.
\end{tabular} \\
\hline CIC Compensator & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to CIC compensator.
\end{tabular} \\
\hline Halfband & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to halfband.
\end{tabular} \\
\hline Highpass & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to highpass.
\end{tabular} \\
\hline Inverse-Sinc Lowpass & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to inverse-sinc lowpass.
\end{tabular} \\
\hline Lowpass & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to lowpass.
\end{tabular} \\
\hline Nyquist & \begin{tabular}{l}
Sets the design for the rational-factor \\
sample-rate converter specifications object \\
to Nyquist.
\end{tabular} \\
\hline
\end{tabular}
d = fdesign.rsrc(..., design,spec) constructs object d and sets its Specification property to spec. Entries in the spec string represent various filter response features, such as the filter order, that govern the filter design. Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input argument.

Because you are designing multirate filters, the specification strings available are not the same as the specifications for designing single-rate filters with such design methods as fdesign. lowpass. The strings are not case sensitive.

\section*{fdesign.rsrc}

Notice that the interpolation factor 1 is not in the specification strings. Various design types provide different specifications. as shown in this table. In the third column, you see the filter design methods that apply to specifications objects that use the specification string in column two.
\begin{tabular}{|c|c|}
\hline Design Type & Valid Specification Strings \\
\hline Bandpass & \begin{tabular}{l}
- fst1,fp1,fp2,fst2, ast1, ap, ast2 (default string) \\
- \(\mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2\) \\
- n,fst1,fp1,fp2,fst2
\end{tabular} \\
\hline Bandstop & \begin{tabular}{l}
- \(\mathrm{n}, \mathrm{fc} 1, \mathrm{fc} 2\) \\
- \(n, f p 1, f s t 1, f s t 2, f p 2\) \\
- fp1,fst1,fst2,fp2,ap1, ast, ap2 (default string)
\end{tabular} \\
\hline CIC & - fp, ast (default and only string) \\
\hline CIC Compensator & \begin{tabular}{l}
- fp,fst,ap, ast (default string) \\
- \(n, f c, a p, a s t\) \\
- n, fp, ap, ast \\
- \(n, f p, f s t\) \\
- n,fst, ap,ast
\end{tabular} \\
\hline Halfband & \begin{tabular}{l}
- tw, ast (default string) \\
- n, tw \\
- \(n\) \\
- n, ast
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Design Type & Valid Specification Strings \\
\hline Highpass & \begin{tabular}{l}
- fst,fp,ast,ap (default string) \\
- \(\mathrm{n}, \mathrm{fc}\) \\
- \(n, f c, a s t, a p\) \\
- \(n, f p, a s t, a p\) \\
- \(n, f s t, f p, a p\) \\
- n,fst,fp, ast \\
- \(n\),fst, ast, ap \\
- \(n, f s t, f p\)
\end{tabular} \\
\hline Inverse-Sinc Lowpass & \begin{tabular}{l}
- fp,fst,ap, ast (default string) \\
- \(n, f c, a p, a s t\) \\
- \(n, f p, f s t\)
\end{tabular} \\
\hline Lowpass & \begin{tabular}{l}
- fp,fst, ap, ast (default string) \\
- \(n, f c\) \\
- n,fc,ap,ast \\
- \(n, f p, a p, a s t\) \\
- \(n, f p, f s t\) \\
- \(n, f p, f s t, a p\) \\
- \(n, f p, f s t, a s t\) \\
- n, fst, ap, ast
\end{tabular} \\
\hline Nyquist & \begin{tabular}{l}
- tw, ast (default string) \\
- \(n\), tw \\
- n \\
- \(n\), ast
\end{tabular} \\
\hline
\end{tabular}

The string entries are defined as follows:
- ap-amount of ripple allowed in the pass band in dB (the default units). Also called Apass.
- ap1-amount of ripple allowed in the pass band in dB (the default units). Also called Apass1. Bandpass and bandstop filters use this option.
- ap2-amount of ripple allowed in the pass band in dB (the default units). Also called Apass2. Bandpass and bandstop filters use this option.
- ast-attenuation in the first stop band in dB (the default units). Also called Astop.
- ast1-attenuation in the first stop band in dB (the default units). Also called Astop1. Bandpass and bandstop filters use this option.
- ast2—attenuation in the first stop band in dB (the default units). Also called Astop2. Bandpass and bandstop filters use this option.
- fc1-cutoff frequency for the point 3 dB point below the passband value for the first cutoff. Specified in normalized frequency units. Bandpass and bandstop filters use this option.
- fc2-cutoff frequency for the point 3 dB point below the passband value for the second cutoff. Specified in normalized frequency units. Bandpass and bandstop filters use this option.
- fp1-frequency at the start of the pass band. Specified in normalized frequency units. Also called Fpass1. Bandpass and bandstop filters use this option.
- fp2-frequency at the end of the pass band. Specified in normalized frequency units. Also called Fpass2. Bandpass and bandstop filters use this option.
- fst1-frequency at the end of the first stop band. Specified in normalized frequency units. Also called Fstop1. Bandpass and bandstop filters use this option.
- fst2-frequency at the start of the second stop band. Specified in normalized frequency units. Also called Fstop2. Bandpass and bandstop filters use this option.
- n-filter order.
- tw-width of the transition region between the pass and stop bands. Both halfband and Nyquist filters use this option.
d = fdesign.rsrc(...,spec,specvalue1,specvalue2,...) constructs an object d and sets its specifications at construction time.
d = fdesign.rsrc(...,fs) adds the argument fs, specified in Hz , to define the sampling frequency to use. In this case, all frequencies in the specifications are in Hz as well.
d = fdesign.rsrc(..., magunits) specifies the units for any magnitude specification you provide in the input arguments. magunits can be one of
- linear-specify the magnitude in linear units.
- \(d B\)-specify the magnitude in dB (decibels).
- squared-specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes are in \(d B\). Note that fdesign stores all magnitude specifications in \(d B\) (converting to dB when necessary) regardless of how you specify the magnitudes.

\section*{Examples}

This series of examples demonstrates progressively more complete techniques for creating rational sample-rate change filters. First, pass the filter design specifications directly to the Nyquist design type. Then use kaiserwin, one of the valid design methods, to design the rate change filter.
```

d = fdesign.rsrc(5,3,'nyquist',.05,40);
designmethods(d)
hm = design(d,'kaiserwin'); % Use Kaiser window to design rate
changer.

```

For this example, specify the filter order (12) when you create the specifications object d.
```

d = fdesign.rsrc(5,3,'nyquist','n,tw',12)

```

Expand the input arguments by specify a sampling frequency for the filter. Recall that the sampling frequency for rate changers refers to the input sample rate times the interpolation factor.
```

d = fdesign.rsrc(5,3,'nyquist','n,tw',12,0.1,5)
designmethods(d);
design(d,'equiripple'); % Opens FVTool to display the response.

```

Specify a stopband ripple in linear units.

\section*{fdesign.rsrc}
\(d=\) fdesign.rsrc \((4,7\), 'nyquist','tw, ast' \(, 1,1 \mathrm{e}-3,5, \ldots\)
'linear') \(\% 1 \mathrm{e}-3=60 \mathrm{~dB}\) attenuation in the stopband.

See Also design, designmethods, fdesign.decimator, fdesign.interpolator, setspecs

Purpose

Syntax

Description

Frequency-domain coefficients used when filtering with discrete-time and adaptive filter objects
\[
\begin{aligned}
& c=f f t c o e f f s(h d) \\
& c=\text { fftcoeffs(ha) }
\end{aligned}
\]
c = fftcoeffs(hd) Return the frequency-domain coefficients used when filtering with the dfilt.fftfir object. c contains the coefficients
c = fftcoeffs(ha) Return the frequency-domain coefficients used when filtering with adaptfilt objects.
fftcoeffs applies to the following adaptive filter algorithms:
- adaptfilt.fdaf
- adaptfilt.pbfdaf
- adaptfilt.pbufdaf
- adaptfilt.ufdaf

\section*{Examples}

This example demonstrates returning the FFT coefficients from the
``` discrete-time filter hd.
```

```
b = [0.05 0.9 0.05];
```

b = [0.05 0.9 0.05];
len = 50;
len = 50;
hd = dfilt.fftfir(b,len)
hd = dfilt.fftfir(b,len)
hd =
hd =
FilterStructure: 'Overlap-Add FIR'
FilterStructure: 'Overlap-Add FIR'
Numerator: [0.0500 0.9000 0.0500]
Numerator: [0.0500 0.9000 0.0500]
BlockLength: 50
BlockLength: 50
NonProcessedSamples: []
NonProcessedSamples: []
PersistentMemory: false
PersistentMemory: false
c=fftcoeffs(hd)
c=fftcoeffs(hd)
c =
c =
1.0000
1.0000
0.9920 + 0.1204i

```
            0.9920 + 0.1204i
```


fftcoeffs

$$
\begin{array}{r}
0.9681+0.2386 i \\
0.9289+0.3523 i \\
0.8753+0.4594 i \\
0.8084+0.5580 i \\
0.7297+0.6464 i \\
0.6408+0.7233 i \\
0.5435+0.7874 i \\
0.4398+0.8381 i \\
0.3317+0.8747 i \\
0.2211+0.8971 i \\
0.1099+0.9054 i \\
0+0.9000 i \\
-0.1070+0.8815 i \\
-0.2097+0.8506 i \\
-0.3066+0.8084 i \\
-0.3967+0.7558 i \\
-0.4790+0.6939 i \\
-0.5528+0.6240 i \\
-0.6176+0.5472 i \\
-0.6730+0.4645 i \\
-0.7185+0.3771 i \\
-0.7541+0.2860 i \\
-0.7796+0.1921 i \\
-0.7949+0.0965 i \\
-0.8000 \\
-0.7949-0.0965 i \\
-0.7796-0.1921 i \\
-0.7541
\end{array}
$$

```
0.3317 - 0.8747i
0.4398 - 0.8381i
0.5435 - 0.7874i
0.6408 - 0.7233i
0.7297 - 0.6464i
0.8084 - 0.5580i
0.8753 - 0.4594i
0.9289 - 0.3523i
0.9681 - 0.2386i
0.9920 - 0.1204i
```

Similarly, you can use fftcoeffs with the adaptive filters algorithms listed above. Start by constructing an adaptive filter ha.

```
d = 16; % Number of samples of delay.
b = exp(j*pi/4)*[-0.7 1]; % Numerator coefficients of channel.
a = [1 -0.7]; % Denominator coefficients of channel.
ntr= 1000; % Number of iterations.
s = sign(randn(1,ntr+d)) +...
j*sign(randn(1,ntr+d)); % Baseband QPSK signal.
n = 0.1*(randn(1,ntr+d) + j*randn(1,ntr+d)); % Noise signal.
r = filter(b,a,s)+n; % Received signal.
x = r(1+d:ntr+d); % Input signal (received signal).
d = s(1:ntr); % Desired signal (delayed QPSK signal).
del = 1; % Initial FFT input powers.
mu = 0.1; % Step size.
lam = 0.9; % Averaging factor.
d = 8; % Block size.
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,n);
```

Here are the coefficients before you filter a signal.

```
c=fftcoeffs(ha)
c =
Columns 1 through 13
```

0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0

fftcoeffs

0	0	0	0	0	0	0	0	0	0	0	0	0

Columns 14 through 16

0	0	0
0	0	0
0	0	0
0	0	0

Filtering a signal y produces complex nonzero coefficients that you use fftcoeffs to see.

$\begin{aligned} & {[y, e]=\text { filter }(\text { ha }, x, d) ;} \\ & c=\text { fftcoeffs }(\text { ha }) \end{aligned}$			
$\mathrm{c}=$			
Columns 1 through 4			
0.1425-0.0957i	0.0487-0.0503i	$-0.0479+0.0315 i$	0.0769-0.0435i
0.7264-0.7605i	-0.7423-0.6382i	$0.1758+0.6679 i$	0.2018-0.6544i
$-0.1604+0.0747 \mathrm{i}$	$-0.0709+0.2610 i$	$-0.1634+0.2929 i$	$-0.1488+0.3610 i$
$-0.0396+0.0416 i$	$0.0985+0.0095 i$	$0.0733+0.0011 \mathrm{i}$	$0.0700+0.0348 i$
Columns 5 through 8			
$-0.0604+0.1767 i$	0.0732-0.0648i	$-0.0870+0.0383 i$	0.0298-0.0852i
$-0.1665+0.3741 i$	0.3174-0.5234i	$-0.1990+0.4150 i$	$0.3657-0.4760 i$
$-0.2198+0.4273 i$	$-0.2690+0.3981 i$	$-0.2820+0.3095 i$	$-0.3633+0.3517 i$
-0.0537-0.0855i	$-0.0190+0.0336 i$	0.0091-0.0061i	-0.0299 + 0.0001i
Columns 9 through 12			
$-0.0437+0.0676 i$	0.0499-0.0164i	$-0.0397+0.0165 i$	0.0455-0.0085i
$-0.3293+0.3076 i$	0.4986-0.3949i	$-0.3300+0.3448 i$	0.5492-0.2633i
$-0.2671+0.3238 i$	$-0.3813+0.2999 i$	$-0.4130+0.2333 i$	$-0.2910+0.2823 i$
$-0.0300+0.0236 i$	$-0.0103+0.0438 i$	$0.0244+0.0476 i$	$0.1043+0.0359 i$
Columns 13 through 16			
$-0.0602+0.1189 i$	-0.0227-0.1076i	$-0.0282+0.0634 i$	0.0170-0.0464i
$-0.4385+0.0549 i$	0.5232-0.1904i	-0.6414-0.1717i	$0.5580+0.6477 i$
$-0.4511+0.3217 i$	$-0.4301+0.1765 i$	$-0.2805+0.1270 i$	$-0.2531+0.0299 i$
0.1076-0.0383i	$-0.0166+0.0020 i$	0.0004 - 0.0376i	0.0071-0.0714i

adaptfilt.fdaf, adaptfilt.pbfdaf, adaptfilt.pbufdaf, adaptfilt.ufdaf

Purpose

Syntax

Fixed-Point Filter Syntaxes

```
```

y = filter(hd,x)

```
```

y = filter(hd,x)
y = filter(hd,x,dim)

```
```

y = filter(hd,x,dim)

```
```


Adaptive Filter Syntax

$y=$ filter (ha, $x, d)$
[y,e] = filter(ha, $x, d)$

Multirate Filter Syntax

```
y = filter(hm,x)
```

$y=$ filter(hm, x, dim)

Description

Apply filter objects to data and access states and filtering information

This reference page contains three sections that describe the syntaxes for the filter objects:

- Fixed-Point Filter Syntaxes
- "Adaptive Filter Syntaxes" on page 8-650
- "Multirate Filter Syntaxes" on page 8-651

Fixed-Point Filter Syntaxes

$y=$ filter (hd, x) filters a vector of real or complex input data x through a fixed-point filter hd, producing filtered output data y. The vectors x and y have the same length. filter stores the final conditions for the filter in the States property of hd-hd.states.

When you set the property PersistentMemory to false (the default setting), the initial conditions for the filter are set to zero before filtering starts. To use nonzero initial conditions for hd, set PersistentMemory to true. Then set hd.states to a vector of nstates(hd) elements, one element for each state to set. If you specify a scalar for hd. states, filter expands the scalar to a vector of the proper length for the states. All elements of the expanded vector have the value of the scalar.

filter

If x is a matrix, $y=$ filter (hd, x) filters along each column of x to produce a matrix y of independent channels. If x is a multidimensional array, $y=$ filter (hd, x) filters x along the first nonsingleton dimension of x.

To use nonzero initial conditions when you are filtering a matrix x, set the filter states to a matrix of initial condition values. Set the initial conditions by setting the States property for the filter (hd.states) to a matrix of nstates(hd) rows and size(x,2) columns.
y = filter(hd, x, dim) applies the filter hd to the input data located along the specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which dimension of the input matrix to filter along-whether a row represents a channel or a column represents a channel. When you provide the dim input argument, the filter operates along the dimension specified by dim. When your input data x is a vector or matrix and dim is 1 , each column of x is treated as a one input channel. When dim is 2 , the filter treats each row of the input x as a channel.

To filter multichannel data in a loop environment, you must use the dim input argument to set the proper processing dimension.

You specify the initial conditions for each channel individually, when needed, by setting hm. states to a matrix of nstates (hd) rows (one row containing the states for one channel of input data) and size ($x, 2$) columns (one column containing the filter states for each channel).

Adaptive Filter Syntaxes

$y=$ filter (ha, $x, d)$ filters a vector of real or complex input data x through an adaptive filter object ha, producing the estimated desired response data y from the process of adapting the filter. The vectors x and y have the same length. Use d for the desired signal. Note that d and x must be the same length signal chains.
[y,e] = filter(ha, x,d) produces the estimated desired response data y and the prediction error e (refer to previous syntax for more information).

Multirate Filter Syntaxes

$y=$ filter (hd, x) filters a vector of real or complex input data x through a fixed-point filter hd, producing filtered output data y. The vectors x and y have the same length. filter stores the final conditions for the filter in the States property of hd-hd. states.
$y=$ filter (hm, x, dim) applies the filter hd to the input data located along the specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which dimension of the input matrix to filter along-whether a row represents a channel or a column represents a channel. When you provide the dim input argument, the filter operates along the dimension specified by dim. When your input data x is a vector or matrix and dim is 1 , each column of x is treated as a one input channel. When dim is 2 , the filter treats each row of the input x as a channel.

To filter multichannel data in a loop environment, you must use the dim input argument to set the processing dimension.

You specify the initial conditions for each channel individually, when needed, by setting hm . states to a matrix of nstates (hm) rows (one row containing the states for one channel of input data) and size ($x, 2$) columns (one column containing the filter states for each channel).

The number of data samples in your input data set x does not need to be a multiple of the rate change factor r for the object. When the rate change factor is not an even divisor of the number of input samples x, filter processes the samples as shown in the following figure, where the rate change factor is 3 and the number of input samples is 23 . Decimators always take the first input sample to generate the first output sample. After that, the next output sample comes after each r number of input samples.

filter

Examples

Filter a signal using a filter with various initial conditions (IC) or no initial conditions.

```
x = randn(100,1); % Original signal.
b = fir1(50,.4); % 50th-order linear-phase FIR filter.
hd = dfilt.dffir(b); % Direct-form FIR implementation.
% Do not set specific initial conditions.
y1 = filter(hd,x); %'PersistentMemory' is 'false' (default).
zf = hd.states; % Final conditions.
```

Now use nonzero initial conditions by setting ICs after before you filter.

```
hd.persistentmemory = true;
hd.states = 1; % Uses scalar expansion.
y2 = filter(hd,x);
stem([y1 y2]) % Different sequences at the beginning.
```

Looking at the stem plot shows that the sequences are different at the beginning of the filter process.

Here is one way to use filter with streaming data.

```
reset(hd); % Clear filter history.
y3 = filter(hd,x); % Filter the entire signal in one block.
```

As an experiment, repeat the process, filtering the data as sections, rather than in streaming form.

```
reset(hd); % Clear filter history.
yloop = zeros(100,1) % Preallocate output array.
xblock = reshape(x,[20 5]);
for i=1:5,
    yloop = [yloop; filter(hd,xblock(:,i))];
end
```

Use a stem plot to see the comparison between streaming and block-by-block filtering.

```
stem([y3 yloop]);
```


Filtering the signal section-by-section is equivalent to filtering the entire signal at once.

To show the similarity between filtering with discrete-time and with multirate filters, this example demonstrates multirate filtering.

```
Fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = [0:10239].'; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
m = 2; % Decimation factor.
hm = mfilt.firdecim(m); % Use the default filter.
```

First, filter without setting initial conditions.

```
y1 = filter(hm,x); % PersistentMemory is false (default).
zf = hm.states; % Final conditions.
```

This time, set nonzero initial conditions before filtering the data.

```
hm.persistentmemory = true;
hm.states = 1; % Uses scalar expansion to set ICs.
y2 = filter(Hm,x);
stem([y1(1:60) y2(1:60)]) % Show the filtering results.
```

Note the different sequences at the start of filtering.
Finally, try filtering streaming data.

```
reset(hm); % Clear the filter history.
y3 = filter(hm,x); % Filter the entire signal in one block.
```

As with the discrete-time filter, filtering the signal section by section is equivalent to filtering the entire signal at once.

```
reset(hm); % Clear filter history again.
yloop = zeros(100,1) % Preallocate output array.
xblock = reshape(x,[2048 5]);
for i=1:5,
    yloop = [yloop; filter(Hm,xblock(:,i))];
end
```


Algorithm

Quantized Filters

The filter command implements fixed- or floating-point arithmetic on the quantized filter structure you specify.

The algorithm applied by filter when you use a discrete-time filter object on an input signal depends on the response you chose for the filter, such as lowpass or Nyquist or bandstop. To learn more about each filter algorithm, refer to the literature reference provided on the appropriate discrete-time filter reference page.

filter

Note dfilt/filter does not normalize the filter coefficients automatically. Function filter supplied by MATLAB does normalize the coefficients.

Adaptive Filters

The algorithm used by filter when you apply an adaptive filter object to a signal depends on the algorithm you chose for your adaptive filter. To learn more about each adaptive filter algorithm, refer to the literature reference provided on the appropriate adaptfilt.algorithm reference page.

Multirate Filters

The algorithm applied by filter when you apply a multirate filter objects to signals depends on the algorithm you chose for the filter-the form of the multirate filter, such as decimator or interpolator. To learn more about each filter algorithm, refer to the literature reference provided on the appropriate multirate filter reference page.

See Also

References
adaptfilt, impz, mfilt, nstates
dfilt in the Signal Processing Toolbox
[1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Pren-tice-Hall, 1989.

Purpose

Syntax
 filtmsb(hm)

Description

Examples

$\mathrm{B}_{\text {max }}$, most significant bit, of cascaded integrator-comb (CIC) filter
filtmsb (hm) returns the most significant bit (MSB) of the filter output and is a function of the following parameters of filter hm .

- R-the interpolation factor or decimation factor depending on the filter form
- M-the differential delay
- N -the number of sections in the filter

Because the output of the integrators can grow without bound, the MSB returned represents the maximum number of bits that can propagate through the filter without losing data. This MSB is both the MSB at the filter output and the MSB for all stages.

Using the mfilt.cicdecim filter constructor, create a multirate filter and determine the most significant bit. For the decimator specifications used here, refer to the CIC decimator design example D on pp. 159 in [1].

```
hm = mfilt.cicdecim(25,1,4,16,16)
hm =
            FilterStructure: 'Cascaded Integrator-Comb Decimator'
                    Arithmetic: 'fixed'
            DifferentialDelay: 1
            NumberOfSections: 4
            DecimationFactor: 25
            PersistentMemory: false
            InputWordLength: 16
            InputFracLength: 15
            SectionWordLengthMode: 'MinWordLengths'
            OutputWordLength: 16
bmax=filtmsb(hm)
bmax =
```


filtmsb

Reviewing the referenced Hogenauer paper [1] shows that 34 is the correct result.

Algorithm

See Also
filtmsb calculates the most significant bit for interpolators and decimators using the following algorithms and filter property values. In each case, hm is a multirate filter of the approriate form, either decimator or interpolator. Both equations derive from [1].

Decimators

From equation 11 in [1], calculate Bmax as follows for decimators:
 hm.DifferentialDelay) + hm.InputWordLength -1)

Interpolators

Interpolators use a slightly different formulation, equation 23 in [1]. bmax $=$ ceil(hm.InputWordLength $+\log 2(G m a x))$
where
gmax $=$ (((hm.InterpolationFactor*hm.DifferentialDelay)^hm.NumberOfSections)/... hm. InterpolationFactor)
gain, mfilt

filtstates.cic

Purpose

Description

Examples

Object for storing states of cascaded-integrator comb (CIC) filters
filtstates.cic objects hold the states information for CIC filters. Once you create a CIC filter, the states for the filter are stored in filtstates.cic objects, and you can access them and change them as you would any property of the filter. This arrangement parallels that of the filtstates object that IIR direct-form I filters use (refer to filtstates for more information).

Each States property in the CIC filter comprises two properties-Numerator and Comb-that hold filtstates.cic objects. Within the filtstates.cic objects are the numerator-related and comb-related filter states. The states are column vectors, where each column represents the states for one section of the filter. For example, a CIC filter with four decimator sections and four interpolator sections has filtstates.cic objects that contain four columns of states each.

To show you the filtstates.cic object, create a CIC decimator and filter a signal.

```
hm=mfilt.cicdecim(5,2,4)
hm =
```

 FilterStructure: 'Cascaded Integrator-Comb Decimator'
 Arithmetic: 'fixed'
 DifferentialDelay: 2
 NumberOfSections: 4
 DecimationFactor: 5
 PersistentMemory: false
 InputWordLength: 16
 InputFracLength: 15
 SectionWordLengthMode: 'MinWordLengths'
 hm. persistentMemory=true
hm =

FilterStructure: 'Cascaded Integrator-Comb Decimator' Arithmetic: 'fixed'

filtstates.cic

```
    DifferentialDelay: 2
    NumberOfSections: 4
    DecimationFactor: 5
    PersistentMemory: true
            States: Integrator: [4x1 States]
                                    Comb: [4x1 States]
            InputOffset: 0
            InputWordLength: 16
    InputFracLength: 15
SectionWordLengthMode: 'MinWordLengths'
```

Use hm to filter some input data.

```
fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1kHz.
y=filter(hm,x)
```

hm has nonzero states now.

```
s=hm.states
s =
    Integrator: [4x1 States]
            Comb: [4x1 States]
s.Integrator
ans =
    1.0e+003 *
            0.0043
            -2.0347
            -0.4175
            0.8206
s.Comb
```

```
ans =
    1.0e+003 *
        -3.1301
        -0.8493
        -2.5474
        1.7888
        -1.6253
        3.1981
        0.4729
        3.4559
```

You can use int to see the states as 32-bit integers.

```
int(s.Integrator)
ans =
    142435
-8334019
    -427469
    210081
```

whos shows you the filtstates.cic object.
whos

Name	Size
Fs	1×1
ans	4×1
hm	1×1
n	1×10240
s	1×1
x	1×10240
y	1×2048

Bytes Class

8 double array
16 int32 array mfilt.cicdecim
81920 double array filtstates.cic
81920 double array embedded.fi

Grand total is 20488 elements using 163864 bytes

See Also mfilt, mfilt.cicdecim, mfilt.cicinterp

filtstates.cic

filtstates in the Signal Processing Toolbox documentation

Purpose
Perform constrained-band equiripple FIR filter design

```
Syntax b = fircband(n,f,a,w,c)
b = fircband(n,f,a,s)
b = fircband(...,'1')
b = fircband(...,'minphase')
b = fircband(..., 'check')
b = fircband(...,{lgrid})
[b,err] = fircband(...)
[b,err,res] = fircband(...)
```

Description
fircband is a minimax filter design algorithm that you use to design the following types of real FIR filters:

- Types 1-4 linear phase
- Type 1 is even order, symmetric
- Type 2 is odd order, symmetric
- Type 3 is even order, antisymmetric
- Type 4 is odd order, antisymmetric
- Minimum phase
- Maximum phase,
- Minimum order (even or odd), extra ripple
- Maximal ripple
- Constrained ripple
- Single-point band (notching and peaking)
- Forced gain
- Arbitrary shape frequency response curve filters
$b=f i r c b a n d(n, f, a, w, c)$ designs filters having constrained error magnitudes (ripples). c is a cell array of strings of the same length as w. The entries of c must be either ' c ' to indicate that the corresponding element in w is a constraint (the ripple for that band cannot exceed that value) or 'w ' indicating that the corresponding entry in w is a weight. There must be at least one unconstrained band-c must contain at least one w entry. For instance,

fircband

Example 1 below uses a weight of one in the passband, and constrains the stopband ripple not to exceed 0.2 (about 14 dB).

A hint about using constrained values: if your constrained filter does not touch the constraints, increase the error weighting you apply to the unconstrained bands.

Notice that, when you work with constrained stopbands, you enter the stopband constraint according to the standard conversion formula for powerthe resulting filter attenuation or constraint equals $20 * \log$ (constraint) where constraint is the value you enter in the function. For example, to set 20 dB of attenuation, use a value for the constraint equal to 0.1 . This applies to constrained stopbands only.
$b=f i r c b a n d(n, f, a, s)$ is used to design filters with special properties at certain frequency points. s is a cell array of strings and must be the same length as f and a. Entries of s must be one of:

- 'n'-normal frequency point.
- 's '—single-point band. The frequency band is given by a single point. You must specify the corresponding gain at this frequency point in a.
- ' \mathbf{f} '-forced frequency point. Forces the gain at the specified frequency band to be the value specified.
- 'i'-indeterminate frequency point. Use this argument when bands abut one another (no transition region).
b = fircband (...,'1') designs a type 1 filter (even-order symmetric). You could also specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), or type 4 (odd-order antisymmetric) filters. Note there are restrictions on a at $\mathrm{f}=0$ or $\mathrm{f}=1$ for types 2,3 , and 4 .
b = fircband(...,'minphase') designs a minimum-phase FIR filter. There is also 'maxphase'.
b = fircband (..., 'check') produces a warning when there are potential transition-region anomalies in the filter response.
b = fircband(..., \{lgrid $\}$), where $\{l \mathrm{lgrid}\}$ is a scalar cell array containing an integer, controls the density of the frequency grid.
[b,err] = fircband (...) returns the unweighted approximation error magnitudes. err has one element for each independent approximation error.
[b,err, res] = fircband (...) returns a structure res of optional results computed by fircband, and contains the following fields:.

Structure Field	Contents
res.fgrid	Vector containing the frequency grid used in the filter design optimization
res.des	Desired response on fgrid
res.wt	Actual frequency response on the frequency grid
res.h	Error at each point (desired response - actual response) on the frequency grid
res.error	Vector of indices into fgrid of extremal frequencies
res.iextr	Vector of extremal frequencies
res.fextr	Filter order
res.order	Transition-region anomaly check. One element per band edge. Element values have the following meanings:
res.edgecheck	$1=$ OK $0=$ probable transition-region anomaly
$-1=$ edge not checked	

fircband

Structure Field	Contents
res.iterations	Number of Remez iterations for the optimization
res.evals	Number of function evaluations for the optimization

Examples
Two examples of designing filters with constrained bands.
Example 1—design a 12th-order lowpass filter with a constraint on the filter response.

```
b = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2], {'w' 'c'});
```

Using fvtool to display the result b shows you the response of the filter you designed.

Example 2-design two filters of different order with the stopband constrained to 60 dB . Use excess order (80) in the second filter to improve the passband ripple.

```
b1=fircband(60,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
b2=fircband(80,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
fvtool(b1,1,b2,1)
```

To set the stopband constraint to 60 dB , enter 0.001 , since $20 * \log (0.001)=-60$, or 60 dB of signal attenuation.

fircband

See Also

firceqrip, firgr, firls
firpm in the Signal Processing Toolbox
Also refer to "Constrained Band Equiripple FIR Filter Design" in Demos

Purpose Design equiripple FIR interpolators

```
Syntax b = fireqint(n,l,alpha)
b = fireqint(n,l,alpha,w)
b = fireqint('minorder',l,alpha,r)
b = fireqint({'minorder',initord},l,alpha,r)
```


Description

$b=$ fireqint (n, l, alpha) designs an FIR equiripple filter useful for
interpolating input signals. n is the filter order and it must be an integer. l, also an integer, is the interpolation factor. alpha is the bandlimitedness factor, identical to the same feature in intfilt.
alpha is inversely proportional to the transition bandwidth of the filter. It also affects the bandwith of the don't-care regions in the stopband. Specifying alpha allows you to control how much of the Nyquist interval your input signal occupies. This can be beneficial for signals to be interpolated because it allows you to increase the transition band width without affecting the interpolation, resulting in better stopband attenuation for a given l. If you set alpha to 1 , fireqint assumes that your signal occupies the entire Nyquist interval. Setting alpha to a value less than one allows for don't-care regions in the stopband. For example, if your input occupies half the Nyquist interval, you could set alpha to 0.5 .

The signal to be interpolated is assumed to have zero (or negligible) power in the frequency band between (alpha* π) and π. alpha must therefore be a positive scalar between 0 and 1 . fireqint treat such bands as don't-care regions for assessing filter design.
b = fireqint ($n, 1$, alpha, w) allows you to specify a vector of weights in w. The number of weights required in w is given by $1+$ floor $(1 / 2)$. The weights in w are applied to the passband ripple and stopband attenuations. Using weights (values between 0 and 1) enables you to specify different attenuations in different parts of the stopband, as well as providing the ability to adjust the compromise between passband ripple and stopband attenuation.
b = fireqint('minorder', l, alpha, r) allows you to design a minimum-order filter that meets the design specifications. r is a vector of maximum deviations or ripples from the ideal filter magnitude response. When

fireqint

you use the input argument minorder, you must provide the vector r. The number of elements required in r is given by $1+$ floor $(1 / 2)$.
b = fireqint(\{'minorder',initord\},l,alpha,r) adds the argument initord si you can provide an initial estimate of the filter order. Any positive integer is valid here. Again, you must provide r, the vector of maximum deviations or ripples, from the ideal filter magnitude response.

Examples

Design a minimum order interpolation filter for $l=6$ and alpha $=0.8$. A vector of ripples must be supplied with the input argument minorder.

```
b = fireqint('minorder',6,.8,[0.01 .1 .05 .02]);
hm = mfilt.firinterp(6,b); % Create a polyphase interpolator filter
zerophase(hm);
```

Here is the resulting plot of the zerophase response for hm .

For hm, the minimum order filter with the requested design specifications, here is the filter information.

```
hm =
FilterStructure: 'Direct-Form FIR Polyphase Interpolator' Arithmetic: 'double' Numerator: [1x70 double] InterpolationFactor: 6 PersistentMemory: false
```

See Also
firgr, firhalfband, firls, firnyquist, mfilt
intfilt in your Signal Processing Toolbox documentation

firceqrip

Purpose Design constrained, equiripple FIR filter

```
Syntax hd = firceqrip(n,wo,del)
hd = firceqrip(...,'slope',r)
hd = firceqrip(...,'passedge')
hd = firceqrip(...,'stopedge')
hd = firceqrip(...,'high')
hd = firceqrip(...,'min')
hd = firceqrip(...,'invsinc',c)
```

Description hd = firceqrip (n, wo, del) design an order n filter (filter length equal $n+1$) lowpass FIR filter with linear phase.
firceqrip produces the same equiripple lowpass filters that firpm produces using the Parks-McClellan algorithm. The difference is how you specify the filter characteristics for the function.

Input argument wo specifies the cutoff frequency. The two-element vector del specifies the peak or maximum error allowed in the passband and stopbands. Enter [d1 d2] for del where d1 sets the passband error and d2 sets the stopband error. Since firceqrip works in the normalized frequency domain, you must set wo to be between 0 and $1(0<w o<1)$.
hd = firceqrip(...,'slope', r) uses the input keyword 'slope' and input argument r to design a filter with a stopband that does not demonstrate equiripple characteristics. r determines the slope of the stopband in $d B$ when $r>0$.

In this constrained equiripple design approach, you can specify a stopband slope (increasing attenuation with increasing frequency). Enter your desired slope in dB as a positive value. Larger slope values create increasing attenuation of the stopband as frequency increases.

Slope is defined in the following ways:

- For filters specified in linear frequency, the slope is defined over every Fs/2 frequency bands.
- For filters specified in normalized frequency, the slope is defined over $\pi \mathrm{rad} /$ sample.

Here is a description of how slope works. The algorithm defines slope in dB per half of the Nyquist interval. If you are working in normalized frequency and you set the slope to 40 dB , the stopband attenuation increases by 40 dB every rad/sample.

Try setting r to 10 to see the effect on the filter frequency response. In the Examples section, example 3 designs a filter with r equal to 20 .
hd = firceqrip(...,'passedge') designs a filter where wo specifies the frequency at which the passband starts to roll off.
hd = firceqrip(...,'stopedge') designs a filter where wo specifies the frequency at which the stopband begins.
hd = firceqrip(...,'high') designs a high pass FIR filter instead of a lowpass filter.
hd = firceqrip(...,'min') designs an FIR filter with minimum phase.
hd = firceqrip(...,'invsinc', c)) designs a lowpass filter whose passband has the shape of the inverse sinc function. For this syntax, keyword invsinc applies the inverse sinc function as defined by whether c is a scalar or a two-element vector:

- When you use c as a scalar with the invsinc keyword, firceqrip applies the function $1 / \operatorname{sinc}\left(c^{*}\right.$ w), where w is the normalized frequency, to the passband.
- When you use c as a two-element vector entered as [c p], with the invsinc keyword, firceqrip applies the function $1 / \operatorname{sinc}(c * w)^{p}$ to the passband, where w is the normalized frequency.

In both cases, c must meet the condition $\mathrm{c}<1 / \mathrm{w}_{0}$.
When you use a cascaded-integrated comb (CIC) filter in series with this FIR filter, argument p lets you compensate for the droop in the passband of the CIC filter. Setting p equal to the number of stages in your CIC generally produces an FIR filter whose passband neatly compensates for the CIC passband shape.

To let you specify precisely the FIR filter to design, use any or all of the optional input arguments together. Any ordering of the optional arguments worksorder is not important in the function call. Refer to Examples 3 and 4 to see multiple optional input arguments being used.

firceqrip

Note If the wo you specify is too small or too large, or if either c or p is too large, your filter specifications may be unfeasible, causing the design algorithm to fail to generate your filter.

Examples

To introduce a few of the variations on FIR filters that you design with firceqrip, these five examples cover both the default syntax hd = firceqrip(n, wo, del) and some of the optional input arguments. For each example, the input arguments n, wo, and del remain the same.

Example 1—Design an order = 30 FIR filter without using optional input arguments or keywords.

```
hd = firceqrip(n,wo,del); fvtool(hd)
```

Both the phase and magnitude response for the resulting lowpass filter appear in the plot shown here.

Example 2-Design an order $=30$ FIR filter with the stopedge keyword to define the response at the edge of the filter stopband.

```
hd = firceqrip(n,wo,del,'stopedge'); fvtool(hd,1)
```

Example 3-Design an order $=30$ FIR filter with the slope keyword and $r=20$.

```
hd = firceqrip(n,wo,del,'slope',20,'stopedge'); fvtool(hd)
```

Example 4-Design an order = 30 FIR filter defining the stopband and specifying that the resulting filter is minimum phase with the min keyword.

```
hd = firceqrip(n,wo,del,'stopedge','min'); fvtool(hd)
```


firceqrip

Comparing this filter to the filter in Example 1, notice that the cutoff frequency wo $=0.4$ now applies to the edge of the stopband rather than the point at which the frequency response magnitude is 0.5 .

Viewing the zero-pole plot shown here reveals this is a minimum phase FIR filter-the zeros lie on or inside the unit circle, $\mathrm{z}=1$.

Example 5-Design an order = 30 FIR filter with the invsinc keyword to shape the filter passband with an inverse sinc function.

```
hd = firceqrip(n,wo,del,'invsinc',[2 1.5]); fvtool(hd,1)
```

With the inverse sinc function being applied defined as $1 / \operatorname{sinc}\left(2^{*} \text { w }\right)^{1.5}$, the figure shows the reshaping of the passband that results from using the invsinc keyword option, and entering c as the two-element vector [2 1.5].

See Also
firhalfband, firnyquist, firgr, ifir, iirgrpdelay, iirlpnorm, iirlpnormc fircls, firls, firpm in your Signal Processing Toolbox documentation

firgr

Purpose Use Parks-McClellan technique to design digital FIR filter

```
Syntax \(\quad b=\operatorname{firgr}(n, f, a, w)\)
b = firgr(n,f,a,'hilbert')
b = firgr(n,f,a,'differentiator')
b = firgr(m,f,a,r)
\(b=\operatorname{firgr}(\{m, n i\}, f, a, r)\)
\(b=\operatorname{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{w}, \mathrm{e})\)
\(b=\operatorname{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{s})\)
b = firgr(n,f,a,s,w,e)
```

Description firgr is a minimax filter design algorithm you use to design the following types of real FIR filters:

- Types 1-4 linear phase:
- Type 1 is even order, symmetric
- Type 2 is odd order, symmetric
- Type 3 is even order, antisymmetric
- Type 4 is odd order, antisymmetric
- Minimum phase
- Maximum phase
- Minimum order (even or odd)
- Extra ripple
- Maximal ripple
- Constrained ripple
- Single-point band (notching and peaking)
- Forced gain
- Arbitrary shape frequency response curve filters
$b=\operatorname{firgr}(n, f, a, w)$ returns a length $n+1$ linear phase FIR filter which has the best approximation to the desired frequency response described by f and a in the minimax sense. w is a vector of weights, one per band. When you omit w, all bands are weighted equally. For more information on the input arguments, refer to firpm in Signal Processing Toolbox User's Guide.
$b=\operatorname{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{a}, \mathrm{hilbert})$) and $\mathrm{b}=\mathrm{firgr}(\mathrm{n}, \mathrm{f}, \mathrm{a}$, 'differentiator') design FIR Hilbert transformers and differentiators. For more information on designing these filters, refer to firpm in Signal Processing Toolbox User's Guide.
b = firgr(m,f,a,r), where mis one of 'minorder', 'mineven' or 'minodd', designs filters repeatedly until the minimum order filter, as specified in m, that meets the specifications is found. r is a vector containing the peak ripple per frequency band. You must specify r. When you specify 'mineven' or 'minodd', the minimum even or odd order filter is found.
$b=\operatorname{firgr}(\{m, n i\}, f, a, r)$ where m is one of 'minorder', 'mineven' or 'minodd', uses ni as the initial estimate of the filter order. ni is optional for common filter designs, but it must be specified for designs in which firpmord cannot be used, such as while designing differentiators or Hilbert transformers.
$b=\operatorname{firgr}(n, f, a, w, e)$ specifies independent approximation errors for different bands. Use this syntax to design extra ripple or maximal ripple filters. These filters have interesting properties such as having the minimum transition width. e is a cell array of strings specifying the approximation errors to use. Its length must equal the number of bands. Entries of e must be in the form 'e\#' where \# indicates which approximation error to use for the corresponding band. For example, when $e=\{' e 1$ ', 'e2', 'e1' $\}$, the first and third bands use the same approximation error 'e1' and the second band uses a different one 'e2'. Note that when all bands use the same approximation error, such as \{'e1', 'e1', 'e1', \ldots \}, it is equivalent to omitting e, as in $b=\operatorname{firgr}(n, f, a, w)$.
$b=\operatorname{firgr}(n, f, a, s)$ is used to design filters with special properties at certain frequency points. s is a cell array of strings and must be the same length as f and a. Entries of s must be one of:
- ' n ' - normal frequency point.
- 's ' - single-point band. The frequency "band" is given by a single point. The corresponding gain at this frequency point must be specified in a.
- ' f ' - forced frequency point. Forces the gain at the specified frequency band to be the value specified.
- 'i' - indeterminate frequency point. Use this argument when adjacent bands abut one another (no transition region).

For example, the following command designs a bandstop filter with zero-valued single-point stop bands (notches) at 0.25 and 0.55 .

```
    b = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
    {'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})
b = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'})
designs a highpass filter with the gain at 0.06 forced to be zero. The band edge at 0.055 is indeterminate since the first two bands actually touch. The other band edges are normal.
```

$b=\operatorname{firgr}(n, f, a, s, w, e)$ specifies weights and independent approximation errors for filters with special properties. The weights and properties are included in vectors w and e. Sometimes, you may need to use independent approximation errors to get designs with forced values to converge. For example,

```
b = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});
```

b = firgr(...,'1') designs a type 1 filter (even-order symmetric). You can specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), and type 4 (odd-order antisymmetric) filters as well. Note that restrictions apply to a at $\mathrm{f}=0$ or $\mathrm{f}=1$ for FIR filter types 2,3 , and 4 .
b = firgr(...,'minphase') designs a minimum-phase FIR filter. You can use the argument 'maxphase' to design a maximum phase FIR filter.
b = firgr(..., 'check') returns a warning when there are potential transition-region anomalies.
b = firgr(..., \{lgrid\}), where \{lgrid\} is a scalar cell array. The value of the scalar controls the density of the frequency grid by setting the number of samples used along the frequency axis.
[b,err] = firgr(...) returns the unweighted approximation error magnitudes. err contains one element for each independent approximation error returned by the function.
[b,err, res] = firgr(...) returns the structure res comprising optional results computed by firgr. res contains the following fields.
\(\left.$$
\begin{array}{l|l}\hline \text { Structure Field } & \text { Contents } \\
\hline \text { res.fgrid } & \begin{array}{l}\text { Vector containing the frequency grid used in } \\
\text { the filter design optimization }\end{array} \\
\hline \text { res.des } & \text { Desired response on fgrid } \\
\hline \text { res.wt } & \text { Weights on fgrid } \\
\hline \text { res.h } & \begin{array}{l}\text { Actual frequency response on the frequency } \\
\text { grid }\end{array} \\
\hline \text { res.error } & \begin{array}{l}\text { Error at each point (desired response - actual } \\
\text { response) on the frequency grid }\end{array} \\
\hline \text { res.iextr } & \begin{array}{l}\text { Vector of indices into fgrid of extremal } \\
\text { frequencies }\end{array} \\
\hline \text { res.fextr } & \begin{array}{l}\text { Vector of extremal frequencies }\end{array} \\
\hline \text { res.order } & \begin{array}{l}\text { Filter order } \\
\text { per band edge. Element values have the }\end{array} \\
\hline \text { res.edgecheck } & \begin{array}{l}\text { following meanings: }\end{array} \\
\begin{array}{l}1=\text { OK } \\
0=\text { probable transition-region anomaly } \\
-1=\text { edge not checked }\end{array} \\
\hline \text { res.iterations } & \begin{array}{l}\text { Computed when you specify the ' check ' input } \\
\text { option in the function syntax. }\end{array}
$$

\hline Number of s iterations for the optimization\end{array}\right\}\)| Number of function evaluations for the |
| :--- |
| optimization |

firgr is also a "function function", allowing you to write a function that defines the desired frequency response.
b = firgr($\mathrm{n}, \mathrm{f}, \mathrm{fresp}, \mathrm{w})$ returns a length $\mathrm{N}+1$ FIR filter which has the best approximation to the desired frequency response as returned by the user-defined function fresp. Use the following firgr syntax to call fresp:

$$
[d h, d w]=\operatorname{fresp}(n, f, g f, w)
$$

where:

- fresp is the string variable that identifies the function that you use to define your desired filter frequency response.
- n is the filter order.
- f is the vector of frequency band edges which must appear monotonically between 0 and 1 , where 1 is one-half of the sampling frequency. The frequency bands span $f(k)$ to $f(k+1)$ for k odd. The intervals $f(k+1)$ to $f(k+2)$ for k odd are "transition bands" or "don't care" regions during optimization.
- gf is a vector of grid points that have been chosen over each specified frequency band by firgr, and determines the frequencies at which firgr evaluates the response function.
- w is a vector of real, positive weights, one per band, for use during optimization. w is optional in the call to firgr. If you do not specify w, it is set to unity weighting before being passed to fresp.
- dh and dw are the desired frequency response and optimization weight vectors, evaluated at each frequency in grid gf.
firgr includes a predefined frequency response function named 'firpmfrf2'.
You can write your own based on the simpler 'firpmfrf'. See the help for private/firpmfrf for more information.
$b=f i r g r(n, f,\{f r e s p, p 1, p 2, \ldots\}, w)$ specifies optional arguments p1, $\mathrm{p} 2, \ldots, \mathrm{pn}$ to be passed to the response function fresp.
$b=\operatorname{firgr}(n, f, a, w)$ is a synonym for $b=\operatorname{firgr}\left(n, f,\left\{' f i r p m f r f 2^{\prime}, a\right\}, w\right)$, where a is a vector containing your specified response amplitudes at each band edge in f. By default, firgr designs symmetric (even) FIR filters. ' firpmfrf2' is the predefined frequency response function. If you do not specify your own
frequency response function (the fresp string variable), firgr uses 'firpmfrf2'.
$b=\operatorname{firgr}\left(\ldots,{ }^{\prime} h^{\prime}\right)$ and $b=\operatorname{firgr}\left(\ldots,{ }^{\prime} d^{\prime}\right)$ design antisymmetric (odd) filters. When you omit the ' h ' or ' d ' arguments from the firgr command syntax, each frequency response function fresp can tell firgr to design either an even or odd filter. Use the command syntax
sym = fresp('defaults',\{n,f,[],w,p1,p2,...\}).
firgr expects fresp to return sym = 'even' or sym = 'odd'. If fresp does not support this call, firgr assumes even symmetry.
For more information about the input arguments to firgr, refer to firpm.

Examples

These examples demonstrate some filters you might design using firgr.
Example 1—design an FIR filter with two single-band notches at 0.25 and 0.55

```
b1 = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[11 1 0 1 1 0 1 1],\ldots
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});
```

Example 2-design a highpass filter whose gain at 0.06 is forced to be zero. The gain at 0.055 is indeterminate since it should abut the band.

```
b2 = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],\ldots..
{'n' 'i' 'f' 'n' 'n' 'n'});
```

Example 3-design a second highpass filter with forced values and independent approximation errors.

```
b3 = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1], ...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});
```

Use the filter visualization tool to view the results of the filters created in these examples.

```
fvtool(b1,1,b2,1,b3,1)
```

Here is the figure from FVTool.

firgr

See Also

Reference

butter, cheby1, cheby2, ellip, freqz, filter, firls, fircls, and firpm in your Signal Processing Toolbox documentation

Shpak, D.J. and A. Antoniou, "A generalized Remez method for the design of FIR digital filters," IEEE Trans. Circuits and Systems, pp. 161-174,Feb. 1990.

Purpose Design halfband FIR filter

```
Syntax b = firhalfband(n,fp)
```

b = firhalfband(n,win)

```
b = firhalfband(n,win)
b = firhalfband(n,dev,'dev')
b = firhalfband(n,dev,'dev')
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')
b = firhalfband(...,'high')
b = firhalfband(...,'minphase')
```

```
b = firhalfband(...,'minphase')
```

```

\section*{Description}
\(b=f i r h a l f b a n d(n, f p)\) designs a lowpass halfband FIR filter of order \(n\) with
an equiripple characteristic. \(n\) must be an even integer. \(f p\) determines the passband edge frequency, and it must satisfy \(0<f p<1 / 2\), where \(1 / 2\) corresponds to \(\pi / 2 \mathrm{rad} /\) sample .
b = firhalfband(n,win) designs a lowpass Nth-order filter using the truncated, windowed-impulse response method instead of the equiripple method. win is an \(n+1\) length vector. The ideal impulse response is truncated to length \(n+1\), and then multiplied point-by-point with the window specified in win.
b = firhalfband(n,dev,'dev') designs an Nth-order lowpass halfband filter with an equiripple characteristic. Input argument dev sets the value for the maximum passband and stopband ripple allowed.
b = firhalfband('minorder',fp,dev) designs a lowpass minimum-order filter, with passband edge \(f p\). The peak ripple is constrained by the scalar dev. This design uses the equiripple method.
b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass minimum-order filter, with passband edge fp . The peak ripple is constrained by the scalar dev. This design uses the Kaiser window method.
b = firhalfband(...,'high') returns a highpass halfband FIR filter.
b = firhalfband(...,'minphase') designs a minimum-phase FIR filter such that the filter is a spectral factor of a halfband filter (recall that \(h=\operatorname{conv}(b, f l i p l r(b))\) is a halfband filter). This can be useful for designing perfect reconstruction, two-channel FIR filter banks. The minphase option for

\section*{firhalfband}
firhalfband is not available for the window-based halfband filter designsb = firhalfband(n,win) and
b = firhalfband('minorder',fp,dev,'kaiser').
In the minimum phase cases, the filter order must be odd.

\section*{Examples}

This example designs a minimum order halfband filter with specified maximum ripple:
```

b = firhalfband('minorder',.45,0.0001);
h = dfilt.dfsymfir(b);
impz(b) % Impulse response is zero for every other sample

```


The next example designs a halfband filter with specified maximum ripple of 0.0001 dB in the pass and stop bands.
```

b = firhalfband(98,0.0001,'dev');
h = mfilt.firdecim(2,b); % Create a polyphase decimator
freqz(h); % 80 dB attenuation in the stopband

```

See Also

References
firnyquist, firgr
fir1, firls, firpm in your Signal Processing Toolbox documentation

Saramaki, T, "Finite Impulse Response Filter Design," Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{firlp2lp}

Purpose Convert FIR Type I lowpass to FIR Type 1 lowpass with inverse bandwidth
\[
\text { Syntax } \quad g=\text { firlp2lp(b) }
\]

Description

\section*{Examples}

\section*{See Also}

References

Overlay the original narrowband lowpass and the resulting wideband lowpass
```

```
b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
```

```
b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
zerophase(b);
zerophase(b);
hold on
hold on
h = firlp2lp(b);
h = firlp2lp(b);
zerophase(h); hold off
```

```
zerophase(h); hold off
```

```
\(g\) = firlp2lp(b) transforms the Type I lowpass FIR filter \(b\) with zero-phase response \(\mathrm{Hr}(\mathrm{w})\) to a Type I lowpass FIR filter g with zero-phase response [1- \(\mathrm{Hr}(\pi-w)\) ].

When b is a narrowband filter, g will be a wideband filter and vice versa. The passband and stopband ripples of \(g\) will be equal to the stopband and passband ripples of \(b\).
firlp2hp
zerophase in your Signal Processing Toolbox documentation
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{Purpose}

Convert FIR lowpass filter to Type I FIR highpass filter

\section*{Examples}
\[
\begin{aligned}
& g=\text { firlp2hp(b) } \\
& g=\text { firlp2hp(b,'narrow') } \\
& g=\text { firlp2hp(b, 'wide') }
\end{aligned}
\]

\section*{Description \(\quad g=\) firlp2hp (b) transforms the lowpass FIR filter b into a Type I highpass} FIR filter \(g\) with zero-phase response \(\operatorname{Hr}(\pi-w)\). Filter \(b\) can be any FIR filter, including a nonlinear-phase filter.

The passband and stopband ripples of \(g\) will be equal to the passband and stopband ripples of \(b\).
\(\mathrm{g}=\mathrm{firlp} 2 h \mathrm{p}(\mathrm{b}\), ' \(n a r r o w ')\) transforms the lowpass FIR filter b into a Type I narrow band highpass FIR filter \(g\) with zero-phase response \(\operatorname{Hr}(\pi-w)\). b can be any FIR filter, including a nonlinear-phase filter.
\(g\) = firlp2hp(b, 'wide') transforms the Type I lowpass FIR filter b with zero-phase response \(\mathrm{Hr}(\mathrm{w})\) into a Type I wide band highpass FIR filter g with zero-phase response \(1-\mathrm{Hr}(\mathrm{w})\). Note the restriction that b must be a Type I linear-phase filter.

For this case, the passband and stopband ripples of \(g\) will be equal to the stopband and passband ripples of \(b\).

Overlay the original narrowband lowpass (the prototype filter) and the post-conversion narrowband highpass and wideband highpass filters to compare and assess the conversion. The plot below shows the results.
```

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 3]);
zerophase(b); hold on;
h = firlp2hp(b);
zerophase(h);
g = firlp2hp(b,'wide');
zerophase(g); hold off

```

\section*{firlp2hp}


\section*{See Also}

\section*{References}
firlp2lp
zerophase in your Signal Processing Toolbox documentation
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

Purpose
Least P-norm optimal FIR filter design
```

Syntax $\quad b=$ firlpnorm(n, f, edges, $a)$
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

```

Description b = firlpnorm( \(n, f\), edges, a) returns a filter of numerator order \(n\) which represents the best approximation to the frequency response described by \(f\) and a in the least-Pth norm sense. P is set to 128 by default, which essentially equivalent to the infinity norm. Vector edges specifies the band-edge frequencies for multiband designs. firlpnorm uses an unconstrained quasi-Newton algorithm to design the specified filter.
f and a must have the same number of elements, which can exceed the number of elements in edges. This lets you specify filters with any gain contour within each band. However, the frequencies in edges must also be in vector f. Always use freqz to check the resulting filter.

Note firlpnorm uses a nonlinear optimization routine that may not converge in some filter design cases. Furthermore the algorithm is not well-suited for certain large-order (order > 100) filter designs.
b = firlpnorm( \(n, f\), edges, \(a, w)\) uses the weights in \(w\) to weight the error. \(w\) has one entry per frequency point (the same length as \(f\) and a) which tells firlpnorm how much emphasis to put on minimizing the error in the vicinity of each frequency point relative to the other points. For example,
```

b = firlpnorm(20,[0 . 15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[[1 1 1 1 10 10])

```
designs a lowpass filter with a peak of 1.6 within the passband, and with emphasis placed on minimizing the error in the stopband.

\section*{firlpnorm}
b = firlpnorm( \(n, f, e d g e s, a, w, p\) ) where \(p\) is a two-element vector [pmin pmax] lets you specify the minimum and maximum values of \(p\) used in the least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax should be even numbers. The design algorithm starts optimizing the filter with pmin and moves toward an optimal filter in the pmax sense. When \(p\) is the string 'inspect', firlpnorm does not optimize the resulting filter. You might use this feature to inspect the initial zero placement.
b = firlpnorm( \(\mathrm{n}, \mathrm{f}\), edges, \(\mathrm{a}, \mathrm{w}, \mathrm{p}\), dens) specifies the grid density dens used in the optimization. The number of grid points is [dens* \((n+1)\) ]. The default is 20. You can specify dens as a single-element cell array. The grid is equally spaced.
b = firlpnorm( \(n, f\), edges, \(a, w, p\), dens, initnum) lets you determine the initial estimate of the filter numerator coefficients in vector initnum. This can prove helpful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initnum.
b = firlpnorm(...,'minphase') where string 'minphase' is the last argument in the argument list generates a minimum-phase FIR filter. By default, firlpnorm design mixed-phase filters. Specifying input option 'minphase' causes firlpnorm to use a different optimization method to design the minimum-phase filter. As a result of the different optimization used, the minimum-phase filter can yield slightly different results.
[b,err] = firlpnorm(...) returns the least-pth approximation error err.

\section*{Examples}

To demonstrate firlpnorm, here are two examples - the first designs a lowpass filter and the second a highpass, minimum-phase filter.
```

% Lowpass filter with a peak of 1.4 in the passband.
b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...
[1 1 1 2 2]);
fvtool(b)

```

From the figure you see the resulting filter is lowpass, with the desired 1.4 peak in the passband (notice the 1.4 specified in vector a).


Now for the minimum-phase filter.
\% Highpass minimum-phase filter optimized for the 4 -norm. b = firlpnorm(44,[0.4 . 45 1],[0 . 4 . 45 1],[ \(\left.0 \begin{array}{llll}0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}5 & 1 & 1 & 1\end{array}\right], \ldots\) [2 4],'minphase'); fvtool(b)

As shown in the next figure, this is a minimum-phase, highpass filter.

\section*{firlpnorm}


The next zero-pole plot shows the minimum phase nature more clearly.


See Also \(\begin{aligned} & \text { firgr, iirgrpdelay, iirlpnorm, iirlpnormc } \\ & \text { filter, fvtool, freqz, zplane in your Signal Processing Toolbox } \\ & \text { documentation }\end{aligned}\)

\section*{References}
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.
\begin{tabular}{|c|c|}
\hline Purpose & Design filter from filter specification object using least-square minimization technique \\
\hline Syntax & hd \(=\) firls(d) \\
\hline Description & \begin{tabular}{l}
hd = firls(d) designs a discrete-time FIR filter using a least-squares error minimization method. Only halfband and interpolation specifications objects with Specification of ' n , tw ' or ' pl , tw ' work as specifications objects for firls. \\
hd is either a dfilt object (a single-rate digital filter) or an mfilt object (a multirate digital filter) depending on the Specification property of the filter specification object \(d\) and the filter specification object type-halfband or interpolator.
\end{tabular} \\
\hline Examples & \begin{tabular}{l}
Here are two examples of using firls to design filters. The first example returns a single-rate halfband filter.
```

d = fdesign.halfband('n,tw',120,.04); % 120 is the filter order.
hd = firls(d);

``` \\
Now use firls to design a multirate halfband interpolator filter.
\[
\begin{aligned}
& d=\text { fdesign.interpolator(2,'pl,tw' }, 60, .04) ;(\% \text { is the polyphase } \\
& \\
& \text { \%m length. }
\end{aligned}
\]
\end{tabular} \\
\hline See Also & equiripple, kaiserwin \\
\hline
\end{tabular}

Purpose

\section*{Syntax \(\quad h=\) firminphase \((b)\) \\ h = firminphase(b,nz)}

\section*{Example}

\section*{See Also}

References

Compute minimum-phase FIR spectral factor
\(\mathrm{h}=\) firminphase \((\mathrm{b})\) computes the minimum-phase FIR spectral factor h of a linear-phase FIR filter b. Filter b must be real, have even order, and have nonnegative zero-phase response.
\(h=\) firminphase \((b, n z)\) specifies the number of zeros, \(n z, o f b\) that lie on the unit circle. You must specify \(n z\) as an even number to compute the minimum-phase spectral factor because every root on the unit circle must have even multiplicity. Including nz can help firminphase calculate the required FIR spectral factor. Zeros with multiplicity greater than two on the unit circle cause problems in the spectral factor determination.

Note You can find the maximum-phase spectral factor, g , by reversing h , such that \(g=\operatorname{liplr}(h)\), and \(b=\operatorname{conv}(h, g)\).

This example designs a constrained least squares filter with a nonnegative zero-phase response, and then uses firminphase to compute the minimum-phase spectral factor.
```

f = [0 0.4 0.8 1];
a = [0 1 0];
up = [0.02 1.02 0.01];
lo = [0 0.98 0]; % The zeros insure nonnegative zero-phase resp.
n = 32;
b = fircls(n,f,a,up,lo);
h = firminphase(b);

```
firgr
fircls, zerophase in your Signal Processing Toolbox documentation
[1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{firnyquist}

Purpose Design lowpass Nyquist (Lth-band) FIR filter

\section*{Syntax firnyquist(n,l,r,varargin)}

Description
\(b=\) firnyquist \((n, l, r)\) designs an Nth order, Lth band, Nyquist FIR filter with a roll-off factor \(r\) and an equiripple characteristic.

The rolloff factor \(r\) is related to the normalized transition width tw by \(t w=2 \pi(r / l)(\mathrm{rad} / \mathrm{sample})\). The order, n , must be even. 1 must be an integer greater than one. If 1 is not specified, it defaults to 4. \(r\) must satisfy \(0<r<1\). If \(r\) is not specified, it defaults to 0.5 .
b = firnyquist('minorder',l,r,dev) designs a minimum-order, Lth band Nyquist FIR filter with a rolloff factor \(r\) using the Kaiser window. The peak ripple is constrained by the scalar dev.
b = firnyquist( \(n, 1, r\), decay) designs an Nth order, Lth band, Nyquist FIR filter where the scalar decay, specifies the rate of decay in the stopband. decay must be nonnegative. If omitted or left empty, decay defaults to 0 which yields an equiripple stopband. A nonequiripple stopband may be desirable for decimation purposes.
b = firnyquist( \(\mathrm{n}, \mathrm{l}, \mathrm{r}\), 'nonnegative') returns an FIR filter with nonnegative zero-phase response. This filter can be spectrally factored into minimum-phase and maximum-phase "square-root" filters. This allows using the spectral factors in applications such as matched-filtering.
b = firnyquist( \(n, l, r\), 'minphase') returns the minimum-phase spectral factor bmin of order \(n\). bmin meets the condition \(b=c o n v(b m i n, b m a x)\) so that \(b\) is an Lth band FIR Nyquist filter of order 2 n with rolloff factor r . Obtain bmax, the maximum phase spectral factor by reversing the coefficients of bmin. For example, bmax = bmin(end:-1:1).

Example Example 1: This example designs a minimum phase factor of a Nyquist filter.
```

bmin = firnyquist(47,10,.45,'minphase');
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

```

Example 2: This example compares filters with different decay rates.
```

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,.5);
b3 = firnyquist(72,8,.3,1);
fvtool(b1,1,b2,1,b3,1);

```

\section*{See Also}

References
firhalfband, firgr, firls, firminphase
firrcos, firls in your Signal Processing Toolbox documentation
[1] T. Saramaki, Finite Impulse Response Filter Design, Handbook for Digital Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 1993, Chapter 4.

\section*{firpr2chfb}

Purpose Design two-channel FIR filter bank for perfect reconstruction
```

Syntax
[h0,h1,g0,g1] = firpr2chfb(n,fp)
[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev')
[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev)

```

Description \(\quad[h 0, h 1, g 0, g 1]=\operatorname{firpr2chfb}(n, f p)\) designs four FIR filters for the analysis sections (h0 and h1) and synthesis section is (g0 and g1) of a two-channel perfect reconstruction filter bank. The design corresponds to the orthogonal filter banks also known as power-symmetric filter banks.
\(n\) is the order of all four filters. It must be an odd integer. fp is the passband-edge for the lowpass filters h0 and g0. The passband-edge argument fp must be less than 0.5 . h1 and g1 are highpass filters with the passband-edge given by (1-fp).
[h0,h1,g0,g1] = firpr2chfb(n, dev, 'dev') designs the four filters such that the maximum stopband ripple of h0 is given by the scalar dev. The stopband-ripple of h 1 is also be given by dev, while the maximum stopband-ripple for both g 0 and g 1 is \(\left(2^{*} \mathrm{dev}\right)\).
[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev) designs the four filters such that ho meets the passband-edge specification fp and the stopband-ripple dev using minimum order filters to meet the specification.

\section*{Algorithm For perfect reconstruction, filters that compose the filter bank must fulfill} these conditions.

\section*{Examples}

Design a filter bank with filters of order \(n\) equal to 99 and passband edges of 0.45 and 0.55 .
```

n = 99;
[h0,h1,g0,g1] = firpr2chfb(n,.45);
fvtool(h0,1,h1,1,g0,1,g1,1);

```

Here are the filters, showing clearly the passband edges.


Use the following stem plots to verify perfect reconstruction using the filter bank created by firpr2chfb.
```

stem(1/2*conv(g0,h0)+1/2*conv(g1,h1))
n=0:n;
stem(1/2*conv((-1).^n.*h0,g0)+1/2**conv((-1).^n.*h1,g1))
stem(1/2*conv((-1).^n.*g0,h0)+1/2*conv((-1).^n.*g1,h1))
stem(1/2*conv((-1).^n.*g0,(-1).^n.*h0)+1/2*conv((-1).^n.*g1, ...
(-1).^n.*h1))
stem(conv((-1).^n.*h1,h0)-conv((-1).^n.*h0,h1))

```

\section*{See Also}
firceqrip, firgr, firhalfband, firnyquist

\section*{firtype}

Purpose Determine type of linear phase FIR filter
Syntax
t = firtype(hd)
t = firtype(hm)

Description The next sections describe common firtype operation with discrete-time and multirate filters.

\section*{Discrete-Time Filters}
\(t\) = firtype(hd) determines the type (1 through 4) of a discrete-time FIR filter object hd, returning the type number in \(t\). Filter hd must be both real and have linear phase.

Filter types 1 through 4 are defined as follows:
- Type 1 -even order symmetric coefficients
- Type 2-odd order symmetric coefficients
- Type 3—even order antisymmetric coefficients
- Type 4—odd order antisymmetric coefficients

When hd is a cascade or parallel filter and therefore has multiple stages, each stage must be a real FIR filter with linear phase. In this case, \(t\) is a cell array containing the filter type of each stage.

\section*{Multirate Filters}
\(\mathrm{t}=\) firtype (hm) determines the type (1 through 4) of the multirate filter object hm . The filter must be real and have linear phase.

Filter types 1 through 4 are defined as follows:
- Type 1 -even order symmetric coefficients
- Type 2-odd order symmetric coefficients
- Type 3-even order antisymmetric coefficients
- Type 4—odd order antisymmetric coefficients

When hm has multiple sections, all sections must be real FIR filters with linear phase. In this case, \(t\) is a cell array containing the filter type of each section.

Examples
Determine the type of the default interpolator for \(\mathrm{L}=4\).
```

l = 4;
hm = mfilt.firinterp(l);
firtype(hm)
ans =

```
    1

See Also islinphase

\section*{freqsamp}
\begin{tabular}{|c|c|}
\hline Purpose & Design real or complex frequency-sampled FIR filters from filter specification objects \\
\hline Syntax & ```
hd = design(d,'freqsamp')
hd = design(...,'filterstructure',structure)
hd = design(...,'window',window)
``` \\
\hline \multirow[t]{8}{*}{Description} & \begin{tabular}{l}
hd = design(d,'freqsamp') designs a frequency-sampled filter specified by the fspecifications objecth. \\
hd \(=\) design(...,'filterstructure', structure) returns a filter with the filter structure you specify by the structure input argument. structure is dffir by default and can be any one of the following filter structures.
\end{tabular} \\
\hline & Structure String Description of Resulting Filter Structure \\
\hline & dffir Direct-form FIR filter \\
\hline & dffirt Transposed direct-form FIR filter \\
\hline & dfsymfir Symmetrical direct-form FIR filter \\
\hline & dfasymfir Asymmetrical direct-form FIR filter \\
\hline & fftfir Fast Fourier transform FIR filter \\
\hline & \begin{tabular}{l}
hd \(=\) design(..., 'window', window) designs filters using the window specified by the string in window. Provide the input argument window as \\
- A string for the window type. For example, use bartlett or chebwin, or hamming. Click window for the full list of windows available or refer to window in the Signal Processing Toolbox User's Guide. \\
- A function handle that references the window function. When the window function requires more than one input, use a cell array to hold the required arguments. The final example below shows a cell array input argument. \\
- The window vector itself.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

These examples design FIR filters that have arbitrary magnitude responses. In the first filter, the response has three distinct sections and the resulting filter is real.

The second example creates a complex filter.
```

b1 = 0:0.01:0.18;b2 = [.2 . 38 .4 .55 .562 .585 .6
.78];b3 = [0.79:0.01:1];
a1 = .5+sin(2*pi*7.5*b1)/4; % Sinusoidal response section.
a2 = [.5 2.3 1 1 -. 2 -. 2 1 1]; % Piecewise linear response section.
a3 = .2+18*(1-b3).^2; % Quadratic response section.
f = [b1 b2 b3];
a = [a1 a2 a3];
n = 300;
d = fdesign.arbmag('n,f,a',n,f,a); % First specifications object.
hd = design(d,'freqsamp','window',{@kaiser,.5}); % Filter.
fvtool(hd)

```

The plot from FVTool shows the response for hd.

Now design the arbitrary-magnitude complex FIR filter. Recall that vector f contains frequency locations and vector a contains the desired filter response values at the locations specified in \(f\).
```

f = [-1 -. . %3443-. .86885-. . 0328-. 7377-.67213-.60656-. .54098 ...
-.47541,-.40984-.34426 -. 27869 -. 21311 -. 14754 -. 081967 ...
-.016393 . 04918 .11475,.18033 . 2459 . 31148 . 37705 . 44262 ...
.5082 .57377 .63934 .70492 .77049,.83607 .90164 1];
a = [.0095848 .021972 .047249 .099869 . 23119 .57569 .94032 ...
.98084 . 99707,.99565 .9958 .99899 . 99402 . 99978 . 99995 . 99733 ...
.99731 . 96979 . 94936,.8196 . 28502 . 065469 .0044517 . 018164 ...
.023305 .02397 .023141 .021341,.019364 .017379 .016061];
n = 48;
d = fdesign.arbmag('n,f,a',n,f,a); % Second spec. object.

```
```

hdc = design(d,'freqsamp','window','rectwin'); % Filter.
fvtool(hdc)

```

FVTool shows you the response for hdc from -1 to 1 in normalized frequency. design (d, ...) returns a complex filter for hdc because the frequency vector includes negative frequency values.

See Also
design, designmethods, fdesign.arbmag, help
window in the Signal Processing Toolbox documentation

\section*{freqz}
```

Purpose Compute frequency response of discrete-time filters, adaptive filters, or multirate filters

```
Syntax
```

$[h, w]=$ freqz(ha)

```
\([h, w]=\) freqz(ha)
[h,w] = freqz(ha,n)
[h,w] = freqz(ha,n)
freqz(ha)
freqz(ha)
[h,w] = freqz(hd)
[h,w] = freqz(hd)
[h,w] = freqz(hd,n)
[h,w] = freqz(hd,n)
freqz(hd)
freqz(hd)
[h,w] = freqz(hm)
[h,w] = freqz(hm)
[h,w] = freqz(hm,n)
[h,w] = freqz(hm,n)
freqz(hm)
freqz(hm)
Description The next sections describe common freqz operation with adaptive, discrete-time, and multirate filters. For more input options, refer to freqz in the Signal Processing Toolbox.
```


## Adaptive Filters

For adaptive filters, freqz returns the instantaneous frequency response based on the current filter coefficients.
[h,w] = freqz(ha) returns the frequency response vector $h$ and the corresponding frequency vector $w$ for the adaptive filter ha. When ha is a vector of adaptive filters, freqz returns the matrix $h$. Each column of $h$ corresponds to one filter in the vector ha.
[ $h, w]=$ freqz(ha, $n$ ) returns the frequency response vector $h$ and the corresponding frequency vector $w$ for the adaptive filter ha. freqz uses the transfer function associated with the adaptive filter to calculate the frequency response of the filter with the current coefficient values. The vectors $h$ and $w$ are both of length $n$. The frequency vector $w$ has values ranging from 0 to $\pi$ radians per sample. If you do not specify the integer $n$, or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
freqz (ha) uses FVTool to plot the magnitude and unwrapped phase of the frequency response of the adaptive filter ha. If ha is a vector of filters, freqz plots the magnitude response and phase for each filter in the vector.

## Discrete-Time Filters

[ $\mathrm{h}, \mathrm{w}$ ] = freqz(hd) returns the frequency response vector $h$ and the corresponding frequency vector w for the discrete-time filter hd. When hd is a vector of discrete-time filters, freqz returns the matrix h. Each column of $h$ corresponds to one filter in the vector hd.
$[h, w]=f r e q z(h d, n)$ returns the frequency response vector $h$ and the corresponding frequency vector $w$ for the discrete-time filter hd. freqz uses the transfer function associated with the discrete-time filter to calculate the frequency response of the filter with the current coefficient values. The vectors $h$ and $w$ are both of length $n$. The frequency vector $w$ has values ranging from 0 to $\pi$ radians per sample. If you do not specify the integer $n$, or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
freqz (hd) uses FVTool to plot the magnitude and unwrapped phase of the frequency response of the adaptive filter hd. If hd is a vector of filters, freqz plots the magnitude response and phase for each filter in the vector.

## Multirate Filters

$[\mathrm{h}, \mathrm{w}]=\mathrm{freqz}(\mathrm{hm})$ returns the frequency response vector h and the corresponding frequency vector $w$ for the multirate filter hd. When hd is a vector of multirate filters, freqz returns the matrix $h$. Each column of $h$ corresponds to one filter in the vector hd.
[h,w] = freqz(hd, n) returns the frequency response vector $h$ and the corresponding frequency vector $w$ for the multirate filter hd. freqz uses the transfer function associated with the multirate filter to calculate the frequency response of the filter with the current coefficient values. The vectors $h$ and $w$ are both of length $n$. The frequency vector $w$ has values ranging from 0 to $\pi$ radians per sample. If you do not specify the integer $n$, or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
freqz (hd) uses FVTool to plot the magnitude and unwrapped phase of the frequency response of the adaptive filter hd. If hd is a vector of filters, freqz plots the magnitude response and phase for each filter in the vector.

Remarks	There are several ways of analyzing the frequency response of filters. freqz   accounts for quantization effects in the filter coefficients, but does not account   for quantization effects in filtering arithmetic. To account for the quantization   effects in filtering arithmetic, refer to function noisepsd.
Algorithm	
freqz calculates the frequency response for a filter from the filter transfer	
function $H q(z)$. The complex-valued frequency response is calculated by	
evaluating $H q\left(e^{j \omega}\right)$ at discrete values of $w$ specified by the syntax you use. The	
integer input argument $n$ determines the number of equally-spaced points	
around the upper half of the unit circle at which freqz evaluates the frequency	
response. The frequency ranges from 0 to $\pi$ radians per sample when you do not	
supply a sampling frequency as an input argument. When you supply the	
scalar sampling frequency fs as an input argument to freqz, the frequency	
ranges from 0 to fs $/ 2$ Hz.	



If you have more than one filter, you can plot them on the same figure using a vector of filters.

```
b = fir1(40,0.5,kaiser(41,6));
hd2 = dfilt.dffir(b);
h = [hd hd2];
freqz(h);
```


## freqz



See Also
adaptfilt, dfilt, mfilt
fvtool in your Signal Processing Toolbox documentation

Purpose

## Syntax <br> Description

## Examples

Gain of cascaded integrator-comb (CIC) filter

## gain(hm)

gain(hm,j)
gain ( hm ) returns the gain of hm , the CIC decimation or interpolation filter.
When hm is a decimator, gain returns the gain for the overall CIC decimator.
When hm is an interpolator, the CIC interpolator inserts zeros into the input data stream, reducing the filter overall gain by $1 / R$, where $R$ is the interpolation factor, to account for the added zero valued samples. Therefore, the gain of a CIC interpolator is $(R M)^{N} / R$, where $N$ is the number of filter sections and $M$ is the filter differential delay. gain(hm) returns this value. The example below presents this case.
gain (hm, j) returns the gain of the $j$ th section of a CIC interpolation filter. When you omit $j$, gain assumes that $j$ is $2^{*} \mathrm{~N}$, where N is the number of sections, and returns the gain of the last section of the filter. This syntax does not apply when hm is a decimator.

To compare the performance of two interpolators, one a CIC filter and the other an FIR filter, use gain to adjust the CIC filter output amplitude to match the FIR filter output amplitude. Start by creating an input data set-a sinusoidal signal $x$.

```
```

fs = 1000; % Input sampling frequency.

```
```

fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
l = 4; % Interpolation factor for FIR filter.
l = 4; % Interpolation factor for FIR filter.
d = fdesign.interpolator(l);
d = fdesign.interpolator(l);
hm = design(d,'multistage');
hm = design(d,'multistage');
ym = filter(hm,x);
ym = filter(hm,x);
r = 4; % Interpolation factor for the CIC filter.
r = 4; % Interpolation factor for the CIC filter.
d = fdesign.interpolator(r,'cic');
d = fdesign.interpolator(r,'cic');
hcic = design(d,'multisection');
hcic = design(d,'multisection');
ycic = filter(hcic,x);
ycic = filter(hcic,x);
gaincic = gain(hcic);

```
```

gaincic = gain(hcic);

```
```

```
subplot(211);
plot(1:length(ym),[ym; double(ycic)]);
subplot(212)
plot(1:length(ym),[ym; double(ycic)/gain(hcic)]);
```

After correcting for the gain induced by the CIC interpolator, the figure below shows the filters provide nearly identical interpolation.



## See Also

filtmsb

Purpose
Group delay of adaptive, discrete-time, and multirate filters

Syntax<br>\section*{Description}

```
[gd,w] = grpdelay(ha)
[gd,w] = grpdelay(ha,n)
[gd,w] = grpdelay(...,f)
grpdelay(ha)
[gd,w] = grpdelay(hd)
[gd,w] = grpdelay(hd,n)
[gd,w] = grpdelay(...,f)
grpdelay(hd)
[gd,w] = grpdelay(hm)
[gd,w] = grpdelay(hm,n)
[gd,w] = grpdelay(...,f)
grpdelay(hm)
```

The next sections describe common grpdelay operation with adaptive, discrete-time, and multirate filters. For more input options, refer to grpdelay in the Signal Processing Toolbox.

## Adaptive Filters

For adaptive filters, grpdelay returns the instantaneous group delay based on the current filter coefficients.
[gd,w] = grpdelay(ha) returns the group delay vector gd and the corresponding frequency vector w for the adaptive filter ha. When ha is a vector of adaptive filters, grpdelay returns the matrix gd. Each column of gd corresponds to one filter in the vector ha. If you provide a row vector of frequency points $f$ as an input argument, each row of gd corresponds to one filter in the vector.

Function grpdelay uses the transfer function associated with the adaptive filter to calculate the group delay of the filter with the current coefficient values. The vectors gd and w are both of length $n$. The frequency vector $w$ has values ranging from 0 to $\pi$ radians per sample. If you do not specify the integer n , or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.

## grpdelay

[gd,w] = grpdelay ( $\mathrm{h}, \mathrm{n}$ ) returns length n vectors vector gd containing the current group delay for the adaptive filter ha and the vector $w$ which contains the frequencies in radians at which grpdelay calculated the delay. Group delay is

$$
-\frac{d}{d w}(\operatorname{angle}(w))
$$

The frequency response is evaluated at n points equally spaced around the upper half of the unit circle. For FIR filters where $n$ is a power of two, the computation is done faster using FFTs. When you do not specify n , it defaults to 8192 .
grpdelay (ha) uses FVTool to plot the group delay of the adaptive filter ha. If ha is a vector of filters, grpdelay plots the magnitude response and phase for each filter in the vector.

## Discrete-Time Filters

[gd,w] = grpdelay(hd) returns the group delay vector gd and the corresponding frequency vector w for the discrete-time filter hd. When hd is a vector of discrete-time filters, grpdelay returns the matrix gd. Each column of gd corresponds to one filter in the vector hd. If you provide a row vector of frequency points $f$ as an input argument, each row of gd corresponds to each filter in the vector.

Function grpdelay uses the transfer function associated with the discrete-time filter to calculate the group delay of the filter. The vectors gd and $w$ are both of length $n$. The frequency vector $w$ has values ranging from 0 to $\pi$ radians per sample. If you do not specify the integer $n$, or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
[gd,w] = grpdelay(hd, $n$ ) returns length $n$ vectors vector gd containing the current group delay for the discrete-time filter hd and the vector w which contains the frequencies in radians at which grpdelay calculated the delay. Group delay is

$$
-\frac{d}{d w}(\operatorname{angle}(w))
$$

The frequency response is evaluated at n points equally spaced around the upper half of the unit circle. For FIR filters where $n$ is a power of two, the computation is done faster using FFTs. When you do not specify n, it defaults to 8192 .
grpdelay (hd) uses FVTool to plot the group delay of the discrete-time filter hd. If hd is a vector of filters, grpdelay plots the magnitude response and phase for each filter in the vector.

## Multirate Filters

[gd,w] = grpdelay(hm) returns the group delay vector gd and the corresponding frequency vector $w$ for the multirate filter hm . When hm is a vector of multirate filters, grpdelay returns the matrix gd. Each column of gd corresponds to one filter in the vector hm . If you provide a row vector of frequency points $f$ as an input argument, each row of gd corresponds to one filter in the vector.

Function grpdelay uses the transfer function associated with the multirate filter to calculate the group delay of the filter. The vectors gd and $w$ are both of length $n$. The frequency vector $w$ has values ranging from 0 to $\pi$ radians per sample. If you do not specify the integer $n$, or you specify it as the empty vector [ ], the frequency response is calculated using the default value of 8192 samples for the FFT.
[gd,w] = grpdelay(hm,n) returns length $n$ vectors vector gd containing the group delay for the multirate filter hm and the vector w which contains the frequencies in radians at which grpdelay calculated the delay. Group delay is

$$
-\frac{d}{d w}(\operatorname{angle}(w))
$$

The frequency response is evaluated at n points equally spaced around the upper half of the unit circle. For FIR filters where $n$ is a power of two, the computation is done faster using FFTs. When you do not specify $n$, it defaults to 8192 .
grpdelay (hm) uses FVTool to plot the magnitude and unwrapped phase of the group delay of the multirate filter hm . If ha is a vector of filters, grpdelay plots the group delay for each filter in the vector.

## See Also

phasez, zerophase

## Purpose

## Syntax <br> help(d,'designmethod')

Description

## Examples

Help text for design method with filter specification object
help(d,'designmethod') displays help in the Command Window for the design algorithm designmethod for the current specifications of the filter specification object d. The string you enter for designmethod must be one of the strings returned by designmethods for d , the design object.

Get specific help for designing lowpass Butterworth filters. The first lowpass filter uses the default specification string 'Fp, Fst, Ap,Ast' and returns help text specific to the specification string.

```
d = fdesign.lowpass;
designmethods(d)
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage
help(d,'butter')
DESIGN Design a Butterworth IIR filter.
HD = DESIGN(D, 'butter') designs a Butterworth filter specified
by the FDESIGN object D.
HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter
with the structure STRUCTURE. STRUCTURE is 'df2sos' by default
and can be any of the following.
'df1sos'
'df2sos'
```

```
'df1tsos'
'df2tsos'
HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth
filter and matches the frequency and magnitude specification for
the band MATCH exactly. The other band will exceed the
specification. MATCH can be 'stopband' or 'passband' and is
'stopband' by default.
% Example #1 - Compare passband and stopband MatchExactly.
h = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
Hd = design(h, 'butter', 'MatchExactly', 'passband');
Hd(2) = design(h, 'butter', 'MatchExactly', 'stopband');
% Compare the passband edges in FVTool.
fvtool(Hd);
axis([.09 .11 -2 0]);
```

Note the discussion of the MatchExactly input option. When you use a design object that uses a different specification string, such as ' $\mathrm{N}, \mathrm{F}_{\mathrm{dB}}$ ', the help content for the butter design method changes.

In this case, the MatchExactly option does not appear in the help because it is not an available input argument for the specification string ${ }^{\prime} \mathrm{N}, \mathrm{F} 3 \mathrm{~dB}$ '.

```
d=fdesign.lowpass('N,F3dB')
d =
 Response: 'Lowpass'
 Specification: 'N,F3dB'
 Description: {'Filter Order';'3dB Frequency'}
 NormalizedFrequency: true
 FilterOrder: 10
 F3dB: 0.5
designmethods(d)
Design Methods for class fdesign.lowpass (N,F3dB):
```

```
 butter
 help(d,'butter')
DESIGN Design a Butterworth IIR filter.
HD = DESIGN(D, 'butter') designs a Butterworth filter specified by
the FDESIGN object D.
HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with
the structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be
any of the following.
 'df1sos'
 'df2sos'
 'df1tsos'
 'df2tsos'
% Example #1 - Design a lowpass Butterworth filter in the DF2TSOS
structure.
h = fdesign.lowpass('N,F3dB');
Hd = design(h, 'butter', 'FilterStructure', 'df2tsos');
See Also fdesign, design, designmethods, designopts
```


## Purpose Use interpolated FIR method to design FIR filter from filter specification object

```
Syntax hd = ifir(d)
hd = design(d,'ifir',designoption,value,designoption,value,...)
```

Description
hd = ifir(d) designs an FIR filter from design object d, using the interpolated FIR method. ifir returns hd as a cascade of two filters that act together to meet the specifications in d . The resulting filter is particulary efficient, having a low number of multipliers. However, if ifir determines that a single-stage filter would be more efficient than the default two-stage design, it returns hd as a single-stage filter. In this syntax, ifir only creates minimum phase filters. Generally, ifir uses an advanced optimization algorithm to create highly efficient FIR filters.
ifir returns hd as either a single-rate dfilt object or a multirate mfilt object (when you have the Filter Design Toolbox installed), based on the specifications you provide in d, the filter specification object.
specifications supplied in the object $h$.
hd = design(d,'ifir',designoption, value, designoption,... value, . . .) returns an interpolated FIR filter where you specify design options as input arguments.

To determine the available design options, use designopts with the specification object and the design method as input arguments as shown.

```
designopts(d,'method')
```

For complete help about using ifir, refer to the command line help system. For example, to get specific information about using ifir with $d$, the specification object, enter the following at the MATLAB prompt.

```
help(d,'ifir')
```

Note For help about how you use ifir to design filters without using design objects, enter
help ifir
at the MATLAB prompt.

## Examples

Use fdesign. lowpass and fdesign.highpass to design a lowpass filter and a wideband highpass filter. After designing the filters, use FVTool to plot the response curves for both.

```
fpass = 0.2;
fstop = 0.24;
d1 = fdesign.lowpass(fpass, fstop);
hd1 = design(d1,'ifir');
fstop = 0.2;
fpass = 0.25;
astop = 40;
apass = 1;
d2 = fdesign.highpass(fstop,fpass,astop,apass);
hd2 = design(d2,'ifir');
```

Here are the magnitude response curves for both filters.

```
fvtool(hd1,hd2)
```



See Also
fdesign, firgr
fir1, firls, firpm in your Signal Processing Toolbox documentation

## Purpose

Syntax
Description

## Examples

Transform IIR complex bandpass filter to IIR complex bandpass filter with different frequency response characteristics

```
[Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)
```

[Num, Den, AllpassNum, AllpassDen] = iirbpc2bpc(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the complex bandpass prototype by applying a first-order complex bandpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with the numerator specified by B and the denominator specified by A.

This transformation effectively places two features of an original filter, located at frequencies $W_{01}$ and $W_{02}$, at the required target frequency locations, $W_{t 1}$, and $W_{t 2}$ respectively. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$. In most of the cases the features selected for the transformation are the band edges of the filter passbands. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.
Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

This transformation can also be used for transforming other types of filters; e.g., complex notch filters or resonators can be repositioned at two distinct desired frequencies at any place around the unit circle; e.g., in the adaptive system.

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

Create a complex passband from 0.25 to 0.75 :

```
[b, a] = iirlp2bpc (b, a, 0.5, [0.25,0.75]);
[num, den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.5]);
```

Verify the result by comparing the prototype filter with the target filter:

## iirbpc2bpc

fvtool(b, a, num, den);
Using FVTool to plot the filters shows you the comparison, presented in this figure.


## Arguments

## B

Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.

See Also
iirftransf, allpassbpc2bpc, zpkbpc2bpc

## iircomb

Purpose Design IIR comb notching or peaking digital filter

```
Syntax [num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb(, 'type')
```

Description [num, den] = iircomb( $\mathrm{n}, \mathrm{bw}$ ) returns a digital notching filter with order n and with the width of the filter notch at -3 dB set to bw , the filter bandwidth. The filter order must be a positive integer. $n$ also defines the number of notches in the filter across the frequency range from 0 to $2 \pi$-the number of notches equals $\mathrm{n}+1$.

For the notching filter, the transfer function takes the form

$$
H(z)=b \times \frac{1-z^{-n}}{1-a z^{-n}}
$$

where $a$ and $b$ are the filter coefficients and $n$ is the filter order or the number of notches in the filter minus 1.

The quality factor ( Q factor) q for the filter is related to the filter bandwidth by $q=\omega_{0} / b w$ where $\omega_{0}$ is the frequency to remove from the signal.
[num, den] = iircomb( $\mathrm{n}, \mathrm{bw}, \mathrm{ab}$ ) returns a digital notching filter whose bandwidth, bw, is specified at a level of -ab decibels. Including the optional input argument ab lets you specify the magnitude response bandwidth at a level that is not the default -3 dB point, such as -6 dB or 0 dB .
[num, den] = iircomb( ,'type') returns a digital filter of the specified type. The input argument type can be either

- 'notch' to design an IIR notch filter. Notch filters attenuate the response at the specified frequencies. This is the default type. When you omit the type input argument, iircomb returns a notch filter.
- 'peak' to design an IIR peaking filter. Peaking filters boost the signal at the specified frequencies.

The transfer function for peaking filters is

$$
H(z)=b \times \frac{1+z^{-n}}{1-a z^{-n}}
$$

Design and plot an IIR notch filter with 11 notches (equal to filter order plus 1) that removes a 60 Hz tone (f0) from a signal at 600 Hz (fs). For this example, set the Q factor for the filter to 35 and use it to specify the filter bandwidth.

```
fs = 600; fo = 60; q = 35; bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note the type flag 'notch'
fvtool(b,a);
```

Using the Filter Visualization Tool (FVTool) generates the following plot showing the filter notches. Note the notches are evenly spaced and one falls at exactly 60 Hz .

## iircomb



## See Also

firgr, iirnotch, iirpeak

Purpose

## Syntax

Description

## Examples

IIR frequency transformation of digital filter
[OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)
[OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen) returns the numerator and denominator vectors, OutNum and OutDen, of the target filter, which is the result of transforming the prototype filter specified by the numerator, OrigNum, and denominator, OrigDen, with the mapping filter given by the numerator, FTFNum, and the denominator, FTFDen. If the allpass mapping filter is not specified, then the function returns an original filter.

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);
```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
Here's the comparison between the filters.

## iirftransf



## Arguments

OrigNum
Numerator of the prototype lowpass filter
OrigDen
Denominator of the prototype lowpass filter
FTFNum
Numerator of the mapping filter
FTFDen
Denominator of the mapping filter
OutNum
Numerator of the target filter
OutDen
Denominator of the target filter
See Also zpkftransf

## iirgrpdelay

Purpose
Optimal IIR filter design with prescribed group-delay
Syntax

```
[num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)
```


## Description

[num, den] = iirgrpdelay( $n, f$, edges, $a$ ) returns an allpass IIR filter of order $n$ ( $n$ must be even) which is the best approximation to the relative group-delay response described by $f$ and a in the least-pth sense. $f$ is a vector of frequencies between 0 and 1 and a is specified in samples. The vector edges specifies the band-edge frequencies for multi-band designs. iirgrpdelay uses a constrained Newton-type algorithm. Always check your resulting filter using grpdelay or freqz.
[num, den] = iirgrpdelay( $n, f$, edges, $a, w)$ uses the weights in $w$ to weight the error. $w$ has one entry per frequency point and must be the same length length as $f$ and a). Entries in w tell iirgrpdelay how much emphasis to put on minimizing the error in the vicinity of each specified frequency point relative to the other points.
$f$ and a must have the same number of elements. $f$ and a can contains more elements than the vector edges contains. This lets you use $f$ and a to specify a filter that has any group-delay contour within each band.
[num, den] = iirgrpdelay(n,f,edges, a, w, radius) returns a filter having a maximum pole radius equal to radius, where $0<$ radius $<1$. radius defaults to 0.999999 . Filters whose pole radius you constrain to be less than 1.0 can better retain transfer function accuracy after quantization.
[num,den] = iirgrpdelay( $n, f$, edges,a,w,radius, $p$ ), where $p$ is a two-element vector [pmin pmax], lets you determine the minimum and maximum values of $p$ used in the least-pth algorithm. p defaults to [2 128] which yields filters very similar to the L-infinity, or Chebyshev, norm. pmin and
pmax should be even. If $p$ is the string 'inspect', no optimization occurs. You might use this feature to inspect the initial pole/zero placement.
[num,den] = iirgrpdelay(n,f,edges,a,w,radius, p,dens) specifies the grid density dens used in the optimization process. The number of grid points is (dens* $(n+1)$ ). The default is 20 . dens can be specified as a single-element cell array. The grid is not equally spaced.
[num,den] = iirgrpdelay(n,f,edges,a,w,radius, p,dens,initden) allows you to specify the initial estimate of the denominator coefficients in vector initden. This can be useful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initden.
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau) allows the initial estimate of the group delay offset to be specified by the value of tau, in samples.
[num,den,tau] = iirgrpdelay(n,f,edges,a,w) returns the resulting group delay offset. In all cases, the resulting filter has a group delay that approximates [a + tau]. Allpass filters can have only positive group delay and a non-zero value of tau accounts for any additional group delay that is needed to meet the shape of the contour specified by ( $f, a$ ). The default for tau is $\max (a)$.

Hint: If the zeros or poles cluster together, your filter order may be too low or the pole radius may be too small (overly constrained). Try increasing n or radius.

For group-delay equalization of an IIR filter, compute a by subtracting the filter's group delay from its maximum group delay. For example,

```
[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2); % Equalize only the passband.
a = max(g)-g;
[num,den]=iirgrpdelay(8, f, [0 0.2], a);
```

See Also
References
freqz, filter, grpdelay, iirlpnorm, iirlpnormc, zplane
Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc. 1993.

## iirlp2bp

## Purpose

Transform IIR real lowpass filter to IIR real bandpass filter frequency response

## Syntax

Description
[Num, Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt), where Hd is a dfilt object
[Num, Den, AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a second-order real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $W_{t 1}$, and the second feature, originally at $+W_{0}$, at the new location, $w_{t 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$. This transformation implements the "DC Mobility," meaning that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of $\mathrm{W}_{\mathrm{t}}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature: the stopband edge, the DC, the deep minimum in the stopband, or other ones.
Real lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies.
[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt) returns transformed dfilt object $G$ with a real bandpass magnitude response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

Create the real bandpass filter by placing the cutoff frequencies of the prototype filter at the band edge frequencies $W_{t 1}=0.25$ and $W_{t 2}=0.75$ :

```
[num,den] = iirlp2bp(b,a,0.5,[0.25,0.75]);
```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
You can compare the results in this figure to verify the transformation.


## Arguments

B
Numerator of the prototype lowpass filter

## iirlp2bp

## A

Denominator of the prototype lowpass filter

## Wo

Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

## See Also

References
iirftransf, allpasslp2bp, zpklp2bp
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

## Purpose

IIR lowpass to complex bandpass frequency transformation frequency response

## Syntax

Description
[Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object
[Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $W_{t 1}$, and the second feature, originally at $+W_{0}$, at the new location, $W_{t 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; for example real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandpass filters for radio receivers from the high-quality prototype lowpass filter.
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt) returns transformed dfilt object $G$ with a bandpass magnitude response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping

## iirlp2bpc

the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

Move the cutoffs of the prototype filter to the new locations $\mathrm{W}_{\mathrm{t} 1}=0.25$ and $W_{\mathrm{t} 2}=0.75$ creating a complex bandpass filter:
[num, den] = iirlp2bpc(b, a, 0.5, [0.25, 0.75]);
Verify the result by comparing the prototype filter with the target filter: fvtool(b, a, num, den);

PLotting the prototype and target filters together in FVTool lets you compare the filters.


## Arguments

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

## iirlp2bpc

## Num

Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirftransf, allpasslp2bpc, zpklp2bpc

## Purpose

Transform IIR real lowpass filter to IIR real bandstop filter frequency response

## Syntax

Description

Examples
Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

## iirlp2bs

Create the real bandstop filter by placing the cutoff frequencies of the prototype filter at the band edge frequencies $W_{t 1}=0.25$ and $W_{t 2}=0.75$ :

```
[num, den] = iirlp2bs(b, a, 0.5, [0.25, 0.75]);
```

Verify the result by comparing the prototype filter with the target filter: fvtool(b, a, num, den);


With both filters plotted in the figure, you see clearly the results of the transformation.

Arguments
B
Numerator of the prototype lowpass filter

## A

Denominator of the prototype lowpass filter

## Wo

Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

## See Also

iirftransf, allpasslp2bs, zpklp2bs
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

## iirlp2bsc

Purpose	Transform IIR real lowpass filter to IIR complex bandstop filter frequency response
Syntax	[Num, Den, AllpassNum,AllpassDen] = iirlp2bsc ( $\mathrm{B}, \mathrm{A}, \mathrm{Wo}$, Wt )
	[ G, AllpassNum, AllpassDen] $=\operatorname{iirlp2bsc}(\mathrm{Hd}, \mathrm{Wo}, \mathrm{Wt})$, where Hd is a dfilt object
Description	[Num, Den, AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and the denominator specified by A .
This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $W_{t 1}$, and the second feature, originally at $+\mathrm{w}_{0}$, at the new location, $\mathrm{w}_{\mathrm{t} 2}$. It is assumed that $\mathrm{w}_{\mathrm{t} 2}$ is greater than $\mathrm{W}_{\mathrm{t} 1}$. Additionally the transformation swaps passbands with stopbands in the target filter.
Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandstop filters for band attenuation or frequency equalizers, from the high-quality prototype lowpass filter.
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt) returns transformed dfilt object $G$ with a bandstop magnitude response. The coefficients

AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

Move the cutoffs of the prototype filter to the new locations $W_{t 1}=0.25$ and $W_{t 2}=0.75$ creating a complex bandstop filter:

```
[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);
```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
The last command in the example plots both filters in the same window so you can compare the results.

## iirlp2bsc



## Arguments

## B

Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also iirftransf, allpasslp2bsc, zpklp2bsc.

## iirlp2hp

## Purpose

Transform discrete time lowpass IIR filter to highpass filter

Syntax

Description
[num,den] = iirlp2hp(b,a,wc,wd)
[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt), where Hd is a dfilt object
[num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the numerator and denominator coefficients (zeros and poles) for a lowpass IIR filter, iirlp2bp transforms the magnitude response from lowpass to highpass. num and den return the coefficients for the transformed highpass filter. For wc, enter a selected frequency from your lowpass filter. You use the chosen frequency to define the magnitude response value you want in the highpass filter. Enter one frequency for the highpass filter - the value that defines the location of the transformed point - in wd. Note that all frequencies are normalized between zero and one. Notice also that the filter order does not change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the magnitude response at the wd values of your bandstop filter to be the same as the magnitude response of your lowpass filter at wc. Filter performance between the values in wd is not specified, except that the stopband retains the ripple nature of your original lowpass filter and the magnitude response in the stopband is equal to the peak response of your lowpass filter. To accurately specify the filter magnitude response across the stopband of your bandpass filter, use a frequency value from within the stopband of your lowpass filter as wc. Then your bandstop filter response is the same magnitude and ripple as your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what makes this function useful. If you have a lowpass filter whose characteristics, such as rolloff or passband ripple, particularly meet your needs, the transformation function lets you create a new filter with the same characteristic performance features, but in a highpass version. Without designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems, resulting in incorrect conversion to the highpass filter. Use fvtool to verify the response of your converted filter.
[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt) returns transformed dfilt object $G$ with a highpass magnitude response. The coefficients

AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

Examples
This example transforms an IIR filter from lowpass to high pass by moving the magnitude response at one frequency in the source filter to a new location in the transformed filter. To generate a highpass filter whose passband flattens out at 0.4 , we select the frequency in the lowpass filter where the passband starts to rolloff ( $\mathrm{wc}=0.0175$ ) and move it to the new location at wd $=0.4$.

```
[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);
fvtool(b,a,num,den);
```


## iirlp2hp



In the figure showing the magnitude responses for the two filters, the transition band for the highpass filter is essentially the mirror image of the transition for the lowpass filter from 0.0175 to 0.025 , stretched out over a wider frequency range. In the passbands, the filter share common ripple characteristics and magnitude.

See Also
References
iirlp2bp, iirlp2bs, iirlp2lp, firlp2lp, firlp2hp
Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, Second Edition, McGraw-Hill, 2001.

Purpose

## Syntax

Description

Transform discrete time lowpass IIR filter to different lowpass filter
[num,den] = iirlp2lp(b,a,wc,wd)
[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt), where Hd is a dfilt object
[num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the numerator and denominator coefficients (zeros and poles) for a lowpass IIR filter, iirlp2bp transforms the magnitude response from lowpass to highpass. num and den return the coefficients for the transformed highpass filter. For wc, enter a selected frequency from your lowpass filter. You use the chosen frequency to define the magnitude response value you want in the highpass filter. Enter one frequency for the highpass filter - the value that defines the location of the transformed point - in wd. Note that all frequencies are normalized between zero and one. Notice also that the filter order does not change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the magnitude response at the wd values of your bandstop filter to be the same as the magnitude response of your lowpass filter at wc. Filter performance between the values in wd is not specified, except that the stopband retains the ripple nature of your original lowpass filter and the magnitude response in the stopband is equal to the peak response of your lowpass filter. To accurately specify the filter magnitude response across the stopband of your bandpass filter, use a frequency value from within the stopband of your lowpass filter as wc. Then your bandstop filter response is the same magnitude and ripple as your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what makes this function useful. If you have a lowpass filter whose characteristics, such as rolloff or passband ripple, particularly meet your needs, the transformation function lets you create a new filter with the same characteristic performance features, but in a highpass version. Without designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems, resulting in incorrect conversion to the highpass filter. Use fvtool to verify the response of your converted filter.
[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt) returns transformed dfilt object $G$ with a lowpass magnitude response. The coefficients AllpassNum

## iirlp2lp

and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

This example transforms an IIR filter from lowpass to high pass by moving the magnitude response at one frequency in the source filter to a new location in the transformed filter. To generate a lowpass filter whose passband extends out to 0.2 , we select the frequency in the lowpass filter where the passband starts to rolloff ( $\mathrm{wc}=0.0175$ ) and move it to the new location at wd $=0.2$.

```
[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);
fvtool(b,a,num,den);
```

Moving the edge of the passband from 0.0175 to 0.2 results in a new lowpass filter whose peak response in-band is the same as the original filter: same ripple, same absolute magnitude.


Notice that the rolloff is slightly less steep and the stopband profiles are the same for both filters; the new filter stopband is a "stretched" version of the original, as is the passband of the new filter.

## See Also

References
iirlp2bp, iirlp2bs, iirlp2hp, firlp2lp, firlp2hp
Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, Second Edition, McGraw-Hill, 2001.

## iirlp2mb

## Purpose

Transform IIR real lowpass filter to IIR real M-band filter frequency response

Syntax

$$
\begin{aligned}
& \text { [Num, Den, AllpassNum, AllpassDen] }=\text { iirlp2mb }(B, A, W o, \text { Wt }) \\
& \text { [Num, Den, AllpassNum, AllpassDen] }=\text { iirlp2mb }(B, A, \text { Wo, Wt, Pass }) \\
& {[G, \text { AllpassNum,AllpassDen] }=\text { iirlp2bpc }(H d, W o, W t), \text { where Hd is a dfilt object }} \\
& {[G, A l l p a s s N u m, A l l p a s s D e n]=\text { iirlp2mb }(\ldots, \text { Pass })}
\end{aligned}
$$

## Description

[Num, Den, AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt) returns the numerator and denominator vectors, Num and Den respectively, of the target filter transformed from the real lowpass prototype by applying an Mth-order real lowpass to real multibandpass frequency mapping. By default the DC feature is kept at its original location.
[Num,Den,AllpassNum,AllpassDen]=iirlp2mb(B,A,Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is movable.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located at frequency $W_{0}$, at the required target frequency locations, $W_{t 1}, \ldots, W_{t M}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required
frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.
[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns transformed dfilt object $G$ with an IIR real M-band filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
[G,AllpassNum,AllpassDen] = iirlp2mb(Hd,Wo,Wt) returns transformed dfilt object G with an IIR real M-band filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass) returns transformed dfilt object $G$ with an IIR real M-band filter frequency response. This syntax allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

Example 1: Create the real multiband filter with two passbands:

```
[num1, den1] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10);
[num2, den2] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'pass');
```

The second code snippet uses the pass option to select the Nyquist mobility option. In this case the resulting filter is the same.

## iirlp2mb

Example 2: Create the real multiband filter with two stopbands:

```
[num3, den3] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'stop');
```

Verify the result by comparing the prototype filter with target filters:

```
fvtool(b, a, num1, den1, num2, den2, num3, den3);
```

Combining all of the filters, prototypes and targets, on one figure makes comparing them straightforward. Passbands for the filters in example 1 appear separately in the figure, although they overlap to a degree that makes them hard to identify-they have identical coefficients.


## Arguments

B
Numerator of the prototype lowpass filter

## A

Denominator of the prototype lowpass filter

## Wo

Frequency value to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter

## Pass

Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being the default

## Num

Numerator of the target filter

## Den

Denominator of the target filter
AllpassNum
Numerator of the mapping filter

## AllpassDen

Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

## See Also

iirftransf, allpasslp2mb, zpklp2mb
References
[1] Franchitti, J.C., "All-pass filter interpolation and frequency transformation problems," MSc Thesis, Dept. of Electrical and Computer Engineering, University of Colorado, 1985.
[2] Feyh, G., J.C. Franchitti and C.T. Mullis, "All-pass filter interpolation and frequency transformation problem,"Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[3] Mullis, C.T. and R. A. Roberts, Digital Signal Processing, section 6.7, Reading, Mass., Addison-Wesley, 1987.
[4] Feyh, G., W.B. Jones and C.T. Mullis, "An extension of the Schur Algorithm for frequency transformations," Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

## iirlp2mbc


It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.
This transformation effectively places one feature of an original filter, located at frequency $W_{0}$, at the required target frequency locations, $\mathrm{w}_{\mathrm{t} 1}, \ldots, \mathrm{w}_{\mathrm{tw}}$.
Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.
[G,AllpassNum,AllpassDen] = iirlp2mbc (Hd,Wo,Wt) returns transformed dfilt object G with an IIR complex M-band filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=e l l i p(3,0.1,30,0.409) ;
$$

Now create a complex multiband filter with two passbands:
[num1, den1] = iirlp2mbc(b, a, 0.5, [2 468$] / 10) ;$
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num1, den1);


You see in the figure that iirlp2mbc replicates the desired feature at 0.5 in the lowpass filter at four locations in the multiband filter.

## iirlp2mbc

Arguments ..... BNumerator of the prototype lowpass filter.
ADenominator of the prototype lowpass filter.
WoFrequency value to be transformed from the prototype filter. It should benormalized to be between 0 and 1 , with 1 corresponding to half the sample rate.
WcDesired frequency locations in the transformed target filter. They should benormalized to be between -1 and 1 , with 1 corresponding to half the samplerate.
Num
Numerator of the target filter.
Den
Denominator of the target filter.
AllpassNum
Numerator of the mapping filter.
AllpassDen
Denominator of the mapping filter.
See Also
iirftransf, allpasslp2mbc, zpklp2mbc
Purpose Transform IIR real lowpass filter to IIR complex N-point filter frequency
Syntax
Descriptionresponse
[Num, Den, AllpassNum,AllpassDen] = iirlp2xc(B, $\mathrm{A}, \mathrm{Wo}, \mathrm{Wt})$
[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt), where Hd is a dfilt object
[Num, Den, AllpassNum, AllpassDen] = iirlp2xc(B,A,Wo,Wt) returns the
numerator and denominator vectors, Num and Den respectively, of the target
filter transformed from the real lowpass prototype by applying an Nth-order
real lowpass to complex multipoint frequency transformation.
It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.
Parameter $N$ also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places $N$ features of an original filter, located at frequencies $W_{01}, \ldots, W_{o N}$, at the required target frequency locations, $\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}$.
Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation. For DC mobility feature $F_{2}$ will precede $F_{1}$ after the transformation.
Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., a stopband edge, DC, the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating $N$ bands around the unit circle, there will be no band overlap.
This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

## iirlp2xc

[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt) returns transformed dfilt object $G$ with an IIR complex N-point filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:
[b, a] = ellip(3, 0.1, 30, 0.409);
Create the complex bandpass filter from the real lowpass filter:
[num, den] = iirlp2xc(b, a, [-0.5 0.5], [-0.25 0.25]);
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
REviewing the coefficients and the figure produced by the example shows that the target filter has complex coefficients and is indeed a bandpass filter as expected.


## Arguments

B
Numerator of the prototype lowpass filter

## A

Denominator of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter. They should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.
wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

## iirlp2xc

Num<br>Numerator of the target filter<br>Den<br>Denominator of the target filter<br>AllpassNum<br>Numerator of the mapping filter<br>AllpassDen<br>Denominator of the mapping filter<br>See Also iirftransf, allpasslp2xc, zpklp2xc

## Purpose

Transform IIR real lowpass filter to IIR real N-point filter frequency response

$$
\begin{aligned}
& \text { Syntax } \\
& \text { Description } \\
& \text { [Num, Den, AllpassNum, AllpassDen] = iirlp2xn(B,A,Wo,Wt) returns the } \\
& \text { numerator and denominator vectors, Num and Den respectively, of the target } \\
& \text { filter transformed from the real lowpass prototype by applying an Nth-order } \\
& \text { real lowpass to real multipoint frequency transformation, where } N \text { is the } \\
& \text { number of features being mapped. By default the DC feature is kept at its } \\
& \text { original location. }
\end{aligned}
$$

[Num, Den, AllpassNum, AllpassDen]=iirlp2xn(B,A,Wo,Wt, Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with the numerator specified by B and the denominator specified by $A$.

Parameter $N$ also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places $N$ features of an original filter, located at frequencies $W_{01}, \ldots, W_{O N}$, at the required target frequency locations, $\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}$.

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation. For DC mobility feature $F_{2}$ will precede $F_{1}$ after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select

## iirlp2xn

any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating N bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.
[G,AllpassNum,AllpassDen] = iirlp2xn(Hd,Wo,Wt) returns transformed dfilt object G with an IIR real N-point filter frequency response. The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.
[G,AllpassNum,AllpassDen] = iirlp2xn(...,Pass) returns transformed dfilt object G with an IIR real N -point filter frequency response. This syntax allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility." In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping filter for mapping the prototype filter frequency Wo and the target frequencies vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude response.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

Move the cutoffs of the prototype filter to the new locations $W_{t 1}=0.25$ and $W_{t 2}=0.75$ creating a real bandpass filter:

```
[num, den] = iirlp2xn(b, a, [-0.5 0.5], [0.25 0.75], 'pass');
```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
iirlp2xn has created the desired bandpass filter with the cutoff locations specified in the command.


## Arguments <br> B

Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter
Wt
Desired frequency locations in the transformed target filter
Pass
Choice ('pass'/'stop') of passband/stopband at DC, `pass' being the default

## iirlp2xn

## Num

Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

## See Also

References
iirftransf, allpasslp2xn, zpklp2xn
[1] Cain, G.D., A. Krukowski and I. Kale, "High Order Transformations for Flexible IIR Filter Design," VII European Signal Processing Conference (EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 1994.
[2] Krukowski, A., G.D. Cain and I. Kale, "Custom designed high-order frequency transformations for IIR filters," 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

Purpose
Least P-norm optimal IIR filter design
Syntax

```
[num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)
```


## Description

[num, den] = iirlpnorm(n,d,f,edges,a) returns a filter having a numerator
order n and denominator order d which is the best approximation to the desired frequency response described by f and a in the least-pth sense. The vector edges specifies the band-edge frequencies for multi-band designs. An unconstrained quasi-Newton algorithm is employed and any poles or zeros that lie outside of the unit circle are reflected back inside. $n$ and $d$ should be chosen so that the zeros and poles are used effectively. See the "Hints" section. Always use freqz to check the resulting filter.
[num, den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in $w$ to weight the error. whas one entry per frequency point (the same length as $f$ and a) which tells iirlpnorm how much emphasis to put on minimizing the error in the vicinity of each frequency point relative to the other points. $f$ and a must have the same number of elements, which may exceed the number of elements in edges. This allows for the specification of filters having any gain contour within each band. The frequencies specified in edges must also appear in the vector f. For example,

```
[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[\begin{array}{lllll}{1}&{1}&{1}&{10}&{10}\end{array}])
```

is a lowpass filter with a peak of 1.6 within the passband.
[num, den] = iirlpnorm( $n, d, f$, edges, $a, w, p$ ) where $p$ is a two-element vector [pmin pmax] allows for the specification of the minimum and maximum values of $p$ used in the least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. Pmin and pmax should be even. If p is the string 'inspect', no optimization will occur. This can be used to inspect the initial pole/zero placement.

## iirlpnorm

[num, den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the grid density dens used in the optimization. The number of grid points is (dens* $(n+d+1))$. The default is 20 . dens can be specified as a single-element cell array. The grid is not equally spaced.
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden) allows for the specification of the initial estimate of the filter numerator and denominator coefficients in vectors initnum and initden. This may be useful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initnum and initden.

## Hints

- This is a weighted least-pth optimization.
- Check the radii and locations of the poles and zeros for your filter. If the zeros are on the unit circle and the poles are well inside the unit circle, try increasing the order of the numerator or reducing the error weighting in the stopband.
- Similarly, if several poles have a large radii and the zeros are well inside of the unit circle, try increasing the order of the denominator or reducing the error weighting in the passband.

See Also<br>iirlpnormc, filter, freqz, iirgrpdelay, zplane<br>References<br>Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc. 1993.

Purpose
Design constrained least Pth-norm optimal IIR filter
Syntax

## Description

```
[num,den] = iirlpnormc(n,d,f,edges,a)
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,...
 dens,initnum,initden)
[num,den,err] = iirlpnormc(...)
[num,den,err,sos,g] = iirlpnormc(...)
```

[num, den] = iirlpnormc(n,d,f,edges,a) returns a filter having numerator
order n and denominator order d which is the best approximation to the desired frequency response described by f and a in the least-pth sense. The vector edges specifies the band-edge frequencies for multi-band designs. A constrained Newton-type algorithm is employed. $n$ and d should be chosen so that the zeros and poles are used effectively. See the "Hints" section. Always check the resulting filter using fvtool.
[num, den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w to weight the error. whas one entry per frequency point (the same length as $f$ and a) which tells iirlpnormc how much emphasis to put on minimizing the error in the vicinity of each frequency point relative to the other points. $f$ and a must have the same number of elements, which can exceed the number of elements in edges. This allows for the specification of filters having any gain contour within each band. The frequencies specified in edges must also appear in the vector f. For example,

```
[num,den] = iirlpnormc(5,5,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[\begin{array}{lllll}{1}&{1}&{1}&{10}&{10}\end{array}])
```

designs a lowpass filter with a peak of 1.6 within the passband.
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter having a maximum pole radius of radius where $0<$ radius $<1$. radius defaults to 0.999999 . Filters that have a reduced pole radius may retain better transfer function accuracy after you quantize them.

## iirlpnormc

[num,den] = iirlpnormc( $n, d, f, e d g e s, a, w, r a d i u s, p)$ where $p$ is a two-element vector [pmin pmax] allows for the specification of the minimum and maximum values of $p$ used in the least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax should be even. If p is the string ' inspect', no optimization will occur. This can be used to inspect the initial pole/zero placement.
[num, den] = iirlpnormc(n,d,f,edges, a, w, radius, p,dens) specifies the grid density dens used in the optimization. The number of grid points is (dens* $(n+d+1)$ ). The default is 20 . dens can be specified as a single-element cell array. The grid is not equally spaced.
[num, den] = iirlpnormc(n,d,f,edges,a,w,radius, p,dens,... initnum, initden) allows for the specification of the initial estimate of the filter numerator and denominator coefficients in vectors initnum and initden. This may be useful for difficult optimization problems. The pole-zero editor in the Signal Processing Toolbox can be used for generating initnum and initden.
[num, den,err] = iirlpnormc(...) returns the least-Pth approximation error err.
[num, den,err,sos,g] = iirlpnormc(...) returns the second-order section representation in the matrix SOS and gain G. For numerical reasons you may find SOS and G beneficial in some cases.

## Hints

- This is a weighted least-pth optimization.
- Check the radii and location of the resulting poles and zeros.
- If the zeros are all on the unit circle and the poles are well inside of the unit circle, try increasing the order of the numerator or reducing the error weighting in the stopband.
- Similarly, if several poles have a large radius and the zeros are well inside of the unit circle, try increasing the order of the denominator or reducing the error weight in the passband.
- If you reduce the pole radius, you might need to increase the order of the denominator.

The message

Poorly conditioned matrix. See the "help" file.
indicates that iirlpnormc cannot accurately compute the optimization because either:
a The approximation error is extremely small (try reducing the number of poles or zeros-refer to the hints above).
b The filter specifications have huge variation, such as $\mathbf{a}=\left[\begin{array}{llll}1 & 1 \mathrm{e} & 0 & 0\end{array}\right]$.

## Examples

This example returns a lowpass filter whose pole radius is constrained to 0.8
[b,a,err,s,g] = iirlpnormc(6,6,[0 . 4 . 5 1],[0 . 4 . 5 1],...

hd = dfilt.df1sos(s,g); \% Construct second-order sections filter. fvtool(hd); \% View filter's magnitude response

From the magnitude response shown here you see the lowpass nature of the filter. The pole/zero plot following shows that the poles are constrained to 0.8 as specified in the command.

## iirlpnormc




## See Also

References
freqz, filter, iirgrpdelay, iirlpnorm, zplane
Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc. 1993.

## iirls

## Purpose Design least-squares IIR filter from filter specfication object

```
Syntax hd = design(d,'iirls')
hd = design(d,'iirls',designoption,value,designoption,value,...)

\section*{Examples}

Starting from an arbitrary magnitude and phase design object d, generate a complex bandpass filter of order \(=5\). To make the example a little easier to do, use the default values for F , and H , the frequency vector and the complex desired frequency response.
```

d = fdesign.arbmagnphase('N,F,H',5);
d =
Response: 'Arbitrary Magnitude and Phase'
Specification: 'N,F,H'
Description: {'Filter Order';'Frequency Vector';'Complex Desired Frequency
Response'}
NormalizedFrequency: true

```
```

    FilterOrder: 5
    Frequencies: [1x655 double]
    FreqResponse: [1x655 double]
    design(d,'iirls'); % Opens FVTool to show the filter.
    ```

Displaying both the phase and magnitude response in FVTool shows you the filter.

See Also
fdesign.arbmag, fdesign.arbmagnphase, firls

\section*{iirnotch}

Purpose Design second-order IIR notch digital filter
Syntax \(\quad\)\begin{tabular}{rl}
{\([\) num, den] } & \(=\operatorname{iirnotch(w0,bw)}\) \\
{\([\) num, den \(]\)} & \(=\operatorname{iirnotch}(w 0, b w, a b)\)
\end{tabular}

Description

Examples Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from a signal at 300 Hz (fs). For this example, set the Q factor for the filter to 35 and use it to specify the filter bandwidth:
```

wo = 60/(300/2); bw = wo/35;
[b,a] = iirnotch(wo,bw);
fvtool(b,a);

```

Shown in the next plot, the notch filter has the desired bandwidth with the notch located at 60 Hz , or \(0.4 \pi\) radians per sample. Compare this plot to the comb filter plot shown on the reference page for iircomb.

See Also
firgr, iircomb, iirpeak

\section*{iirpeak}

Purpose Design second-order IIR peak or resonator digital filter
Syntax \(\quad\)\begin{tabular}{rl}
{\([\) num, den \(]\)} & \(=\operatorname{iirpeak}(w 0, b w)\) \\
{\([\) num, den \(]\)} & \(=\operatorname{iirpeak}(w 0, b w, a b)\)
\end{tabular}

Description

\section*{Examples}

Design and plot an IIR peaking filter that boosts the frequency at 1.75 Khz in a signal and has bandwidth of 500 Hz at the -3 dB point:
```

fs = 10000; wo = 1750/(fs/2); bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a);

```

Shown in the next plot, the peak filter has the desired gain and bandwidth at 1.75 KHz .

See Also firgr, iircomb, iirnotch

\section*{iirpowcomp}

Purpose Compute power complementary filter

\section*{Syntax [bp,ap] = iirpowcomp(b,a)}
[bp,ap,c] = iirpowcomp(b,a)
Description

\section*{Examples}
[bp,ap] = iirpowcomp(b,a) returns the coefficients of the power complementary IIR filter \(g(z)=b p(z) / a p(z)\) in vectors \(b p\) and ap, given the coefficients of the IIR filter \(h(z)=b(z) / a(z)\) in vectors \(b\) and \(a . b\) must be symmetric (Hermitian) or antisymmetric (antihermitian) and of the same length as a. The two power complementary filters satisfy the relation
\(|\mathrm{H}(\mathrm{w})|^{2}+|\mathrm{G}(\mathrm{w})|^{2}=1\).
[bp,ap,c] = iirpowcomp(b,a) where c is a complex scalar of magnitude \(=1\), forces \(b p\) to satisfy the generalized hermitian property
```

conj(bp(end:-1:1)) = c*bp.

```

When c is omitted, it is chosen as follows:
- When \(b\) is real, chooses \(C\) as 1 or -1 , whichever yields bp real
- When b is complex, C defaults to 1
ap is always equal to a.
```

[b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);
[h,w,s]=freqz(b,a); [h1,w,s]=freqz(bp,ap);
s.plot='mag'; s.yunits='sq';freqzplot([h h1],w,s)

```

The next figure presents the results of applying iirpowcomp to the Chebyshev filter-the power complementary version of the original filter.

See Also tf2ca, tf2cl, ca2tf, cl2tf

\section*{iirrateup}

\section*{Purpose Upsample IIR filter by integer factor}

\section*{Syntax \\ [Num, Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)}

Description
[Num, Den, AllpassNum,AllpassDen] = iirrateup (\(B, A, N\)) returns the numerator and denominator vectors, Num and Den respectively, of the target filter being transformed from any prototype by applying an Nth-order rateup frequency transformation, where \(N\) is the upsample ratio. Transformation creates \(N\) equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with a numerator specified by B and a denominator specified by A.

The relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, \(F_{1}\) and \(F_{2}\), with \(F_{1}\) preceding \(F_{2}\). Feature \(F_{1}\) will still precede \(F_{2}\) after the transformation. However, the distance between \(F_{1}\) and \(F_{2}\) will not be the same before and after the transformation.

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
```

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

```

Verify the result by comparing the prototype filter with the target filter:
```

fvtool(b, a, num, den);

```

As shown in the figure produced by FVTool, the transformed filter appears as expected.

\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
N
Frequency multiplication ratio
Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter

\section*{iirrateup}

AllpassDen
Denominator of the mapping filter
See Also iirftransf, allpassrateup, zpkrateup

\section*{Purpose}

Syntax
Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Perform the real frequency shift by defining where the selected feature of the prototype filter, originally at \(W_{0}=0.5\), should be placed in the target filter, \(W_{t}=0.75\) :

\section*{iirshift}
```

Wo = 0.5; Wt = 0.75;
[num, den] = iirshift(b, a, Wo, Wt);

```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
Shifting the specified feature from the prototype to the target generates the response shown in the figure.

\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter

\section*{Wo}

Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Num
Numerator of the target filter
Den
Denominator of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also iirftransf, allpassshift, zpkshift.

\section*{iirshiftc}

\section*{Purpose}

Shift frequency response of IIR complex filter

\section*{Syntax}
[Num, Den,AllpassNum, AllpassDen] = iirshiftc(B,A,Wo,Wt)
Description

\section*{Examples}

Design a prototype real IIR halfband filter using a standard elliptic approach:
\[
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
\]

Rotate all features of the prototype filter in the frequency domain by the same amount by specifying where the selected feature of an original filter, \(W_{0}=0.5\), should appear in the target filter, \(\mathrm{w}_{\mathrm{t}}=0.25\) :
```

[num, den] = iirshiftc(b, a, 0.5, 0.25);

```

Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, num, den);
After applying the shift, the selected feature from the original filter is just where it should be, at \(W_{t}=0.25\).

\section*{Arguments}

B
Numerator of the prototype lowpass filter
A
Denominator of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter

\section*{Num}

Numerator of the target filter

\section*{Den}

Denominator of the target filter

\section*{iirshiftc}

AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.

See Also
References
iirftransf, allpassshiftc, zpkshiftc
[1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall International Inc., 1989.
[2] Dutta-Roy, S.C. and B. Kumar, "On digital differentiators, Hilbert transformers, and half-band low-pass filters," IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.

Purpose
Syntax

\section*{Description}

Compute impulse response of filters
```

[h,t] = impz(ha)
[h,t] = impz(...,fs)
impz(ha,...)
[h,t] = impz(hd)
[h,t] = impz(...,fs)
impz(hd,...)
[h,t] = impz(hm)
[h,t] = impz(...,fs)
impz(hm,...)

```

The next sections describe common impz operation with adaptive, discrete-time, and multirate filters. For more input options, refer to impz in the Signal Processing Toolbox.
- "Discrete-Time Filters" on page 8-796
- "Multirate Filters" on page 8-796

\section*{Adaptive Filters}

For adaptive filters, impz returns the instantaneous impulse response based on the current filter coefficients.
[h,t] = impz(ha) computes the instantaneous impulse response of the adaptive filter ha choosing the number of samples for you, and returns the response in column vector \(h\) and a vector of times or sample intervals in t where (\(\mathrm{t}=\left[\begin{array}{lll}0 & 1 & 2\end{array} \text {... }\right]^{\prime}\)).
\([h, t]=\operatorname{impz}(. . ., f s)\) returns a matrix \(h\) if ha is a vector. Each column of the matrix corresponds to one filter in the vector. When ha is a vector of adaptive filters, impz returns the matrix h . Each column of h corresponds to one filter in the vector ha. If you provide a sampling frequency fs as an input argument, impz uses fs in when determining the impulse response.
impz (ha, ...) uses FVTool to plot the impulse response of the adaptive filter ha. If ha is a vector of filters, impz plots the response and for each filter in the vector.

\section*{Discrete-Time Filters}
[h,t] = impz(hd) computes the instantaneous impulse response of the discrete-time filter hd choosing the number of samples for you, and returns the response in column vector \(h\) and a vector of times or sample intervals in t where (\(\mathrm{t}=\left[\begin{array}{lll}0 & 1 & 2\end{array} \mathrm{I} .\right]^{\prime}\)). impz returns a matrix h if hd is a vector. Each column of the matrix corresponds to one filter in the vector. When hd is a vector of discrete-time filters, impz returns the matrix h. Each column of \(h\) corresponds to one filter in the vector hd.
impz (hd) uses FVTool to plot the impulse response of the discrete-time filter hd. If hd is a vector of filters, impz plots the response and for each filter in the vector.

\section*{Multirate Filters}
[\(\mathrm{h}, \mathrm{t}\)] = impz (hm) computes the instantaneous impulse response of the multirate filter hm choosing the number of samples for you, and returns the response in column vector \(h\) and a vector of times or sample intervals in
 Each column of the matrix corresponds to one filter in the vector. When hm is a vector of multirate filters, impz returns the matrix h. Each column of \(h\) corresponds to one filter in the vector ha.
impz (hm) uses FVTool to plot the impulse response of the multirate filter hm. If ha is a vector of filters, impz plots the response and for each filter in the vector.

Note that the multirate filter impulse response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, impz assumes the filter is running at that rate.

For multistage cascades, impz forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. impz does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4. An equivalent single-stage filter with an overall interpolation factor of 8 can be
found. impz uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to impz, the function interprets \(f s\) as the rate at which the equivalent filter is running.

Note impz works for both real and complex filters. When you omit the output arguments, impz plots only the real part of the impulse response.

\section*{Examples}

Create a discrete-time filter for a fourth-order, low-pass elliptic filter with a cutoff frequency of 0.4 times the Nyquist frequency. Use a second-order sections structure to resist quantization errors. Plot the first 50 samples of the impulse response, along with the reference impulse response.
\% Create a design object for the prototype filter.
d = fdesign.lowpass(.4,.5,1,80)
d \(=\)
```

            Response: 'Minimum-order lowpass'
            Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
            Fs: 'Normalized'
            Fpass: 0.4000
                            Fstop: 0.5000
                            Apass: 1
                            Astop: 80
    ```

Use ellip to design the discrete-time filter in second-order section form, with minimum-order.
```

hd=design(d,'ellip')
hd =

```
```

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [4x6 double]

```

\section*{impz}
```

    ScaleValues: [5x1 double]
    ResetBeforeFiltering: 'on'
States: [2x4 double]

```

Convert hd to fixed-point and check the impulse response hd.arithmetic = 'fixed';
impz(hd)

See Also filter

\section*{Purpose Information about filter objects}
\[
\text { Syntax } \quad \begin{aligned}
s & =\operatorname{info}(\mathrm{ha}) \\
& s=\operatorname{info}(\mathrm{hd}) \\
& s=\operatorname{info}(\mathrm{hm})
\end{aligned}
\]

Description The next sections describe common info operation with adaptive, discrete-time, and multirate filters.
info returns a variety of information about filters:
- Specifications such as the filter structure and filter order
- Information about the design method and options
- Performance measurements for the filter response, such as the passband cutoff or stopband attenuation. Filter measurement data is the same as the information returned by measure for the filter. Specific measurements appearing in the display depend on the filter and on the specifications you use when you construct the filter.
- Cost of implementing the filter in terms of operations required to apply the filter to data. Cost information is the same as you get from the cost method.

When the filter object uses fixed-point arithmetic (fixed-point dfilt objects or mfilt objects), info returns additional information about the filter, including the arithmetic setting and details about the filter internals.

You do not need to assign the output of info to a variable. Omitting the output value displays the same information in the Command Window.

\section*{Adaptive Filters}
\(s=i n f o(h a)\) returns a string matrix with information about the filter ha.
Generally, info returns more information than the default display for the filter.

\section*{Discrete-Time Filters}
\(s=\) info(hd) returns a string matrix with information about the filter hd.

Generally, info returns more information than the default display for the filter.

\section*{Multirate Filters}
\(\mathrm{s}=\mathrm{info}(\mathrm{hm})\) returns a string matrix with information about the filter hm.
Generally, info returns more information than the default display for the filter.

Examples
Given two filters-hd and hm, use info to learn more about each filter. Here is hd, a discrete-time direct-form FIR filter.
```

d = fdesign.lowpass('N,Fc,Ap,Ast',80,0.45,0.05,60);
designmethods(d)
Design Methods for class fdesign.lowpass (N,Fc,Ap,Ast):
equiripple
hd=design(d,'equiripple')
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x81 double]
PersistentMemory: false

```

Similarly, here is a multirate CIC filter hm. Note the diffential delay value 2.
```

d1 = fdesign.interpolator(6,'cic',2,'fp,ast',0.40,60);
designmethods(d1)
FIR Design Methods for class fdesign.interpolator (Fp,Ast):
multisection

```
```

hm=design(d1,'multisection')
hm =
FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 2
NumberOfSections: 5
InterpolationFactor: 6
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'FullPrecision'

```
Now use info to get more details about both filters.
```

s = info(hd)
Discrete-Time FIR Filter (real)
Filter Structure : Direct-Form FIR
Filter Length : 81
Stable : Yes
Linear Phase : Yes (Type 1)
Design Method Information
Design Algorithm : equiripple
Design Options
MinPhase : false
StopbandDecay : 0
StopbandShape : flat
Design Specifications
Sampling Frequency : N/A (normalized frequency)
Response : Lowpass
Specification : N,Fc,Ap,Ast
FilterOrder : 80

```
```

Fcutoff : 0.45
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB
Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.41517
3-dB Point : 0.44091
6-dB Point : 0.45
Stopband Edge : 0.48968
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB
Transition Width : 0.074506
Implementation Cost
Number of Multipliers : 81
Number of Adders : 80
Number of States : 80
MultPerInputSample : 81
AddPerInputSample : 80
s = info(hm)
Discrete-Time FIR Multirate Filter (real)
Filter Structure : Cascaded Integrator-Comb Interpolator
Interpolation Factor : 6
Differential Delay : 2
Number of Sections : 5
Stable : Yes
Linear Phase : Yes (Type 2)
Input : s16,15
Output : s32,15
Filter Internals : Full Precision
Integrator Section 1 : s17,15
Integrator Section 2 : s18,15
Integrator Section 3 : s19,15
Integrator Section 4 : s20,15
Integrator Section 5 : s21,15

```
```

Comb Section 1 : s21,15
Comb Section 2 : s24,15
Comb Section 3 : s27,15
Comb Section 4 : s29,15
Comb Section 5 : s32,15
Design Method Information
Design Algorithm : multisection
Design Specifications
Sampling Frequency : N/A (normalized frequency)
Response : CIC
Specification : Fp,Ast
MultirateType : Interpolator
InterpolationFactor : 6
DifferentialDelay : 2
Passband Edge : 0.4
Stopband Atten. : 60 dB
Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.4
Stopband Edge : -0.23333
Fnulls : 0.16667 0.33333 0.5 0.66667 0.83333 1
Passband Ripple : 87.0194 dB
Stopband Atten. : 65.5304 dB
Implementation Cost
Number of Multipliers : 0
Number of Adders : 10
Number of States : 15
MultPerInputSample : 0
AddPerInputSample : 35

```

If you convert your filter object, such as a dfilt or mfilt, to a fixed-point filter, info returns more information about the ranges provided by the fixed-point formats in the filter. After converting hd to fixed arithmetic, info returns this display:
```

Discrete-Time FIR Filter (real)
Filter Structure : Direct-Form FIR
Filter Length : 81

```
\begin{tabular}{|c|c|}
\hline Stable & : Yes \\
\hline Linear Phase & : Yes (Type 1) \\
\hline Arithmetic & : fixed \\
\hline Numerator & : s16,16-> [-5.000000e-001 5.000000e-001) \\
\hline Input & : s16,15 -> [-1 1) \\
\hline \multicolumn{2}{|l|}{Filter Internals : Full Precision} \\
\hline Output & : s34,31 -> [-4 4) (auto determined) \\
\hline Product & : s31,31-> [-5.000000e-001 5.000000e-001) \\
\hline \multicolumn{2}{|l|}{determined)} \\
\hline Accumulator & : s34,31-> [-4 4) (auto determined) \\
\hline Round Mode & : No rounding \\
\hline Overflow Mode & : No overflow \\
\hline
\end{tabular}

Design Method Information
Design Algorithm : equiripple
Design Options
MinPhase : false
StopbandDecay : 0
StopbandShape : flat
Design Specifications
Sampling Frequency : N/A (normalized frequency)
Response : Lowpass
Specification : N,Fc,Ap,Ast
FilterOrder : 80
Fcutoff : 0.45
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB
Measurements
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.41517
3-dB Point : 0.44091
6-dB Point : 0.45
Stopband Edge : 0.48962
Passband Ripple : 0.05 dB
Stopband Atten. : 60 dB
Transition Width : 0.07445

Implementation Cost
Number of Multipliers : 81
Number of Adders : 80
Number of States : 80
MultPerInputSample : 81
AddPerInputSample : 80

\author{
See Also \\ coefficients, isfir, isstable, islinphase \\ dfilt in the Signal Processing Toolbox documentation
}
\begin{tabular}{|c|c|}
\hline Purpose & Return states from CIC filter as signed integer matrix containing the numerator and denominator states for all filter sections \\
\hline Syntax & integerstates \(=\) int(hm.states) \\
\hline Description & integerstates \(=\) int(hm.states) returns the states of a CIC filter in matrix form, rather than as the native filtstates object. An important point about int is that it quantizes the state values to the smallest number of bits possible while maintaining the values accurately. \\
\hline Examples & \begin{tabular}{l}
For many users, the states of multirate filters are most useful as a matrix, but the CIC filters store the states as objects. Here is how you get the states from you CIC filter as a matrix.
```

hm = mfilt.cicdecim;
hs = hm.states; % Returns a FILTSTATES.CIC object hs.
states = int(hs); % Convert object hs to a signed integer matrix.

``` \\
After using int to convert the states object to a matrix, here is what you get. \\
Before converting:
```

hm.states
ans =
Integrator: [2x1 States]
Comb: [2x1 States]

```
\end{tabular} \\
\hline & After the conversion and assigning the states to states:
```

states
states =
0 0

``` \\
\hline See Also & filtstates.cic, mfilt.cicdecim, mfilt.cicinterp \\
\hline
\end{tabular}

\section*{Purpose Determine whether filters are allpass structures}

\section*{Syntax isallpass(hd) \\ isallpass(hd,tolerance)}

\section*{Description}

\section*{Examples}
isallpass (hd) determines whether the filter object hd is an allpass filter, returning 1 if true and 0 if false.
isallpass(hd,tolerance) uses input argument tolerance to determine whether the numerator and denominator transfer functions for the filter are close enough in value to be considered equal, and thus allpass, returning 1 if true (the difference between the numbers is less than tolerance) and 0 if not.

Given an allpass filter with this transfer function
\[
H(z)=\frac{a_{n}+\ldots+a_{1} z^{-(n-1)}+z^{-n}}{1+a_{1} z^{-1}+\ldots+a_{n} z^{-n}}
\]
if the numerator and denominator transfer functions are equal, the filter is allpass. The tolerance input argument lets you determine how closely the transfer functions have to match to be considered equal. This might be most helpful in fixed-point allpass filters.

Lattice coupled allpass filters always have allpass sections, this function always returns 1 for filters whose structure is latticeca.

Use dfilt.allpass to construct an allpass filter and test whether the filter is allpass.
```

c=[.8,1.5,0.4, 0.7]; % Allpass coefficients.
hd=dfilt.allpass(c)
hd =

```
```

            FilterStructure: 'Minimum-Multiplier Allpass'
    AllpassCoefficients: [.8,1.5,0.4, 0.7]
PersistentMemory: false
States: [0;0;0;0;0;0;0;0]
NumSamplesProcessed: 0

```

\section*{isallpass}
```

isallpass(hd)
ans =
1

```

See Also isfir, islinphase, ismaxphase, isminphase, isreal, issos, isstable

\section*{Purpose Determine whether filters are FIR filters}

\section*{Syntax isfir(h)}

Description

Examples
```

d = fdesign.lowpass;
h = design(d);
isfir(h)
ans =

```

1
returns 1 for the status of filter h ; the filter is an FIR structure with denominator reference coefficient equal to 1 .

For multirate filters, isfir works the same way.
```

d = fdesign.interpolator(5); % Interpolate by 5.
h = design(d); % Use the default design method.
isfir(h)
ans =

```

1
Use isfir with adaptive filters as well.
See Also isallpass, islinphase, ismaxphase, isminphase, isreal, issos, isstable

\section*{islinphase}

\section*{Purpose Determine whether filters are linear phase}
```

Syntax islinphase(h)
islinphase(h,tolerance)

```

\section*{Description}

\section*{Examples}
islinphase (h) determines if the filter object h is linear phase, and returns 1 if true and 0 if false. adapfilt, dfilt, and mfilt objects work with islinphase.
islinphase(h,tolerance) uses input argument tolerance to determine whether the filter coefficients are close enough in value to be considered symmetric or antisymmetric, returning 1 if true (the difference between the values is less than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter has linear phase if it is FIR and its transfer function coefficients are symmetric or antisymmetric. If it is IIR and it has poles on or outside the unit circle and both numerator and denominator are symmetric or antisymmetric, it is linear phase also.

This IIR filter has linear phase.
```

d = fdesign.lowpass('n,fc',10,0.55);
h = design(d,'window');
islinphase(h)
ans =

```

1

Using the specification \(\mathrm{nb}, \mathrm{na}, \mathrm{fp}, \mathrm{fst}\) results in an IIR filter that is not linear phase in this design.
```

nb=15
na=10
d=fdesign.lowpass('nb,na,fp,fst',nb,na,0.45,0.55)
d =
Response: 'Lowpass'
Specification: 'Nb,Na,Fp,Fst'
Description: {4x1 cell}
NormalizedFrequency: true

```
```

            NumOrder: 15
            DenOrder: 10
                Fpass: 0.45
                Fstop: 0.55
                    h=design(d) % Use the default design method iirlpnorm.
    h =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [8x6 double]
ScaleValues: [-0.0051749857036492;1;1;1;1;1;1;1;1]
PersistentMemory: false
islinphase(h)
ans =
0

```

See Also isallpass, isfir, ismaxphase, isminphase, isreal, issos, isstable

\section*{Purpose Determine whether filters are maximum phase}

\section*{Syntax \\ Description}

\section*{Examples}
ismaxphase(h)
ismaxphase (h,tolerance)
ismaxphase (h) determines if the filter object h is maximum phase, and returns 1 if true and 0 if false. adapfilt, dfilt, and mfilt objects work with ismaxphase.
ismaxphase (h , tolerance) uses input argument tolerance to determine whether the zeros of the filter transfer function have values that are close enough to 1 to be considered 1 or greater (on or outside the unit circle, returning 1 if true (the difference between the coefficient value and 1 is less than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter is maximum phase when the zeros of its transfer function are on or outside the unit circle, or when the numerator is a scalar.

Two examples show ismaxphase in use. The first is a discrete-time dfilt object and the second an adaptive filter.
```

fp = 100;
fst= 120;
fs = 800;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);
isminphase(h)
ans =
1

```

To make this a maximum phase filter, use fliplr to change the coefficient order. Reordering the coefficients this way changes the phase from minimum to maximum.
```

h.numerator=fliplr(h.numerator);

```
```

ismaxphase(h)
ans =
1

```
returns 1 so this is a maximum phase filter. Compare to isminphase.
For the adaptive filter example, try the following code:
```

x = randn(1,500); % Input to the filter
b = fir1(31,0.5); % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n; % Desired signal
mu = 1; % NLMS step size
offset = 50; % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);

```

After adapting, ha is an FIR filter that does not exhibit maximum phase.
ismaxphase(ha)
ans =
0

\section*{See Also}
isallpass, isfir, islinphase, isminphase, isreal, issos, isstable

\section*{isminphase}

Purpose Determine whether filters are minimum phase

\section*{Syntax \\ Description}

Examples
isminphase(h)
isminphase (h,tolerance)
isminphase (h) determines if the filter object h is maximum phase, and returns 1 if true and 0 if false. adapfilt, dfilt, and mfilt objects work with isminphase.
isminphase (h , tolerance) uses input argument tolerance to determine whether the values of the filter transfer function zeros are close enough to 1 to be considered to be on the unit circle, returning 1 if true (the difference between the transfer function zero values and 1 is less than tolerance) and 0 if not.

The determination is based on the reference coefficients. A filter is minimum phase when the zeros of its transfer function are on or inside the unit circle, or the numerator is a scalar.

This example creates a minimum-phase filter.
```

fp = 200;
fst= 230;
fs = 900;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);
isminphase(h)
ans =
1

```

When you make h a fixed-point filter, the quantization process results in the filter no longer being minimum phase.
```

h.arithmetic='fixed';
isminphase(h)

```

\section*{isminphase}

\section*{ans =}

0

See Also isallpass, isfir, islinphase, ismaxphase, isreal, issos, isstable,

\section*{Purpose Determine whether discrete-time filters use purely real coefficients}

\section*{Syntax isreal(hd)}

Description

\section*{Examples}

\section*{See Also}
isfir, islinphase, ismaxphase, isminphase, issos, isstable, isallpass

Purpose
Determine whether discrete-time filters are composed of second-order sections

\section*{Syntax \\ issos(hd)}

Description

Examples
issos(hd) determines whether quantized filter hq consists of second-order sections. Returns 1 if all sections of quantized filter hq have order less than or equal to two, and 0 otherwise.

By default, fdesign and design return SOS filters when possible. This example designs a lowpass SOS filter that uses fixed-point arithmetic.
```

d=fdesign.lowpass('n,fp,ap,ast',40,0.55,0.1,60)
d =
Response: 'Lowpass'
Specification: 'N,Fp,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
FilterOrder: 40
Fpass: 0.55
Apass: 0.1
Astop: 60
designmethods(d)
Design Methods for class fdesign.lowpass (N,Fp,Ap,Ast):
ellip
equiripple
hd=design(d,'ellip');
hd.arithmetic='fixed';
issos(hd)

```
issos
ans =

1

Fixed-point filter hd is in second-order section form, as is the double-precision version.

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, isstable

\section*{Purpose \\ Determine whether discrete-time filter is stable}

\section*{Syntax isstable(hd)}

Description

\section*{Examples}

Since filter stability is very important in your design process, use isstable to determine whether your double-precision or fixed-point IIR filter is stable.
```

d=fdesign.nyquist(2, 'n, tw', 24,0.1);
hd=design(d,'iirlinphase')
hd =
FilterStructure: Cascade
Stage(1): Scalar
Stage(2): Parallel
Stage(1): Delay
Stage(2): Cascade
Stage(1): Delay
Stage(2): Cascade
PersistentMemory: false
isstable(hd)
ans =
1
hd2=design(d,'equiripple');
isstable(hd2)

```

\section*{isstable}

\section*{ans \(=\) \\ 1}
See Also
isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, issos, zplane
```

Purpose
Syntax h = design(d,'kaiserwin')
h = design(d,'kaiserwin',designoption,value,designoption,...
value,...)
Description h = design(d,'kaiserwin') designs a digital filter hd, or a multirate filter hm
that uses a Kaiser window. For kaiserwin to work properly, the filter order in
the specifications object must be even. In addition, higher order filters (filter
order greater than 120) tend to be more accurate for smaller transition widths.
kaiserwin returns a warning when your filter order may be too low to design
your filter accurately.
h = design(d,'kaiserwin',designoption,value,designoption,...
value,...) returns a filter where you specify design options as input
arguments and the design process uses the Kaiser window technique.
To determine the available design options, use designopts with the specification object and the design method as input arguments as shown.

```
```

designopts(d,'method')

```
designopts(d,'method')
For complete help about using kaiserwin, refer to the command line help system. For example, to get specific information about using kaiserwin with d, the specification object, enter the following at the MATLAB prompt.
```

```
help(d,'kaiserwin')
```

help(d,'kaiserwin')
This example designs a direct form FIR filter from a halfband filter specification object.

```
```

d=fdesign.halfband('n,tw',100,0.004)

```
d=fdesign.halfband('n,tw',100,0.004)
d =
d =
 Response: 'Halfband with filter order and transition width'
 Response: 'Halfband with filter order and transition width'
 Specification: 'N,TW'
 Specification: 'N,TW'
 Description: {2x1 cell}
 Description: {2x1 cell}
 NormalizedFrequency: true
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fs: 'Normalized'
 FilterOrder: 100
 FilterOrder: 100
 TransitionWidth: 0.0040
```

        TransitionWidth: 0.0040
    ```

\section*{kaiserwin}
```

designopts(d,'kaiserwin')
ans =
FilterStructure: 'dffir'
hd= design(d,'kaiserwin','filterstructure','dffir')
Warning: Filter order is too low. Design may be inaccurate.
hd =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1\times101 double]
ResetBeforeFiltering: 'on'
States: [100x1 double]

```

In this example, kaiserwin uses an interpolating filter specification object to implement a multirate filter.
```

d=fdesign.interp(4,'pl,tw',120,0.004)
d =
Response: [1x46 char]
Specification: 'PL,TW'
Description: {2x1 cell}
InterpolationFactor: 4
NormalizedFrequency: true
Fs: 'Normalized'
PolyphaseLength: 120
TransitionWidth: 0.0040
hm = design(d,'kaiserwin')
hm =
FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
Numerator: [1x480 double]
InterpolationFactor: 4
ResetBeforeFiltering: 'on'
States: [119x1 double]

```

With the polyphase length of 120 you do not see the warning about the filter accuracy. Increasing the transition width tw can also reduce the possible inaccuracies.

FVTool shows clearly the multirate filter hm.

See Also equiripple, firls

\section*{limitcycle}
\begin{tabular}{|c|c|c|}
\hline Purpose & \multicolumn{2}{|l|}{Explore steady-state response of single-rate, fixed-point IIR filter to zero-valued input} \\
\hline Syntax & \multicolumn{2}{|l|}{report = limitcycle(hd)} \\
\hline Description & \multicolumn{2}{|l|}{report = limitcycle(hd) returns the structure report that contains information about how filter hd responds to a zero-valued input vector. By default, the input vector has length equal to twice the impulse response length of the filter.} \\
\hline & \multicolumn{2}{|l|}{limitcycle returns a structure whose elements contain the details about the limit cycle testing. As shown in this table, the report includes the following details.} \\
\hline & Output Object Property & Description \\
\hline & LimitCycleType & \begin{tabular}{l}
Contains one of the following results: \\
- Granular-indicates that a granular overflow occurred. \\
- Overflow-indicates that an overflow limit cycle occurred. \\
- None-indicates that the test did not find any limit cycles.
\end{tabular} \\
\hline & Zi & Contains the initial condition value(s) that caused the detected limit cycle to occur. \\
\hline & Output & Contains the output of the filter in the steady state. \\
\hline & Trial & Returns the number of the Monte Carlo trial on which the limit cycle testing stopped. For example, Trial \(=10\) indicates that testing stopped on the tenth Monte Carlo trial. \\
\hline
\end{tabular}

Using an input vector longer than the filter impulse response ensures that the filter is in steady-state operation during the limit cycle testing. limitcycle
ignores output that occurs before the filter reaches the steady state. For example, if the filter impulse length is 500 samples, limitcycle ignores the filter output from the first 500 input samples.

To perform limit cycle testing on your IIR filter, you must set the filter Arithmetic property to fixed and hd must be a fixed-point IIR filter of one of the following forms:
- df1—direct-form I
- df1t-direct-form I transposed
- df1sos-direct-form I with second-order sections
- df1tsos-direct-form I transposed with second-order sections
- df2-direct-form II
- df2t-direct-form II transposed
- df2sos-direct-form II with second-order sections
- df2tsos-direct-form II transposed with second-order sections

When you use limitcycle without optional input arguments, the default settings are
- Run 20 Monte Carlo trials
- Use an input vector twice the length of the filter impulse response
- Stop testing if the simulation process encounters either a granular or overflow limit cycle

To determine the length of the filter impulse response, use impzlength:
```

impzlength(hd)

```

During limit cycle testing, if the simulation runs reveal both overflow and granular limit cycles, the overflow limit cycle takes precedence and is the limit cycle that appears in the report.

Each time you run limitcycle, it uses a different sequence of random initial conditions, so the results can differ from run to run.

Each Monte Carlo trial uses a new set of randomly determined initial states for the filter. Test processing stops when limitcycle detects a zero-input limit cycle in filter hd.
report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion) lets you set the following optional input arguments:

\section*{limitcycle}
- ntrials - Number of Monte Carlo trials (default is 20).
- inputlengthfactor - integer factor used to calculate the length of the input vector. The length of the input vector comes from (impzlength(hd) * inputlengthfactor), where inputlengthfactor \(=2\) is the default value.
- stopcriterion - the criterion for stopping the Monte Carlo trial processing. stopcriterion can be set to either (the default), granular, overflow. This table describes the results of each stop criterion.
\begin{tabular}{l|l}
\hline stopcriterion Setting & Description \\
\hline either & \begin{tabular}{l}
Stop the Monte Carlo trials when limitcycle \\
detects either a granular or overflow limit cycle.
\end{tabular} \\
\hline granular & \begin{tabular}{l}
Stop the Monte Carlo trials when limitcycle \\
detects a granular limit cycle.
\end{tabular} \\
\hline overflow & \begin{tabular}{l}
Stop the Monte Carlo trials when limitcycle \\
detects an overflow limit cycle.
\end{tabular} \\
\hline
\end{tabular}

Note An important feature is that if you specify a specific limit cycle stop criterion, such as overflow, the Monte Carlo trials do not stop when testing encounters a granular limit cycle. You receive a warning that no overflow limit cycle occurred, but consider that a granular limit cycle might have occurred.

\section*{Examples}

In this example, there is a region of initial conditions in which no limit cycles occur and a region where they do. If no limit cycles are detected before the Monte Carlo trials are over, the state sequence converges to zero. When a limit cycle is found, the states do not end at zero. Each time you run this example, it uses a different sequence of random initial conditions, so the plot you get can differ from the one displayed in the following figure.
```

s = [1 0 0 1 0.9606 0.9849];
hd = dfilt.df2sos(s);
hd.arithmetic = 'fixed';
greport = limitcycle(hd,20,2,'granular')

```
```

oreport = limitcycle(hd,20,2,'overflow')
figure,
subplot(211),plot(greport.Output(1:20)), title('Granular Limit Cycle');
subplot(212),plot(oreport.Output(1:20)), title('Overflow Limit Cycle');
greport =
LimitCycle: 'granular'
Zi: [2x1 double]
Output: [1303\times1 embedded.fi]
Trial: 1
oreport =
LimitCycle: 'overflow'
Zi: [2x1 double]
Output: [1303\times1 embedded.fi]
Trial: 2

```

The plots shown in this figure present both limit cycle types-the first displays the small amplitude granular limit cycle, the second the larger amplitude overflow limit cycle.

\section*{limitcycle}

As you see from the plots, and as is generally true, overflow limit cycles are much greater magnitude than granular limit cycles. This is why limitcycle favors overflow limit cycle detection and reporting.

\section*{See Also}
freqz, noisepsd

\section*{Purpose}

Maximum step size that allows adaptive filter convergence

\section*{Syntax}

\section*{Description}

\section*{Examples}
mumax \(=\) maxstep (ha, x)
[mumax, mumaxmse] = maxstep(ha,x)
mumax \(=\operatorname{maxstep}(h a, x)\) predicts a bound on the step size to provide convergence of the mean values of the adaptive filter coefficients. The columns of the matrix \(x\) contain individual input signal sequences. The signal set is assumed to have zero mean or nearly so.
[mumax, mumaxmse] \(=\operatorname{maxstep}(h a, x)\) predicts a bound on the adaptive filter step size to provide convergence of the LMS adaptive filter coefficients in the mean-square sense. maxstep issues a warning when ha. stepsize is outside of the range \(0<\) ha.stepsize \(<\) mumaxmse \(/ 2\).

Note maxstep is available for the following adaptive filter objects:
—adaptfilt.blms
—adaptfilt.blmsfft
—adaptfilt.lms
—adaptfilt.nlms (uses a different syntax. Refer to the text below.)
—adaptfilt.se

For adaptfilt.nlms filter objects, maxstep uses a slightly different syntax:
```

mumax = maxstep(ha)
[mumax,mumaxmse] = maxstep(ha)

```

The maximum step size for convergence is fully defined by the filter object ha. Matrix \(x\) is not necessary. If you include an \(x\) input matrix, MATLAB returns an error.

Analyze and simulate a 32 -coefficient (31st-order) LMS adaptive filter object. To demonstrate the adaptation process, run 2000 iterations and 50 trials.
```

% Specify [numiterations,numexamples] = size(x);
x = zeros(2000,50);
d = x;
obj = fdesign.lowpass('n,fc',31,0.5);

```
```

hd = design(obj,'window'); % FIR filter to identified.
coef = cell2mat(hd.coefficients); % Convert cell array to matrix.
for k=1:size(x,2); % Create input and desired response signal
% matrices.
% Set the (k)th input to the filter.
x(:,k) = filter(sqrt(0.75),[1-0.5],sign(randn(size(x,1),1)));
n = 0.1*randn(size(x,1),1); % (k)th observation noise signal.
d(:,k) = filter(coef,1,x(:,k))+n; % (k)th desired signal end.
end
mu = 0.1; % LMS step size.
ha = adaptfilt.lms(32,mu);
[mumax,mumaxmse] = maxstep(ha,x);
Warning: Step size is not in the range 0 < mu < mumaxmse/2:
Erratic behavior might result.
mumax
mumax =
0.0623
mumaxmse
mumaxmse =
0.0530

```
See Also
msepred, msesim, filter

\begin{abstract}
Purpose

Syntax measure(hd)
measure (hm)
Description measure (hd) returns measured values for specific points in the magnitude response curve for filter object hd. When you use a design object d to create a filter (by using fdesign. type to create d), you specify one or more values that define your desired filter response. measure (hd) tests the filter to determine the actual values in the magnitude response of the filter, such as the stopband attenuation or the passband ripple. Comparing the results returned by measure to the specifications you provided in the design object helps you assess whether the filter meets your design criteria.
\end{abstract}

Note To use measure, hd or hm must result from using a filter design method with a filter specifications object. measure works with multirate filters and discrete-time filters. It does not support adaptive filters because you cannot use fdesign. type to construct adaptive filter specifications objects.
measure (hd) returns specifications determined by the response type of the design object you use to create the filter. For example, for single-rate lowpass filters made from design objects, measure (hd) returns the following filter specifications.
\begin{tabular}{l|l}
\hline Lowpass Filter Specification & Description \\
\hline Sampling Frequency & Filter sampling frequency. \\
\hline Passband Edge & \begin{tabular}{l}
Location of the edge of the passband as it \\
enters transition.
\end{tabular} \\
\hline 3-dB Point & \begin{tabular}{l}
Location of the -3 dB point on the response \\
curve.
\end{tabular} \\
\hline 6-dB Point & \begin{tabular}{l}
Location of the -6 dB point on the response \\
curve.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Lowpass Filter Specification & Description \\
\hline Stopband Edge & \begin{tabular}{l}
Location of the edge of the transition band \\
as it enters the stopband.
\end{tabular} \\
\hline Passband Ripple & Ripple in the passband. \\
\hline Seopband Atten. & Attenuation in the stopband. \\
\hline Transition Width & \begin{tabular}{l}
Width of the transition between the pass- \\
and stopband, in normalized frequency or \\
absolute frequency. Measured between \\
Fpass and Fstop.
\end{tabular} \\
\hline
\end{tabular}

In contrast, when you use a bandstop design object, measure(hd) returns these specifications for the resulting bandstop filter.
\begin{tabular}{l|l}
\hline Bandstop Filter Specification & Description \\
\hline Sampling Frequency & Filter sampling frequency. \\
\hline First Passband Edge & Location of the edge of the first passband. \\
\hline First 3-dB Point & \begin{tabular}{l}
Location of the edge of the -3 dB point in \\
the first transition band.
\end{tabular} \\
\hline First 6-dB Point & \begin{tabular}{l}
Location of the edge of the -6 dB point in \\
the first transition band.
\end{tabular} \\
\hline First Stopband Edge & Location of the start of the stopband. \\
\hline Second Stopband Edge & Location of the end of the stopband. \\
\hline Second 6-dB Point & \begin{tabular}{l}
Location of the edge of the -6 dB point in \\
the second transition band.
\end{tabular} \\
\hline Second 3-dB Point & \begin{tabular}{l}
Location of the edge of the -3 dB point in \\
the second transition band.
\end{tabular} \\
\hline Second Passband Edge & \begin{tabular}{l}
Location of the start of the second \\
passband.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Bandstop Filter Specification & Description \\
\hline First Passband Ripple & Ripple in the first passband. \\
\hline Stopband Atten. & Attenuation in the stopband. \\
\hline Second Passband Edge & Ripple in the second passband. \\
\hline First Transition Width & \begin{tabular}{l}
Width of the first transition region. \\
Measured between the -3 and -6 dB \\
points.
\end{tabular} \\
\hline Second Transition Width & \begin{tabular}{l}
Width of the second transition region. \\
Measured between the -6 and -3 dB \\
points.
\end{tabular} \\
\hline
\end{tabular}

Filters from different filter responses return their designated sets of specifications. Also, whether the filter is single-rate or multirate changes the list of specifications that measure tests.
measure (hm) is the same as measure (hd), where hm is a multirate filter object. For multirate filters, the set of filter specifications that measure returns might be different from the discrete-filter set.

The set of response measurements that measure returns depends on the response you use to design the filter. When hm is an FIR lowpass interpolator (response is lowpass), for example, measure (hm) returns this set of measurements.
\begin{tabular}{ll}
\hline Interpolator Filter Specification & Description \\
\hline First Passband Edge & \begin{tabular}{l}
Location of the edge of the passband as \\
it enters transition.
\end{tabular} \\
\hline 3-dB Point & \begin{tabular}{l}
Location of the -3 dB point on the \\
response curve.
\end{tabular} \\
\hline 6-dB Point & \begin{tabular}{l}
Location of the -6 dB point on the \\
response curve.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Interpolator Filter Specification & Description \\
\hline Stopband Edge & \begin{tabular}{l}
Location of the edge of the transition \\
band as it enters the stopband.
\end{tabular} \\
\hline Passband Ripple & Ripple in the passband. \\
\hline Stopband Atten. & Attenuation in the stopband. \\
\hline Transition Width & \begin{tabular}{l}
Width of the transition between the \\
pass- and stopband, in normalized \\
frequency or absolute frequency. \\
Measured between Fpass and Fstop.
\end{tabular} \\
\hline
\end{tabular}

For reference, this is the specification object d that created the interpolator specifications shown in the preceeding table.
```

d=fdesign.interpolator(6,'lowpass')
d =
MultirateType: 'Interpolator'
InterpolationFactor: 6
Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'
Description: {4x1 cell}
NormalizedFrequency: true
Fpass: 0.133333333333333
Fstop: 0.166666666666667
Apass: 1
Astop: 60

```
Examples For the first example, create a lowpass filter and check whether the actual
filter meets the specifications. For this case, use normalized frequency for Fs,
the default setting.
d2=fdesign.lowpass('Fp,Fst,Ap,Ast', 0.45,0.55,0.1,80)
d2 \(=\)

> Response: 'Lowpass'
```

            Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
Fpass: 0.45
Fstop: 0.55
Apass: 0.1
Astop: 80
designmethods(d2)
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage
hd2=design(d2) % Use the default equiripple design method.
hd2 =
FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x68 double]
PersistentMemory: false
measure(hd2)
ans =
Sampling Frequency : N/A (normalized frequency)
Passband Edge : 0.45
3-dB Point : 0.47794
6-dB Point : 0.48909

```
```

    Stopband Edge : 0.55
    Passband Ripple : 0.09615 dB
    Stopband Atten. : 80.2907 dB
    Transition Width : 0.1
    ```

Stopband Edge, Passband Edge, Passband Ripple, and Stopband Atten. all meet the specifications.

Now, using Fs in linear frequency, create a bandpass filter and measure the magnitude response characteristics.
```

d=fdesign.bandpass
d =
Response: 'Bandpass'
Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
Description: {7x1 cell}
NormalizedFrequency: true
Fstop1: 0.35
Fpass1: 0.45
Fpass2: 0.55
Fstop2: 0.65
Astop1: 60
Apass: 1
Astop2: 60
normalizefreq(d,false,1.5e3) % Convert to linear freq.
hd=design(d,'cheby2');
measure(hd)
ans =
Sampling Frequency : 1.5 kHz
First Stopband Edge : 0.2625 kHz
First 6-dB Point : 0.31996 kHz
First 3-dB Point : 0.32497 kHz
First Passband Edge : 0.3375 kHz

```
```

Second Passband Edge : 0.4125 kHz
Second 3-dB Point : 0.42503 kHz
Second 6-dB Point : 0.43004 kHz
Second Stopband Edge : 0.4875 kHz
First Stopband Atten. : 60 dB
Passband Ripple : 0.17985 dB
Second Stopband Atten. : 60 dB
First Transition Width : 0.075 kHz
Second Transition Width : 0.075 kHz

```
measure (hd) returns the actual response values, in the units you chose. In this example, all frequencies appear in Hz because the sampling frequency is Hz .

\footnotetext{
See Also
design, fdesign, normalizefreq
}

Purpose Construct multirate filter object
Syntax \(\quad h m=m f i l t . s t r u c t u r e(i n p u t 1, i n p u t 2\),
Description \(\quad \mathrm{hm}=\) mfilt.structure (input1, input2,) returns the object hm of type structure. As with dfilt and adaptfilt objects, you must include the structure string to construct a multirate filter object. You can, however, construct a default multirate filter object of a given structure by not including input arguments in your calling syntax.

Multirate filters include decimators and interpolators, and fractional decimators and fractional interpolators, meaning the resulting interpolation or decimation factor is not an integer.

\section*{Structures}

Each of the following multirate filter structures has a reference page of its own.
\begin{tabular}{l|l}
\hline Filter Structure String & Description of Resulting Multirate Filter \\
\hline mfilt.cascade & \begin{tabular}{l}
Cascade multirate filters to form another \\
filter
\end{tabular} \\
\hline mfilt.cicdecim & Cascaded integrator-comb decimator \\
\hline mfilt.cicinterp & Cascaded integrator-comb interpolator \\
\hline mfilt.fftfirinterp & Overlap-add FIR polyphase interpolator \\
\hline mfilt.firdecim & Direct-form FIR polyphase decimator \\
\hline mfilt.firfracdecim & \begin{tabular}{l}
Direct-form FIR polyphase fractional \\
decimator
\end{tabular} \\
\hline mfilt.firfracinterp & \begin{tabular}{l}
Direct-form FIR polyphase fractional \\
interpolator
\end{tabular} \\
\hline mfilt.firinterp & Direct-form FIR polyphase interpolator \\
\hline mfilt.firsrc & \begin{tabular}{l}
Direct-form FIR polyphase sample rate \\
converter
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Filter Structure String & Description of Resulting Multirate Filter \\
\hline mfilt.firtdecim & \begin{tabular}{l}
Direct-form transposed FIR polyphase \\
decimator
\end{tabular} \\
\hline mfilt.holdinterp & FIR hold interpolator \\
\hline mfilt.iirdecim & IIR decimator \\
\hline mfilt.iirinterp & IIR interpolator \\
\hline mfilt.linearinterp & FIR Linear interpolator \\
\hline mfilt.iirwdfdecim & IIR wave digital filter decimator \\
\hline mfilt.iirwdfinterp & IIR wave digital filter interpolator \\
\hline
\end{tabular}

\section*{Copying mfilt Objects}

To create a copy of an mfilt object, use the copy method.
```

h2 = copy(hd)

```

Note The syntax hd2 = hd copies only the object handle. It does not create a new object. hd2 and hd are not independent. If you change the property value for one of the two, such as hd2, you are changing the property for both.

Create an FIR decimator that uses a decimation factor equal to three. In this case, the only input argument needed is m , the decimation factor. Other input arguments are available to you-refer to the reference page for the structure that interests you for more information.
```

m=3;
hm=mfilt.firdecim(m)
hm =

```
```

FilterStructure: 'Direct-Form FIR Polyphase Decimator'
Numerator: [1x73 double]
DecimationFactor: 3

```
```

NumberOfSamplesProcessed: 0
ResetStates: 'on'
States: [72x1 double]

```

To demonstrate a few of the methods that apply to multirate filters, here are two examples of using hm, your FIR decimator.

Use the Filter Visualization tool to review the magnitude response of your decimator.

Now check to see if your filter is stable.
```

isstable(hm)
ans =

```

Finally, pass a signal through the filter to see if it indeed decimates by three.
```

m = 3; % Decimation factor
hm = mfilt.firdecim(m); % We use the default filter
fs = 44.1e3; % Original sample freq: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long
% signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 5120 samples, still 0.232 seconds
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1kHz
hold on %Plot decimated signal (22.05kHz) in red
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```

Here is the stem plot that shows the result of the decimation process.

hm =
```

FilterStructure: 'Direct-Form FIR Polyphase Decimator'
Numerator: [1x73 double]
DecimationFactor: 3
PersistentMemory: 'on'
States: [72x1 double]

```

The filter processes 10239 samples with 1 unprocessed sample whose value is 0.8963 . One nonprocessed sample results from dividing the number of samples, 10240 , by the decimation factor, 3 , to get 3413 output samples and one left over.

\author{
See Also \\ mfilt.firfracdecim, mfilt.firfracinterp, mfilt.firinterp, mfilt.firsrc, mfilt.firtdecim
}

Purpose
Cascade dfilt and mfilt object(s) into filter
Syntax \(\quad h m=\operatorname{cascade}(h m 1, h m 2, \ldots, h m n)\)
Description

\section*{Examples}

Create a variety of mfilt objects and cascade them together.
```

```
hm(1) = mfilt.firdecim(12);
```

```
hm(1) = mfilt.firdecim(12);
hm(2) = mfilt.firdecim(4);
hm(2) = mfilt.firdecim(4);
h1 = mfilt.cascade(hm(1),hm(2));
h1 = mfilt.cascade(hm(1),hm(2));
hm(3) = mfilt.firinterp(4);
hm(3) = mfilt.firinterp(4);
hm(4) = mfilt.firinterp(12);
hm(4) = mfilt.firinterp(12);
h2 = mfilt.cascade(hm(3),hm(4));
```

```
h2 = mfilt.cascade(hm(3),hm(4));
```

```

Now cascade h1 and h2 together to get another multirate filter.

\section*{See Also}
hm = cascade (hm1,hm2, ...,hmn) creates filter object hm by cascading (connecting in series) the individual filter objects hm1, hm2, and so on to hmn.

In block diagram form, the cascade looks like this, with x as the input to the filter hm and y the output from the cascade filter hm :

```

h3 = mfilt.cascade(h1,h2,9600);

```
```

h3 = mfilt.cascade(h1,h2,9600);

```
dfilt.cascade in your Signal Processing Toolbox documentation

\section*{mfilt.cicdecim}

Purpose
Construct fixed-point cascaded integrator-comb (CIC) decimator filter object
\[
\text { Syntax } \quad h m=m f i l t . c i c d e c i m(r, m, n, i w l, o w l, w l p s)
\]

Description
hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps) returns a cascaded integrator-comb (CIC) decimation filter object. All of the input arguments are optional. When you omit one or more input options, the object applies default values for the omitted input argument as shown in the next table.

The following table describes the input arguments for creating hm.
\begin{tabular}{l|l}
\hline Input Arguments & Description \\
\hline\(r\) & \begin{tabular}{l}
Decimation factor applied to the input signal. \\
Sharpens the response curve to let you change \\
the shape of the response. Default value is 2.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l}
Differential delay. Changes both the shape and \\
number of nulls in the filter response. Also affects \\
the null locations. Increasing m increases the \\
number and sharpness of the nulls and response \\
between nulls. Generally, one or two work best as \\
values for m. Default is 1.
\end{tabular} \\
\hline n & \begin{tabular}{l}
Number of sections. Deepens the nulls in the \\
response curve. Note that this is the number of \\
either comb or integrator sections, not the total \\
section count. 2 is the default value.
\end{tabular} \\
\hline iwl & \begin{tabular}{l}
Word length of the input signal. Use any integer \\
number of bits. The default value is 16 bits.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{ll}\hline \text { Input Arguments } & \text { Description } \\
\hline \text { owl } & \begin{array}{l}\text { Word length of the output signal. It can be any } \\
\text { positive integer number of bits. By default, owl is } \\
16 \text { bits. }\end{array} \\
\hline \text { wlps } & \begin{array}{l}\text { Defines the number of bits per word in each filter } \\
\text { section while accumulating the data in the } \\
\text { integrator sections or while subtracting the data } \\
\text { during the comb sections (using 'wrap' } \\
\text { arithmetic). Enter wlps as a scalar or vector of } \\
\text { length } 2 * n, ~ w h e r e ~ \\
n\end{array} \\
\text { When wlps the number of sections. } \\
\text { to each filter section. The scalar value is applied } \\
\text { section in the decimator. is } 16 \text { for each }\end{array}\right]\)\begin{tabular}{l}
When you elect to specify wlps as an input \\
argument, the SectionWordLengthMode property \\
automatically switches from the default value of \\
MinWordLengths to SpecifyWordLengths.
\end{tabular}

\section*{Constraints and Word Length Considerations}

CIC decimators have the following constraint-the word lengths of the filter section must be monotonically decreasing. The word length of each filter section must be the same size as, or smaller than, the word length of the previous filter section.

The formula for \(B_{\max }\), the most significant bit at the filter output, is given in the Hogenauer paper in the References below.
\[
B_{\text {max }}=\left(N \log _{2} R M+B_{\text {in }}-1\right)
\]
where \(B_{\text {in }}\) is the number of bits of the input.
The cast operations shown in the diagram in "Algorithm" on page 8-859perform the changes between the word lengths of each section. When you specify word lengths that do not follow the constraints above, the constructor returns an error.

\section*{mfilt.cicdecim}

When you specify the word lengths correctly, the most significant bit \(B_{\max }\) stays the same throughout the filter, while the word length of each section either decreases or stays the same. This can cause the fraction length to change throughout the filter as least significant bits are truncated to decrease the word length, as shown in "Algorithm" on page 8-859.

\section*{Properties of the Object}

Objects have properties that control the way the object behaves. This table lists all the properties for the filter, with a description of each.
\begin{tabular}{ll|l|l}
\hline Name & Values & Default & Description \\
\hline Arithmetic & fixed & fixed & \begin{tabular}{l}
Reports the kind of \\
arithmetic the filter uses. \\
CIC decimators are \\
always fixed-point filters.
\end{tabular} \\
\hline DecimationFactor & Any positive integer & 2 & \begin{tabular}{l}
Amount to reduce the \\
input sampling rate.
\end{tabular} \\
\hline DifferentialDelay & Any integer & 1 & \begin{tabular}{l}
Sets the differential delay \\
for the filter. Usually a \\
value of one or two is \\
appropriate.
\end{tabular} \\
\hline FilterStructure & \begin{tabular}{l}
mfilt structure \\
string
\end{tabular} & None & \begin{tabular}{l}
Reports the type of filter \\
object. You cannot set this \\
property-it is always \\
read only and results \\
from your choice of mfilt \\
objects.
\end{tabular} \\
\hline FilterInternals & \begin{tabular}{l}
FullPrecision, \\
MinWordLengths, \\
SpecifyPrecision, \\
SpecifyWordLengths
\end{tabular} & FullPrecision & \begin{tabular}{l}
Set the usage mode for \\
the filter. Refer to "Usage \\
Modes" below for details.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline InputFracLength & Any positive integer & 15 & The number of bits applied to the fraction length to interpret the input data to the filter. \\
\hline InputOffset & \(0->r\). & 0 & Indicates the length of the output signal given the length of the input signal. InputOffset starts at zero and cycles through the phases as follows for each input sample:
\[
\begin{aligned}
& 0->r->(r-1)->(r-2)->(r-p)-> \\
& 0, \text { where } p=r-1
\end{aligned}
\] \\
\hline InputWordLength & Any positive integer & 16 & The number of bits applied to the word length to interpret the input data to the filter. \\
\hline NumberOfSections & Any positive integer & 2 & Number of sections used in the decimator. Generally called n. Reflects either the number of decimator or comb sections, not the total number of sections in the filter. \\
\hline OutputFracLength & Any positive integer & 15 & The number of bits applied to the fraction length to interpret the output data from the filter. Read-only. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline OutputWordLength & Any positive integer & 16 & The number of bits applied to the word length to interpret the output data from the filter. \\
\hline PersistentMemory & false or true & false & \begin{tabular}{l}
Determines whether the filter states get restored to their starting values for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it. PersistentMemory returns to zero any state that the filter changes during processing. States that the filter does not change are not affected. When PersistentMemory is false, you cannot access the filter states. Setting \\
PersistentMemory to true reveals the States property so you can modify the filter states.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline SectionWordLengths & Any integer or a vector of length \(2 *\) n. & 16 & Defines the bits per section used while accumulating the data in the integrator sections or while subtracting the data during the comb sections (using 'wrap' arithmetic). Enter SectionWordLengths as a scalar or vector of length \(2 * n\), where \(n\) is the number of sections. When SectionWordLengths is a scalar, the scalar value is applied to each filter section. When SectionWordLengths is a vector of values, the values apply to the sections in order. The default is 16 for each section in the decimator. Available when SectionWordLengthMode is SpecifyWordLengths. \\
\hline
\end{tabular}
\(\left.\begin{array}{llll}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { SectionWordLengthMode } & \begin{array}{l}\text { MinWordLengths or } \\ \text { SpecifyWordLengths }\end{array} & \text { MinWordLength } & \begin{array}{l}\text { Determines whether the } \\ \text { filter object sets the }\end{array} \\ & & & \begin{array}{l}\text { section word lengths or } \\ \text { you provide the word } \\ \text { lengths explicitly. By } \\ \text { default, the filter uses the } \\ \text { input and output word }\end{array} \\ & & & \begin{array}{l}\text { lengths in the command } \\ \text { to determine the optimal }\end{array} \\ & & & \text { word lengths for each } \\ \text { section, according to the } \\ \text { information in [1]. When }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline States & filtstates.cic object & \[
\begin{aligned}
& \text { m+1-by-n } \\
& \text { matrix of } \\
& \text { zeros, after you } \\
& \text { call function } \\
& \text { int. }
\end{aligned}
\] & Stored conditions for the filter, including values for the integrator and comb sections before and after filtering. \(m\) is the differential delay of the comb section and \(n\) is the number of sections in the filter. The integrator states are stored in the first matrix row. States for the comb section fill the remaining rows in the matrix. Available for modification when PersistentMemory is true. Refer to the filtstates object in the Signal Processing Toolbox for more general information about the filtstates object. \\
\hline
\end{tabular}

\section*{Usage Modes}

There are four modes of usage for this which are set using the FilterInternals property
- FullPrecision—All word and fraction lengths set to \(B_{\max }+1\), called \(B_{\text {accum }}\) by fred harris in [3]. Full Precision is the default setting.
- MinWordLengths—Automatically set the sections for minimum word lengths.
- SpecifyWordLengths-Specify the word lengths for each section.
- SpecifyPrecision-Specify precision by providing values for the word and fraction lengths for each section.

\section*{mfilt.cicdecim}

\section*{Full Precision}

In full precision mode, the word lengths of all sections and the output are set to \(B_{\text {accum }}\) as defined by
\(B_{\text {accum }}=\operatorname{ceil}\left(N_{\text {secs }}\left(\log _{2}(D \times M)\right)+\right.\) InputWordLength \()\)
where \(N_{\text {secs }}\) is the number of filter sections.
Section fraction lengths and the fraction length of the output are set to the input fraction length.

Here is the display looks for this mode.
```

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'FullPrecision'

```

\section*{Minimum Wordlengths}

In minimum word length mode, you control the output word length explicitly. When the output word length is less than \(B_{\text {accum }}\), roundoff noise is introduced at the output of the filter. Hogenauer's bit pruning theory (refer to [1]) states that one valid design criterion is to make the word lengths of the different sections of the filter smaller than \(B_{\text {accum }}\) as well, so that the roundoff noise introduced by all sections does not exceed the roundoff noise introduced at the output.

In this mode, the design calculates the word lengths of each section to meet the Hogenauer criterion. The algorithm subtracts the number of bits computed using eq. 21 in Hogenauer's paper from \(B_{\text {accum }}\) to determine the word length each section.

To compute the fraction lengths of the different sections, the algorithm notes that the bits thrown out for this word length criterion are least significant bits (LSB), therefore each bit thrown out at a particular section decrements the
frection length of that section by one bit compared to the input fraction length. Setting the output wordlength for the filter automatically sets the output fraction length as well.
Here is the display for this mode:
```

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'MinWordLengths'

```
OutputWordLength: 16

\section*{Specify word lengths}

In this mode, the design algorithm discards the LSBs, adjusting the fraction length so that unrecoverable overflow does not occur, always producing a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length \(2^{*}\) (NumberOfSections), where each vector element represents the word length for a section. If you specify a scalar, such as \(B_{\text {accum }}\), the full-precision output word length, the algorithm expands that scalar to a vector of the appropriate size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are monotonically decreasing. There are some cases where the word lengths are not necessarily monotonically decreasing, for example
```

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

```

\section*{mfilt.cicdecim}
which are valid CIC filters but the word lengths do not decrease monotonically across the sections.

Here is the display looks like for the SpecifyWordLenghts mode.
```

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'SpecifyWordLengths'
SectionWordLengths: [lllll}18\mathrm{ 18 17]
OutputWordLength: 16

```

\section*{Specify precision}

In this mode, you have full control over the word length and fraction lengths of all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length \(2 *\) (NumberOfSections) with elements that represent the word length for each section. When you enter a scalar such as \(B_{\text {accum }}\), mfilt. cicdecim expands that scalar to a vector of the appropriate size and applies the scalar value to each section and the output. The design does not check that this vector is monotonically decreasing.

Also, you must enter a vector of length \(2^{*}\) (NumberOfSections) with elements that represent the fraction length for each section as well. When you enter a scalar such as \(B_{\text {accum }}\), mfilt.cicdecim applies scalar expansion as done for the word lengths.

Here is the SpecifyPrecision display.
```

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1

```
NumberOfSections:
DecimationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'SpecifyPrecision'
SectionWordLengths: [191818 17]
SectionFracLengths: [14 1313 12]
OutputWordLength: 16
OutputFracLength: 11

\section*{About the States of the Filter}

In the states property you find the states for both the integrator and comb portions of the filter. states is a matrix of dimensions m+1-by-n, with the states apportioned as follows:
- States for the integrator portion of the filter are stored in the first row of the state matrix.
- States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, use int to assign the states to a variable in MATLAB. As an example, here are the states for a CIC decimator hm before and after filtering a data set.
```

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicdecim(2,1,2,16,16,16);
sts=int(hm.states)
sts =
0}
0
set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)

```

\section*{mfilt.cicdecim}
```

sts=int(hm.states)
sts =
10 45
28 13

```

STS is an integer matrix that int returns from the contents of the filtstates.cic object in `.

\section*{Design Considerations}

When you design your CIC decimation filter, remember the following general points:
- The filter output spectrum has nulls at \(\omega=k * 2 \pi / \mathrm{rm}\) radians, \(k=1,2,3 \ldots\).
- Aliasing and imaging occur in the vicinity of the nulls.
- \(n\), the number of sections in the filter, determines the passband attenuation. Increasing n improves the filter ability to reject aliasing and imaging, but it also increases the droop (or rolloff) in the filter passband. Using an appropriate FIR filter in series after the CIC decimation filter can help you compensate for the induced droop.
- The DC gain for the filter is a function of the decimation factor. Raising the decimation factor increases the DC gain.

Examples This example applies a decimation factor \(r\) equal to 8 to a 160-point impulse signal. The signal output from the filter has \(160 / r\), or 20 , points or samples. Choosing 10 bits for the word length represents a fairly common setting for analog to digital converters. The plot shown after the code presents the stem plot of the decimated signal, with 20 samples remaining after decimation:
```

m = 2; % Differential delays in the filter.
n = 4; % Filter sections
r = 8 % Decimation factor
x = int16(zeros(160,1)); x(1) = 1; % Create a 160-point
% impulse signal.
hm = mfilt.cicdecim(r,m,n); % Expects 16-bit input by default.
y = filter(hm,x);

```
```

    stem(double(y)); % Plot the output as ...
    % a stem plot.
    xlabel('Samples'); ylabel('Amplitude');
    title('Decimated Signal');

```


The next example demonstrates one way to compute the filter frequency response, using a 4 -section decimation filter with the decimation factor set to 7 :
```

hm = mfilt.cicdecim(7,1,4);
fvtool(hm)

```

FVTool provides ways for you to change the title and x labels to match the figure shown. Here's the frequency response plot for the filter. For details about the transfer function used to produce the frequency response, refer to [1] in the References section.

This final example demonstrates the decimator for converting from 44.1 kHz audio to 22.05 kHz -decimation by two. To overlay the before and after signals, scale the output and plot the signals on a stem plot.
```

r = 2; % Decimation factor.
hm = mfilt.cicdecim(r); % Use default NumberOfSections \&
% DifferentialDelay property values.
fs = 44.1e3; % Original sampling frequency: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n);% Original signal, sinusoid at 1kHz.
y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.
% Scale the output to overlay the stem plots.
x = double(x);
y = double(y_fi);

```
```

y = y/max(abs(y));
stem(n(1:44)/fs,x(2:45)); hold on; % Plot original signal
% sampled at 44.1kHz.
stem(n(1:22)/(fs/r),y(3:24),'r','filled'); % Plot decimated
% signal (22.05kHz)
% in red.
xlabel('Time (seconds)');ylabel('Signal Value');

```


\section*{Algorithm}

To show how the CIC decimation filter is constructed, the following figure presents a block diagram of the filter structure for a two-section CIC decimation filter \((\mathrm{n}=2)\). \(f s\) is the high sampling rate, the input to the decimation process.

For details about the bits that are removed in the Comb section, refer to [1] in References.

mfilt.cicdecim calculates the fraction length at each section of the decimator to avoid overflows at the output of the filter.

\section*{See Also}
mfilt, mfilt.cicinterp
References
[1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(2): pp. 155-162, 1981
[2] Meyer-Baese, Uwe, "Hogenauer CIC Filters," in Digital Signal Processing with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172
[3] harris, fredric j, Multirate Signal Processing for Communication Systems, Prentice-Hall PTR, 2004 , pp. 343

Purpose
Construct fixed-point cascaded integrator-comb (CIC) interpolator filter object
\[
\text { Syntax } \quad h m=\text { mfilt.cicinterp(r,m,n,ilw,owl,wlps) }
\]

Description
hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps) constructs a cascaded integrator-comb (CIC) interpolation filter object that uses fixed-point arithmetic. All of the input arguments are optional. When you omit one or more input options, the omitted option applies default values shown in the table below.

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Arguments & Description \\
\hline\(r\) & \begin{tabular}{l}
Interpolation factor applied to the input signal. \\
Sharpens the response curve to let you change \\
the shape of the response. 2 is the default value.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l}
Differential delay. Changes both the shape and \\
number of nulls in the filter response. Also affects \\
the null locations. Increasing m increases the \\
number and sharpness of the nulls and response \\
between nulls. Generally, one or two work as \\
values for m. 1 is the default.
\end{tabular} \\
\hline n & \begin{tabular}{l}
Number of sections. Deepens the nulls in the \\
response curve. Note that this is the number of \\
either comb or integrator sections, not the total \\
section count. By default, the filter has two \\
sections.
\end{tabular} \\
\hline iwl & \begin{tabular}{l}
Word length of the input signal. Use any integer \\
number of bits. The default value is 16 bits.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Arguments & Description \\
\hline owl & \begin{tabular}{l}
Word length of the output signal. It can be any \\
positive integer number of bits. By default, owl is \\
16 bits.
\end{tabular} \\
\hline wlps & \begin{tabular}{l}
Defines the number of bits per word in each filter \\
section while accumulating the data in the \\
integrator sections or while subtracting the data \\
during the comb sections (using 'wrap' \\
arithmetic). Enter wlps as a scalar or vector of \\
length 2*n, where \(n\) is the number of sections. \\
When wlps is a scalar, the scalar value is applied \\
to each filter section. The default is 16 for each \\
section in the integrator.
\end{tabular} \\
\begin{tabular}{l}
When you elect to specify wlps as an input \\
argument, the SectionWordLengthmode property \\
automatically switches from the default value of \\
MinWordLengths to SpecifyWordLengths.
\end{tabular} \\
\hline
\end{tabular}

\section*{Constraints and Conversions}

In Hogenauer [1], the author describes the constraints on CIC interpolator filters. mfilt.cicinterp enforces a constraint-the word lengths of the filter sections must be nondecreasing. That is, the word length of each filter section must be the same size as, or greater than, the word length of the previous filter section.

The formula for \(W_{j}\), the minimum register width, is derived in [1]. The formula for \(W_{j}\) is given by
\[
W_{j}=\operatorname{ceil}\left(B_{i n}+\log _{2} G_{j}\right)
\]
where \(G_{j}\), the maximum register growth up to the \(j\) th section, is given by
\[
G_{j}= \begin{cases}2^{j}, & j=1,2, \ldots, N \\ \frac{2^{2 N-j}(R M)^{j-N}}{R}, & j=N+1, \ldots, 2 N\end{cases}
\]

When the differential delay, \(M\), is 1 , there is also a special condition for the register width of the last comb, \(W_{N}\), that is given by
\[
W_{N}=B_{i n}+N-1 \quad \text { if } M=1
\]

The conversions denoted by the cast blocks in the integrator diagrams in "Algorithm" on page 8-874 perform the changes between the word lengths of each section. When you specify word lengths that do not follow the constraints described in this section, mfilt.cicinterp returns an error.

The fraction lengths and scalings of the filter sections do not change. At each section the word length is either staying the same or increasing. The signal scaling can change at the output after the final filter section if you choose the output word length to be less than the word length of the final filter section.

\section*{Properties of the Object}

Objects have properties that control the way the object behaves. This table lists all the properties for the filter, with a description of each.
\begin{tabular}{llll}
\hline Name & Values & Default & Description \\
\hline Arithmetic & fixed & fixed & \begin{tabular}{l}
Reports the kind of \\
arithmetic the filter uses. \\
CIC interpolators are \\
always fixed-point filters.
\end{tabular} \\
\hline InterpolationFactor & Any positive integer & 2 & \begin{tabular}{l}
Amount to increase the \\
input sampling rate.
\end{tabular} \\
\hline DifferentialDelay & Any integer & 1 & \begin{tabular}{l}
Sets the differential delay \\
for the filter. Usually \\
a value of one or two is \\
appropriate.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l}
\hline Name & Values & Default & Description \\
\hline FilterStructure & \begin{tabular}{l}
mfilt structure \\
string
\end{tabular} & None & \begin{tabular}{l}
Reports the type of filter \\
object, such as a \\
interpolator or fractional \\
integrator. You cannot set \\
this property-it is always \\
read only and results from \\
your choice of mfilt objects.
\end{tabular} \\
\hline FilterInternals & \begin{tabular}{l}
FullPrecision, \\
MinWordLengths, \\
SpecifyPrecision, \\
SpecifyWordLengths
\end{tabular} & FullPrecision & \begin{tabular}{l}
Set the usage mode for the \\
filter. Refer to "Usage \\
Modes" below for details.
\end{tabular} \\
\hline InputFracLength & Any positive integer & 16 & \begin{tabular}{l}
The number of bits applied \\
as the fraction length to
\end{tabular} \\
interpret the input data to \\
the filter.
\end{tabular}
\(\left.\begin{array}{llll}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { OutputWordLength } & \text { Any positive integer } & 16 & \begin{array}{l}\text { The number of bits applied } \\ \text { to the word length to } \\ \text { interpret the output data } \\ \text { from the filter. }\end{array} \\ \hline \text { PersistentMemory } & \text { false or true } & \text { false } & \begin{array}{l}\text { Determines whether the } \\ \text { filter states get restored to } \\ \text { their starting values for } \\ \text { each filtering operation. } \\ \text { The starting values are the }\end{array} \\ & & & \begin{array}{l}\text { values in place when you } \\ \text { create the filter if you have }\end{array} \\ \text { not changed the filter since }\end{array}\right\}\)
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline SectionWordLengths & Any integer or a vector of length \(2 *\) n. & 16 & Defines the bits per section used while accumulating the data in the integrator sections or while subtracting the data during the comb sections (using 'wrap' arithmetic). Enter SectionWordLengths as a scalar or vector of length \(2^{*} \mathrm{n}\), where n is the number of sections. When SectionWordLengths is a scalar, the scalar value is applied to each filter section. When SectionWordLengths is a vector of values, the values apply to the sections in order. The default is 16 for each section in the interpolator. Available when SectionWordLengthMode is SpecifyWordLengths. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Values & Default & Description \\
\hline SectionWordLengthMode & MinWordLengths, SpecifyWordLengths & MinWordLength & Determines whether the filter object sets the section word lengths or you provide the word lengths explicitly. By default, the filter uses the input and output word lengths in the command to determine the proper word lengths for each section, according to the information in [1]. When you choose SpecifyWordLengths, you provide the word length for each section. In addition, choosing SpecifyWordLengths exposes the SectionWordLengths property for you to modify as needed. \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{l|l|l|l}\hline \text { Name } & \text { Values } & \text { Default } & \text { Description } \\ \hline \text { States } & \begin{array}{l}\text { filtstates.cic } \\ \text { object }\end{array} & \begin{array}{l}\text { m+1-by-n matrix } \\ \text { of zeros, after } \\ \text { you call } \\ \text { function int. }\end{array} & \begin{array}{l}\text { Stored conditions for the } \\ \text { filter, including values for } \\ \text { the integrator and comb } \\ \text { sections before and after } \\ \text { filtering. } m \text { is the } \\ \text { differential delay of the } \\ \text { comb section and } n \text { is the } \\ \text { number of sections in the } \\ \text { filter. The integrator states } \\ \text { are stored in the first } \\ \text { matrix row. States for the }\end{array} \\ \text { comb section fill the } \\ \text { remaining rows in the } \\ \text { matrix. Available for }\end{array}\right] \begin{array}{l}\text { modification when }\end{array}\right\}\)

\section*{Usage Modes}

There are four modes of usage for this which are set using the FilterInternals property
- Fullprecision-All word and fraction lengths set to \(\mathrm{B}_{\max }+1\), called \(\mathrm{B}_{\text {accum }}\) by fred harris in [3]. Full Precision is the default setting.
- MinWordLengths—Automatically set the sections for minimum word lengths.
- SpecifyWordLengths-Specify the word lengths for each section.
- SpecifyPrecision-Specify precision by providing values for the word and fraction lengths for each section.

\section*{Full Precision}

In full precision mode, the word lengths of all sections and the output are set to \(B_{\text {accum }}\) as defined by
\(B_{\text {accum }}=\operatorname{ceil}\left(N_{\text {secs }}\left(\log _{2}(D \times M)\right)+\right.\) InputWordLength \()\)
where \(N_{\text {secs }}\) is the number of filter sections.
Section fraction lengths and the fraction length of the output are set to the input fraction length.

Here is the display looks for this mode.
```

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'FullPrecision'

```

\section*{Minimum Wordlengths}

In minimum word length mode, you control the output word length explicitly. When the output word length is less than \(B_{\text {accum }}\), roundoff noise is introduced at the output of the filter. Hogenauer's bit pruning theory (refer to [1]) states that one valid design criterion is to make the word lengths of the different sections of the filter smaller than \(B_{\text {accum }}\) as well, so that the roundoff noise introduced by all sections does not exceed the roundoff noise introduced at the output.

In this mode, the design calculates the word lengths of each section to meet the Hogenauer criterion. The algorithm subtracts the number of bits computed using eq. 21 in Hogenauer's paper from \(B_{\text {accum }}\) to determine the word length each section.

To compute the fraction lengths of the different sections, the algorithm notes that the bits thrown out for this word length criterion are least significant bits (LSB), therefore each bit thrown out at a particular section decrements the frection length of that section by one bit compared to the input fraction length. Setting the output wordlength for the filter automatically sets the output fraction length as well.

Here is the display for this mode:
```

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'MinWordLengths'
OutputWordLength: 16

```

\section*{Specify wordlengths}

In this mode, the design algorith discards the LSBs, adjusting the fraction length so that unrecoverable overflow does not occur, always producing a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length
\(2^{*}\) (NumberOfSections), where each vector element represents the word length for a section. If you specify a scalar, such as \(B_{\text {accum }}\), the full-precision output word length, the algorithm expands that scalar to a vector of the appropriate size, applying the scalar value to each section.
The CIC design does not check that the specified word lengths are monotonically decreasing. There are some cases where the word lengths are not necessarily monotonically decreasing, for example
```

hcic=mfilt.cicinterp;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

```
which are valid CIC filters but the word lengths do not decrease monotonically across the sections.

Here is the display looks like for the SpecifyWordLengths mode.
```

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'SpecifyWordLengths'
SectionWordLengths: [19 18 18 17]
OutputWordLength: 16

```

\section*{Specify precision}

In this mode, you have full control over the word length and fraction lengths of all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length \(2^{*}\) (NumberOfSections) with elements that represent the word length for each section. When you enter a scalar such as \(B_{\text {accum }}\), mfilt.cicinterp expands that scalar to a vector of the appropriate size and applies the scalar value to each section and the output. The design does not check that this vector is monotonically decreasing.

Also, you must enter a vector of length \(2^{*}\) (NumberOfSections) with elements that represent the fraction length for each section as well. When you enter a scalar such as \(B_{\text {accum }}\), mfilt.cicinterp applies scalar expansion as done for the word lengths.

Here is the SpecifyPrecision display.
```

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

```
InputWordLength: 16
InputFracLength: 15
FilterInternals: 'SpecifyPrecision'
SectionWordLengths: [19 1818 17]
SectionFracLengths: [14 1313 12]
OutputWordLength: 16
OutputFracLength: 11

\section*{About the States of the Filter}

In the states property you find the states for both the integrator and comb portions of the filter. states is a matrix of dimensions \(\mathrm{m}+1\)-by- n , with the states apportioned as follows:
- States for the integrator portion of the filter are stored in the first row of the state matrix.
- States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, or any filter object states, use int to assign the states to a variable in MATLAB. As an example, here are the states for a CIC interpolator hm before and after filtering a data set.
```

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicinterp(2,1,2,16,16,16);
sts=int(hm.states)
sts =
0
0}
set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)
sts=int(hm.states)
sts =

```

\section*{Design Considerations}

When you design your CIC interpolation filter, remember the following general points:
- The filter output spectrum has nulls at \(\omega=k * 2 \pi / \mathrm{rm}\) radians, \(k=1,2,3 \ldots\)
- Aliasing and imaging occur in the vicinity of the nulls.
- \(n\), the number of sections in the filter, determines the passband attenuation. Increasing n improves the filter ability to reject aliasing and imaging, but it also increases the droop or rolloff in the filter passband. Using an appropriate FIR filter in series after the CIC interpolation filter can help you compensate for the induced droop.
- The DC gain for the filter is a function of the interpolation factor. Raising the interpolation factor increases the DC gain.

\section*{Examples}

Demonstrate interpolation by a factor of two, in this case from 22.05 kHz to 44.1 kHz . Note the scaling required to see the results in the stem plot and to use the full range of the int16 data type.
```

R = 2; % Interpolation factor.
hm = mfilt.cicinterp(R); % Use default NumberOfSections and
% DifferentialDelay property values.
fs = 22.05e3; % Original sample frequency:22.05 kHz.
n = 0:5119; % 5120 samples, . }232\mathrm{ second long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz.
y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.
% Scale the output to overlay stem plots correctly.
x = double(x);
y = double(y_fi);
y = y/max(abs(y));
stem(n(1:22)/fs,x(1:22),'filled'); % Plot original signal sampled
% at 22.05 kHz.
hold on;
stem(n(1:44)/(fs*R),y(4:47),'r'); % Plot interpolated signal
% (44.1 kHz) in red.

```
```

xlabel('Time (sec)');ylabel('Signal Value');

```

As you expect, the plot shows that the interpolated signal matches the input sine shape, with additional samples between each original sample.

Use the filter visualization tool (FVTool) to plot the response of the interpolator object. For example, to plot the response of an interpolator with an interpolation factor of 7,4 sections, and 1 differential delay, do something like the following:
```

hm = mfilt.cicinterp(7,1,4)
fvtool(hm)

```

Algorithm
To show how the CIC interpolation filter is constructed, the following figure presents a block diagram of the filter structure for a two-section CIC
interpolation filter \((\mathrm{n}=2) . f s\) is the high sampling rate, the output from the interpolation process.

For details about the bits that are removed in the integrator section, refer to [1] in References.

OutputFormat: [OutWL inFL+ (OutWL-WLPS (2N))]

When you select MinWordLengths, the filter section word lengths are automatically set to the minimum number of bits possible in a valid CIC interpolator. mfilt.cicinterp computes the wordlength for each section so the roundoff noise introduced by all sections is less than the roundoff noise introduced by the quantization at the output.

\section*{References}
[1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-29(2): pp. 155-162, 1981
[2] Meyer-Baese, Uwe, "Hogenauer CIC Filters," in Digital Signal Processing with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172
[3] harris, fredric j, Multirate Signal Processing for Communication Systems, Prentice-Hall PTR, 2004 , pp. 343

Purpose Construct an overlap-add FIR polyphase interpolator filter object
```

Syntax hm = mfilt.fftfirinterp(l,num,bl)

```

Description
hm = mfilt.fftfirinterp(l, num, bl) returns a discrete-time FIR filter object that uses the overlap-add method for filtering input data.

The number of FFT points is given by [bl+ceil(length(num)/l)-1]. It is to your advantage to choose bl such that the number of FFT points is a power of two-using powers of two can improve the efficiency of the FFT and the associated interpolation process.

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l}
Interpolation factor for the filter. l specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for l it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l}
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, fftfirinterp uses a lowpass Nyquist \\
filter with gain equal to l and cutoff frequency equal to \\
\(\pi / l\) by default.
\end{tabular} \\
\hline bl & \begin{tabular}{l}
Length of each block of input data used in the filtering. \\
bl must be an integer. When you omit input bl, it \\
defaults to 100
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.ffffirinterp Object Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for
creating mfilt.fftfirinterp objects. The next table describes each property for an mfilt.fftfirinterp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterStructure & \begin{tabular}{l}
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline Numerator & \begin{tabular}{l}
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for interpolation.
\end{tabular} \\
\hline InterpolationFactor & & \begin{tabular}{l}
Interpolation factor for the filter. \\
It specifies the amount to \\
increase the input sampling \\
rate. It must be an integer.
\end{tabular} \\
\hline BlockLength & \begin{tabular}{l}
Length of each block of input \\
data used in the filtering.
\end{tabular} \\
\hline PersistentMemory & \begin{tabular}{l}
false or \\
true
\end{tabular} & \begin{tabular}{l}
Determines whether the filter \\
states are restored to their \\
starting values for each filtering \\
operation. The starting values \\
are the values in place when you \\
create the filter if you have not \\
changed the filter since you \\
constructed it. \\
PersistentMemory returns to \\
zero any state that the filter \\
changes during processing. \\
States that the filter does not \\
change are not affected.
\end{tabular} \\
\hline States & & \begin{tabular}{l}
Stored conditions for the filter, \\
including values for the \\
interpolator states.
\end{tabular} \\
\hline & & \\
\hline
\end{tabular}

Examples
Interpolation by a factor of 8 . Notice that this object removes the spectral replicas in the signal after interpolation.
```

l = 8; % Interpolation factor
hm = mfilt.fftfirinterp(l); % We use the default filter
n = 8192; % Number of points
hm.blocklength = n; % Set block length to number of points
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:n-1; %0.1858 secs of data
x = sin(2*pi*n*22e3/fs); %Original signal, sinusoid at 22 kHz
y = filter(hm,x); % Interpolated sinusoid
xu = l*upsample(x,8); % Upsample to compare--the spectrum
% does not change
[px,f]=periodogram(xu,[],65536,1*fs);% Power spectrum of original
% signal
[py,f]=periodogram(y,[],65536,l*fs); % Power spectrum of
% interpolated signal
plot(f,10*log10(([fs*px,l*fs*py])))
legend('22 kHz sinusoid sampled at 44.1 kHz',...
'22 kHz sinusoid sampled at 352.8 kHz')
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');

```

To see the results of the example, look at this figure.

See Also
mfilt.firinterp, mfilt.holdinterp, mfilt.linearinterp, mfilt.firfracinterp, mfilt.cicinterp

\section*{mfilt.firdecim}

Purpose Construct direct-form FIR polyphase decimator filter
Syntax \(\quad\)\begin{tabular}{rl}
\(h m\) & \(=m f i l t . f i r d e c i m\) \\
\((m)\) \\
\(h m\) & \(=\) mfilt.firdecim(m,num)
\end{tabular}

Description
\(\mathrm{hm}=\mathrm{mfilt} . \mathrm{firdecim}(\mathrm{m})\) returns a direct-form FIR polyphase decimator object hm with a decimation factor of m . A lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / \mathrm{m}\) is designed by default. This filter allows some aliasing in the transition band but it very efficient because the first polyphase component is a pure delay.
hm = mfilt.firdecim(m, num) uses the coefficients specified by num for the decimation filter. This lets you specify more completely the FIR filter to use for the decimator.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm, 'arithmetic','single');
- To change to fixed-point filtering, enter set(hm, 'arithmetic','fixed');

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline m & \begin{tabular}{l}
Decimation factor for the filter. m specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for m it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l}
Vector containing the coefficients of the FIR lowpass \\
filter used for decimation. When num is not provided as \\
an input, mfilt.firdecim constructs a lowpass Nyquist \\
filter with gain of 1 and cutoff frequency equal to \(\pi / \mathrm{m}\) \\
by default. The default length for the Nyquist filter is \\
24*m. Therefore, each polyphase filter component has \\
length 24.
\end{tabular}
\end{tabular}

\section*{Object Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firdecim objects. The next table describes each property for an mfilt.firdecim filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l}
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l}
Defines the arithmetic the filter \\
uses. Gives you the options \\
double, single, and fixed. In \\
short, this property defines the \\
operation mode for your filter.
\end{tabular} \\
\hline DecimationFactor & Integer & \begin{tabular}{l}
Decimation factor for the filter. \\
m specifies the amount to reduce \\
the sampling rate of the input \\
signal. It must be an integer.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterStructure } & \text { String } & \begin{array}{l}\text { Reports the type of filter object. } \\ \text { You cannot set this property-it } \\ \text { is always read only and results } \\ \text { from your choice of mfilt object. } \\ \text { Describes the signal flow for the } \\ \text { filter object. }\end{array} \\ \hline \text { InputOffset } & \text { Integers } & \begin{array}{l}\text { Contains a value derived from } \\ \text { the number of input samples } \\ \text { and the decimation factor- } \\ \text { InputOffset = mod (length(nx), m) } \\ \text { where nx is the number of input } \\ \text { samples that have been } \\ \text { processed so far and mis the } \\ \text { decimation factor. }\end{array} \\ \hline \text { Numerator } & \text { Vector } & \begin{array}{l}\text { Vector containing the } \\ \text { coefficients of the FIR lowpass } \\ \text { filter used for decimation. }\end{array} \\ \hline \text { PersistentMemory } & \text { false, true } & \begin{array}{l}\text { Determines whether the filter } \\ \text { states get restored to zeros for } \\ \text { each filtering operation. The } \\ \text { starting values are the values in } \\ \text { place when you create the filter } \\ \text { if you have not changed the filter } \\ \text { since you constructed it. }\end{array} \\ \text { PersistentMemory set to false } \\ \text { returns filter states to the } \\ \text { default values after filtering. }\end{array}\right\} \begin{array}{l}\text { States that the filter does not } \\ \text { change are not affected. Setting } \\ \text { this to true allows you to modify } \\ \text { the States, InputOffset, and } \\ \text { PolyphaseAccum properties. }\end{array}\right\}\)
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { PolyphaseAccum } & \begin{array}{l}\text { in } \\ \text { double, } \\ \text { single, or } \\ \text { fixed for }\end{array} & \begin{array}{l}\text { Differentiates between the } \\ \text { adders in the filter that work in } \\ \text { full precision at all times } \\ \text { (PolyphaseAccum) and the } \\ \text { adders in the filter that the user }\end{array} \\ & \text { the } & \begin{array}{l}\text { controls and that may introduce }\end{array} \\ & \text { different } \\ & \text { filter } \\ \text { arithmetic } & \text { quantization effects when } \\ & \text { Filter Internals is set to }\end{array}\right\}\)

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the filter. You see one or more of these properties when you set Arithmetic to fixed. Notice that some of the properties have different default values when they refer fixed point filters. One example is the property PolyphaseAccum which stores data as doubles when you use your filter in double-precision mode, but stores a fi object in fixed-point mode.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

\section*{mfilt.firdecim}

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 7-117.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[32]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length used to \\
interpret data output by the accumulator. \\
This is a property of FIR filters.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l}
Any integer \\
number of bits [39]
\end{tabular} & \begin{tabular}{l}
Sets the word length used to store data in \\
the accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l}
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l}
Setting this to fixed allows you to modify \\
other filter properties to customize your \\
fixed-point filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l}
Specifies whether the filter automatically \\
chooses the proper fraction length to \\
represent filter coefficients without \\
overflowing. Turning this off by setting the \\
value to false enables you to change the \\
NumFracLength property value to specify the \\
precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterInternals } & \begin{array}{l}\text { [FullPrecision], } \\ \text { SpecifyPrecision }\end{array} & \begin{array}{l}\text { Controls whether the filter automatically } \\ \text { sets the output word and fraction lengths, } \\ \text { product word and fraction lengths, and the } \\ \text { accumulator word and fraction lengths to } \\ \text { maintain the best precision results during }\end{array} \\ \text { filtering. The default value, FullPrecision, } \\ \text { sets automatic word and fraction length } \\ \text { determination by the filter. } \\ \text { SpecifyPrecision makes the output and } \\ \text { accumulator-related properties available so } \\ \text { you can set your own word and fraction } \\ \text { lengths for them. }\end{array}\right\}\)

\section*{mfilt.firdecim}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l}
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose \\
from either saturate (limit the output to the \\
largest positive or negative representable \\
value) or wrap (set overflowing values to the \\
nearest representable value using modular \\
arithmetic.) The choice you make affects \\
only the accumulator and output arithmetic. \\
Coefficient and input arithmetic always \\
saturates. Finally, products never overflow- \\
they maintain full precision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline RoundMode & \begin{tabular}{l}
[convergent], \\
ceil,fix,floor, \\
round
\end{tabular} & \begin{tabular}{l}
Sets the mode the filter uses to quantize \\
numeric values when the values lie between \\
representable values for the data format \\
(word and fraction lengths).
\end{tabular} \\
& & \begin{tabular}{l}
- convergent-Round up to the next \\
allowable quantized value.
\end{tabular} \\
& & \begin{tabular}{l}
ceil—Round to the nearest allowable \\
quantized value. Numbers that are exactly \\
halfway between the two nearest allowable
\end{tabular} \\
& & \begin{tabular}{l}
quantized values are rounded up only if \\
the least significant bit (after rounding)
\end{tabular} \\
would be set to 1.
\end{tabular}

\section*{mfilt.firdecim}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline [true], false & \begin{tabular}{l}
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & fi object & \begin{tabular}{l}
This property contains the filter states \\
before, during, and after filter operations. \\
States act as filter memory between filtering \\
runs or sessions. Notice that the states use \\
fi objects, with the associated properties \\
from those objects. For details, refer to \\
fixed-point objects in your Fixed-Point \\
Toolbox documentation or in the online Help \\
system. For information about the ordering \\
of the states, refer to the filter structure \\
section.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure To provide decimation, mfilt.firdecim uses the following structure. At the input you see a commutator that operates counterclockwise, moving from position 0 to position 2, position 1 , and back to position 0 as input samples enter the filter.

The figure below details the signal flow for the direct form FIR filter implemented by mfilt.firdecim.

Notice the order of the states in the filter flow diagram. States 1 through 9 appear in the diagram above each delay element. State 1 applies to the first delay element in phase 2 . State 2 applies to the first delay element in phase 1. State 3 applies to the first delay element in phase 0 . State 4 applies to the second delay in phase 2, and so on. When you provide the states for the filter as a vector to the States property, the above description explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are
```

hm.states=[1:9];

```

\section*{Examples}

Convert an input signal from 44.1 kHz to 22.05 kHz using decimation by a factor of 2 . In the figure that appears after the example code, you see the results of the decimation.
```

m = 2;
% Decimation factor.
hm = mfilt.firdecim(m); % Use the default filter.
fs = 44.1e3; % Original sample freq: 44.1kHz.
n = 0:10239; % 10240 samples, 0.232 second long
% signal.

```

\section*{mfilt.firdecim}
```

x = sin(2*pi*1e3/fs*n); %Original signal--sinusoid at 1kHz.
y = filter(hm,x);
stem(n(1:44)/fs,x(1:44))
hold on
% 5120 samples, 0.232 seconds.
% Plot original sampled at 44.1 kHz.
% Plot decimated signal (22.05 kHz)
% in red.
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```


\footnotetext{
See Also
mfilt.firtdecim, mfilt.firfracdecim, mfilt.cicdecim
}

Purpose
Construct direct-form FIR polyphase fractional decimator filter object
Syntax \(\quad h m=\) mfilt.firfracdecim(l, m, num \()\)
Description
hm = mfilt.firfracdecim(l,m,num) returns a direct-form FIR polyphase fractional decimator. Input argument \(l\) is the interpolation factor. 1 must be an integer. When you omit \(l\) in the calling syntax, it defaults to \(2 . \mathrm{m}\) is the decimation factor. It must be an integer. If not specified, it defaults to \(l+1\).
num is a vector containing the coefficients of the FIR lowpass filter used for decimation. If omitted, a lowpass Nyquist filter of gain l and cutoff frequency of \(\pi / \max (\mathrm{l}, \mathrm{m})\) is used by default.

By specifying both a decimation factor and an interpolation factor, you can decimate your input signal by noninteger amounts. The fractional decimator first interpolates the input, then decimates to result in an output signal whose sample rate is \(1 / \mathrm{m}\) of the input rate. By default, the resulting decimation factor is \(3 / 2\) when you do not provide 1 and \(m\) in the calling syntax. Specify 1 smaller than \(m\) for proper decimation.

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l}
Interpolation factor for the filter. It must be an integer. \\
When you do not specify a value for 1 it defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l}
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, firfracdecim uses a lowpass Nyquist \\
filter with gain equal to \(l\) and cutoff frequency equal to \\
\(\pi /\) max \((1, m)\) by default.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l}
Decimation factor for the filter. \(m\) specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for \(m\) it \\
defaults to \(l+1\).
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firfracdecim Object Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firfracdecim objects. The next table describes each property for an mfilt.firfracdecim filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterStructure & String & \begin{tabular}{l}
Reports the type of filter object, \\
such as a decimator or fractional \\
decimator. You cannot set this \\
property-it is always read only \\
and results from your choice of \\
mfilt object.
\end{tabular} \\
\hline Numerator & Vector & \begin{tabular}{l}
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for interpolation.
\end{tabular} \\
\hline RateChangeFactors & {\([1, \mathrm{~m}]\)} & \begin{tabular}{l}
Reports the decimation (m) and \\
interpolation (l) factors for the \\
filter object. Combining these \\
factors results in the final rate \\
change for the signal.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \begin{array}{l}\text { Description } \\ \hline \text { PersistentMemory } \\ \\ \text { false or } \\ \text { true }\end{array} \\ \begin{array}{l}\text { Determines whether the filter } \\ \text { states are restored to their } \\ \text { starting values for each filtering } \\ \text { operation. The starting values } \\ \text { are the values in place when you } \\ \text { create the filter if you have not } \\ \text { changed the filter since you } \\ \text { constructed it. } \\ \text { PersistentMemory returns to } \\ \text { zero any state that the filter } \\ \text { changes during processing. } \\ \text { States that the filter does not } \\ \text { change are not affected. }\end{array} \\ \hline \text { States } & & \begin{array}{l}\text { Stored conditions for the delays } \\ \text { between each interpolator } \\ \text { phase, the filter states, and the }\end{array} \\ \text { states at the output of each } \\ \text { phase in the filter. }\end{array}\right\}\)

\section*{mfilt.firfracdecim}

\section*{Example}

To demonstrate firfracdecim, perform a fractional decimation by a factor of \(2 / 3\). This is one way to downsample a 48 kHz signal to 32 kHz , commonly done in audio processing.
```

l = 2; m = 3; % Interpolation/decimation factors.
hm = mfilt.firfracdecim(l,m); % We use the default
fs = 48e3; % Original sample freq: 48 kHz.
n = 0:10239; % 10240 samples, 0.213 second long
% signal
x = sin(2*pi*1e3/fs*n); %Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 9408 samples, still 0.213 seconds
stem(n(1:49)/fs,x(1:49)); hold on; % Plot original signal sampled
% at 48 kHz
stem(n(1:32)/(fs*l/m),y(13:44),'r','filled') % Plot decimated
% signal at 32 kHz
xlabel('Time (sec)');

```

As shown, the plot clearly demonstrates the reduced sampling frequency of 32 kHz .

See Also mfilt.firsrc, mfilt.firfracinterp, mfilt.firinterp, mfilt.firdecim
References
Fliege, N.J., Multirate Digital Signal Processing, John Wiley \& Sons, Ltd., 1994

\title{
Purpose Construct direct-form FIR polyphase fractional interpolator filter object
}
```

Syntax hm = mfilt.firfracinterp(l,m,num)

```

Description
hm = mfilt.firfracinterp(l,m,num) returns a direct-form FIR polyphase fractional interpolator mfilt object. \(l\) is the interpolation factor. It must be an integer. If not specified, 1 defaults to 3 .
\(m\) is the decimation factor. Like 1 , it must be an integer. If you do not specify \(m\) in the calling syntax, it defaults to 1 . If you also do not specify a value for \(1, m\) defaults to 2 .
num is a vector containing the coefficients of the FIR lowpass filter used for interpolation. If omitted, a lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / \max (1, m)\) is used by default.

By specifying both a decimation factor and an interpolation factor, you can interpolate your input signal by noninteger amounts. The fractional interpolator first interpolates the input, then decimates to result in an output signal whose sample rate is \(1 / \mathrm{m}\) of the input rate. For proper interpolation, you specify \(l\) to be greater than m . By default, the resulting interpolation factor is \(3 / 2\) when you do not provide 1 and \(m\) in the calling syntax.

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l}
Interpolation factor for the filter. 1 specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1 it \\
defaults to 3.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline num & \begin{tabular}{l}
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an innut, firffracinterp uses a lowpass Nyquist \\
filter with gain equal to 1 and cutoff frequency equal to \\
\(\pi /\) max(\(1, m)\) by default.
\end{tabular} \\
\(m\) & \begin{tabular}{l}
Decimation factor for the filter. \(m\) specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for \(m\) it \\
defaults to 1. When you do not specify 1 as well, \(m\) \\
defaults to 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firfracinterp Object Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firfracinterp objects. The next table describes each property for an mfilt.firfracinterp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterStructure & \begin{tabular}{l}
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline Numerator & \begin{tabular}{l}
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for interpolation.
\end{tabular} \\
\hline RateChangeFactors & {\([1, \mathrm{~m}]\)} & \begin{tabular}{l}
Reports the decimation (m) and \\
interpolation (l) factors for the \\
filter object. Combining these \\
factors results in the final rate \\
change for the signal.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline PersistentMemory & \begin{tabular}{l}
false or \\
true
\end{tabular} & \begin{tabular}{l}
Determines whether the filter \\
states are restored to their \\
starting values for each filtering \\
operation. The starting values \\
are the values in place when you \\
create the filter if you have not \\
changed the filter since you \\
constructed it. \\
PersistentMemory returns to \\
the default values any state that \\
the filter changes during \\
processing. States that the filter \\
does not change are not affected.
\end{tabular} \\
\hline States & Matrix & \begin{tabular}{l}
Stored conditions for the filter, \\
including values for the \\
interpolator and comb states.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

To convert a signal from 32 kHz to 48 kHz requires fractional interpolation. This example uses the mfilt.firfracinterp object to upsample an input signal. Setting \(l=3\) and \(m=2\) returns the same mfilt object as the default mfilt.firfracinterp object.
```

l = 3; m = 2; % Interpolation/decimation factors.
hm = mfilt.firfracinterp(l,m); % We use the default filter
fs = 32e3; % Original sample freq: 32 kHz.
n = 0:6799; %6800 samples, 0.212 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10200 samples, still 0.212 seconds
stem(n(1:32)/fs,x(1:32),'filled') % Plot original sampled at
% 32 kHz
hold on;
% Plot fractionally interpolated signal (48 kHz) in red
stem(n(1:48)/(fs*l/m),y(20:67),'r')
xlabel('Time (sec)');ylabel('Signal Value')

```

Having the ability to interpolate by fractional amounts lets us raise the sampling rate from 32 to 48 kHz , something you cannot do with integral interpolators. Both signals appear in the following figure.

See Also mfilt.firsrc,mfilt.firfracdecim, mfilt.firinterp,mfilt.firdecim

Purpose Construct FIR filter-based interpolator
Syntax \(\quad\)\begin{tabular}{rl}
hm & \(=\) mfilt.firinterp(l) \\
& hm
\end{tabular}\(=\) mfilt.firinterp(l, num)

Description \(\quad \mathrm{hm}=\mathrm{mfilt}\).firinterp(l) returns an FIR-based interpolator object hm with an interpolation factor of 1 . A lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / l\) is the default if you do not include 1 as an input.
hm = mfilt.firinterp(l, num) uses the coefficients specified by num for the numerator coefficients of the interpolation filter.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm, 'arithmetic','fixed');

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{l|l}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l}
Interpolation factor for the filter. l specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for l it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l}
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, firinterp uses a lowpass Nyquist filter \\
with gain equal to l and cutoff frequency equal to \(\pi / 1\) \\
by default. The default length for the Nyquist filter is \\
\(24^{*}\). Therefore, each polyphase filter component has \\
length 24.
\end{tabular} \\
\hline
\end{tabular}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firinterp objects. The next table describes each property for an mfilt.firinterp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l}
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l}
Defines the arithmetic the filter \\
uses. Gives you the options \\
double, single, and fixed. In \\
short, this property defines the \\
operation mode for your filter.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l}
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InterpolationFactor & Integer & \begin{tabular}{l}
Describes the signal flow for the \\
filter object.
\end{tabular} \\
\hline \begin{tabular}{l}
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the sampling rate of the \\
input signal. It must be an \\
integer.
\end{tabular} \\
\hline Numerator & Vector & \begin{tabular}{l}
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for decimation.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline PersistentMemory & [false],
true & \begin{tabular}{l}
Determines whether the filter states get restored to zeros for each filtering operation. The starting values are the values in place when you create the filter if you have not changed the filter since you constructed it. \\
PersistentMemory set to false returns filter states to the default values after filtering. States that the filter does not change are not affected. Setting this to true allows you to modify the States property.
\end{tabular} \\
\hline States & Double, single, matching the filter arithmetic setting. & Contains the filter states before, during, and after filter operations. States act as filter memory between filtering runs or sessions. \\
\hline
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.firinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 7-117.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits. \\
[32]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length used to interpret \\
data output by the accumulator. This is a \\
property of FIR filters and lattice filters. IIR \\
filters have two similar properties- \\
DenAccumFracLength and \\
NumAccumFracLength-that let you set the \\
precision for numerator and denominator \\
operations separately.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l}
Any integer \\
number of bits[39]
\end{tabular} & \begin{tabular}{l}
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l}
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l}
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l}
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l}
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l}
Controls whether the filter automatically sets \\
the output word and fraction lengths, product \\
word and fraction lengths, and the accumulator \\
word and fraction lengths to maintain the best \\
precision results during filtering. The default \\
value, FullPrecision, sets automatic word and \\
fraction length determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so you \\
can set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l}
Sets the fraction length used to interpret the \\
numerator coefficients.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[32]
\end{tabular} & \begin{tabular}{l}
Determines how the filter interprets the filter \\
output data. You can change the value of \\
OutputFracLength when you set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline OutputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[39]
\end{tabular} & \begin{tabular}{l}
Determines the word length used for the output \\
data. You make this property editable by setting \\
Filter Internals to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l}
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow-they maintain full \\
precision.
\end{tabular}
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline RoundMode & \begin{tabular}{l}
[convergent], \\
ceil,fix,floor, \\
round
\end{tabular} & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric \\
values when the values lie between \\
representable values for the data format (word \\
and fraction lengths).
\end{tabular} \\
& & \begin{tabular}{l}
- convergent-Round up to the next allowable \\
quantized value.
\end{tabular} \\
& & \begin{tabular}{l}
- ceil-Round to the nearest allowable \\
quantized value. Numbers that are exactly
\end{tabular} \\
& & \begin{tabular}{l}
halfway between the two nearest allowable \\
quantized values are rounded up only if the
\end{tabular} \\
least significant bit (after rounding) would be \\
set to 1.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline [true], false & \begin{tabular}{l}
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l}
fi object to match \\
the filter \\
arithmetic setting.
\end{tabular} & \begin{tabular}{l}
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure To provide interpolation, mfilt.firinterp uses the following structure.
The figure below details the signal flow for the direct form FIR filter implemented by mfilt. firinterp. In the figure, the delay line updates happen at the lower input rate. The remainder of the filter- the sums and coefficients-operate at the higher output rate.

Examples
This example uses mfilt.firinterp to double the sample rate of a 22.05 kHz input signal. The output signal ends up at 44.1 kHz . Although 1 is set explicitly to 2 , this represents the default interpolation value for mfilt.firinterp objects.
```

l = 2;
hm = mfilt.firinterp(l); % Use the default filter.
% Interpolation factor.
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; %5120 samples, 0.232s long signal.
x = sin(2*pi*1e3/fs*n); %Original signal, sinusoid at 1 kHz.
y = filter(hm,x); % 10240 samples, still 0.232s.
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
% 22.05 kHz.
hold on;

```
```

% Plot interpolated signal (44.1 kHz) in red
stem(n(1:44)/(fs*l),y(25:68),'r')
xlabel('Time (sec)');ylabel('Signal Value')

```

With interpolation by 2 , the resulting signal perfectly matches the original, but with twice as many samples-one between each original sample, as shown in the following figure.

See Also mfilt.holdinterp, mfilt.linearinterp, mfilt.fftfirinterp,

\title{
Purpose Construct direct-form FIR polyphase sample rate converters
}
\[
\text { Syntax } \quad h m=m f i l t . f i r s r c(l, m, n u m)
\]

Description
hm = mfilt.firsrc(l,m,num) returns a direct-form FIR polyphase sample rate converter. l specifies the interpolation factor. It must be an integer and when omitted in the calling syntax, it defaults to 2 .
\(m\) is the decimation factor. It must be an integer. If not specified, \(m\) defaults to 1 . If 1 is also not specified, \(m\) defaults to 3 and the overall rate change factor is \(2 / 3\).

You specify the coefficients of the FIR lowpass filter used for sample rate conversion in num. If omitted, a lowpass Nyquist filter with gain 1 and cutoff frequency of \(\pi / \max (1, \mathrm{~m})\) is the default.

Combining an interpolation factor and a decimation factor lets you use mfilt.firsrc to perform fractional interpolation or decimation on an input signal. Using an mfilt.firsrc object applies a rate change factor defined by \(\mathrm{l} / \mathrm{m}\) to the input signal. For proper rate changing to occur, 1 and m must be relatively prime-meaning the ratio \(1 / m\) cannot be reduced to a ratio of smaller integers.

When you are doing sample-rate conversion with large values of 1 or m , such as \(l\) or m greater than 20 , using the mfilt.firsrc structure is the most effective approach. Other possible fractional rate change structures, such as mfilt.firfracinterp (where l>m) or mfilt.firfracdecim (where l<m) may have prohibitively large memory requirements for applications that require large rate changes.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter set(hm, 'arithmetic','single');
- To change to fixed-point filtering, enter set(hm, 'arithmetic', 'fixed');

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline l & \begin{tabular}{l}
Interpolation factor for the filter. l specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1, it \\
defaults to 2.
\end{tabular} \\
\hline num & \begin{tabular}{l}
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, mfilt.firsrc uses a lowpass Nyquist \\
filter with gain equal to l and cutoff frequency equal to \\
\(\pi /\) max (l, \(m\)) by default. The default length for the
\end{tabular} \\
\hline \begin{tabular}{l}
Nyquist filter is \(24^{*}\). Therefore, each polyphase filter \\
component has length 24.
\end{tabular} \\
\hline \begin{tabular}{l}
Decimation factor for the filter. \(m\) specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for \(m\), it \\
defaults to 1. When 1 is unspecified as well, \(m\) defaults \\
to 3.
\end{tabular}
\end{tabular}

\section*{Object Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firsrc objects. The next table describes each property for an mfilt.firsrc filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l}
[Double], \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l}
Defines the arithmetic the filter \\
uses. Gives you the options \\
double, single, and fixed. In \\
short, this property defines the \\
operation mode for your filter.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l}
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object. \\
Describes the signal flow for the \\
filter object.
\end{tabular} \\
\hline InputOffset & Integers & \begin{tabular}{l}
Contains a value derived from \\
the number of input samples \\
and the decimation factor- \\
InputOffset = mod (length(nx),m) \\
where nx is the number of input \\
samples and m is the decimation \\
factor.
\end{tabular} \\
\hline Numerator & Vector & \begin{tabular}{l}
Vector containing the \\
coefficients of the FIR lowpass \\
filter used for decimation.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{lll}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { PersistentMemory } & \text { false, true } & \begin{array}{l}\text { Determines whether the filter } \\ \text { states get restored to zeros for } \\ \text { each filtering operation. The } \\ \text { starting values are the values in } \\ \text { place when you create the filter } \\ \text { if you have not changed the filter } \\ \text { since you constructed it. } \\ \text { PersistentMemory set to false } \\ \text { returns filter states to the } \\ \text { default values after filtering. } \\ \text { States that the filter does not } \\ \text { change are not affected. Setting } \\ \text { this to true allows you to modify }\end{array} \\ \text { the States, Input0ffset, and } \\ \text { PolyphaseAccum properties. }\end{array}\right]\)

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.firsrc filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 7-117.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits. \\
[32]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length used to interpret \\
data output by the accumulator. This is a \\
property of FIR filters.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l}
Any integer \\
number of bits [39]
\end{tabular} & \begin{tabular}{l}
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l}
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l}
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l}
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l}
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l}
Controls whether the filter automatically sets \\
the output word and fraction lengths, product \\
word and fraction lengths, and the accumulator \\
word and fraction lengths to maintain the best \\
precision results during filtering. The default \\
value, FullPrecision, sets automatic word and \\
fraction length determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so you \\
can set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l}
Sets the fraction length used to interpret the \\
numerator coefficients.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[32]
\end{tabular} & \begin{tabular}{l}
Determines how the filter interprets the filter \\
output data. You can change the value of \\
OutputFracLength when you set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline OutputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[39]
\end{tabular} & \begin{tabular}{l}
Determines the word length used for the output \\
data. You make this property editable by setting \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firsrc}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l}
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow—they maintain full \\
precision.
\end{tabular} \\
\hline RateChangeFactors & \begin{tabular}{l}
Positive integers \\
{\([23]\)}
\end{tabular} & \begin{tabular}{l}
Specifies the interpolation and decimation \\
factors [l m] (the rate change factors) for \\
changing the input sample rate by nonintegral \\
amounts.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline RoundMode & [convergent], ceil,fix,floor, round & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). \\
- convergent-Round up to the next allowable quantized value. \\
- ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1. \\
- fix-Round negative numbers up and positive numbers down to the next allowable quantized value. \\
- floor-Round down to the next allowable quantized value. \\
- round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. \\
The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Signed & ftrue], false & \begin{tabular}{l}
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & fibject & \begin{tabular}{l}
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system. For information about the \\
ordering of the states, refer to the filter structure \\
section.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

This is an example of a common audio rate change process-changing the sample rate of a high end audio (48 kHz) signal to the compact disc sample rate (44.1 kHz). This conversion requires a rate change factor of 0.91875 , or \(\mathrm{l}=147\) and \(\mathrm{m}=160\).
```

l = 147; m = 160; % Interpolation/decimation factors.
hm = mfilt.firsrc(l,m); % Use the default FIR filter.
fs = 48e3; % Original sample freq: 48 kHz.
n = 0:10239; % 10240 samples, 0.213 seconds long.
x = sin(2*pi*1e3/fs*n); %Original signal, sinusoid at 1 kHz.
y = filter(hm,x); %9408 samples, still 0.213 seconds.
stem(n(1:49)/fs,x(1:49)) % Plot original sampled at 48 kHz.
hold on
% Plot fractionally decimated signal (44.1 kHz) in red
stem(n(1:45)/(fs*l/m),y(13:57),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```

Fractional decimation provides you the flexibility to pick and choose the sample rates you want by carefully selecting 1 and m , the interpolation and decimation factors, that result in the final fractional decimation. The following figure shows the signal after applying the rate change filter hm to the original signal.

See Also
mfilt.firfracinterp, mfilt.firfracdecim, mfilt.firinterp, mfilt.firdecim

\section*{mfilt.firtdecim}

Purpose Construct direct-form transposed FIR filter
Syntax \(\quad\)\begin{tabular}{rl}
hm & \(=\) mfilt.firtdecim(m) \\
hm & \(=\) mfilt.firtdecim(m,num)
\end{tabular}

Description
\(\mathrm{hm}=\mathrm{mfilt} . f i r t d e c i m(\mathrm{~m})\) returns a polyphase decimator mfilt object hm based on a direct-form transposed FIR structure with a decimation factor of \(m\). A lowpass Nyquist filter of gain 1 and cutoff frequency of \(\pi / \mathrm{m}\) is the default.
\(h m=m f i l t . f i r t d e c i m(m, n u m)\) uses the coefficients specified by num for the decimation filter. num is a vector containing the coefficients of the transposed FIR lowpass filter used for decimation. If omitted, a lowpass Nyquist filter with gain of 1 and cutoff frequency of \(\pi / \mathrm{m}\) is the default.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm, 'arithmetic','fixed');

\section*{Input Arguments}

The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline num & \begin{tabular}{l}
Vector containing the coefficients of the FIR lowpass \\
filter used for interpolation. When num is not provided \\
as an input, firtdecim uses a lowpass Nyquist filter \\
with gain equal to l and cutoff frequency equal to \(\pi / \mathrm{m}\) \\
by default. The default length for the Nyquist filter is \\
\(24^{*} \mathrm{~m}\). Therefore, each polyphase filter component has \\
length 24.
\end{tabular} \\
\hline\(m\) & \begin{tabular}{l}
Decimation factor for the filter. m specifies the amount \\
to reduce the sampling rate of the input signal. It must \\
be an integer. When you do not specify a value for m it \\
defaults to 2.
\end{tabular} \\
\hline
\end{tabular}

\section*{Object Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.firtdecim objects. The next table describes each property for an mfilt.firtdecim filter object.
\begin{tabular}{lll}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l}
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l}
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline DecimationFactor & Integer & \begin{tabular}{l}
Decimation factor for the filter. \\
m specifies the amount to reduce \\
the sampling rate of the input \\
signal. It must be an integer.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firtdecim}
\(\left.\begin{array}{l|l|l}\hline \text { Name } & \text { Values } & \text { Description } \\ \hline \text { FilterStructure } & \text { String } & \begin{array}{l}\text { Reports the type of filter object. } \\ \text { You cannot set this property-it } \\ \text { is always read only and results } \\ \text { from your choice of mfilt object. } \\ \text { Also describes the signal flow for } \\ \text { the filter object. }\end{array} \\ \hline \text { InputOffset } & \text { Integers } & \begin{array}{l}\text { Contains a value derived from } \\ \text { the number of input samples } \\ \text { and the decimation factor- } \\ \text { InputOffset = mod (length(nx), m) } \\ \text { where nx is the number of input } \\ \text { samples that have been } \\ \text { processed so far and mis the } \\ \text { decimation factor. }\end{array} \\ \hline \text { Numerator } & \text { Vector } & \begin{array}{l}\text { Vector containing the } \\ \text { coefficients of the FIR lowpass } \\ \text { filter used for decimation. }\end{array} \\ \hline \text { PersistentMemory } & \text { [false], } & \begin{array}{l}\text { Determines whether the filter } \\ \text { states get restored to zeros for } \\ \text { each filtering operation. The } \\ \text { starting values are the values in } \\ \text { place when you create the filter } \\ \text { if you have not changed the filter } \\ \text { since you constructed it. }\end{array} \\ \text { PersistentMemory set to false } \\ \text { returns filter states to the } \\ \text { default values after filtering. } \\ \text { States that the filter does not } \\ \text { change are not affected. Setting } \\ \text { this to true allows you to modify } \\ \text { the States, InputOffset, and } \\ \text { PolyphaseAccum properties. }\end{array}\right\}\)
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline PolyphaseAccum & \begin{tabular}{l}
Double, \\
single [0]
\end{tabular} & \begin{tabular}{l}
The idea behind having both \\
PolyphaseAccum and Accum is to \\
differentiate between the adders \\
in the filter that work in full \\
precision at all times \\
(PolyphaseAccum) from the \\
adders in the filter that the user \\
controls and that may introduce \\
quantization effects when \\
FilterInternals is set to \\
SpecifyPrecision.
\end{tabular} \\
\hline States & Double, & \begin{tabular}{l}
Contains the filter states before, \\
during, and after filter
\end{tabular} \\
operations. States act as filter \\
single \\
matching \\
the filter \\
arithmetic \\
setting.
\end{tabular}\(\quad\)\begin{tabular}{l}
or sessions.
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.firtdecim filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

\section*{mfilt.firtdecim}

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 7-117.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits. \\
[32]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length used to interpret \\
data output by the accumulator. This is a \\
property of FIR filters and lattice filters. IIR \\
filters have two similar properties- \\
DenAccumFracLength and NumAccumFracLength- \\
that let you set the precision for numerator and \\
denominator operations separately.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l}
Any integer \\
number of bits [39]
\end{tabular} & \begin{tabular}{l}
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l}
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l}
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l}
Specifies whether the filter automatically \\
chooses the proper fraction length to represent
\end{tabular} \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l}
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l}
Controls whether the filter automatically sets \\
the output word and fraction lengths, product \\
word and fraction lengths, and the accumulator \\
word and fraction lengths to maintain the best \\
precision results during filtering. The default \\
value, FullPrecision, sets automatic word and \\
fraction length determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so you \\
can set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l}
Sets the fraction length used to interpret the \\
numerator coefficients.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[32]
\end{tabular} & \begin{tabular}{l}
Determines how the filter interprets the filter \\
output data. You can change the value of \\
OutputFracLength when you set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline OutputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[39]
\end{tabular} & \begin{tabular}{l}
Determines the word length used for the output \\
data. You make this property editable by setting \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firtdecim}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l}
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.)) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow-they maintain full \\
precision.
\end{tabular} \\
\hline PolyphaseAccum & \begin{tabular}{l}
fi object with zeros \\
to start
\end{tabular} & \begin{tabular}{l}
Differentiates between the adders in the filter \\
that work in full precision at all times \\
(PolyphaseAccum) and the adders in the filter \\
that the user controls and that may introduce \\
quantization effects when FilterInternals is \\
set to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline RoundMode & [convergent], ceil,fix,floor, round & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). \\
- convergent-Round up to the next allowable quantized value. \\
- ceil—Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1. \\
- fix-Round negative numbers up and positive numbers down to the next allowable quantized value. \\
- floor-Round down to the next allowable quantized value. \\
- round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. \\
The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.firtdecim}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Signed & ftrue], false & \begin{tabular}{l}
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l}
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system. For information about the \\
ordering of the states, refer to the filter structure \\
section.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure To provide sample rate changes, mfilt.firtdecim uses the following structure. At the input you see a commutator that operates counterclockwise, moving from position 0 to position 2, position 1, and back to position 0 as input samples enter the filter. To keep track of the position of the commutator, the mfilt object uses the property InputOffset which reports the current position of the commutator in the filter.

The figure below details the signal flow for the direct form FIR filter implemented by mfilt.firtdecim.

Notice the order of the states in the filter flow diagram. States 1 through 3 appear in the diagram below each delay element. State 1 applies to the third delay element in phase 2 . State 2 applies to the second delay element in phase 2 . State 3 applies to the first delay element in phase 2 . When you provide the states for the filter as a vector to the States property, the above description explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are
```

hm.states=[1:3];

```

\section*{Examples}

Demonstrate decimating an input signal by a factor of 2 , in this case converting from 44.1 kHz down to 22.05 kHz . In the figure shown following the code, you see the results of decimating the signal.
```

m = 2; % Decimation factor.
hm = mfilt.firtdecim(m); % Use the default filter coeffs.
fs = 44.1e3; % Original sample freq: 44.1 kHz.
n = 0:10239; % 10240 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1 kHz.
y = filter(hm,x); % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz.
hold on % Plot decimated signal (22.05 kHz) in red

```

\section*{mfilt.firtdecim}
```

stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

```


\section*{See Also}
mfilt.firdecim, mfilt.firfracdecim, mfilt.cicdecim

\section*{Purpose \\ Construct FIR hold interpolator}

Syntax \(\quad\) hm = mfilt. holdinterp(l)
Description
\(\mathrm{hm}=\mathrm{mfilt} . \mathrm{holdinterp}(\mathrm{l})\) returns the object hm that represents a hold interpolator with the interpolation factor 1 . To work, 1 must be an integer. When you do not include 1 in the calling syntax, it defaults to 2 . To perform interpolation by noninteger amounts, use one of the fractional interpolator objects, such as mfilt.firsrc or mfilt.firfracinterp.

When you use this hold interpolator, each sample added to the input signal between existing samples has the value of the most recent sample from the original signal. Thus you see something like a staircase profile where the interpolated samples form a plateau between the previous and next original samples. The example demonstrates this profile clearly. Compare this to the interpolation process for other interpolators in the toolbox, such as mfilt.linearinterp.

Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm, 'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');
Input Arguments
The following table describes the input arguments for creating hm.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l}
Interpolation factor for the filter. 1 specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1 it \\
defaults to 2.
\end{tabular}
\end{tabular}

\section*{Object \\ Properties}

This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt. holdinterp objects. The next table describes each property for an mfilt.interp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l}
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l}
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l}
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InterpolationFactor & Integer & \begin{tabular}{l}
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the input sampling \\
rate. It must be an integer.
\end{tabular} \\
\hline PersistentMemory & 'false' or & \begin{tabular}{l}
Determines whether the filter \\
states are restored to zero for \\
each filtering operation.
\end{tabular} \\
\hline 'true' & \begin{tabular}{l}
Double or \\
single \\
array
\end{tabular} & \begin{tabular}{l}
Filter states. states defaults to \\
a vector of zeros that has length \\
equal to nstates(hm). Always \\
available, but visible in the \\
display only when \\
PersistentMemory is true.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.holdinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 7-117.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l}
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l}
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l}
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l}
Any \\
positive or \\
negative \\
integer \\
number of \\
bits [15]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length the \\
filter uses to interpret input \\
data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l}
Any \\
integer
\end{tabular} & \begin{tabular}{l}
Specifies the word length \\
numplied to interpret input data. \\
nits [16]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline InterpolationFactor & Integer & \begin{tabular}{l}
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the input sampling \\
rate. It must be an integer.
\end{tabular} \\
\hline PersistentMemory & 'false' or \\
States & 'true' & \begin{tabular}{l}
Determine whether the filter \\
states get restored to zero for \\
each filtering operation
\end{tabular} \\
\hline & fi object & \begin{tabular}{l}
Contains the filter states before, \\
during, and after filter \\
operations. For hold \\
interpolators, the states are \\
always empty-hold \\
interpolators do not have states. \\
Notice that the states use fi \\
objects, with the associated \\
properties from those objects. \\
For details, refer to fixed-point \\
objects in your Fixed-Point \\
Toolbox documentation or in the \\
online Help system.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure Hold interpolators do not have structures or filter coefficients.
Examples To see the effects of hold-based interpolation, interpolate an input sine wave from 22.05 to 44.1 kHz . Note that each added sample retains the value of the most recent original sample.
```

l = 2; % Interpolation factor
hm = mfilt.holdinterp(l);
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; %5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
%22.05 kHz

```
```

hold on
% Plot interpolated signal (44.1 kHz)
in red
stem(n(1:44)/(fs*l),y(1:44),'r')
xlabel('Time (sec)');ylabel('Signal Value')

```

The following figure shows clearly the step nature of the signal that comes from interpolating the signal using the hold algorithm approach. Compare the output to the linear interpolation used in mfilt. linearinterp.

\footnotetext{
See Also
mfilt.linearinterp, mfilt.firinterp, mfilt.firfracinterp, mfilt.cicinterp
}

Purpose
Construct IIR decimator filter object

\section*{Syntax}

Description

\section*{Examples}

Design an elliptic halfband decimator with a decimation factor of 2 . Notice that the example specifies the optional sampling frequency argument.
```

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 80; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

```
\(d\) contains the specifications for a decimator defined by \(t w, ~ a s t, m\), and \(f s\).
Use the specification object d to perform an actual filter design. hm is an mfilt.iirdecim filter object.
```

hm = design(d,'ellip','filterstructure','iirdecim');
realizemdl(hm) % Requires Simulink to build model for filter.

```

Designing a linear phase decimator is similar to the previous example. In this case, design a halfband linear phase decimator with decimation factor of 2.
```

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 60; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
m = 2; % Decimation factor.

```

Create a specification object for the decimator.
```

d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

```

Finally, design the actual filter hm. As designed, hm is an mfilt.iirdecim filter object.
```

hm = design(d,'iirlinphase','filterstructure','iirdecim');
realizemdl(hm) % Requires Simulink to visualize the structure.

```

The filter implementation appears in this model, generated by realizemdl and Simulink.

Given the design specifications shown here
```

hm =
FilterStructure: 'IIR Polyphase Decimator'
Polyphase: Phase1: Section1: [0 0 0 0 0 0 0 0 0 O O O O 0 1]
Phase2: Section1: [1.14740498857167 0.409481636102326]
$\left.\left.\left.\begin{array}{lll}\text { Section2: } & {[0.751016281415127} & 0.36048597074495\end{array}\right]\right\}\right]$ Section3: $\left[\begin{array}{lll}0.272921271612044 & 0.343931116911137\end{array}\right]$
DecimationFactor:2
PersistentMemory: false

```
the first phase is a delay section with 0 s and a 1 for coefficients and the second phase is a linear phase decimator, shown in the next models.

\section*{mfilt.iirdecim}

\section*{Phase 1 model}

Phase 2 model

\section*{Overall model}

\section*{See Also}
dfilt.cascadeallpass, mfilt, mfilt.iirinterp, mfilt.iirwdfdecim

Purpose
Construct IIR interpolator filter object

\section*{Syntax}

Description
hm = mfilt.iirinterp(c1,c2,...)
hm = mfilt.iirinterp(c1,c2,...) constructs an IIR interpolator filter given the coefficients specified in the cell arrays C1, C2, etc.

The IIR interpolator is a polyphase IIR filter where each phase is a cascade allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass sections. Each element in one cell array is one section. For more information about the contents of each cell array, refer to dfilt.cascadeallpass. The contents of the cell arrays are the same for both filter constructors and mfilt.iirdecim interprets them same way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell array-if one of the cell arrays ci contains only one vector, and that vector comprises a series of 0 s and a unique element equal to 1 , that cell array represents a dfilt. delay section with latency equal to the number of zeros, rather than a dfilt.cascadeallpass section. This exception case occurs with quasi-linear phase IIR interpolators.

Usually you do not construct IIR interpolators explicitly. Instead, you obtain an IIR interpolator filter as a result of designing a halfband interpolator. The first example below illustrates this case.

Design an elliptic halfband interpolator with a interpolation factor of 2 .
```

tw = 100; % Transition width of filter to design, 100 hz.
ast = 80; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

```

Specification object d stores the interpolator design specifics. With the details in d, design the filter, returning hm, an mfilt.iirinterp object. Use hm to realize the filter if you have Simulink installed.
```

hm = design(d,'ellip','filterstructure','iirinterp');
realizemdl(hm) % Requires Simulink to build model for filter.

```

Designing a linear phase halfband interpolator follows the same pattern.
```

tw = 100; % Transition width of filter to design, 100 Hz.
ast= 60; % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of filter.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

```
fdesign.interpolator returns a specification object that stores the design features for an interpolator.

Now perform the actual design that results in an mfilt.iirinterp filter, hm.
```

hm = design(d,'iirlinphase','filterstructure','iirinterp');
realizemdl(hm)

```

The toolbox creates a Simulink model for hm, shown here. Phase1, Phase2, and InterpCommutator are all subsystem blocks.

See Also dfilt.cascadeallpass, mfilt, mfilt.iirdecim, mfilt.iirwdfinterp

Purpose
Construct IIR wave digital filter decimator object

\section*{Syntax}

Description
hm = mfilt.iirwdfdecim(c1, c2,...)
hm = mfilt.iirwdfdecim(c1, c2, ...) constructs an IIR wave digital
decimator given the coefficients specified in the cell arrays c1, c2, and so on. The IIR decimator hm is a polyphase IIR filter where each phase is a cascade wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass sections. Each element in one cell array is one section. For more information about the contents of each cell array, refer to dfilt.cascadewdfallpass. The contents of the cell arrays are the same for both filter constructors and mfilt.iirwdfdecim interprets them same way as mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell array-if one of the cell arrays ci contains only one vector, and that vector comprises a series of 0 s and one element equal to 1 , that cell array represents a dfilt. delay section with latency equal to the number of zeros, rather than a dfilt.cascadewdfallpass section. This exception occurs with quasi-linear phase IIR decimators.

Usually you do not construct IIR wave digital filter decimators explicitly. Instead, you obtain an IIR wave digital filter decimator as a result of designing a halfband decimator. The first example below illustrates this case.

Design an elliptic halfband decimator with a decimation factor equal to 2 . Both examples use the iirwdfdecim filter structure (an input argument to the design method) to design the final decimator.

The first portion of this example generates a filter specification object \(d\) that stores the specifications for the decimator.
```

tw = 100; % Transition width of filter to design, 100 Hz.
ast = 80; % Stopband attenuation of filter 80 dB.
fs = 2000; % Sampling frequency of the input signal.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

```

Now perform the actual design using d. Filter object hm is an mfilt.iirwdfdecim filter.
```

Hm = design(d,'ellip','FilterStructure','iirwdfdecim');
realizemdl(hm) % Requires Simulink to build and visualize the
structure.

```

Design a linear phase halfband decimator for decimating a signal by a factor of 2 .
```

tw = 100; % Transition width of filter, 100 Hz.
ast = 60; % Filter stopband attenuation = 80 dB
fs = 2000; % Input signal sampling frequency.
m = 2; % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

```

Use \(d\) to design the final filter hm, an mfilt.iirwdfdecim object.
```

hm = design(d,'iirlinphase','filterstructure','iirwdfdecim');
realizemdl(hm) % Requires Simulink to be able to build model.

```

The models that realizemdl returns for each example appear below. At this level, the realizations of the filters are identical. The differences appear in the subsystem blocks Phase1 and Phase2.

\section*{mfilt.iirwdfdecim}

This is the Phase 1 subsystem from the halfband model.

Phase1 subsystem from the linear phase model is less revealing-an allpass filter.

\section*{mfilt.iirwdfdecim}

See Also
dfilt.cascadewdfallpass, mfilt, mfilt.iirdecim, mfilt.iirwdfinterp

\section*{Purpose}

Construct IIR wave digital interpolator filter
Syntax
Description

\section*{Examples}
\(\mathrm{hm}=\) iirwdfinterp(c1,c2,...)
hm = mfilt.iirwdfinterp(c1, c2, ...) constructs an IIR wave digital etc.
hm = mfilt.iirwdfinterp(c1,c2,...) constructs an IIR wave digital wave digital allpass IIR filter. contents of the cell arrays are the same for both filter constructors and mfilt.iirwdfinterp interprets them same way as mfilt.cascadewdfallpass. a series of 0 s and one element equal to 1 , that cell array represents phase IIR interpolators. a halfband interpolator. The first example below illustrates this case.
interpolator filter given the coefficients specified in the cell arrays \(\mathrm{C} 1, \mathrm{C} 2\), interpolator given the coefficients specified in the cell arrays \(\mathrm{c} 1, \mathrm{c} 2\), and so on. The IIR interpolator hm is a polyphase IIR filter where each phase is a cascade

Each cell array ci contains a set of vectors representing a cascade of allpass sections. Each element in one cell array is one section. For more information about the contents of each cell array, refer to dfilt.cascadewdfallpass. The

The following exception applies to interpreting the contents of a cell array-if one of the cell arrays ci contains only one vector, and that vector comprises a dfilt.delay section with latency equal to the number of zeros, rather than a dfilt.cascadewdfallpass section. This exception occurs with quasi-linear

Usually you do not construct IIR wave digital filter interpolators explicitly. Rather, you obtain an IIR wave digital interpolator as a result of designing

Design an elliptic halfband interpolator with interpolation factor equal to 2. At the end of the design process, hm is an IIR wave digital filter interpolator.
```

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency of signal after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

```

\section*{mfilt.iirwdfinterp}

The specification object d stores the interpolator design requirements. Now use \(d\) to design the actual filter hm.
```

hm = design(d,'ellip','filterstructure','iirwdfinterp');

```

If you have Simulink installed, you can realize your filter as a model built from blocks in the Signal Processing Blockset.
```

realizemdl(hm) % Requires Simulink to build model for filter.

```

For variety, design a linear phase halfband interpolator with an interpolation factor of 2 .
```

tw = 100; % Transition width of filter, 100 Hz.
ast = 80; % Stopband attenuation of filter, 80 dB.
fs = 2000; % Sampling frequency of signal after interpolation.
l = 2; % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

```

Now perform the actual design process with d. Filter hm is an IIR wave digital filter interpolator. As in the previous example, realizemdl returns a Simulink model of the filter if you have Simulink installed.
```

hm = design(d,'iirlinphase','filterstructure','iirwdfinterp');
realizemdl(hm) % Requires Simulink to visualize the signal flow.

```

See Also
dfilt.cascadewdfallpass, mfilt.iirinterp, mfilt.iirwdfdecim

\section*{Purpose \\ Construct linear interpolator filter}

Syntax \(\quad\) hm = mfilt.linearinterp(l)
Description
hm = mfilt.linearinterp(l) returns an FIR linear interpolator hm with an integer interpolation factor 1 . Provide \(l\) as a positive integer. The default value for the interpolation factor is 2 when you do not include the input argument 1.

When you use this linear interpolator, the samples added to the input signal have values between the values of adjacent samples in the original signal. Thus you see something like a smooth profile where the interpolated samples continue a line between the previous and next original samples. The example demonstrates this smooth profile clearly. Compare this to the interpolation process for mfilt. holdinterp, which creates a stairstep profile.
Make this filter a fixed-point or single-precision filter by changing the value of the Arithmetic property for the filter hm as follows:
- To change to single-precision filtering, enter
set(hm,'arithmetic','single');
- To change to fixed-point filtering, enter
set(hm, 'arithmetic','fixed');

\section*{Input Arguments}

The following table describes the input argument for mfilt.linearinterp.
\begin{tabular}{ll}
\hline Input Argument & Description \\
\hline 1 & \begin{tabular}{l}
Interpolation factor for the filter. 1 specifies the \\
amount to increase the input sampling rate. It must be \\
an integer. When you do not specify a value for 1 it \\
defaults to 2.
\end{tabular}
\end{tabular}

Object
Properties
This section describes the properties for both floating-point filters (double-precision and single-precision) and fixed-point filters.

\section*{Floating-Point Filter Properties}

Every multirate filter object has properties that govern the way it behaves when you use it. Note that many of the properties are also input arguments for creating mfilt.linearinterp objects. The next table describes each property for an mfilt.linearinterp filter object.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Arithmetic & \begin{tabular}{l}
Double, \\
single, \\
fixed
\end{tabular} & \begin{tabular}{l}
Specifies the arithmetic the \\
filter uses to process data while \\
filtering.
\end{tabular} \\
\hline FilterStructure & String & \begin{tabular}{l}
Reports the type of filter object. \\
You cannot set this property-it \\
is always read only and results \\
from your choice of mfilt object.
\end{tabular} \\
\hline InterpolationFactor & Integer & \begin{tabular}{l}
Interpolation factor for the filter. \\
l specifies the amount to \\
increase the input sampling \\
rate. It must be an integer.
\end{tabular} \\
\hline PersistentMemory & \begin{tabular}{l}
'false' or \\
'true'
\end{tabular} & \begin{tabular}{l}
Determine whether the filter \\
states get restored to zero for \\
each filtering operation
\end{tabular} \\
\hline States & \begin{tabular}{l}
Double or \\
single \\
array
\end{tabular} & \begin{tabular}{l}
Filter states. states defaults to \\
a vector of zeros that has length \\
equal to nstates(hm). Always \\
available, but visible in the \\
display only when \\
PersistentMemory is true.
\end{tabular} \\
\hline
\end{tabular}

\section*{Fixed-Point Filter Properties}

This table shows the properties associated with the fixed-point implementation of the mfilt.holdinterp filter.

Note The table lists all of the properties that a fixed-point filter can have. Many of the properties listed are dynamic, meaning they exist only in response to the settings of other properties.

To view all of the characteristics for a filter at any time, use info(hm)
where hm is a filter.

For further information about the properties of this filter or any mfilt object, refer to "Multirate Filter Properties" on page 7-117.
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline AccumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits. \\
Depends on L. \\
[29 when L=2]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length used to interpret \\
data output by the accumulator.
\end{tabular} \\
\hline AccumWordLength & \begin{tabular}{l}
Any integer \\
number of bits [33]
\end{tabular} & \begin{tabular}{l}
Sets the word length used to store data in the \\
accumulator.
\end{tabular} \\
\hline Arithmetic & \begin{tabular}{l}
fixed for \\
fixed-point filters
\end{tabular} & \begin{tabular}{l}
Setting this to fixed allows you to modify other \\
filter properties to customize your fixed-point \\
filter.
\end{tabular} \\
\hline CoeffAutoScale & [true], false & \begin{tabular}{l}
Specifies whether the filter automatically \\
chooses the proper fraction length to represent \\
filter coefficients without overflowing. Turning \\
this off by setting the value to false enables you \\
to change the NumFracLength property value to \\
specify the precision used.
\end{tabular} \\
\hline CoeffWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length to apply to filter \\
coefficients.
\end{tabular} \\
\hline
\end{tabular}

\section*{mfilt.linearinterp}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline FilterInternals & \begin{tabular}{l}
[FullPrecision], \\
SpecifyPrecision
\end{tabular} & \begin{tabular}{l}
Controls whether the filter automatically sets \\
the output word and fraction lengths, product \\
word and fraction lengths, and the accumulator \\
word and fraction lengths to maintain the best \\
precision results during filtering. The default \\
value, FullPrecision, sets automatic word and \\
fraction length determination by the filter. \\
SpecifyPrecision makes the output and \\
accumulator-related properties available so you \\
can set your own word and fraction lengths for \\
them.
\end{tabular} \\
\hline InputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[15]
\end{tabular} & \begin{tabular}{l}
Specifies the fraction length the filter uses to \\
interpret input data.
\end{tabular} \\
\hline InputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[16]
\end{tabular} & \begin{tabular}{l}
Specifies the word length applied to interpret \\
input data.
\end{tabular} \\
\hline NumFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits [14]
\end{tabular} & \begin{tabular}{l}
Sets the fraction length used to interpret the \\
numerator coefficients.
\end{tabular} \\
\hline OutputFracLength & \begin{tabular}{l}
Any positive or \\
negative integer \\
number of bits \\
[29]
\end{tabular} & \begin{tabular}{l}
Determines how the filter interprets the filter \\
output data. You can change the value of \\
OutputFracLength when you set \\
FilterInternals to SpecifyPrecision.
\end{tabular} \\
\hline OutputWordLength & \begin{tabular}{l}
Any integer \\
number of bits \\
[33]
\end{tabular} & \begin{tabular}{l}
Determines the word length used for the output \\
data. You make this property editable by setting \\
Filter Internals to SpecifyPrecision.
\end{tabular} \\
\hline
\end{tabular}

\title{
mfilt.linearinterp
}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline OverflowMode & saturate, [wrap] & \begin{tabular}{l}
Sets the mode used to respond to overflow \\
conditions in fixed-point arithmetic. Choose from \\
either saturate (limit the output to the largest \\
positive or negative representable value) or wrap \\
(set overflowing values to the nearest \\
representable value using modular arithmetic.)) \\
The choice you make affects only the \\
accumulator and output arithmetic. Coefficient \\
and input arithmetic always saturates. Finally, \\
products never overflow-they maintain full \\
precision.
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Name & Values & Description \\
\hline RoundMode & [convergent], ceil,fix,floor, round & \begin{tabular}{l}
Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). \\
- convergent-Round up to the next allowable quantized value. \\
- ceil-Round to the nearest allowable quantized value. Numbers that are exactly halfway between the two nearest allowable quantized values are rounded up only if the least significant bit (after rounding) would be set to 1. \\
- fix-Round negative numbers up and positive numbers down to the next allowable quantized value. \\
- floor-Round down to the next allowable quantized value. \\
- round-Round to the nearest allowable quantized value. Numbers that are halfway between the two nearest allowable quantized values are rounded up. \\
The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow-they maintain full precision.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Name & Values & Description \\
\hline Signed & ftrue], false & \begin{tabular}{l}
Specifies whether the filter uses signed or \\
unsigned fixed-point coefficients. Only \\
coefficients reflect this property setting.
\end{tabular} \\
\hline States & \begin{tabular}{l}
Contains the filter states before, during, and \\
after filter operations. States act as filter \\
memory between filtering runs or sessions. \\
Notice that the states use fi objects, with the \\
associated properties from those objects. For \\
details, refer to fixed-point objects in your \\
Fixed-Point Toolbox documentation or in the \\
online Help system. For information about the \\
ordering of the states, refer to the filter structure \\
below.
\end{tabular} \\
\hline
\end{tabular}

Filter Structure Linear interpolator structures depend on the FIR filter you use to implement the filter. By default, the structure is direct-form FIR.

\section*{Examples}

Interpolation by a factor of 2 (used to convert the input signal sampling rate from 22.05 kHz to 44.1 kHz).
```

l = 2; % Interpolation factor
hm = mfilt.linearinterp(l);
fs = 22.05e3; % Original sample freq: 22.05 kHz.
n = 0:5119; % % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1 kHz
y = filter(hm,x); % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at
% 22.05 kHz
hold on % Plot interpolated signal (44.1
% kHz) in red
stem(n(1:44)/(fs*l),y(2:45),'r')
xlabel('Time (s)');ylabel('Signal Value')

```

Using linear interpolation, as compared to the hold approach of mfilt.holdinterp, provides greater fidelity to the original signal.

See Also
mfilt. holdinterp, mfilt.firinterp, mfilt.firfracinterp, mfilt.cicinterp

Purpose
Calculate predicted mean-squared error for selected adaptive filter

\section*{Syntax}

Description
[mmse,emse] = msepred(ha, x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha, x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha, x,d,m)
[mmse,emse] = msepred(ha, x,d) predicts the steady-state values at
convergence of the minimum mean-squared error (mmse) and the excess mean-squared error (emse) given the input and desired response signal sequences in x and d and the property values in the adaptfilt object ha.
[mmse,emse,meanw,mse,tracek] = msepred(ha, x,d) calculates three sequences corresponding to the analytical behavior of the LMS adaptive filter defined by ha:
- meanw-contains the sequence of coefficient vector means. The columns of matrix meanw contain predictions of the mean values of the LMS adaptive filter coefficients at each time instant. The dimensions of meanw are (size(\(x, 1\)))-by-(ha.length).
- mse-contains the sequence of mean-square errors. This column vector contains predictions of the mean-square error of the LMS adaptive filter at each time instant. The length of mse is equal to size(\(\mathrm{x}, 1\)).
- tracek-contains the sequence of total coefficient error powers. This column vector contains predictions of the total coefficient error power of the LMS adaptive filter at each time instant. The length of tracek is equal to size(x,1).
[mmse,emse,meanw,mse,tracek] = msepred (ha, x,d,m) specifies an optional input argument \(m\) that is the decimation factor for computing meanw, mse, and tracek. When \(m>1\), msepred saves every mth predicted value of each of these sequences. When you omit the optional argument m , it defaults to one.

Note msepred is available for the following adaptive filters only:
—adaptfilt.blms
—adaptfilt.blmsfft
—adaptfilt.lms
—adaptfilt.nlms

Using msepred is the same for any adaptfilt object constructed by the supported filters.

\section*{Examples}

Analyze and simulate a 32-coefficient adaptive filter using 25 trials of 2000 iterations each.
```

x = zeros(2000,25); d = x; % Initialize variables
ha = fir1(31,0.5); % FIR system to be identified
x = filter(sqrt(0.75),[1 - 0.5],sign(randn(size(x))));
n = 0.1*randn(size(x)); % observation noise signal
d = filter(ha,1,x)+n; % desired signal
l = 32; % Filter length
mu = 0.008; % LMS step size.
m 5; % Decimation factor for analysis
% and simulation results
ha = adaptfilt.lms(l,mu);
[mmse,emse,meanW,mse,traceK] = msepred(ha,x,d,m);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);
subplot(2,1,1);
plot(nn,meanWsim(:, 12),'b',nn,meanW(:,12),'r',nn,...
meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r');
title('Average Coefficient Trajectories for W(12), W(13),...
W(14) and W(15)');
legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)...
(emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse]);
title('Mean-Square Error Performance');
axis([0 size(x,1) 0.001 10]);
legend('MSE (Sim.)','Final MSE','MSE','Min. MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim,nn,traceK,'r');
title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)...
0.0001 1]);

```
```

legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Squared Error Value');

```

Viewing the plots in this figure you see the various error values plotted in both simulation and theory. Each subplot reveals more information about the results as the simulation converges with the theoretical performance.

See Also
filter, maxstep, msesim

Purpose
Calculate and return measured mean-squared error for adaptive filter

\section*{Syntax}

\section*{Description}

\section*{Examples}
```

mse = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d,m)

```
mse \(=\) msesim(ha, x, d) returns the sequence of mean-square errors in column vector mse. The vector contains estimates of the mean-square error of the adaptive filter at each time instant during adaptation. The length of mse is equal to size (\(x, 1\)). The columns of matrix \(x\) contain individual input signal sequences, and the columns of the matrix \(d\) contain corresponding desired response signal sequences.
[mse, meanw, w,tracek] = msesim(ha, x, d) calculates three parameters that correspond to the simulated behavior of the adaptive filter defined by ha:
- meanw-sequence of coefficient vector means. The columns of this matrix contain estimates of the mean values of the LMS adaptive filter coefficients at each time instant. The dimensions of meanw are (size(x,1))-by-(ha.length).
- w-estimate of the final values of the adaptive filter coefficients for the algorithm corresponding to ha.
- tracek-sequence of total coefficient error powers. This column vector contains estimates of the total coefficient error power of the LMS adaptive filter at each time instant. The length of tracek is equal to size \((\mathrm{X}, 1)\).
[mse,meanw,w,tracek] = msesim(ha, x,d,m) specifies an optional input argument \(m\) that is the decimation factor for computing meanw, mse, and tracek. When \(m>1\), msepsim saves every mth predicted value of each of these sequences. When you omit the optional argument m , it defaults to one.

Simulation of a 32-coefficient FIR filter using 25 trials, each trial having 2000 iterations of the adaptation process.
```

x = zeros(2000,25); d = x; % Initialize variables
ha = fir1(31,0.5); % FIR system to be identified
x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x))));
n = 0.1*randn(size(x)); % Observation noise signal
d = filter(ha,1,x)+n; % Desired signal

```
```

l = 32; % Filter length
mu = 0.008; % LMS Step size.
m 5; % Decimation factor for analysis
% and simulation results
ha = adaptfilt.lms(l,mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);
subplot(2,1,1);
plot(nn,meanWsim(:, 12),'b',nn,meanWsim(:,13:15),'b');
title('Average Coefficient Trajectories for W(12), W(13),
W(14) and W(15)');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse);
title('Mean-Square Error Performance'); axis([0 size(x,1) 0.001
10]);
legend('Measured MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim);
title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)
0.0001 1]);
xlabel('Time Index'); ylabel('Squared Error Value');

```

Calculating the mean squared error for an adaptive filter is one measure of the performance of the adapting algorithm. In this figure, you see a variety of measures of the filter, including the error values.

Purpose Design multistage filter from filter specification object
```

Syntax hd = design(d,'multistage')
hd = design(...,'filterstructure',structure)
hd = design(...,'nstages',nstages)
hd = design(...,'usehalfbands',hb)

```

Description hd = design(d,'multistage') designs a multistage filter whose repsonse you specified by the filter specification object d.
hd = design(...,'filterstructure', structure) returns a filter with the structure specified by structure. Input argument structure is dffir by default and can also be one of the following strings.
\begin{tabular}{l|l}
\hline structure String & Valid with These Responses \\
\hline firdecim & Lowpass or Nyquist response \\
\hline firtdecim & Lowpass or Nyquist response \\
\hline firinterp & Lowpass or Nyquist response \\
\hline lowpass & All lowpass responses \\
\hline
\end{tabular}

In short, multistage design applies to all lowpass filter specifications objects and to decimators and interpolators that use either lowpass or Nyquist responses.
hd = design(...,'nstages', nstages) specifies nstages, the number of stages to be used in the design. nstages must be an integer or the string auto. To allow the design algorithm to use the optimal number of stages while minimizing the cost of using the resulting filter, nstages is auto by default. When you specify an integer for nstages, the design algorithm minimizes the cost for the number of stages you specify.
hd = design(...,'usehalfbands', hb) uses halfband filters when you set hb to true. The default value for hb is false.

\section*{Examples}

Design a minimum-order, multistage Nyquist interpolator. Use the FilterStructure property to specify the Nyquist response.
```

l = 15; % Interpolation factor. Also the Nyquist band.
tw = 0.05; % Normalized transition width
ast = 40; % Minimum stopband attenuation in dB
d = fdesign.interpolator(l,'filterstructure','nyquist',l,tw,ast);
hm = design(d,'multistage');
fvtool(hm);

```

Design a multistage lowpass interpolator with an interpolation factor of 8 .
```

m = 8; % Interpolation factor;
d = fdesign.interpolator(m,'lowpass');
hm = design(d,'multistage','Usehalfbands',true); % Use halfband filters
% if possible.
fvtool(hm);

```

This figure shows the response for hm .

\section*{See Also}
design, designopts
\begin{tabular}{|c|c|}
\hline Purpose & Compute power spectral density (PSD) of filter output caused by roundoff noise during quantization \\
\hline Syntax & ```
hpsd = noisepsd(hd,l);
hpsd = noisepsd(hd,l, propertyname1, propertyvalue1,
 propertyname2,propertyvalue2,);
hpsd = noisepsd(hd,l,opts);
``` \\
\hline Description & \begin{tabular}{l}
hpsd = noisepsd(hd,l) computes the power spectral density (PSD) at the output of filter hd due to roundoff noise produced by quantization errors within the filter. 1 is the number of trials used to compute the average. The PSD is computed from the average over the 1 trials. The more trials you specify, the better the estimate, but at the expense of longer computation time. When you do not explicitly set 1 , it defaults to 10 trials. \\
hpsd is a psd data object.To extract the PSD vector (the data from the PSD) from hpsd, enter \\
get(hpsd,'data') \\
at the prompt. Plot the PSD data with plot (hpsd). The average power of the output noise (the integral of the PSD) can be computed with avgpower, a method of dspdata objects: \\
avgpwr = avgpower(hpsd).
\end{tabular} \\
\hline
\end{tabular}
hpsd = noisepsd(hd,l,p1,v1, p2,v2,...) specifies optional parameters via propertyname/propertyvalue pairs. The properties of the psd object, and the valid entries are:
\begin{tabular}{l|l|l}
\hline Property Name & Default Value & Description and Valid Entries \\
\hline Nfft & 512 & \begin{tabular}{l} 
Specifies the number of FFT \\
points to use to calculate the \\
PSD.
\end{tabular} \\
\hline NormalizedFrequency & true & \begin{tabular}{l} 
Determines whether to use \\
normalized frequency. Enter one \\
of the logical true or false. Note \\
that you do not use single \\
quotations around this property \\
value because it is a logical, not \\
a string.
\end{tabular} \\
\hline Fs & normalized & \begin{tabular}{l} 
Specifies the sampling frequency \\
to use when you set \\
NormalizedFrequency to false. \\
Any integer value greater than 1 \\
works. Enter the value in Hz.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Property Name & Default Value & Description and Valid Entries \\
\hline SpectrumType & onesided & \begin{tabular}{l} 
Tells noisepsd whether to \\
generate a one-sided PSD or \\
two-sided. Options are onesided \\
or twosided. If you choose a
\end{tabular} \\
& & two-sided computation, you can \\
& also choose centerdc = true. \\
& Otherwise, centerdc must be \\
& false. \\
& & - onesided converts the \\
& & spectrum to a spectrum \\
& calculated over half the \\
& & Nyquist interval. All \\
& & properties affected by the new \\
& & frequency range are adjusted \\
& & automatically. \\
& & twosided converts the \\
& & spectrum to a spectrum \\
& & calculated over the whole \\
& & Nyquist interval. All \\
& & properties affected by the new \\
& & frequency range are adjusted \\
& & automatically. \\
& &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Property Name & Default Value & Description and Valid Entries \\
\hline CenterDC & false & \begin{tabular}{l}
Shifts the zero-frequency component to the center of a two-sided spectrum. \\
- When you set SpectrumType to onesided, it is changed to twosided and the data is converted to a two-sided spectrum. \\
- Setting CenterDC to false shifts the data and the frequency values in the object so that DC is in the left edge of the spectrum. This operation does not effect the SpectrumType property setting.
\end{tabular} \\
\hline
\end{tabular}

Note If the spectrum data you specify is calculated over half the Nyquist interval and you do not specify a corresponding frequency vector, the default frequency vector assumes that the number of points in the whole FFT was even. Also, the plot option to convert to a whole or two-sided spectrum assumes the original whole FFT length was even.
noisepsd(hd, l, opts) uses an options object opts to specify the optional input arguments instead of specifying property-value pairs in the command. Use opts = noisepsdopts (hd) to create the object. opts then has the noisepsd settings from hd. After creating opts, you change the property values before calling noisepsd:
```

set(opts,'fs',48e3); % Set Fs to 48 kHz.

```

\section*{Examples}

Compute the PSD of the output noise caused by the quantization processes in a fixed-point, direct form FIR filter.
```

b = firgr(27,[0 . 4 .6 1],[[1 1 0 0}]\mp@code{1 ;
h = dfilt.dffir(b); % Create the filter object.
h.arithmetic = 'fixed'; % Quantize the filter to fixed-point.
hpsd = noisepsd(h);
plot(hpsd)

```
hpsd looks like this-the data resulting from the noise PSD calculation. You can review the data in hpsd.data'.


Here is the specification for hpsd.
hpsd =
```

Name: 'Power Spectral Density'
Data: [257x1 double]

```

\title{
SpectrumType: 'Onesided \\ Frequencies: [257x1 double] \\ NormalizedFrequency: true \\ Fs: 'Normalized'
}

See Also filter, noisepsdopts, norm, reorder, scale spectrum.welch in the Signal Processing Toolbox

McClellan, et al., Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall, 1998.

Purpose

Syntax
Description

Create object containing options for running output noise power spectral density (PSD) computation noisepsd on filter
```

opts = noisepsdopts(hd)

```
opts = noisepsdopts(hd) uses the current settings in the filter hd to create an options object opts that contains specified options for computing the output noise PSD for a filter hd. You can pass opts to the scale method as an input argument to apply scaling settings to a second-order filter.

Within opts, the noisepsd options object returned by noisepsdopts, you can set the following properties:
\begin{tabular}{l|l|l}
\hline Property Name & Default Value & Description and Valid Entries \\
\hline Nfft & 512 & \begin{tabular}{l} 
Specifies the number of FFT \\
points to use to calculate the \\
PSD.
\end{tabular} \\
\hline NormalizedFrequency & true & \begin{tabular}{l} 
Determines whether to use \\
normalized frequency. Enter one \\
of the logical true or false. Note \\
that you do not use single \\
quotations around this property \\
value because it is a logical \\
value, not a string.
\end{tabular} \\
\hline Fs & normalized & \begin{tabular}{l} 
Specifies the sampling frequency \\
to use when you set \\
NormalizedFrequency to false. \\
Any integer value greater than 1 \\
works. Enter the value in Hz.
\end{tabular} \\
\hline
\end{tabular}

\section*{noisepsdopts}
\begin{tabular}{l|ll}
\hline Property Name & Default Value & Description and Valid Entries \\
\hline SpectrumType & onesided & \begin{tabular}{l} 
Tells noisepsd whether to \\
generate a one-sided PSD or \\
two-sided. Options are onesided \\
or twosided. If you choose a \\
two-sided computation, you can \\
also choose centerdc = true.
\end{tabular} \\
& & Otherwise, centerdc must be \\
false.
\end{tabular}
\begin{tabular}{l|l|l}
\hline Property Name & Default Value & Description and Valid Entries \\
\hline SpectrumType & onesided & \begin{tabular}{l} 
Tells noisepsd whether to \\
generate a one-sided PSD or \\
two-sided. Options are onesided \\
or twosided. If you choose a
\end{tabular} \\
& & two-sided computation, you can \\
also choose centerdc = true. \\
& & Otherwise, centerdc must be \\
false.
\end{tabular}

\section*{noisepsdopts}
\begin{tabular}{l|ll}
\hline Property Name & Default Value & Description and Valid Entries \\
\hline CenterDC & false & \begin{tabular}{l} 
Shifts the zero-frequency \\
component to the center of a \\
two-sided spectrum.
\end{tabular} \\
& & - When you set SpectrumType to \\
onesided, it is changed to \\
twosided and the data is \\
& & converted to a two-sided \\
& & spectrum.
\end{tabular}

See Also noisepsd

Purpose
P-norm of adaptfilt, dfilt, or mfilt objects

\section*{Syntax}
```

l = norm(ha)
l = norm(ha,pnorm)
l = norm(hd)
l = norm(hd,pnorm)
l = norm(hd,'L2',tol)
l = norm(hm)
l = norm(hm,pnorm)

```

Description All of the variants of norm return the filter p-norm for the object in the syntax, either an adaptive filter, a digital filter, or a multirate filter. When you omit the pnorm argument, norm returns the L2-norm for the object.

Note that by Parseval's theorem, the L2-norm of a filter is equal to the 12 norm. This equality is not true for the other norm variants.

\section*{For adaptfilt Objects}
l = norm(ha)returns the L2-norm of an adaptive filter.
l = norm(ha, pnorm) adds the input argument pnorm to let you specify the norm returned. pnorm can be either
- Frequency-domain norms specified by one of L1, L2, or Linf
- Discrete-time domain norms specified by one of 11,12 , or linf

\section*{For dfilt Objects}
\(1=\) norm(hd) returns the L2-norm of a discrete-time filter.
l = norm(hd, pnorm) includes input argument pnorm that lets you specify the norm returned. pnorm can be either
- Frequency-domain norms specified by one of L1, L2, or Linf
- Discrete-time domain norms specified by one of 11,12 , or linf

By Parseval's theorem, the L2-norm of a filter is equal to the 12 norm. This equality is not true for the other norm variants.

IIR filters respond slightly differently to norm. When you compute the 12 , linf, L1, and L2 norms for an IIR filter, norm (... , L2, tol) lets you specify the tolerance for the accuracy in the computation. For 11, 12, L2, and linf, norm uses the tolerance to truncate the infinite impulse response that it uses to calculate the norm. For L1, norm passes the tolerance to the numerical integration algorithm. Refer to Examples to see this in use. You cannot specify Linf for the norm and include the tol option.

\section*{For mfilt Objects}
\(1=\operatorname{norm}(\mathrm{hm})\) returns the L2-norm of a multirate filter.
l = norm(hm, pnorm) includes argument pnorm to let you specify the norm returned. pnorm can be either
- Frequency-domain norms specified by one of L1, L2, or Linf
- Discrete-time domain norms specified by one of 11,12 , or linf

Note that, by Parseval's theorem, the L2-norm of a filter is equal to the 12 norm. This equality is not true for the other norm variants.

\section*{Examples}

\section*{Adaptfilt Objects}

For the adaptive filter example, compute the 2-norm of an adaptfilt object, here an LMS-based adaptive filter.
```

ha = adaptfilt.lms; % norm(ha) is zero because all coeffs are zero
% Create some data to filter to generate filter coeffs
x = randn(100,1);
d = x + randn(100,1);
[y,e] = filter(ha,x,d);
l2 = norm(ha); % Now norm(ha) is nonzero
12 =

```
1.1231

\section*{Dfilt Objects}

To demonstrate the tolerance option used with an IIR filter (dfilt object), compute the 2 -norm of filter hd with a tolerance of \(1 \mathrm{e}-10\).
```

d=fdesign.lowpass('n,fc',5,0.4)

```
```

d =
Response: 'Lowpass with cutoff'
Specification: 'N,Fc'
Description: {2x1 cell}
NormalizedFrequency: true
Fs: 'Normalized'
FilterOrder: 5
Fcutoff: 0.4000
hd = butter(d);
l2=norm(hd,'l2',1e-10)
12 =
0.6336

```

\section*{Mfilt Objects}

In this example, compute the infinity norm of an FIR interpolator, which is an mfilt object.
hm = mfilt.firinterp;
linf = norm(hm,inf);
linf =
2.0002

See Also
reorder, scale, scalecheck

\section*{normalize}
```

Purpose Normalize filter numerator or feed-forward coefficients to values between -1 and 1

```
```

Syntax

```
Syntax
normalize(hq)
normalize(hq)
g = normalize(hq)
```

g = normalize(hq)

```

Description normalize(hq) normalizes the filter numerator coefficients for a quantized filter to have values between -1 and 1 . Notice that the coefficients of hq change-normalize does not copy hq and return the copy. To restore the coefficients of hq to the original values, use denormalize.

Note that for lattice filters, the feed-forward coefficients stored in the property lattice are normalized.
\(\mathrm{g}=\) normalize(hd) normalizes the numerator coefficients for the filter hq to between -1 and 1 and returns the gain \(g\) due to the normalization operation. Calling normalize again does not change the coefficients. g always returns the gain returned by the first call to normalize the filter.

\section*{Examples}

Create a direct form II quantized filter that uses second-order sections. Then use normalize to maximize the use of the range of representable coefficients.
```

d=fdesign.lowpass('n,fp,ap,ast',8,.5,2,40);
hd=ellip(d);
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [4x6 double]
ScaleValues: [5x1 double]
PersistentMemory: 'on'
States: [2x4 double]
hd.arithmetic='fixed'
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'

```
```

 Arithmetic: 'fixed'
 sosMatrix: [4x6 double]
 ScaleValues: [5x1 double]
 PersistentMemory: 'on'
States: [1x1 embedded.fi]

```
CoeffWordLength: ..... 16
CoeffAutoScale: true
```Signed: true
```

InputWordLength: ..... 16
InputFracLength: ..... 15
StageInputWordLength: ..... 16
StageInputAutoScale: true
StageOutputWordLength: ..... 16
StageOutputAutoScale: true
OutputWordLength: ..... 16
OutputMode: 'AvoidOverflow'
StateWordLength: ..... 16
StateFracLength: ..... 15
ProductMode: 'FullPrecision'
AccumMode: 'KeepMSB'
AccumWordLength: ..... 40
CastBeforeSum: true
RoundMode: 'convergent'
OverflowMode: 'wrap'
InheritSettings: false

Check the filter coefficients to see that some of them are greater than 1.

```
hd.sosMatrix
```


## normalize

```
ans =
\begin{tabular}{llllll}
1.0000 & 1.5132 & 1.0000 & 1.0000 & -0.9207 & 0.4373 \\
1.0000 & 0.3867 & 1.0000 & 1.0000 & -0.2779 & 0.8242 \\
1.0000 & 0.0929 & 1.0000 & 1.0000 & -0.0514 & 0.9610 \\
1.0000 & 0.0339 & 1.0000 & 1.0000 & -0.0020 & 0.9934
\end{tabular}
```

Use normalize to modify the coefficients into the range between -1 and 1. A quick check of the SOS matrix shows all of the numerator coefficients now within the limits. You see that g contains the gains applied to each section of the SOS filter.

```
g = normalize(hd)
g =
 1.5132
 1.0000
 1.0000
 1.0000
hd.sosMatrix
ans =
\begin{tabular}{llllll}
0.6608 & 1.0000 & 0.6608 & 1.0000 & -0.9207 & 0.4373 \\
1.0000 & 0.3867 & 1.0000 & 1.0000 & -0.2779 & 0.8242 \\
1.0000 & 0.0929 & 1.0000 & 1.0000 & -0.0514 & 0.9610 \\
1.0000 & 0.0339 & 1.0000 & 1.0000 & -0.0020 & 0.9934
\end{tabular}
```

Notice that none of the numerator coefficients exceed -1 or 1 .
denormalizeSyntaxDescription
Purpose

Switch filter specification object between normalized frequency specification and absolute frequency specification
normalizefreq(d)
normalizefreq(d,flag)
normalizefreq(d,false,fs)
normalizefreq(d) normalizes the frequency specifications in filter specifications object d. By default, the NormalizedFrequency property is set to true when you create a design object. You provide the design specifications in normalized frequency units. normalizefreq does not affect filters that already use normalized frequency.

If you use this syntax when d does not use normalized frequency specifications, all of the frequency specifications are normalized by fs/2 so they lie between 0 and 1 , where fs is specified in the object. Included in the normalization are the filter properties that define the filter pass and stopband edge locations by frequency:

- F3dB-Used by IIR filter specifications objects to describe the passband cutoff frequency
- Fcutoff—Used by FIR filter specifications objects to describe the passband cutoff frequency
- Fpass-Describes the passband edges
- Fstop-Describes the stopband edges

In this syntax, normalizefreq(d) assumes you specified $f s$ when you created $d$ or changed d to use absolute frequency specifications.
normalizefreq(d,flag) where flag is either true or false, specifies whether the NormalizedFrequency property value is true or false and therefore whether the filter normalizes the sampling frequency fs and other related frequency specifications. fs defaults to 1 for this syntax.
When you do not provide the input argument flag, it defaults to true. If you set flag to false, affected frequency specifications are multiplied by fs/2 to remove the normalization. Use this syntax to switch your filter between using normalized frequency specifications and not using normalized frequency specifications.
normalizefreq(d,false,fs) lets you specify a new sampling frequency fs when you set the NormalizedFrequency property to false.

## Examples

These examples demonstrate using normalizefreq in both of the major syntax applications-setting the design object frequency specifications to use absolute frequency (normalizefreq(hd,false,fs)) and resetting a design object to using normalized frequencies (normalizefreq(d)).

Construct a highpass filter specifications object by specifying the pass- and stopband edges and the desired attenuations in the bands. By default, provide the frequency specifications in normalized values between 0 and 1 .

```
d=fdesign.highpass(0.35, 0.45, 60, 40)
d =
Response: 'Highpass'
Specification: 'Fst, Fp,Ast,Ap'
Description: \(\{4 \times 1\) cell \(\}\)
NormalizedFrequency: true
Fstop: 0.35
Fpass:
Astop:
Apass: \(\mathbf{4 0} 8\)
```

Fstop and Fpass are in normalized form, and the property NormalizedFrequency is true.

Now use normalizedfreq to convert to absolute frequency specifications, with a sampling frequency of 1000 Hz .

```
normalizefreq(d,false,1e3)
d
d =
 Response: 'Highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: false
 Fs: 1000
```

Fstop: 175
Fpass: 225
Astop: 60
Apass: 40
Both of the attenuation specifications remain the same. The passband and stopband edge definitions now appear in Hz , where the new value represents the normalized values multiplied by Fs/2, or 500 Hz .

Converting to using normalized frequencies consists of using normalizefreq with the design object d.

```
normalizefreq(d)
d
d =
 Response: 'Highpass'
 Specification: 'Fst,Fp,Ast,Ap'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fstop: 0.35
 Fpass: 0.45
 Astop: 60
 Apass: 40
```

For bandstop, bandpass, and multiple band filter specifications objects, normalizefreq works the same way for all band edge definitions. When you do not provide the sampling frequency Fs as an input argument and you are converting to absolute frequency specifications, normalizefreq sets Fs to 1, as shown in this example.

```
d=fdesign.bandstop(0.25,0.35,0.55,0.65,50,60)
d =
 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: true
 Fpass1: 0.25
```

```
 Fstop1: 0.35
 Fstop2: 0.55
 Fpass2: 0.65
 Apass1: 50
 Astop: 60
 Apass2: 50
normalizefreq(d,false)
d
d =
 Response: 'Bandstop'
 Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
 Description: {7x1 cell}
 NormalizedFrequency: false
 Fs: 1
 Fpass1: 0.125
 Fstop1: 0.175
 Fstop2: 0.275
 Fpass2: 0.325
 Apass1: 50
 Astop: 60
 Apass2: 50
```

See Also
fdesign.lowpass, fdesign.halfband, fdesign.highpass, fdesign.interpolator

Purpose
Number of filter states in discrete-time or multirate filter

## Syntax <br> n = nstates(hd) <br> n = nstates(hm)

## Description

Examples

## Discrete-Time Filters

$\mathrm{n}=$ nstates(hd) returns the number of states n in the discrete-time filter hd. The number of states depends on the filter structure and the coefficients.

## Multirate Filters

$\mathrm{n}=$ nstates( hm ) returns the number of states n in the multirate filter hm . The number of states depends on the filter structure and the coefficients.

Check the number of states for two different filters, one a direct form FIR filter, the other a multirate filter.

```
h=firls(30,[0 .1 .2 .5]*2,[1 1 0 0])
hd=dfilt.dffir(h)
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x31 double]
 PersistentMemory: 'on'
 States: [30x1 double]
n=nstates(hd)
n =
 30
hm=mfilt.firfracdecim(2,3)
hm =
```

```
 FilterStructure: [1\times46 char]
 Numerator: [1x72 double]
 RateChangeFactors: [2 3]
 PersistentMemory: false
 States: [35x1 double]
n=nstates(hm)
n =
```

35
See Also ..... mfilt

## Purpose <br> Order of quantized filter

## Syntax <br> n=order (hq)

Description

## Examples

Create a discrete-time filter. Quantize the filter and convert to second-order section form. Then use order to check the order of the filter.

```
[b,a] = ellip(4,3,20,.6); % Create the reference filter.
hq = dfilt.df2(b,a);
%Quantize the filter and convert to second-order sections.
set(hq,'arithmetic','fixed');
n=order(hq) % Check the order of the overall filter.
n = 4
```


## phasedelay

## Purpose <br> Phase delay of discrete-time or multirate filter

Syntax

```
phasedelay(hd)
[phi,w] = phasedelay(hd,n)
[phi,w] = phasedelay(...,f)
phasedelay(hm)
[phi,w] = phasedelay(hm,n)
[phi,w] = phasedelay(...,f)
[phi,w] = phasedelay(...,fs)
```

Description The following sections describe phasedelay operation for discrete-time filters and multirate filters. For more information about optional input arguments for phasedelay, refer to phasez in the Signal Processing Toolbox.

## Discrete-Time Filters

phasedelay (hd) displays the phase delay response of hd in the Filter Visualization Tool (FVTool).
[phi,w]=phasedelay (hd,n) returns vectors phi and w containing the instantaneous phase delay response of the adaptive filter hd, and the frequencies in radians at which it is evaluated. The response is evaluated at $n$ points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hd is a vector of filter objects, phasedelay returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of phi corresponds to each filter in the vector. You can provide fs, the sampling frequency, as an input as well. phasedelay uses fs to calculate the delay response and plots the response to $\mathrm{fs} / 2$.

## Multirate Filters

phasedelay (hm) displays the phase response of hm in the Filter Visualization Tool (FVTool).
[phi,w]=phasedelay (hm,n) returns vectors phi and w containing the instantaneous phase delay response of the adaptive filter hm , and the frequencies in radians at which it is evaluated. The response is evaluated at $n$ points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hm is a vector of filter objects, phasedelay returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of phi corresponds to each filter in the vector.

Note that the multirate filter delay response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, phasedelay assumes the filter is running at that rate.

For multistage cascades, phasedelay forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. phasedelay does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be found. phasedelay uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to phasedelay, the function interprets fs as the rate at which the equivalent filter is running.

See Also<br>freqz, grpdelay, phasez, zerophase, zplane<br>freqz, fvtool, phasez, zerophase in the Signal Processing Toolbox documentation

## phasez

## Purpose Unwrapped phase response for filter

```
Syntax phasez(ha)
[phi,w] = phasez(ha,n)
[phi,w] = phasez(...,f)
phasez(hd)
[phi,w] = phasez(hd,n)
[phi,w] = phasez(...,f)
phasez(hm)
[phi,w] = phasez(hm,n)
[phi,w] = phasez(....f)
[phi,w] = phasez(...,fs)
```


## Description

The following sections describe phasez operation for adaptive filters, discrete-time filters, and multirate filters. For more information about optional input arguments for phasez, refer to phasez in the Signal Processing Toolbox.

## Adaptive Filters

For adaptive filters, phasez returns the instantaneous unwrapped phase response based on the current filter coefficients.
phasez(ha) displays the phase response of ha in the Filter Visualization Tool (FVTool).
[phi,w]=phasez(ha,n) returns vectors phi and w containing the instantaneous phase response of the adaptive filter ha, and the frequencies in radians at which it is evaluated. The phase response is evaluated at $n$ points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If ha is a vector of filter objects, phasez returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of phi corresponds to each filter in the vector.

## Discrete-Time Filters

phasez (hd) displays the phase response of hd in the Filter Visualization Tool (FVTool).
[phi,w]=phasez(hd,n) returns vectors phi and w containing the instantaneous phase response of the adaptive filter hd, and the frequencies in radians at which it is evaluated. The phase response is evaluated at $n$ points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hd is a vector of filter objects, phasez returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of phi corresponds to each filter in the vector.

## Multirate Filters

phasez (hm) displays the phase response of hm in the Filter Visualization Tool (FVTool).
[phi,w]=phasez(hm,n) returns vectors phi and w containing the instantaneous phase response of the adaptive filter hm , and the frequencies in radians at which it is evaluated. The phase response is evaluated at $n$ points equally spaced around the upper half of the unit circle. When you do not specify n , it defaults to 8192 .

If hm is a vector of filter objects, phasez returns phi as a matrix. Each column of phi corresponds to one filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of phi corresponds to each filter in the vector.

Note that the multirate filter response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, phasez assumes the filter is running at that rate.

For multistage cascades, phasez forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. phasez does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be found. phasez uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to phasez, the function interprets $f s$ as the rate at which the equivalent filter is running.

See Also freqz, grpdelay, phasedelay, zerophase, zplane
freqz, fvtool, phasez in the Signal Processing Toolbox documentation

Purpose
Polyphase decomposition of multirate filter

## Syntax p = polyphase(hm) <br> polyphase(hm)

## Examples

$\mathrm{p}=$ polyphase (hm) returns the polyphase matrix p of the multirate filter hm . Each row in the matrix represents one subfilter of the multirate filter. The first row of matrix $p$ represents the first subfilter, the second row the second subfilter, and so on to the last subfilter.
polyphase (hm) called with no output argument launches the Filter Visualization Tool (FVTool) with all the polyphase subfilters to allow you to analyze each component subfilter individually.

When you create a multirate filter that uses polyphase decomposition, polyphase lets you analyze the component filters indiviually by returning the components as rows in a matrix.

This example creates an interpolate by eight filter.

```
hm=mfilt.firinterp(8)
```

hm =

FilterStructure: 'Direct-Form FIR Polyphase Interpolator' Numerator: [1x192 double]
InterpolationFactor: 8
PersistentMemory: false
States: [23x1 double]
In this syntax, the matrix $p$ contains all of the subfilters for hm , one filter per matrix row.

$\mathrm{p}=$ polyphase ( hm )							
$\mathrm{p}=$							
Columns 1 through 8							
0	0	0	0	0	0	0	0
-0.0000	0.0002	-0.0006	0.0013	-0.0026	0.0048	-0.0081	0.0133
-0.0001	0.0004	-0.0012	0.0026	-0.0052	0.0094	-0.0160	0.0261
-0.0001	0.0006	-0.0017	0.0038	-0.0074	0.0132	-0.0223	0.0361


-0.0002	0.0008	-0.0020	0.0045	-0.0086	0.0153	-0.0257	0.0415
-0.0002	0.0008	-0.0021	0.0045	-0.0086	0.0151	-0.0252	0.0406
-0.0002	0.0007	-0.0018	0.0038	-0.0071	0.0124	-0.0205	0.0330
-0.0001	0.0004	-0.0011	0.0022	-0.0041	0.0072	-0.0118	0.0189

Columns 9 through 16

0	0	0	0	1.0000	0	0	0
-0.0212	0.0342	-0.0594	0.1365	0.9741	-0.1048	0.0511	-0.0303
-0.0416	0.0673	-0.1189	0.2958	0.8989	-0.1730	0.0878	-0.0527
-0.0576	0.0938	-0.1691	0.4659	0.7814	-0.2038	0.1071	-0.0648
-0.0661	0.1084	-0.2003	0.6326	0.6326	-0.2003	0.1084	-0.0661
-0.0648	0.1071	-0.2038	0.7814	0.4659	-0.1691	0.0938	-0.0576
-0.0527	0.0878	-0.1730	0.8989	0.2958	-0.1189	0.0673	-0.0416
-0.0303	0.0511	-0.1048	0.9741	0.1365	-0.0594	0.0342	-0.0212

Columns 17 through 24

0	0	0	0	0	0	0	0
0.0189	-0.0118	0.0072	-0.0041	0.0022	-0.0011	0.0004	-0.0001
0.0330	-0.0205	0.0124	-0.0071	0.0038	-0.0018	0.0007	-0.0002
0.0406	-0.0252	0.0151	-0.0086	0.0045	-0.0021	0.0008	-0.0002
0.0415	-0.0257	0.0153	-0.0086	0.0045	-0.0020	0.0008	-0.0002
0.0361	-0.0223	0.0132	-0.0074	0.0038	-0.0017	0.0006	-0.0001
0.0261	-0.0160	0.0094	-0.0052	0.0026	-0.0012	0.0004	-0.0001
0.0133	-0.0081	0.0048	-0.0026	0.0013	-0.0006	0.0002	-0.0000

Finally, using polyphase without an output argument opens the Filter Visualization Tool, ready for you to use the analysis capabilities of the tool to investigate the interpolator hm .

```
polyphase(hm)
```

In this figure, we switch FVTool to show the magnitude responses for the subfilters.


## See Also <br> mfilt

## qreport

Purpose Results of most recent fixed-point filtering operation

## Syntax rlog = qreport (h)

Description $\quad r \log =\operatorname{qreport}(\mathrm{h})$ returns the logging report stored in the filter object h in the object rlog. The ability to log features of the filtering operation is integrated in the fixed-point filter object and the filter method.

Each time you filter a signal with $h$, new log data overwrites the results in the filter from the previous filtering operation. To save the log from a filtering simulation, change the name of the output argument for the operation before subsequent filtering runs.

Note qreport requires the Fixed-Point Toolbox and that filter $h$ is a fixed-point filter.

Data logging for fi operations is a preference you set for each MATLAB session. To learn more about logging, LoggingMode, and fi object preferences, refer to fipref in the documentation for the Fixed-Point Toolbox in the online Help system.

Enable logging during filtering by setting LoggingMode to on for fi objects for your MATLAB session. Trigger logging by setting the Arithmetic property for $h$ to fixed, making $h$ a fixed-point filter and filtering an input signal.

## Using Fixed-Point Filtering Logging

Filter operation logging with qreport requires some preparation in MATLAB. Complete these steps before you use qreport.

1 Set the fixed-point object preference for LoggingMode to on for your MATLAB session. This setting enables data logging.'
fipref('LoggingMode', 'on')
2 Create your fixed-point filter.
3 Filter a signal with the filter.
4 Use qreport to return the filtering information stored in the filter object.
qreport provides a way to instrument your fixed-point filters and the resulting data log offers insight into how the filter responds to a particular input data signal.

Report object rlog contains a filter-structure-specific list of internal signals for the filter. Each signal contains

- Minimum and maximum values that were recorded during the last simulation. Minimum and maximum values correspond to values before quantization.
- Representable numerical range of the word length and fraction length format
- Number of overflows during filtering for that signal.


## Examples

qreport depends on the LoggingMode preference for fixed-point objects. This example demonstrates the process for enabling and using qreport to log the results of filtering with a fixed-point filter. hd is a fixed-point direct-form FIR filter.

```
f = fipref('loggingmode','on');
hd = design(fdesign.lowpass,'equiripple');
hd.arithmetic = 'fixed';
fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
y = filter(hd,x);
rlog = qreport(hd)
```

rlog $=$


## qreport

View the logging report of a direct-form II, second-order sections IIR filter the same way. While this example sets loggingmode to on, you do that only once for a MATLAB session, unless you reset the mode to off during the session.

```
fipref('loggingmode', 'on');
hd = design(fdesign.lowpass, 'ellip');
hd. arithmetic = 'fixed';
rand('state', 0);
y = filter(hd, rand(100,1));
rlog = qreport(hd)
```

See Also dfilt, mfilt

Purpose
$\begin{array}{ll}\text { Syntax } & \begin{array}{l}\text { realizemdl(hq) } \\ \text { realizemdl (hq, propertyname1, propertyvalue1,...) }\end{array}\end{array}$
Realize Simulink subsystem block for quantized filter

```
realizemdl(hq, propertyname1, propertyvalue1,...)
```

realizemdl(hq) generates a model of filter hq in a Simulink subsystem block using sum, gain, and delay blocks from Simulink. The properties and values of hq define the resulting subsystem block parameters.
realizemdl requires Simulink. To accurately realize models of quantized filters, use Simulink Fixed-Point.
realizemdl(hq, propertyname1, propertyvalue1, ...) generates the model or hq with the associated propertyname/propertyvalue pairs, and any other values you set in hq.

Note Subsystem filter blocks that you use realizemdl to create support sample-based input and output only. You cannot input or output frame-based signals with the block.

Using the optional propertyname/propertyvalue pairs lets you control more fully the way the block subsystem model gets built, such as where the block goes, what the name is, or how to optimize the block structure. Valid properties and values for realizemdl are listed in this table, with the default value noted and descriptions of what the properties do.

Property Name	Property Values	Description
Destination	'current ' (default)   or 'new'	Specify whether to add the block to your   current Simulink model or create a new   model to contain the block.
Blockname	'filter' (default)	Provides the name for the new subsystem   block. By default the block is named   'filter'. To enter a name for the block, use   the propertyvalue set to a string   'blockname'.

## realizemdl

Property Name	Property Values	Description
OverwriteBlock	'off' or 'on'	Specify whether to overwrite an existing   block with the same name or create a new   block.
OptimizeZeros	'off'   'on'	Sefault) or
OptimizeOnes	'off' $^{\prime}$ 'on' (default) or	Specify whether to remove zero-gain blocks.   with direct connections.
OptimizeNegOnes	'off'   'on'	Specify whether to replace negative   unity-gain blocks with a sign change at the   nearest sum block.
OptimizeDelayChains	'off'   'on'	Specify whether to replace cascaded chains   of delay blocks with a single integer delay   block to provide an equivalent delay.

## Examples

To demonstrate how realizemdl works to create models, these two examples show the default and optional syntaxes in use. Both examples begin from a quantized filter designed by butter in the Signal Processing Toolbox.

```
[b,a] = butter(4,.5);
hq = dfilt.df1(b,a);
```

Example 1—Using the default syntax to realize a model of your quantized filter hq. When you use this syntax, realizemdl uses blocks from Simulink and Simulink Fixed-Point to realize the subsystem in your current Simulink model.

```
realizemdl(hq);
```

Look at the figure to see the model as realized by realizemdl.


Example 2-Using propertyname/propertyvalue pairs to specify the features of the subsystem block model created by realizemdl.

First, convert the filter to fixed-point arithmetic to ensure a few zero valued coefficients:

```
hq.arithmetic = 'fixed';
```

Your filter has two zero value denominators, $\mathrm{a}(2)$ and $\mathrm{a}(4)$ :
FilterStructure: 'Direct-Form I'
Arithmetic: 'fixed'
Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
Denominator: [1 0 0.4860 0 0.0176]
PersistentMemory: false
States: Numerator: [4×1 fi]
Denominator:[4×1 fi]
Now realize the model implementation.
realizemdl(hq, 'optimizezeros', 'on',...
'blockname', 'newfiltermodel');

Since this example uses the optional property name optimizezeros, set to 'on', the resulting block subsystem is slightly different-the zero-gain blocks for coefficients a(2) and a(4) are not included in the subsystem.


See Also
realizemdl under the methods for dfilt in the Signal Processing Toolbox

## Purpose

Syntax
Description

## Examples

Double-precision floating-point reference filter that corresponds to fixed-point or single-precision floating-point filter
href $=$ reffilter(hd)
href = reffilter(hd) returns a new filter href that has the same structure as hd, but uses the reference coefficients and has its arithmetic property set to double. Note that hd can be either a fixed-point filter (arithmetic property set to 'fixed', or a single-precision floating-point filter whose arithmetic property is 'single').
reffilter(hd) differs from double(hd) in that

- the filter href returned by reffilter has the reference coefficients of hd.
- double(hd) returns the quantized coefficients of hd represented in double-precision.

To check the performance of your fixed-point filter, use href = reffilter (hd) to quickly have the floating-point, double-precision version of hd available for comparison.

Compare several fixed-point quantizations of a filter with the same double-precision floating-point version of the filter.

```
h = dfilt.dffir(firceqrip(87,.5,[1e-3,1e-6])); % Lowpass filter.
h1 = copy(h); h2 = copy(h); % Create copies of h.
h.arithmetic = 'fixed'; % Set h to filter using fixed-point
 % arithmetic.
h1.arithmetic = 'fixed'; % Same for h1.
h2.arithmetic = 'fixed'; % Same for h2.
h.CoeffWordLength = 16; % Use 16 bits to represent the
 % coefficients.
h1.CoeffWordLength = 12; % Use 12 bits to represent the
 % coefficients.
h2.CoeffWordLength = 8; % Use 8 bits to represent the
 % coefficients.
href = reffilter(h);
hfvt = fvtool(href,h,h1,h2);
set(hfvt,'ShowReference','off'); % Reference displayed once
 % already.
```

```
legend(hfvt,'Reference filter','16-bits','12-bits','8-bits');
```

The following plot, taken from FVTool, shows href, the reference filter, and the effects of using three different word lengths to represent the coefficients.


As expected, the fidelity of the fixed-point filters suffers as you change the representation of the coefficients. With href available, it is easy to see just how the fixed-point filter compares to the ideal.

## See Also

double

## Purpose

Rearrange sections in second-order sections (SOS) filter

Syntax<br>Description

```
reorder(hd,order)
reorder(hd,numorder,denorder)
reorder(hd,numorder,denorder,svorder)
reorder(hd,filter_type)
reorder(hd,dir_flag)
reorder(hd,dir_flag,sv))
```

reorder (hd, order) rearranges the sections of filter hd using the vector of indices provided in order.
order does not need to contain all of the indices of the filter. Omitting one or more filter section indices removes the omitted sections from the filter. You can use a logical array to remove sections from the filter, but not to reorder it (refer to the Examples to see this done).
reorder (hd, numorder, denorder) reorders the numerator and denominator separately using the vectors of indices in numorder and denorder. These two vectors must be the same length.
reorder(hd, numorder, denorder, svorder) the scale values can be independently reordered. When svorder is not specified, the scale values are reordered with the numerator. The output scale value always remains on the end when you use the argument numorder to reorder the scale values.
reorder(hd,filter_type) where filter_type is one of auto, lowpass, highpass, bandpass, or bandstop, reorders hd in a way suitable for the filter type you specify by filter_type. This reordering mode can be especially helpful for fixed-point implementations where the order of the filter sections can significantly affect your filter performance.

The auto option and automatic ordering only apply to filters that you used fdesign to create. With the auto option as an input argument, reorder automatically rearranges the filter sections depending on the specification response type of the design, such as lowpass, or bandstop. This technique appears in the first example.
reorder(hd,dir_flag) if dir_flag is up, the first filter section contains the poles closest to the origin, and the last section contains the poles closest to the
unit circle. When dir_flag is down, the sections are ordered in the opposite direction. reorder always pairs zeros with the poles closest to them.
reorder(hd,dir_flag,sv) sv is either the string poles or zeros and describes how to reorder the scale values. By default the scale values are not reordered when you use the dir_flag option.

## Examples

Being able to rearrange the order of the sections in a filter can be a powerful tool for controlling the filter process. This example uses reorder to change the sections of a df2sos filter. Let reorder do the reordering automatically in the first example. In the second, use reorder to specify the new order for the sections.

First use the automatic reordering option on a lowpass filter.

```
d = fdesign.lowpass('n,f3db',15,0.75)
hd = design(d,'butter');
d =
 Response: 'Lowpass'
 Specification: 'N,F3dB'
 Description: {'Filter Order';'3dB Frequency'}
 NormalizedFrequency: true
 FilterOrder: 15
 F3dB: 0.75
reorder(hd,'auto')
hd
hd =
FilterStructure: 'Direct-Form II, Second-Order Sections'
 Arithmetic: 'double'
 sosMatrix: [8x6 double]
 ScaleValues: [9x1 double]
 PersistentMemory: false
```

The SOS matrices show the reordering.

```
hd.sosMatrix
```

ans $=$					
1.0000	2.0000	1.0000	1.0000	1.3169	0.8623
1.0000	2.0000	1.0000	1.0000	1.1606	0.6414
1.0000	2.0000	1.0000	1.0000	1.0448	0.4776
1.0000	2.0000	1.0000	1.0000	0.9600	0.3576
1.0000	2.0000	1.0000	1.0000	0.8996	0.2722
1.0000	2.0000	1.0000	1.0000	0.8592	0.2151
1.0000	2.0000	1.0000	1.0000	0.8360	0.1823
1.0000	1.0000	0	1.0000	0.4142	0
hdreorder.sosMatrix					
ans					
1.0000	2.0000	1.0000	1.0000	1.0448	0.4776
1.0000	2.0000	1.0000	1.0000	0.8360	0.1823
1.0000	2.0000	1.0000	1.0000	0.8996	0.2722
1.0000	2.0000	1.0000	1.0000	1.3169	0.8623
1.0000	2.0000	1.0000	1.0000	0.9600	0.3576
1.0000	1.0000	0	1.0000	0.4142	
1.0000	2.0000	1.0000	1.0000	0.8592	0.2151
1.0000	2.0000	1.0000	1.0000	1.1606	0.6414

For another example of using reorder, create an SOS filter in the direct form II implementation.

```
[z,p,k] = butter(15,.5);
[sos, g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);
```

Reorder the sections by moving the second section to be between the seventh and eighth sections.

```
reorder(hd, [1 3:7 2 8]);
hfvt = fvtool(hd, 'analysis', 'coefficients');
```

Remove the third, fourth and seventh sections.

```
hd1 = copy(hd);
reorder(hd1, logical([1 1 0 0 1 1 0 1]));
setfilter(hfvt, hd1);
```

Move the first filter to the end and remove the eighth section

```
hd2 = copy(hd);
reorder(hd2, [2:7 1]);
setfilter(hfvt, hd2);
```

Move the numerator and denominator independently.

```
hd3 = copy(hd);
reorder(hd3, [1 3:8 2], [1:8]);
setfilter(hfvt, hd3);
```


## See Also

Reference
cumsec, scale, scaleopts
Schlichthärle, Dietrich, Digital Filters Basics and Design, Springer-Verlag Berlin Heidelberg, 2000.

## Purpose

Syntax

Description

## Examples

## See Also

Reset filter properties to initial conditions
reset(ha)
reset(hd)
reset(hm)
reset (ha) resets all the properties of the adaptive filter ha that are updated when filtering to the value specified at construction. If you do not specify a value for any particular property when you construct an adaptive filter, the property value for that property is reset to the default value for the property.
reset (hd) resets all the properties of the discrete-time filter hd to their factory values that are modifed when you run the filter. In particular, the States property is reset to zero.
reset ( hm ) resets all the properties of the multirate filter hm to their factory value that are modifed when the filter is run. In particular, the States property is reset to zero when hm is a decimator. Additionally, the filter internal properties are also reset to their factory values.

Denoise a sinusoid and reset the filter after filtering with it.

```
h = adaptfilt.lms(5,.05,1,[0.5,0.5,0.5,0.5,0.5]);
n = filter(1,[1 1/2 1/3],.2*randn(1,2000));
d = sin((0:1999)*2*pi*0.005) + n; % Noisy sinusoid
x = n;
[y,e]= filter(h,x,d); %e has denoised signal
disp(h)
reset(h); % Reset the coefficients and states.
disp(h)
```

quantizer, set

## Purpose Scale sections of second-order sections (SOS) filter

```
Syntax scale(hd)
scale(hd,pnorm)
scale(hd,pnorm,p1v,p2,v2,)
scale(hd,pnorm,opts)
```


## Description

scale(hd) scales the second-order section filter hd using peak magnitude response scaling (L-infinity, Linf), to reduce the possibility of overflows when your filter hd operates in fixed-point arithmetic mode.
scale (hd, pnorm) specifies the norm used to scale the filter. pnorm can be either a discrete-time-domain norm or a frequency-domain norm.

Valid time-domain norm values for pnorm are 11, 12, and linf. Valid frequency-domain norm values are L1, L2, and Linf. Note that L2 norm is equal to 12 norm (by Parseval's theorem) but this is not true for other norms-l1 is not the same as L1 and Linf is not the same as linf.

Filter norms can be ordered in terms of how stringent they are, as follows from most stringent to least:
$11>=\operatorname{Linf}>=L 2=12>=L 1>=\operatorname{linf}$
Using 11 , the most stringent scaling, produces a filter that is least likely to overflow, but has the worst signal-to-noise ratio performance. Linf scaling, the least stringent, and the default scaling, is the most commonly used scaling norm.
scale(hd, pnorm, p1, v1, p2, v2, ...) uses parameter name/parameter value pair input arguments to specify optional scaling parameters. Valid parameter names and options values appear in the table.

Parameter	Default	Description and Valid Value
MaxNumerator	2	Maximum allowed value for   numerator coefficients.
MaxScaleValue	Not Used	Maximum allowed scale values.   The filter applies the   MaxScaleValue limit only when   you set ScaleValueConstraint to   a value other than unit (the   default setting). Setting   MaxScaleValue to any numerical   value automatically changes the   ScaleValueConstraint setting to   none.
NumeratorConstraint	none	Specifies whether and how to   constrain numerator coefficient   values. Options are none,   normalize, po2, and unit
OverflowMode	wrap	Sets the way the filter handles   arithmetic overflow situations   during scaling. Choose from wrap,   saturate or satall.


Parameter	Default	Description and Valid Value
ScaleValueConstraint	unit	Specify whether to constrain the   filter scale values, and how to   constrain them. Valid options are   none, po2, and unit. Choosing   unit for the constraint disables   the MaxScaleValue property   setting. po2 constrains the scale   values to be powers of 2, while   none removes any constraint on   the scale values.
sosReorder	auto	Reorder filter sections prior to   applying scaling. Select one of   auto, none, up, or down.

If your device does not have guard bits available and you are using saturation arithmetic for filtering, use the satall setting for OverFlowMode instead of saturate.

With the Arithmetic property of hd set to double or single, the filter uses the default values for all options that you do not specify explicitly. When you set Arithmetic to fixed, the values used for the scaling options are set according to the settings in filter hd. However, if you specify a scaling option different from the settings in hd, the filter uses your explicit option selection for scaling purposes, but does not change the property setting in hd.
scale(hd, pnorm, opts) uses an input scale options object opts to specify the optional scaling parameters in lieu of specifying parameter-value pairs. You can create the opts object using

```
opts = scaleopts(hd)
```

For more information about scaling objects, refer to scaleopts in the Help system.

## Examples

Demonstrate the Linf-norm scaling of a lowpass elliptic filter with second-order sections. Start by creating a lowpass elliptical filter in zero, pole, gain ( $z, p, k$ ) form.

```
[z,p,k] = ellip(5,1,50,.3);
[sos,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);
scale(hd,'linf','scalevalueconstraint','none','maxscalevalue',2)
```

See Also
cumsec, norm, reorder, scalecheck, scaleopts

Purpose Check scaling of a second-order sections (SOS) filter
Syntax $\quad s=$ scalecheck(hd, pnorm)
Description For df1sos and df2tsos Filters
$\mathrm{s}=$ scalecheck(hd, pnorm) returns a row vector s that reports the p-norm of the filter computed from the filter input to the output of each second-order section. Therefore, the number of elements in $s$ is one less than the number of sections in the filter. Note that this p-norm computation does not include the trailing scale value of the filter (which you can find by entering

```
hd.scalevalue(end)
```

at the MATLAB prompt.
pnorm can be either frequency-domain norms specified by L1, L2, or Linf or discrete-time-domain norms-l1, l2, linf. Note that the L2-norm of a filter is equal to the 12 -norm (Parseval's theorem). This is not true for other norms.

## For df2sos and df 1 tsos Filters

$\mathrm{s}=$ scalecheck(hd, pnorm) returns s, a row vector whose elements contain the p-norm from the filter input to the input of the recursive part of each second-order section. This computation of the p-norm corresponds to the input to the multipliers in these filter structures, and are the locations in the signal flow where overflow should be avoided.

When hd has nontrivial scale values, that is, if any scale values are not equal to one, s is a two-row matrix, rather than a vector. The first row elements of s report the p-norm of the filter computed from the filter input to the output of each second-order section. The elements of the second row of s contain the p-norm computed from the input of the filter to the input of each scale value between the sections. Note that for df2sos and df1tsos filter structures, the last numerator and the trailing scale value for the filter are not included when scalecheck checks the scale.

For a given p-norm, an optimally scaled filter has partial norms equal to one, so matrix s contain all ones.

Examples Check the Linf-norm scaling of a filter.

8-1016

```
hs = fdesign.lowpass; % Create a filter design specifications
object.
hd = ellip(hs); % Design an elliptic sos filter
scale(hd,'Linf');
s = scalecheck(hd,'Linf')
```

Or, in another form:

```
[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)
hd =
```

                    FilterStructure: 'Direct-Form I, Second-Order Sections'
                    Arithmetic: 'double'
                    sosMatrix: [5x6 double]
                    ScaleValues: [6x1 double]
                PersistentMemory: false
                            States: [1x1 filtstates.dfiir]
    \(1 \times 1\) struct array with no fields.
    scalecheck(hd, 'Linf')
    ans =
        \(\begin{array}{lllll}0.7631 & 0.9627 & 0.9952 & 0.9994 & 1.0000\end{array}\)
    See Also
norm, reorder, scale, scaleopts

## scaleopts

Purpose Create object containing scaling options for second-order sections (SOS) scaling

## Syntax opts = scaleopts(hd)

Description opts = scaleopts(hd) uses the current settings in the filter hd to create an options object opts that contains specified scaling options for second-order section scaling. You can pass opts to the scale method as an input argument to apply scaling settings to a second-order filter.

Within opts, the scaling options object returned by scaleopts, you can set the following properties:

Parameter	Default	Description and Valid Value
MaxNumerator	2	Maximum allowed value for   numerator coefficients.
MaxScaleValue	No default   value	Maximum allowed scale values.   The filter applies the   MaxScaleValue limit only when   you set ScaleValueConstraint   to a value other than unit.   Setting MaxScaleValue to   a numerical value   automatically changes the   ScaleValueConstraint setting   to none.
NumeratorConstraint	none	Specifies whether and how to   constrain numerator coefficient   values. Options are none,   normalize, po2, and unit,


Parameter (Continued)	Default	Description and Valid Value
OverflowMode	wrap	Sets the way the filter handles   arithmetic overflow situations   during scaling. Choose either   wrap or saturate
ScaleValueConstraint	unit	Specify whether to constrain   the filter scale values, and how   to constrain them. Valid options   are none, po2, and unit

When you set the properties of opts and then use opts as an input argument to scale(hd, opts), scale applies the settings in opts to scale hd.

## Examples

From a filter hd, you can create an options scaling object that contains the scaling options settings you require.

```
[b,a]=ellip(10, .5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)
opts=scaleopts(hd)
opts =
MaxNumerator: 2 NumeratorConstraint: 'none'
OverflowMode: 'wrap' ScaleValueConstraint: 'unit' MaxScaleValue: 'Not used'
```

See Also cumsec, norm, reorder, scale, scalecheck

# Purpose Configure single-rate and multirate filters for integer filtering 

```
Syntax set2int(h)
set2int(h,coeffwl)
set2int(...,inwl)
g = set2int(...)
Description These sections apply to both discrete-time (dfilt) and multirate (mfilt) filters.
```

set2int ( h ) scales the filter coefficients to integer values and sets the filter coefficient and input fraction lengths to zero.
set2int (h, coeffwl) uses the number of bits specified by coeffwl as the word length it uses to represent the filter coefficients.
set2int (..., inwl) uses the number of bits specified by coeffwl as the word length it uses to represent the filter coefficients and the number of bits specified by inwl as the word length to represent the input data.
$g=\operatorname{set} 2 i n t(\ldots)$ returns the gain $g$ introduced into the filter by scaling the filter coefficients to integers. $g$ is always calculated to be a power of 2 .

Note set2int does not work with CIC decimators or interpolators because they do not have coefficients.

These examples demonstrate some uses and ideas behind set2int.
The second parts of both examples depend on the following-after you filter a set of data, the input data and output data cover the same range of values, unless the filter process introduces gain in the output. Converting your filter object to integer form, and then filtering a set of data, does introduce gain into the system. When the examples refer to resetting the output to the same range as the input, the examples are accounting for this added gain feature.

## Discrete-Time Filter Example

Two parts comprise this example. Part 1 compares the step response of an FIR filter in both the fractional and integer filter modes. Fractional mode filtering
is essentially the opposite of integer mode. Integer mode uses a filter which has coefficients represented by integers. Fractional mode filters have coefficients represented in fractional form (nonzero fraction length).

```
b = firrcos(100,.25,.25,2,'rolloff','sqrt');
hd = dfilt.dffir(b);
hd.Arithmetic = 'fixed';
hd.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hd,x); % Fractional mode output.
g = set2int(hd); % Convert to integer coefficients.
yint = filter(hd,x); % Integer mode output.
```

Note that yint and yfrac are fi objects. Later in this example, you use the fi object properties WordLength and FractionLength to work with the output data.

Now use the gain g to rescale the output from the integer mode filter operation.

```
yints = double(yint)/g;
```

Verify that the scaled integer output is equal to the fractional output.

```
max(abs(yints-double(yfrac)))
```

In part 2 , the example reinterprets the output binary data, putting the input and the output on the same scale by weighting the most significant bits in the input and output data equally.

```
WL = yint.WordLength;
FL = yint.Fractionlength + log2(g);
yints2 = fi(zeros(size(yint)),true,WL,FL);
yints2.bin = yint.bin;
max(abs(double(yints2)-double(yfrac)))
```


## Multirate Filter Example

This two-part example starts by comparing the step response of a multirate filter in both fractional and integer modes. Fractional mode filtering is essentially the opposite of integer mode. Integer mode uses a filter which has coefficients represented by integers. Fractional mode filters have coefficients in fractional form with nonzero fraction lengths.

```
hm = mfilt.firinterp;
```

```
hm.Arithmetic = 'fixed';
hm.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hm,x); % Fractional mode output.
g = set2int(hm); %Convert to integer coefficients.
yint = filter(hm,x); % Integer mode output.
```

Note that yint and yfrac are fi objects. In part 2 of this example, you use the fi object properties WordLength and FractionLength to work with the output data.

Now use the gaing to rescale the output from the integer mode filter operation.

```
yints = double(yint)/g;
```

Verify that the scaled integer output is equal to the fractional output.

```
max(abs(yints-double(yfrac)))
```

Part 2 demonstrates reinterpreting the output binary data by using the properties of yint to create a scaled version of yint named yints2. This process puts yint and yints2 on the same scale by weighing the most significant bits of each object equally.

```
wl = yint.wordlength;
fl = yint.fractionlength + log2(g);
yints2 = fi(zeros(size(yint)),true,wl,fl);
yints2.bin = yint.bin;
max(abs(double(yints2)-double(yfrac)))
```


## See Also

mfilt

Purpose
Syntax

Description

Examples

Set specifications for filter specification object

```
setspecs(d,specvalue1,specvalue2,...)
setspecs(d,Specification,specvalue1,specvalue2,...)
setspecs(...,fs)
setspecs(...,inputunits)
```

setspecs(d, specvalue1, specvalue2,...) Set the specifications in the order that they appear in the Specification property for the design object $d$.
setspecs(d,Specification, specvalue1, specvalue2, ...) lets you change the specifications for the object and set values for the new specifiers. When you already have a filter specifications object, this syntax lets you change the Specification string and the associated specification values for the object, rather than recreating the object to change it.
setspecs (...fs) Set the fs. If you choose to specify the fs, it must be immediately after you provide all of the specifications for the current Specification. Refer to Examples to see this being used.
setspecs(..., inputunits) Specifying the inputunits option allows you to specify your filter magnitude specification values in different units.
inputunits can be either of these strings:

- 'linear'-to indicate that your input specification values represent linear units, such as decimal values for the filter feature locations when you select normalized sampling frequency.
- 'squared'-indicating that your input specification values represent squared magnitude values, usually dB . This is the default value. When you omit the inputunits argument, setspecs assumes all specification values are in square magnitude form.

You are not required to provide fs, the sampling frequency, as an input when you use the inputunits option. As you see from the syntax options, the inputunits option must be the rightmost input argument in the syntaxinputunits must be passed as the final input.

To demonstrate using setspecs, the following examples show how to use various syntax forms to set the values in filter specifications objects.

## Example 1

Create a lowpass design object d using filter order and a cutoff value for the location of the edge of the passband. Then change the cutoff and order specifications of $d$.

```
d = fdesign.lowpass('n,fc')
d =
 ResponseType: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 10
 Fcutoff: 0.5000
setspecs(d, 20, .4);
d =
 ResponseType: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 FilterOrder: 20
 Fcutoff: 0.4000
```


## Example 2

Now specify a sampling frequency after you make d.
$d$ = fdesign.lowpass(' $\left.n, f c^{\prime}\right)$
d $=$
ResponseType: 'Lowpass with cutoff'
Specification: 'N,Fc'
Description: \{2x1 cell\}
NormalizedFrequency: true

```
 Fs: 'Normalized'
 FilterOrder: 10
 Fcutoff: 0.5000
setspecs(d, 20, 4, 20);
d
d =
 ResponseType: 'Lowpass with cutoff'
 Specification: 'N,Fc'
 Description: {2x1 cell}
 NormalizedFrequency: false
 Fs: 20
 FilterOrder: 20
 Fcutoff: 4
```


## Example 3

This example uses the inputunits argument to change from the default setting of square to linear unit. Start with the default lowpass design object that specifies the edge locations for the passband and stopband, and the desired attenuation in the pass- and stopbands.

```
d=fdesign.lowpass
d =
 ResponseType: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass: 0.4500
 Fstop: 0.5500
 Apass: 1
 Astop: 60
```

Convert to linear input values and reset the filter spec for d at the same time. With the linear argument included, the inputs for the response features now need to be in linear units.

```
setspecs(d,.4,.5,.1,.05,'linear')
d
d =
 ResponseType: 'Minimum-order lowpass'
 Specification: 'Fp,Fst,Ap,Ast'
 Description: {4x1 cell}
 NormalizedFrequency: true
 Fs: 'Normalized'
 Fpass: 0.4000
 Fstop: 0.5000
 Apass: 1.7430
 Astop: 26.0206
```


## Example 4

Finally, use setspecs to change the Specification string and apply new filter specifications to d.

```
d=fdesign.decim(3)
d =
 ResponseType: 'Minimum-order nyquist'
 Specification: 'TW,Ast'
 Description: {2x1 cell}
 DecimationFactor: 3
 NormalizedFrequency: true
 Fs: 'Normalized'
 TransitionWidth: 0.1000
 Astop: 80
setspecs(d,'n,ast', 16,70)
d
d =
 ResponseType: 'Nyquist with filter order and stopband attenuation'
 Specification: 'N,Ast'
 Description: {2x1 cell}
 DecimationFactor: 3
```


# NormalizedFrequency: true 

Fs: 'Normalized'
PolyphaseLength: 16
Astop: 70
See Also
designmethods, fdesign.bandpass, fdesign.bandstop, fdesign.decimator, fdesign.halfband, fdesign.highpass, fdesign.interpolator, fdesign.lowpass, fdesign.nyquist, fdesign.rsrc

## Purpose

Syntax

Description

## Examples

## See Also

convert, dfilt
tf2sos in your Signal Processing Toolbox documentation

Purpose
Access fixed-point scaling modes and features in direct-form FIR filter object

Syntax

Description

```
specifyall(hd)
specifyall(hd,false)
specifyall(hd,true)
```

specifyall sets all of the autoscale property values of direct-form FIR filters to false and all *modes of the filters to SpecifyPrecision. In this table, you see the results of using specifyall with direct-form FIR filters.

Property Name	Default	Setting After Applying   specifyall
CoeffAutoScale	true	false
OutputMode	AvoidOverflow	SpecifyPrecision
ProductMode	FullPrecision	SpecifyPrecision
AccumMode	KeepMSB	SpecifyPrecision
RoundMode	convergent	convergent
OverflowMode	wrap	wrap

specifyall(hd) gives you maximum control over all settings in a filter hd by setting all of the autoscale options that are true to false, turning off all autoscaling and resetting all modes-OutputMode, ProductMode, and AccumMode-to SpecifyPrecision. After you use specifyall, you must supply the property values for the mode- and scaling related properties.
specifyall provides an alternative to changing all these properties individually. Do note that specifyall changes all of the settings; to set some but not all of the modes, set each property as you require.
specifyall(hd,false) performs the opposite operation of specifyall(hd) by setting all of the autoscale options to true; all of the modes to their default values; and hiding the fraction length properties in the display, meaning you cannot access them to set them or view them.
specifyall(hd,true) is equivalent to specifyall(hd).

## Examples

This examples demonstrates using specifyall to provide access to all of the fixed-point settings of an FIR filter implemented with the direct-form structure. Notice the displayed property values shown after you change the filter to fixed-point arithmetic, then after you use specifyall to disable all of the automatic filter scaling and reset the mode values.

```
b = fircband(12,[0 0.4 0.5 1], [11 1 0 0], [1 0.2], {'w' 'c'});
hd = dfilt.dffir(b);
hd.arithmetic = 'fixed'
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [1x13 double]
PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: 'true'
 Signed: 'on'
 InputWordLength: 16
 InputFracLength: 15
 OutputWordLength: 16
 OutputMode: 'AvoidOverflow'
 ProductMode: 'FullPrecision'
 AccumMode: 'KeepMSB'
 AccumWordLength: 40
 CastBeforeSum: 'on'
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InheritSettings: 'off'
specifyall(hd)
hd
```

```
hd =
 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'fixed'
 Numerator: [1x13 double]
PersistentMemory: false
 States: [1x1 embedded.fi]
 CoeffWordLength: 16
 CoeffAutoScale: false
 NumFracLength: 16
 Signed: true
 InputWordLength: 16
 InputFracLength: 15
OutputWordLength: 16
 OutputMode: 'SpecifyPrecision'
OutputFracLength: 11
 ProductMode: 'SpecifyPrecision'
ProductWordLength: 32
ProductFracLength: 31
 AccumMode: 'SpecifyPrecision'
AccumWordLength: 40
AccumFracLength: 31
 CastBeforeSum: true
 RoundMode: 'convergent'
 OverflowMode: 'wrap'
 InheritSettings: false
```

The mode properties InputMode, ProductMode, and AccumMode now have the value SpecifyPrecision and the fraction length properties appear in the display. Now you use the properties (InputFracLength, ProdFracLength, AccumFracLength) to set the precision the filter applies to the input, product, and accumulator operations. CoeffAutoScale switches to false, meaning
autoscaling of the filter coefficients will not be done to prevent overflows. None of the other filter properties change when you apply specifyall.

See Also
double, reffilter
fi, fimath in the Fixed-Point Toolbox

## Purpose Step response for filter

Syntax $\quad$| $[h, t]=\operatorname{stepz}(h a)$ |  |
| :--- | :--- |
|  | $\operatorname{stepz}(h a)$ |
|  | $[h, t]=\operatorname{stepz}(h m)$ |
|  | stepz $(h m)$ |

## Description

The next sections describe common stepz operation with adaptive and multirate filters. For more input options and for information about using stepz with discrete-time filters, refer to stepz in the Signal Processing Toolbox.

## Adaptive Filters

For adaptive filters, stepz returns the instantaneous zero-phase response based on the current filter coefficients.
[h, t] = stepz(ha) returns the step response $h$ of the multirate filter ha. The length of column vector $h$ is the length of the impulse response of ha. Returned vector $t$ contains the time samples at which stepz evaluated the step response. stepz returns $h$ as a matrix when ha is a vector of filters. Each column of the matrix corresponds to one filter in the vector.
stepz (ha) displays the filter step response in the Filter Visualization Tool (FVTool).

## Multirate Filters

$[\mathrm{h}, \mathrm{t}]=\operatorname{stepz}(\mathrm{hm})$ returns the step response h of the multirate filter hm. The length of column vector $h$ is the length of the impulse response of hm . The vector $t$ contains the time samples at which stepz evaluated the step response. stepz returns h as a matrix when hm is a vector of filters. Each column of the matrix corresponds to one filter in the vector.
stepz (hm) displays the step response in the Filter Visualization Tool (FVTool).

Note that the response is computed relative to the rate at which the filter is running. If a sampling frequency is specified, it is assumed that the filter is running at that rate.

Note that the multirate filter delay response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, stepz assumes the filter is running at that rate.

For multistage cascades, stepz forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. stepz does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be found. stepz uses the equivalent filter for the analysis. If you specify a sampling frequency fs as an input argument to stepz, the function interprets fs as the rate at which the equivalent filter is running.

See Also freqz, impz

## Purpose Convert transfer function to coupled allpass

```
Syntax [d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a)
[d1,d2,beta] = tf2ca(b,a)
```

Description
[d1,d2] = tf2ca(b,a) where b is a real, symmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, returns real vectors d1 and d2 containing the denominator coefficients of the allpass filters $H 1(z)$ and $H 2(z)$ such that

$$
H(z)=\frac{B(z)}{A(z)}=\frac{1}{2[H 1(z)+H 2(z)]}
$$

representing a coupled allpass decomposition.
[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, returns real vectors d1 and d2 containing the denominator coefficients of the allpass filters $H 1(z)$ and $H 2(z)$ such that

$$
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[H 1(z)-H 2(z)]
$$

In some cases, the decomposition is not possible with real $H 1(z)$ and $H 2(z)$. In those cases a generalized coupled allpass decomposition may be possible, whose syntax is

$$
[d 1, d 2, b e t a]=t f 2 c a(b, a)
$$

to return complex vectors d1 and d2 containing the denominator coefficients of the allpass filters $H 1(z)$ and $H 2(z)$, and a complex scalar beta, satisfying |beta| = 1, such that

$$
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[\bar{\beta} \bullet H 1(z)+\beta \bullet H 2(z)]
$$

representing the generalized allpass decomposition.

In the above equations, $H 1(z)$ and $H 2(z)$ are real or complex allpass IIR filters given by

$$
H 1(z)=\frac{f l i p l r(\overline{(D 1(z))})}{D 1(z)}, H 2(1)(z)=\frac{f l i p l r((\overline{D 2(1)(z)}))}{D 2(1)(z)}
$$

where $D 1(z)$ and $D 2(z)$ are polynomials whose coefficients are given by d1 and d2.

Note A coupled allpass decomposition is not always possible. Nevertheless, Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be factored in this manner. For details, refer to Signal Processing Toolbox User's Guide.

## Examples

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2latc

## Purpose Convert transfer function to coupled allpass lattice

## Syntax $\quad[k 1, k 2]=\operatorname{tf2cl}(b, a)$ <br> [k1,k2] = tf2cl(b,a)

Description $\quad[k 1, k 2]=\operatorname{tf2cl}(b, a)$ where $b$ is a real, symmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, will perform the coupled allpass decomposition

$$
H(z)=\frac{B(z)}{A(z)}=\frac{1}{2[H 1(z)+H 2(z)]}
$$

of a stable IIR filter $H(z)$ and convert the allpass transfer functions $H 1(z)$ and $\mathrm{H} 2(\mathrm{z})$ to a coupled lattice allpass structure with coefficients given in vectors k1 and k2.
[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of numerator coefficients and a is a real vector of denominator coefficients, corresponding to a stable digital filter, performs the coupled allpass decomposition

$$
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[H 1(z)-H 2(z)]
$$

of a stable IIR filter $H(z)$ and converts the allpass transfer functions $H 1(z)$ and $H 2(z)$ to a coupled lattice allpass structure with coefficients given in vectors k1 and k2.

In some cases, the decomposition is not possible with real $H 1(z)$ and $H 2(z)$. In those cases, a generalized coupled allpass decomposition may be possible, using the command syntax

$$
[k 1, k 2, b e t a]=\operatorname{tf2cl}(b, a)
$$

to perform the generalized allpass decomposition of a stable IIR filter $H(z)$ and convert the complex allpass transfer functions $H 1(z)$ and $H 2(z)$ to corresponding lattice allpass filters

$$
H(z)=\frac{B(z)}{A(z)}=\left(\frac{1}{2}\right)[\bar{\beta} \bullet H 1(z)+\beta \bullet H 2(z)]
$$

where beta is a complex scalar of magnitude equal to 1 .

Note Coupled allpass decomposition is not always possible. Nevertheless, Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be factored in this manner. For details, refer to Signal Processing Toolbox User's Guide.

## Examples

```
[b,a]=cheby1(9,.5,.4);
[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.
[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice
[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.
num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);
den = conv(den1,den2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed
 % numerator and denominators.
```


## See Also

ca2tf, cl2tf, iirpowcomp
latc2tf, tf2ca, tf2latc in Signal Processing Toolbox

## window

## Purpose Design FIR filter using windowed impulse response method

```
Syntax h = window(d,fcnhndl,fcnarg)
h = window(d, win)
```


## Examples

These examples design filters using the two design techniques of specifying a function handle or passing a window vector as an input argument.

## Example 1

Use a function handle and optional input arguments to design a multirate filter. We use a function handle to the function Kaiser to provide the window. Since this example creates a decimating filter specifications object, window returns a multirate filter.

```
d = fdesign.decim(4,'pl',14);
hm = window(d,@kaiser,2.5);
fvtool(hm)
```



## Example 2

Use a window vector provided by the hamming window design function. For this example, the design object is a Nyquist filter, thus window returns hd as a discrete-time filter.

```
d = fdesign.nyquist(5,'n',150);
hd = window(d,hamming(151));
fvtool(hd)
```


## window



## See Also <br> firls, kaiserwin

## zerophase

Purpose
Zero-phase response for filter
Syntax

```
zerophase(ha)
[hr,w] = zerophase(ha,n)
[hr,w] = zerophase(...,f)
zerophase(hd)
[hr,w] = zerophase(hd,n)
[hr,w] = zerophase(...,f)
zerophase(hm)
[hr,w] = zerophase(hm,n)
[hr,w] = zerophase(...,f)
[hr,w] = zerophase(...,fs)
```


## Description

The next sections describe common zerophase operation with adaptive, discrete-time, and multirate filters. For more input options, refer to zerophase in the Signal Processing Toolbox.

## Adaptive Filters

For adaptive filters, zerophase returns the instantaneous zero-phase response based on the current filter coefficients.
zerophase (ha) displays the zero-phase response of ha in the Filter Visualization Tool (FVTool).
[hr,w] = zerophase(ha, n) returns length $n$ vectors $h r$ and $w$ containing the instantaneous zero-phase response of the adaptive filter ha, and the frequencies in radians at which zerophase evaluated the response. The zero-phase response is evaluated at $n$ points equally spaced around the upper half of the unit circle. For an FIR filter where $n$ is a power of two, the computation is done faster using FFTs. If n is not specified, it defaults to 8192.
[ $\mathrm{hr}, \mathrm{w}$ ] = zerophase (ha) returns a matrix hr if ha is a vector of filters. Each column of the matrix corresponds to each filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of $h r$ corresponds to one filter in the vector.

## Discrete-Time Filters

zerophase(hd) displays the zero-phase response of hd in the Filter Visualization Tool (FVTool).
[hr,w] = zerophase(hd, n ) returns length n vectors hr and w containing the instantaneous zero-phase response of the adaptive filter hd, and the frequencies in radians at which zerophase evaluated the response. The zero-phase response is evaluated at $n$ points equally spaced around the upper half of the unit circle. For an FIR filter where $n$ is a power of two, the computation is done faster using FFTs. If n is not specified, it defaults to 8192.
[hr,w] = zerophase(hd) returns a matrix hr if hd is a vector of filters. Each column of the matrix corresponds to each filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of $h r$ corresponds to one filter in the vector.

## Multirate Filters

zerophase (hm) displays the zero-phase response of hd in the Filter Visualization Tool (FVTool).
[hr,w] = zerophase(hm,n) returns length $n$ vectors $h r$ and $w$ containing the instantaneous zero-phase response of the adaptive filter hm, and the frequencies in radians at which zerophase evaluated the response. The zero-phase response is evaluated at $n$ points equally spaced around the upper half of the unit circle. For an FIR filter where $n$ is a power of two, the computation is done faster using FFTs. If n is not specified, it defaults to 8192.
[ $\mathrm{hr}, \mathrm{w}$ ] = zerophase $(\mathrm{hm})$ returns a matrix hr if hm is a vector of filters. Each column of the matrix corresponds to each filter in the vector. If you provide a row vector of frequency points $f$ as an input argument, each row of $h r$ corresponds to one filter in the vector.

Note that the response is computed relative to the rate at which the filter is running. If a sampling frequency is specified, it is assumed that the filter is running at that rate.

## zerophase

Note that the multirate filter delay response is computed relative to the rate at which the filter is running. When you specify fs (the sampling rate) as an input argument, zerophase assumes the filter is running at that rate.

For multistage cascades, zerophase forms a single-stage multirate filter that is equivalent to the cascade and computes the response relative to the rate at which the equivalent filter is running. zerophase does not support all multistage cascades. Only cascades for which it is possible to derive an equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an interpolation factor of 2 and the second stage has an interpolation factor of 4 . An equivalent single-stage filter with an overall interpolation factor of 8 can be found. zerophase uses the equivalent filter for the analysis. If a sampling frequency fs is specified as an input argument to zerophase, the function interprets $f s$ as the rate at which the equivalent filter is running.

## See Also

freqz, fvtool, grpdelay, impz, mfilt, phasez, zerophase, zplane

## zpkbpc2bpc

Purpose Zero-pole-gain complex bandpass frequency transformation

## Syntax

[Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)
Description

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

Create a complex passband from 0.25 to 0.75 :

```
[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z, p, k, [0.25, 0.75], [-0.75, -0.25]);
```

Verify the result by comparing the prototype filter with the target filter: fvtool(b, a, k2*poly(z2), poly(p2));

Comparing the filters in FVTool shows the example results. Use the features in FVTool to check the filter coefficients, or other filter analyses.


## Arguments

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

## zpkbpc2bpc

Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter
P2
Poles of the target filter

## K2

Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

## See Also

zpkftransf, allpassbpc2bpc, iirbpc2bpc

Purpose

## Syntax

Description

Examples

Zero-pole-gain frequency transformation of digital filter
[Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)
[Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the transformed lowpass digital filter. The prototype lowpass filter is given with zeros, Z , poles, P , and gain factor, K. If AllpassDen is not specified it will default to 1 . If neither AllpassNum nor AllpassDen is specified, then the function returns the input filter.

Design a prototype real IIR halfband filter using a standard elliptic approach:
[b, a] = ellip(3,0.1,30,0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[z2, p2, k2] = zpkftransf(roots(b), roots(a), b(1),AlpNum,AlpDen);
Verify the result by comparing the prototype filter with the target filter:
fvtool(b, a, k2*poly(z2), poly(p2));
After transforming the filter, you get the response shown in the figure, where the passband has been shifted towards zero.

## zpkftransf



## Arguments

## Z

Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
FTFNum
Numerator of the mapping filter
FTFDen
Denominator of the mapping filter
Z2
Zeros of the target filter

P2
Poles of the target filter
K2
Gain factor of the target filter
See Also iirftransf

## zpklp2bp

Purpose Zero-pole-gain lowpass to bandpass frequency transformation
Syntax [Z2, P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z, P, K, Wo, Wt $)$
Description

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
```

```
[z2,p2,k2] = zpklp2bp(z, p, k, 0.5, [0.2 0.3]);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```


## Arguments

See Also zpkftransf, allpasslp2bp, iirlp2bp
References
Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter to half the sample rate.

Frequencies must be normalized to be between 0 and 1, with 1 corresponding
[1] Constantinides, A.G., "Spectral transformations for digital filters," $I E E$ Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

## Purpose

Syntax
Description

## Examples

Zero-pole-gain lowpass to complex bandpass frequency transformation
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, P , and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $W_{t 1}$, and the second feature, originally at $+W_{0}$, at the new location, $W_{t 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other types of filters; e.g., real notch filters or resonators can be doubled and positioned at two distinct desired frequencies at any place around the unit circle forming a pair of complex notches/resonators. This transformation can be used for designing bandpass filters for radio receivers from the high-quality prototype lowpass filter.

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
```


## zpklp2bpc

```
k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```


## Arguments

See Also
zpkftransf, allpasslp2bpc, iirlp2bpc

## Purpose

Syntax
Description

## Examples

Zero-pole-gain lowpass to bandstop frequency transformation

```
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)
```

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying a second-order real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, P , and gain factor, K.

This transformation effectively places one feature of an original filter, located at frequency $-W_{0}$, at the required target frequency location, $W_{t 1}$, and the second feature, originally at $+W_{0}$, at the new location, $W_{t 2}$. It is assumed that $W_{t 2}$ is greater than $W_{t 1}$. This transformation implements the "Nyquist Mobility," which means that the DC feature stays at DC, but the Nyquist feature moves to a location dependent on the selection of $W_{0}$ and $W_{t} s$.

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. After the transformation feature $F_{2}$ will precede $F_{1}$ in the target filter. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not restricted only to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```


## zpklp2bs

## Arguments

See Also
References

## Z

Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

## Wo

Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter

## Z2

Zeros of the target filter

> P2

Poles of the target filter

## K2

Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
zpkftransf, allpasslp2bs, iirlp2bs
[1] Constantinides, A.G., "Spectral transformations for digital filters," IEE Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Design of bandpass digital filters," IEEE Proceedings, vol. 1, pp. 1129-1231, June 1969.

## zpklp2bsc

## Purpose Zero-pole-gain lowpass to complex bandstop frequency transformation

$$
\text { Syntax } \quad[Z 2, P 2, K 2, A l l p a s s N u m, A l l p a s s D e n]=\text { zpklp2bsc }(Z, P, K, \text { Wo,Wt })
$$

Description

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
```

```
[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```


## Arguments

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
See Also zpkftransf, allpasslp2bsc, iirlp2bsc

## zpklp2hp

Purpose
Syntax
Description

## Examples

Zero-pole-gain lowpass to highpass frequency transformation
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to real highpass frequency mapping. This transformation effectively places one feature of an original filter, located at frequency $W_{0}$, at the required target frequency location, $W_{t}$, at the same time rotating the whole frequency response by half of the sampling frequency. Result is that the DC and Nyquist features swap places.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, $P$, and the gain factor, $K$.

Relative positions of other features of an original filter change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. After the transformation feature $F_{2}$ will precede $F_{1}$ in the target filter. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, or the deep minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way without designing them again.

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```


## Arguments

See Also zpkftransf, allpasslp2hp, iirlp2hp

## Z

Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

References
[1] Constantinides, A.G., "Spectral transformations for digital filters," $I E E$ Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transfer function parameters in the discrete-time frequency transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, pp. 1078-1082, August 1990.
[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-time elliptic transfer functions," Proceedings of the 35th Midwest Symposium on Circuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Frequency transformations for digital filters," Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

## Purpose

Syntax
Description

## Examples

Zero-pole-gain lowpass to lowpass frequency transformation

```
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)
```

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying a first-order real lowpass to real lowpass frequency mapping. This transformation effectively places one feature of an original filter, located at frequency $W_{0}$, at the required target frequency location, $\mathrm{W}_{\mathrm{t}}$.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, $P$, and gain factor, $K$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way without designing them again.

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```


## zpklp2lp

Using zpklp2lp creates the desired half band IIR filter with the transformed features that you specify in the transformation function. This figure shows the results.


## Arguments

## Z

Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
WtDesired frequency location in the transformed target filter
Z2Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filterFrequencies must be normalized to be between 0 and 1, with 1 correspondingto half the sample rate.
See Also zpkftransf, allpasslp2lp, iirlp2lp
References [1] Constantinides, A.G., "Spectral transformations for digital filters," IEEProceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.[2] Nowrouzian, B. and A.G. Constantinides, "Prototype reference transferfunction parameters in the discrete-time frequency transformations,"Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary,Canada, vol. 2, pp. 1078-1082, August 1990.[3] Nowrouzian, B. and L.T. Bruton, "Closed-form solutions for discrete-timeelliptic transfer functions," Proceedings of the 35th Midwest Symposium onCircuits and Systems, vol. 2, pp. 784-787, 1992.
[4] Constantinides, A.G., "Frequency transformations for digital filters,"Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.

## zpklp2mb

## Purpose Zero-pole-gain lowpass to M-band frequency transformation

> Syntax
> Description
> [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)
> [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)
> [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying an Mth-order real lowpass to real multibandpass frequency mapping. By default the DC feature is kept at its original location.
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, $P$, and gain factor, $K$.

This transformation effectively places one feature of an original filter, located at frequency $W_{0}$, at the required target frequency locations, $W_{t 1}, \ldots, W_{t M}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));
```

The resulting multiband filter that replicates features from the prototype appears in the figure shown. Note the accuracy of the replication process.


## zpklp2mb

Arguments
See Also
References
Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
WoFrequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
PassChoice ('pass'/'stop') of passband/stopband at DC, `pass' being the default
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filterFrequencies must be normalized to be between 0 and 1, with 1 correspondingto half the sample rate.
zpkftransf, allpasslp2mb, iirlp2mb[1] Franchitti, J.C., "All-pass filter interpolation and frequency transformationproblems," MSc Thesis, Dept. of Electrical and Computer Engineering,University of Colorado, 1985.
[2] Feyh, G., J.C. Franchitti and C.T. Mullis, "All-pass filter interpolation and frequency transformation problem," Proceedings 20th Asilomar Conference on

Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, Reading, Massachusetts, Addison-Wesley, 1987.
[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm for frequency transformations, Linear Circuits, Systems and Signal Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.

## zpklp2mbc

## Purpose Zero-pole-gain lowpass to complex M-band frequency transformation

## Syntax <br> [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)

Description

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));
```

You could review the coefficients to compare the filters, but the graphical comparison shown here is quicker and easier.


However, looking at the coefficients in FVTool shows the complex nature desired.

## Arguments

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

## zpklp2mbc

Wo
Frequency value to be transformed from the prototype filter. It should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

## Z2

Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

## See Also

zpkftransf, allpasslp2mbc, iirlp2mbc

## Purpose

Syntax
Description

## Examples

Zero-pole-gain lowpass to complex N-point frequency transformation

```
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)
```

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, $P$, and gain factor, K.

Parameter $N$ also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places $N$ features of an original filter, located at frequencies $W_{01}, \ldots, W_{O N}$, at the required target frequency locations, $\mathrm{W}_{\mathrm{t} 1}, \ldots, \mathrm{~W}_{\mathrm{tM}}$.

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation. For DC mobility feature $F_{2}$ will precede $F_{1}$ after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC , the deep minimum in the stopband, or other ones. The only condition is that the features must be selected in such a way that when creating N bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

Design a prototype real IIR halfband filter using a standard elliptic approach:

$$
[b, a]=\operatorname{ellip}(3,0.1,30,0.409) ;
$$

## zpklp2xc

```
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25]);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```

Plotting the filters on the same axes lets you compare the results graphically, shown here.


## Arguments

## Z

Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency values to be transformed from the prototype filter. They should be normalized to be between 0 and 1 , with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter

## See Also

## zpklp2xn

Purpose
Syntax

Description

Zero-pole-gain lowpass to N-point frequency transformation

$$
\begin{aligned}
{[\mathrm{Z2,P2,K2,AllpassNum,AllpassDen]}} & =\text { zpklp2xn(Z,P,K,Wo,Wt }) \\
{[\mathrm{Z} 2, \mathrm{P} 2, \mathrm{~K} 2, \text { AllpassNum,AllpassDen] }} & =\text { zpklp2xn(Z,P,K,Wo,Wt,Pass })
\end{aligned}
$$

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying an Nth-order real lowpass to real multipoint frequency transformation, where $N$ is the number of features being mapped. By default the DC feature is kept at its original location.
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass) allows you to specify an additional parameter, Pass, which chooses between using the "DC Mobility" and the "Nyquist Mobility". In the first case the Nyquist feature stays at its original location and the DC feature is free to move. In the second case the DC feature is kept at an original frequency and the Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, $P$, and gain factor, $K$.

Parameter $N$ also specifies the number of replicas of the prototype filter created around the unit circle after the transformation. This transformation effectively places $N$ features of an original filter, located at frequencies $W_{01}, \ldots, W_{O N}$, at the required target frequency locations, $W_{t 1}, \ldots, W_{\mathrm{tM}}$.

Relative positions of other features of an original filter are the same in the target filter for the Nyquist mobility and are reversed for the DC mobility. For the Nyquist mobility this means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation. For DC mobility feature $F_{2}$ will precede $F_{1}$ after the transformation.

Choice of the feature subject to this transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC , the deep minimum in the stopband, or other ones. The only condition is that the features must be
selected in such a way that when creating N bands around the unit circle, there will be no band overlap.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can be easily replicated at a number of required frequency locations. A good application would be an adaptive tone cancellation circuit reacting to the changing number and location of tones.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```


## zpklp2xn



As demonstrated by the figure, the target filter has the desired response shape and values replicated from the prototype.

## Arguments

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

## Wo

Frequency value to be transformed from the prototype filter
WtDesired frequency location in the transformed target filter
Pass
Choice ('pass'/'stop') of passband/stopband at DC, `pass' being the default
Z2
Zeros of the target filter
P2
Poles of the target filter
K2Gain factor of the target filter
AllpassDen
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 correspondingto half the sample rate.
See Also zpkftransf, allpasslp2xn, iirlp2xn
[1] Cain, G.D., A. Krukowski and I. Kale, "High Order Transformations forFlexible IIR Filter Design," VII European Signal Processing Conference(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September1994.[2] Krukowski, A., G.D. Cain and I. Kale, "Custom designed high-orderfrequency transformations for IIR filters," 38th Midwest Symposium onCircuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
References

## zpkrateup

## Purpose Zero-pole-gain complex bandpass frequency transformation

## Syntax <br> [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)

Description
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter being transformed from any prototype by applying an Nth-order rateup frequency transformation, where N is the upsample ratio. Transformation creates $N$ equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The original lowpass filter is given with zeros, $Z$, poles, P , and gain factor, K.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

## Examples

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
```

Upsample the prototype filter four times:

```
[z2,p2,k2] = zpkrateup(z, p, k, 4);
```

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```

Applying the upsample process creates a bandpass filter, as shown here.


## Arguments

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
N
Integer upsampling ratio
Z2
Zeros of the target filter
P2
Poles of the target filter

## zpkrateup

K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1, with 1 corresponding to half the sample rate.

## See Also

zpkrateup, allpassrateup, iirrateup

## Purpose

Syntax
Description

## Examples

Zero-pole-gain real shift frequency transformation
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying a second-order real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass mapping filter, AllpassDen. The prototype lowpass filter is given with zeros, Z, poles, P , and gain factor, K .

This transformation places one selected feature of an original filter, located at frequency $W_{0}$, at the required target frequency location, $W_{t}$. This transformation implements the "DC Mobility," which means that the Nyquist feature stays at Nyquist, but the DC feature moves to a location dependent on the selection of $W_{0}$ and $W_{t}$.

Relative positions of other features of an original filter do not change in the target filter. This means that it is possible to select two features of an original filter, $F_{1}$ and $F_{2}$, with $F_{1}$ preceding $F_{2}$. Feature $F_{1}$ will still precede $F_{2}$ after the transformation. However, the distance between $F_{1}$ and $F_{2}$ will not be the same before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to the cutoff frequency of an original lowpass filter. In general it is possible to select any feature; e.g., the stopband edge, the DC, the deep minimum in the stopband, or other ones.

This transformation can also be used for transforming other types of filters; e.g., notch filters or resonators can change their position in a simple way without the need to design them again.

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkshift(z, p, k, 0.5, 0.25);
```


## zpkshift

Verify the result by comparing the prototype filter with the target filter:

```
fvtool(b, a, k2*poly(z2), poly(p2));
```

It is clear from the following figure that the shift process has taken the response value at 0.5 in the prototype and replicated it in the target at 0.25 , as specified.


## Arguments

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter

## Wo

Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter
P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassNum
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

See Also zpkftransf, allpassshift, iirshift

## zpkshiftc

Purpose Zero-pole-gain complex shift frequency transformation

## Syntax

Description

## Examples

[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt) returns zeros, $Z_{2}$, poles, $P_{2}$, and gain factor, $K_{2}$, of the target filter transformed from the real lowpass prototype by applying a first-order complex frequency shift transformation. This transformation rotates all the features of an original filter by the same amount specified by the location of the selected feature of the prototype filter, originally at $W_{0}$, placed at $W_{t}$ in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, of the allpass mapping filter. The prototype lowpass filter is given with zeros, $Z$, poles, $P$, and the gain factor, $K$.
[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5) performs the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an original filter in the frequency domain.
[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5) performs the inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an original filter in the frequency domain.

Design a prototype real IIR halfband filter using a standard elliptic approach:

```
[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
```

Example 1: Rotation by -0.25 :

```
[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);
fvtool(b, a, k2*poly(z2), poly(p2));
```

Example 2: Hilbert transform:

```
[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));
```

Example 3: Inverse Hilbert transform:
[z2, p2,k2] = zpkshiftc(z, p, k, 0, -0.5); fvtool(b, a, k2*poly(z2), poly(p2));

## Result of Example 1

After performing the rotation, the resulting filter shows the features desired.


## Result of Example 2

Similar to the first example, performing the Hilbert transformation generates the desired target filter, shown here.

## zpkshiftc



## Result of Example 3

Finally, using the inverse Hilbert transformation creates yet a third filter, as the figure shows.


## Arguments

Z
Zeros of the prototype lowpass filter
P
Poles of the prototype lowpass filter
K
Gain factor of the prototype lowpass filter
Wo
Frequency value to be transformed from the prototype filter
Wt
Desired frequency location in the transformed target filter
Z2
Zeros of the target filter

## zpkshiftc

P2
Poles of the target filter
K2
Gain factor of the target filter
AllpassDen
Numerator of the mapping filter
AllpassDen
Denominator of the mapping filter
Frequencies must be normalized to be between -1 and 1 , with 1 corresponding to half the sample rate.

## See Also

References
zpkftransf, allpassshiftc, iirshiftc
[1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, Prentice-Hall International Inc., 1989.
[2] Dutta-Roy, S.C. and B. Kumar, "On digital differentiators, Hilbert transformers, and half-band low-pass filters," IEEE Transactions on Education, vol. 32, pp. 314-318, August 1989.

Purpose
Syntax

## Description

Compute zero-pole plot for quantized filter

```
zplane(Hq)
zplane(Hq,'plotoption')
zplane(Hq,'plotoption','plotoption2')
[zq,pq,kq] = zplane(Hq)
[zq,pq,kq,zr,pr,kr] = zplane(Hq)
```

This function displays the poles and zeros of quantized filters, as well as the poles and zeros of the associated unquantized reference filter.
zplane $(\mathrm{Hq})$ plots the zeros and poles of a quantized filter Hq in the current figure window. The poles and zeros of the quantized and unquantized filters are plotted by default. The symbol o represents a zero of the unquantized reference filter, and the symbol $x$ represents a pole of that filter. The symbols $\square$ and + are used to plot the zeros and poles of the quantized filter Hq. The plot includes the unit circle for reference.
zplane (Hq, 'plotoption') plots the poles and zeros associated with the quantized filter Hq according to one specified plot option. The string 'plotoption' can be either of the following reference filter display options:

- ' on' to display the poles and zeros of both the quantized filter and the associated reference filter (default)
- 'off' to display the poles and zeros of only the quantized filter
zplane(Hq,'plotoption','plotoption2') plots the poles and zeros associated with the quantized filter Hq according to two specified plot options. The string 'plotoption' can be selected from the reference filter display options listed in the previous syntax. The string 'plotoption2' can be selected from the section-by-section plotting style options described below:
- 'individual' to display the poles and zeros of each section of the filter in a separate figure window
- 'overlay ' to display the poles and zeros of all sections of the filter on the same plot
- 'tile' to display the poles and zeros of each section of the filter in a separate plot in the same figure window


## zplane

[zq, pq, kq] = zplane(Hq) returns the vectors of zeros zq, poles pq, and gains kq. If Hq has $n$ sections, $\mathrm{zq}, \mathrm{pq}$, and kq are returned as 1 -by- $n$ cell arrays. If there are no zeros (or no poles), zq (or pq) is set to the empty matrix [ ].
[ $\mathrm{zq}, \mathrm{pq}, \mathrm{kq}, \mathrm{zr}, \mathrm{pr}, \mathrm{kr}$ ] = zplane(Hq) returns the vectors of zeros zr , poles pr , and gains kr of the reference filter associated with the quantized filter Hq , and returns the vectors of zeros zq , poles pq , and gains kq for the quantized filter Hq .

## Examples

Create a quantized filter Hq from a fourth-order digital filter with cutoff frequency of 0.6. Scale the transfer function parameters to avoid overflows due to coefficient quantization. Plot the quantized and unquantized poles and zeros associated with this quantized filter.

```
[b,a] = ellip(4,.5,20,.6);
Hq = dfilt.df2(b/2 a/2);
Hq.arithmetic = 'fixed';
zplane(Hq);
```



See Also freqz, impz

## Bibliography

Advanced Filters (p. A-2)

Adaptive Filters (p. A-2)
Multirate Filters (p. A-3)
Frequency Transformations (p. A-3)

Suggested reading and sources for advanced filter design topics

Suggested reading and sources for adaptive filter topics Suggested reading and sources about multirate filters

Suggested reading and sources for information about filter frequency transformations

## Advanced Filters

[1] Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second Edition, McGraw-Hill, Inc., 1993.
[2] Chirlian, P.M., Signals and Filters, Van Nostrand Reinhold, 1994.
[3] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons, 1994.
[4] Jackson, L., Digital Filtering and Signal Processing with MATLAB Exercises, Third edition, Kluwer Academic Publishers, 1996.
[5] Lapsley, P., J. Bier, A. Sholam, and E.A. Lee, DSP Processor
Fundamentals: Architectures and Features, IEEE Press, 1997.
[6] McClellan, J.H., C.S. Burrus, A.V. Oppenheim, T.W. Parks, R.W. Schafer, and H.W. Schuessler, Computer-Based Exercises for Signal Processing Using MATLAB 5, Prentice-Hall, 1998.
[7] Mayer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Springer, 2001, refer to the BiQuad block diagram on pp. 126 and the IIR Butterworth example on pp. 140.
[8] Moler, C., "Floating points: IEEE Standard unifies arithmetic model," Cleve's Corner, The MathWorks, Inc., 1996. See
http://www.mathworks.com/company/newsletter/pdf/Fall96Cleve.pdf.
[9] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989.
[10] Shajaan, M., and J. Sorensen, "Time-Area Efficient Multiplier-Free Recursive Filter Architectures for FPGA Implementation," IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1996, pp. 3269-3272.

## Adaptive Filters

[11] Hayes, M.H., Statistical Digital Signal Processing and Modeling, John Wiley and Sons, 1996.
[12] Haykin, S., Adaptive Filter Theory, Third Edition, Prentice-Hall, Inc., 1996.

## Multirate Filters

[13] Fliege, N.J., Multirate Digital Signal Processing, John Wiley and Sons, 1994.
[14] harris, fredric j, Multirate Signal Processing for Communication Systems, Prentice Hall PTR, 2004.
[15] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.
[16] Lyons, Richard G., Understanding Digital Signal Processing, Prentice Hall PTR, 2004
[17] Mitra, S.K., Digital Signal Processing, McGraw-Hill, 1998.
[18] Orfanidis, S.J., Introduction to Signal Processing, Prentice-Hall, Inc., 1996.

## Frequency Transformations

[19] Constantinides, A.G., "Spectral Transformations for Digital Filters," IEEE Proceedings, Vol. 117, No. 8, pp. 1585-1590, August 1970.
[20] Nowrouzian, B., and A.G. Constantinides, "Prototype Reference Transfer Function Parameters in the Discrete-Time Frequency Transformations," Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, Vol. 2, pp. 1078-1082, August 1990.
[21] Feyh, G., J.C. Franchitti, and C.T. Mullis, "Allpass Filter Interpolation and Frequency Transformation Problem," Proceedings 20th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, November 1986.
[22] Krukowski, A., G.D. Cain, and I. Kale, "Custom Designed High-Order Frequency Transformations for IIR Filters," 38th Midwest Symposium on Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.

A Bibliography

## A

AccumFracLength 7-20
AccumWordLength 7-20
adaptfilt
about 8-22
copying 8-30
adaptfilt object
apply to data 4-25
adaptfilt object properties
Algorithm 7-110
AvgFactor 7-110
BkwdPredErrorPower 7-110
BkwdPrediction 7-110
Blocklength 7-112
Coefficients 7-112
ConversionFactor 7-112
Delay 7-112
DesiredSignalStates 7-113
EpsilonStates 7-113
ErrorStates 7-113
FFTCoefficients 7-113
FFTStates 7-113
FilteredInputStates 7-113
FilterLength 7-113
ForgettingFactor 7-113
FwdPredErrorPower 7-114
FwdPrediction 7-114
InitFactor 7-114
InvCov 7-114
KalmanGain 7-114
KalmanGainStates 7-114
Leakage 7-114
Offset 7-114
OffsetCov 7-114
Power 7-115
ProjectionOrder 7-115
ReflectionCoeffsStep 7-115

ResetBeforeFiltering 7-115
SecondaryPathCoeffs 7-115
SecondaryPathEstimate 7-115
SecondaryPathStates 7-116
SqrtInvCov 7-116
States 7-116
StepSize 7-116
SwBlockLength 7-116
adaptive filter object
See adaptfilt object
adaptive filter properties
SqrtCov 7-116
addstages method 8-292
Algorithm 7-110
antisymmetricfir 7-54
arithmetic
about fixed-point 7-20
arithmetic property
double 7-21
fixed 7-23
single 7-22
AvgFactor 7-110

## B

binary point 2-46
interpretation 2-46
bits
definition 2-45
BkwdPredErrorPower 7-110
BkwdPrediction 7-110
block method 8-292
Blocklength 7-112
Bmax
See CIC filter 3-28

## C

cascade method 8-292
CastBeforeSum 2-42
changing quantized filter properties in FDATool 6-22
CIC filter
Bmax 3-28
MSB 3-28
CoeffAutoScale 7-36
CoeffFracLength 7-40
Coefficients 7-112
coefficients method 8-292
CoeffWordLength 7-41
context-sensitive help 6-89
controls
FDATool 6-10
ConversionFactor 7-112
convert filters 7-68
convert method 8-292
converting filter structures in FDATool 6-28

## D

data format
about 2-46
Delay 7-112
DenAccumFracLength 7-41
DenFracLength 7-41
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-42
DenStateWordLength 7-43
designing fixed-point multirate filters 6-81
designing multirate filters 6-81
DesiredSignalStates 7-113
df1 7-47
df1t 7-48
df2 7-49
df2t 7-52
dfilt
cascade 8-311
df1 8-321
df1sos 8-331
df1t 8-6, 8-343
df1tsos 8-6, 8-354
df2 8-6, 8-366
df2sos 8-6, 8-376
df2t 8-7, 8-389
df2tsos 8-7, 8-400
direct-form antisymmetric FIR 8-7, 8-413
direct-form FIR transposed 8-7, 8-432
direct-form II transposed (df2t) 8-7, 8-389
direct-form IIR 8-7, 8-423
direct-form symmetric FIR 8-7, 8-442
lattice allpass 8-7, 8-453
lattice autoregressive 8-7, 8-463
lattice moving-average maximum 8-7, 8-483
lattice moving-average minimum 8-7, 8-492
parallel 8-7, 8-502
scalar 8-7, 8-503
See Signal Processing Toolbox documentation
dfilt function 8-286
convert structures 8-299
copying 8-299
methods 8-291
structures 8-286
dfilt objects
See also quantized filters
dfilt properties
arithmetic 7-20
dfilt.cascade 8-311
dfilt.df1 8-321
dfilt.df1sos 8-331
dfilt.df1t 8-343

## Index-2

dfilt.df1tsos 8-354
dfilt.df2 8-366
dfilt.df2sos 8-376
dfilt.df2t 8-389
dfilt.df2tsos 8-400
dfilt.dffir 8-423
dfilt.dffirt 8-432
dfilt.dfsymfir 8-442
dfilt.latticeallpass 8-453
dfilt.latticear 8-463
dfilt.latticemamax 8-483
dfilt.latticemamin 8-492
dfilt.parallel 8-502
dfilt.scalar 8-503
direct-form I 7-48
transposed 7-48
direct-form II 7-49
transposed 7-52
double
property value 7-21
dynamic properties 7-6
dynamic range
fixed-point 2-49

## E

EpsilonStates 7-113
ErrorStates 7-113
exporting quantized filters in FDATool 6-55

## F

fcfwrite method 8-293
FDATool
about 6-3
about importing and exporting filters 6-53
about quantization mode 6-8
apply option 6-11
changing quantized filter properties 6-22
context-sensitive help 6-89
controls 6-10
convert structure option 6-28
converting filter structures 6-28
exporting quantized filters 6-55
frequency point to transform 6-63
getting help 6-89
import filter dialog 6-54
importable filter structures 6-53
importing filters 6-54
original filter type 6-60
quantized filter properties 6-12
quantizing filters 6-12
quantizing reference filters 6-21
set quantization parameters dialog 6-12
setting properties 6-12
specify desired frequency location 6-64
switching to quantization mode 6-8
transform filters in FDATool 6-64
transformed filter type 6-64
user options 6-10
FFTCoefficients 7-113
fftcoeffs method 8-293
FFTStates 7-113
filter
initial conditions 8-30
states 8-30
filter conversions 7-69
filter design
adaptive 4-1
multirate 8-10
Filter Design and Analysis Tool
See FDATool
filter design GUI
context-sensitive help 6-89
help about 6-89
filter method 8-293
filter sections
specifying 7-69
filter structures
about 7-43
all-pass lattice 7-60
direct-form antisymmetric FIR 7-54
direct-form FIR 7-57
direct-form I 7-47
direct-form I SOS IIR 7-48
direct-form I transposed 7-48
direct-form I transposed IIR 7-48
direct-form II 7-49
direct-form II IIR 7-49
direct-form II SOS IIR 7-51
direct-form II transposed 7-52
direct-form II transposed IIR 7-52
direct-form symmetric FIR 7-66
direct-form transposed FIR 7-58
FIR transposed 7-58
fixed-point 7-46
lattice allpass 7-60
lattice AR 7-62
lattice ARMA 7-64
lattice autoregressive moving average 7-64
lattice moving average maximum phase 7-61
lattice moving average minimum phase 7-63
filter, fixed-point 2-29
filter,quantized 2-29
FilteredInputStates 7-113
filterinternals
fixed-point filter 7-43
multirate filter 7-122
FilterLength 7-113
filters
converting 7-68
direct-form 2-32
exporting as MAT-file 6-57
exporting as text file 6-56
exporting from FDATool 6-55
FIR 7-43
getting filter coefficients after exporting 6-56
importing and exporting 6-53
importing into FDATool 6-54
impulse response 8-795
initial conditions using dfilt 8-299
lattice 7-43
objects 8-286
states 8-299
state-space 7-43
test if filter coefficients are real 8-17
testing for allpass structure 8-17
testing for FIR structure 8-17
testing for linear phase sections 8-17
testing for maximum phase design 8-17
testing for minimum phase design 8-17
testing for purely real coefficients 8-17
testing for second-order sections 8-18
testing for stability 8-18
FilterStructure property 7-43
finite impulse response
antisymmetric 7-54
symmetric 7-66
fir 7-57
FIR filters 7-43
firt 7-58
firtype method 8-293
fixed
arithmetic property value 7-23
fixed-point 2-45
sign bit 2-45
fixed-point filter 2-29
fixed-point filter properties

## Index-4

AccumFracLength 7-20
AccumWordLength 7-20
Arithmetic 7-20
CastBeforeSum 7-33
CoeffAutoScale 7-36
CoeffFracLength 7-40
CoeffWordLength 7-41
DenAccumFracLength 7-41
DenFracLength 7-41
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-42
DenStateWordLength 7-43
FilterStructure 7-43
fixed-point filter states 7-96
fixed-point filter structures 7-46
fixed-point filters
dynamic properties 7-6
fixed-point format 2-46
fixed-point multirate filters 6-81
fixed-point numbers
scaling 2-50
ForgettingFactor 7-113
format 2-46
format for numeric data 2-46
fraction length 2-47
about 7-30
negative number of bits 7-30
frequency point to transform 6-63
frequency response $8-13,8-708$
freqz 8-13, 8-708
freqz method 8-293
function for opening FDATool 6-8
FwdPredErrorPower 7-114
FwdPrediction 7-114

## G

getting filter coefficients after exporting 6-56
getting started 1-4
getting started example 1-4
grpdelay method 8-293

## I

import filter dialog in FDATool 6-54
import filter dialog options 6-54
discrete-time filter 6-54
frequency units 6-54
import/export filters in FDATool 6-53
importing filters 6-54
importing quantized filters in FDATool 6-54
impz method 8-293
impzlength method 8-293
info method
dfilt function 8-293
InitFactor 7-114
initial conditions 8-30
using dfilt states 8-299
InvCov 7-114
isallpass 8-17
isallpass method 8-293
iscascade method 8-294
isfir 8-17
isfir method 8-294
islinphase 8-17
islinphase method 8-294
ismaxphase 8-17
ismaxphase method 8-294
isminphase 8-17
isminphase method 8-294
isparallel method 8-294
isreal 8-17
isreal method 8-294
isscalar method 8-294
issos 8-18
issos method 8-294
isstable 8-18
isstable method 8-294

## K

KalmanGain 7-114
KalmanGainStates 7-114

## L

latcallpass 7-60
latcmax 7-61
lattice filters
allpass 7-60
AR 7-62
ARMA 7-64
autoregressive 7-62
MA 7-63
moving average maximum phase 7-61
moving average minimum phase 7-63
latticear 7-62
latticearma 7-64
latticeca 7-61
latticema 7-63
Leakage 7-114
least significant bit 2-46
LSB 2-46

## M

mfilt object 8-838
mfilt objects 8-10
most significant bit 2-45
MSB 2-45
multiple sections
specifying 7-69
multirate filter functions 8-10
multirate filter states 7-131
multirate filters
designing 6-81
multirate object
See mfilt

## $\mathbf{N}$

negative fraction length interpret 7-30
normalize 2-50
nsections method 8-294
nstages method 8-294
nstate method 8-294

## 0

object
adaptfilt 8-22
changing properties 8-30, 8-299
filter 8-286
mfilt 8-838
viewing parameters 8-29
viewing properties 8-298
object properties
AccumWordLength 7-20
Offset 7-114
OffsetCov 7-114
opening FDATool
function for 6-8
options
FDATool 6-10
order method 8-295
original filter type 6-60

## Index-6

## P

parallel method 8-295
phasez method 8-295
plots
zero-pole, command for 8-1093
pole-zero plots 8-1093
polyphase filters
See multirate filter functions 8-10
Power 7-115
precision 7-31
fixed-point 2-49
See fraction length 2-46
ProjectionOrder 7-115
properties
dynamic 7-6
FilterStructure 7-43
ScaleValues 7-86

## Q

quantization 2-29
quantization mode in FDATool 6-8
quantized 2-29
quantized filter 2-29
quantized filter properties
changing in FDATool 6-22
FilterStructure 2-32
quantized filters
architecture 7-43
constructing 2-28
direct-form FIR 7-57
direct-form FIR transposed 7-58
direct-form symmetric FIR 7-66
filtering data 8-649, 8-651
finite impulse response 7-58
frequency response 8-13, 8-708
lattice allpass 7-60
lattice AR 7-62
lattice ARMA 7-64
lattice coupled-allpass 7-60
lattice MA maximum phase 7-61
lattice MA minimum phase 7-63
reference filter 7-67
scaling 7-86
specifying 7-67
specifying coefficients for multiple sections 7-69
structures 7-43
symmetric FIR 7-54
zero-pole plots 8-1093
quantized filters properties
ScaleValues 7-86
quantizing filters in FDATool 6-21

## R

range
fixed-point 2-49
realizemdl method 8-296
reference coefficients
specifying 7-67
ReflectionCoeffs 7-115
ReflectionCoeffsStep 7-115
removestage method 8-297
represent numeric data 7-30
ResetBeforeFiltering 7-115

## S

ScaleValues property 7-86
interpreting 7-87
scaling
implementing for quantized filters 7-87
quantized filters 7-86

SecondaryPathCoeffs 7-115
SecondaryPathEstimate 7-115
SecondaryPathStates 7-116
second-order sections
normalizing 7-69
set quantization parameters dialog 6-12
setstage method 8-297
setting filter properties in FDATool 6-12
single
property value 7-22
sos method 8-297
specifying desired frequency location 6-64
SqrtCov 7-116
SqrtInvCov 7-116
ss method 8-297
starting FDATool 6-8
States 7-116
states, fixed-point filter 7-96
states, multirate filter 7-131
StepSize 7-116
stepz method 8-298
SwBlockLength 7-116
symmetricfir 7-66

## T

tf method 8-298
toolbox
getting started 1-4
transform filter
frequency point to transform 6-63
original filter type 6-60
specify desired frequency location 6-64
transformed filter type 6-64
transformed filter type 6-64
two's complement arithmetic 2-45

## U

using adaptfilt objects 4-25
using FDATool 6-54

## W

word length
about 7-30

## Z

zerophase method 8-298
zero-pole plots 8-1093
zpk method 8-298
zplane 8-1093
plotting options 8-1093
zplane method 8-298

## Index-8


[^0]:    See Also
    adaptfilt.blmsfft, adaptfilt.fdaf, adaptfilt.lms
    Reference J.J. Shynk, "Frequency-Domain and Multirate Adaptive Filtering," IEEE Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

[^1]:    [h, f] = freqz(AllpassNum, AllpassDen, 'whole');

[^2]:    [h, f] = freqz(AllpassNum, AllpassDen, 'whole');

[^3]:    See Also
    cheby1, cheby2, ellip

[^4]:    Syntax
    hd = coeread('filename')
    Description hd = coeread(filename) extracts the Distributed Arithmetic FIR filter coefficients defined in the XILINX CORE Generator .COE file specified by filename. It returns a dfilt object, the fixed-point filter hd. If you do not provide the file type extension .coe with the filename, the function assumes the .coe extension.

[^5]:    Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time.

[^6]:    See Also
    dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, dfilt.latticemamin

[^7]:    See Also
    fdesign, fdesign.interpolator, fdesign.rsrc

