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Introduces filter design in the toolbox by presenting two 
demonstrations
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1 What Is Filter Design Toolbox?

1-2

Introducing the Filter Design Toolbox
The Filter Design Toolbox is a collection of tools that provides advanced 
techniques for designing, simulating, and analyzing digital filters. It extends 
the capabilities of the Signal Processing Toolbox with filter architectures and 
design methods for complex real-time DSP applications, including adaptive 
filtering and multirate filtering, as well as filter transformations.

Used with the Fixed-Point Toolbox, the Filter Design Toolbox provides 
functions that simplify the design of fixed-point filters and the analysis of 
quantization effects. When used with the Filter Design HDL Coder, the Filter 
Design Toolbox lets you generate VHDL and Verilog code for fixed-point filters.

Key Features
• FIR filter design, including minimum-order, minimum-phase, 

constrained-ripple, halfband, Nyquist, interpolated FIR, and nonlinear 
phase

• IIR filter design, including arbitrary magnitude and phase, group-delay 
equalizers, constrained-pole radius, peaking, notching, and comb filters

• Multirate filter design, analysis, and implementation, including cascaded 
integrator-comb (CIC) fixed-point multirate filters and compensators

• Farrow filter design

• Multirate, multistage filter design

• Wave digital filter design

• IIR filters implemented in second-order sections, including design, scaling, 
and section reordering

• Analysis and implementation of digital filters in single-precision 
floating-point and fixed-point arithmetic

• Perfect reconstruction and two-channel FIR filter bank design

• Round-off noise analysis for filters implemented in single-precision floating 
point or fixed point

• FIR and IIR filter transformations, including lowpass to lowpass, lowpass to 
highpass, and lowpass to multiband
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• Adaptive filter design, analysis, and implementation, including LMS-based, 
RLS-based, lattice-based, frequency-domain, fast transversal, and affine 
projection adaptive filters

• C code header file generation from filter designs in FDATool. The header file 
includes the filter coefficients and information about the filter design

• VHDL and Verilog code generation for fixed-point filters with the Filter 
Design HDL Coder
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Getting Started with the Toolbox
This section provides an example to get you started using Filter Design 
Toolbox. You can run the code in this example from the Help browser (select 
the code, right-click the selection, and choose Evaluate Selection from the 
context menu) or you can enter the code on the command line. This exercise 
also introduces Filter Design and Analysis Tool (FDATool). You use it to design 
and analyze filters, and to quantize filters.

As you follow the example, you are introduced to some of the basic tasks of 
designing a filter and using FDATool. You will engage some of the quantization 
capabilities of the toolbox, and a few of the filter analyses provided as well.

Before you begin this example, start MATLAB® and verify that you have 
installed Signal Processing and Filter Design Toolboxes (type ver at the 
command prompt). You should see Filter Design Toolbox, Signal Processing 
Toolbox, and Fixed-Point Toolbox (to do fixed-point filter design and analysis) 
among others, in the list of installed products.

Using Specification Objects to Design Filters
The filter specification (fdesign) objectslet you design many single rate, 
multirate, and multistage filters, such as lowpass, highpass, bandpass, and 
bandstop IIR and FIR using a range of design algorithms. and many other 
types of filters with a variety of constraints. The design process computes the 
filter coefficients using the various algorithms available in the Signal 
Processing and Filter Design Toolboxes and associates a particular filter 
structure to those coefficients. 

This tutorial review of filter design contains the following sections:

• “Getting General Filter Specification Object Help” on page 1-5

• “Creating a Filter Specification Object” on page 1-5

• “Changing Specifications for Specification Objects” on page 1-6

• “Setting Design Parameters” on page 1-7

• “Normalizing Frequency Specifications” on page 1-10

• “Using Design Time Options” on page 1-12

• “Comparing Designs” on page 1-13
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Getting General Filter Specification Object Help
Entering help fdesign in the command window opens the help for filter 
specification objects. Various hyperlinks in the help enable you to navigate to 
all of the help for the filter specification objects.

You can also enter

help responses
help fdesign/responses

at the command prompt for information about the response types you can 
specify for filter specification objects. Both forms return the same information.

Creating a Filter Specification Object
To create a filter specification object, you need to select the response to be used. 
For example, to create a lowpass filter you would type: 

d = fdesign.lowpass
d =
 
Response: 'Lowpass'
Specification: 'Fp,Fst,Ap,Ast'
Description: {'Passband Frequency';'Stopband... 
Frequency';'Passband Ripple (dB)';'Stopband Attenuation (dB)'}
NormalizedFrequency: true
Fpass: 0.45
Fstop: 0.55
Apass: 1
Astop: 60

Notice that each specification is listed as an abbreviation. Fp is the 
abbreviation for Fpass (the passband frequency edge) and Fst is the 
abbreviation for Fstop (the stopband frequency edge).

The Description property provides a full description of the properties that are 
added by the Specification. 

get(d, 'description')
ans = 

    'Passband Frequency'
    'Stopband Frequency'
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    'Passband Ripple (dB)'
    'Stopband Attenuation (dB)'

Changing Specifications for Specification Objects
The Specification property allows you to select different design parameters. 
This is a string which lists the specifications that will be used for the design. 
To see all valid specifications type: 

set(d, 'Specification')
ans = 

    'Fp,Fst,Ap,Ast'
    'N,F3dB'
    'N,F3dB,Ap'
    'N,F3dB,Ap,Ast'
    'N,F3dB,Ast'
    'N,F3dB,Fst'
    'N,Fc'
    'N,Fc,Ap,Ast'
    'N,Fp,Ap'
    'N,Fp,Ap,Ast'
    'N,Fp,F3dB'
    'N,Fp,Fst'
    'N,Fp,Fst,Ap'
    'N,Fp,Fst,Ast'
    'N,Fst,Ap,Ast'
    'N,Fst,Ast'
    'Nb,Na,Fp,Fst'

Changing the Specification changes which the properties for the the object:

set(d, 'Specification', 'N,Fc');
d
d =
 
               Response: 'Lowpass' 
          Specification: 'N,Fc' 
            Description: {'Filter Order';'Cutoff Frequency'}
    NormalizedFrequency: true 
            FilterOrder: 10 
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                Fcutoff: 0.5 

Setting Design Parameters
You can set design parameters after creating your specification object, or you 
can pass the specifications when you construct your object.

For example: 

specs = 'N,Fp,Fst';
d = fdesign.lowpass(specs)
d =
 

Response: 'Lowpass'                                                 
Specification: 'N,Fp,Fst'                                                
Description:{'Filter Order';'Passband Frequency';'Stopband... 
Frequency'}
NormalizedFrequency: true
FilterOrder: 10
Fpass: 0.45
Fstop: 0.55

After specifying the specification to use, then specify he values for those 
specifications.

N = 40;  % Filter Order.
Fpass = .33; % Passband Frequency Edge.
Fstop = .4;  % Stopband Frequency Edge.
d = fdesign.lowpass(specs, N, Fpass, Fstop)
d =

Response: 'Lowpass' 
Specification: 'N,Fp,Fst'
Description: {'Filter Order';'Passband Frequency';'Stopband 
Frequency'}
NormalizedFrequency: true 
FilterOrder: 40 
Fpass: 0.33 
Fstop: 0.4 

You can also specify a sampling frequency after all of the specifications have 
been entered.

Fpass = 1.3;
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Fstop = 1.6;
Fs = 4.5; % Sampling Frequency
d = fdesign.lowpass(specs, N, Fpass, Fstop, Fs)
d =

Response: 'Lowpass' 
Specification: 'N,Fp,Fst' 
Description: {'Filter Order';'Passband Frequency';'Stopband 
Frequency'}
NormalizedFrequency: false 
Fs: 4.5 
FilterOrder: 40 
Fpass: 1.3 
Fstop: 1.6 

Amplitude specifications can be given in linear or squared units by providing 
a flag to the fdesign method. However, the specificationas are always stored 
in dB. 

Apass = .0575;
specs = 'N,Fp,Ap';
d = fdesign.lowpass(specs, N, Fpass, Apass, Fs, 'linear')
d =

Response: 'Lowpass' 
Specification: 'N,Fp,Ap' 
Description: {'Filter Order';'Passband Frequency';'Passband 
Ripple (dB)'}
NormalizedFrequency: false 
Fs: 4.5 
FilterOrder: 40 
Fpass: 1.3 
Apass: 0.999980343384991 
Apass = .95;

d = fdesign.lowpass(specs, N, Fpass, Apass, Fs, 'squared')
d =

Response: 'Lowpass' 
Specification: 'N,Fp,Ap' 
Description: {'Filter Order';'Passband Frequency';'Passband 
Ripple (dB)'}
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NormalizedFrequency: false 
Fs: 4.5 
FilterOrder: 40 
Fpass: 1.3 
Apass: 0.222763947111522 

An alternative way of changing specifications is by using setspecs. Work with 
setspecs the same way as the design function. 

specs = 'N,F3dB,Ap';
F3dB  = .9;
Apass = 1;
Fs    = 2.5;
setspecs(d, specs, N, F3dB, Apass, Fs);
d
d =

Response: 'Lowpass' 
Specification: 'N,F3dB,Ap' 
Description:{'Filter Order';'3dB Frequency';...
'Passband Ripple (dB)'}
NormalizedFrequency: false 
Fs: 2.5 
FilterOrder: 40 
F3dB: 0.9 
Apass: 1 

If your object is already set to the correct Specification you can omit that 
input argument from your setspecs command.

F3dB  = 1.1;
Apass = .5;
Fs = 3;
setspecs(d, N, F3dB, Apass, Fs);
d
d =

Response: 'Lowpass' 
Specification: 'N,F3dB,Ap' 
Description: {'Filter Order';'3dB Frequency';...

'Passband Ripple (dB)'}
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NormalizedFrequency: false 
Fs: 3 
FilterOrder: 40 
F3dB: 1.1 
Apass: 0.5 

Normalizing Frequency Specifications
To normalize your frequency specifications,use normalizefreq with the filter 
specification object.

normalizefreq(d);
d
d =

Response: 'Lowpass' 
Specification: 'N,F3dB,Ap' 
Description: {'Filter Order';'3dB Frequency';...

'Passband Ripple (dB)'}
NormalizedFrequency: true 
FilterOrder: 40 
F3dB: 0.733333333333333 
Apass: 0.5 

normalizefreq also unnormalizes the frequency specifications.

newFs = 3.1;
normalizefreq(d, false, newFs);
d
d =
 

Response: 'Lowpass' 
Specification: 'N,F3dB,Ap' 
Description: {'Filter Order';'3dB Frequency';...

'Passband Ripple (dB)'}
NormalizedFrequency: false 
Fs: 3.1 
FilterOrder: 40 
F3dB: 1.13666666666667 
Apass: 0.5 
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Designing Filters From Filter Specification Objects
To design filters you use design.

d  = fdesign.lowpass;
Hd = design(d)
Hd =
 

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'         
Numerator: [1x43 double]    
PersistentMemory: false 

With no additional (or optional) inputs this syntax for design uses the default 
filter design method to design the default filter. To determine which method 
was used, use the designmethods method with the 'default' flag. 

designmethods(d, 'default')

Default Design Method for class fdesign.lowpass (Fp,Fst,Ap,Ast):
equiripple

Specifying the command without outputs launches FVTool.

design(d)

For a complete list of design methods that apply to d, use designmethods 
without additional input arguments.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

To get a better description of each design method use the full input argument 
to return the full names for the design methods.



1 What Is Filter Design Toolbox?

1-12

designmethods(d, 'full')
Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):
Butterworth
Chebyshev Type I
Chebyshev Type II
Elliptic
Equiripple
Interpolated FIR
Kaiser Window
Multistage Equiripple

designmethods also accepts fir or iir flags to return only FIR algorithms or 
IIR algorithms. 

To design a filter with a specific algorithm, specify the design algorithm at 
design time.

design(d, 'kaiserwin')

Using Design Time Options
Many methods have options that are method-specific. For help on these design 
options, use help and pass the desired algorithm name as an input argument. 

help(d, 'ellip')
DESIGN Design a Elliptic iir filter.
HD = DESIGN(D, 'ellip') designs a Elliptic filter specified by the
FDESIGN object D.
 
HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter 
with the structure STRUCTURE.  STRUCTURE is 'df2sos' by default 
and can be any of the following.

    'df1sos'
    'df2sos'
    'df1tsos'
    'df2tsos'
 
HD = DESIGN(..., 'MatchExactly', MATCH) designs an Elliptic filter
and matches the frequency and magnitude specification for the band
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MATCH exactly.  The other band will exceed the specification.  
MATCH can be 'stopband', 'passband' or 'both', and is 'both' by 
default.
 
    % Example #1 - Compare passband and stopband MatchExactly.
       d     = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
       Hd    = design(d, 'ellip', 'MatchExactly', 'passband');
       Hd(2) = design(d, 'ellip', 'MatchExactly', 'stopband');
       
       % Compare the passband edges in FVTool.
       fvtool(Hd);
       axis([.09 .11 -2 0]);

You specify the design options as parameter name/parameter value pairs when 
you design the filter.

design(d,'ellip','MatchExactly','passband')

If you wish, you can provide these parameters in a structure. The designopts 
method returns a valid structure for your object and specified algorithm with 
the default values. Here is an example that uses designopts and a structure 
do. The example starts by getting the default design-time options.

do = designopts(d, 'ellip');

Now use the MatchExactly option for the stopband.

do.MatchExactly = 'stopband';
design(d,'ellip',do);

Comparing Designs
design can also help you investigate various designs simultaneously, by 
adding an optional input argument that specifies the kinds of filter to design.

Adding the input argument allfir directs design to return all of the FIR 
filters the available design methods can create. Begin by designing all of the 
FIR filters.

design(d, 'allfir');

The following code returns all of the IIR filters available.

design(d, 'alliir');
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Example—Creating a Fixed-Point IIR Filter

Example Background. To introduce you to designing fixed-point filters in the 
toolbox, this example uses Filter Design and Analysis Tool (FDATool) to design 
an IIR filter. In this case, use the Chebyshev I filter design method to begin the 
design process.

During the example, you have the chance to export filters to your MATLAB 
workspace, filter some data with the filter, and use the scaling features in 
FDATool to improve the filter performance.

One of the salient points in this example is, while second-order section (SOS) 
implementations are generally good starting points for fixed-point filter design, 
you might find that without scaling your SOS filter, the SOS implementation 
may not meet your needs, as this example shows.

To Create a Fixed-Point Filter in FDATool
Filter Design and Analysis Tool (FDATool) is one tool this toolbox provides to 
help you design and analyze filters. From the various design panels in the tool, 
such as the filter design panel or the multirate filter design panel, you can 
design FIR and IIR filters, import or export filters, analyze filters, and more. 

As an introduction to using the toolbox, this tutorial takes you through 
designing, quantizing, and scaling a filter in FDATool.

1 Open Filter Design and Analysis Tool by entering 

fdatool

at the MATLAB command prompt. FDATool opens to show you the following 
dialog.
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2 Under Design Method in the bottom pane, select Chebyshev Type I from 
the IIR list and click Design Filter.
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FDATool designs a double-precision lowpass filter using the Chebyshev I 
design method and displays the filter magnitude response in the FDATool 
analysis area. Your new uses seven second-order sections. In the Current 
Filter Information area in FDATool, reproduced in the next figure, you see 
your filter described by various filter parameters including the filter order 
(13) and the structure (direct-form II using second-order sections).

In the figure, next to the current filter information, the curve presents the 
filter magnitude response. As intended, it shows a lowpass filter with the 
end of the passband at about 9600 Hz.
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Now export this filter to your workspace so you can use it to filter some data.

3 On the FDATool menu bar, select File—>Export to open the Export dialog.

4 To export the filter to your workspace as a filter object, select Workspace 
from Export To and select Objects for Export As. The export dialog looks 
like this after you make your selections.
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5 Click Export to export the filter with the variable name shown in the 
Export dialog. When you return to your workspace in MATLAB, you see the 
new object. In this case, the new object is named Hd.

6 In MATLAB, create a vector of random data (with values between 0 and 1) 
and filter the data with Hd. 

x=rand(1000,1);
y = filter(Hd,x);

Now y contains the data filtered by running x through the filter Hd. 

7 Back in FDATool, click  on the side bar to switch FDATool to 
quantization mode.

8 With the quantization pane displayed in FDATool, switch Filter arithmetic 
to fixed-point. Now you see the quantization pane in FDATool, as shown 
in this figure.
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In the analysis area, FDATool shows the magnitude responses for two 
filters—your fixed-point (quantized) filter and the reference filter that 
accompanies the fixed-point version. Turn on the filter legend (select View—
Legend from the menu bar) to help you identify which response belongs to 
each filter.

Zooming in on the curves shows that the two filter responses are very 
similar. Note that your fixed-point filter used the default settings in the 
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quantization pane—16-bit coefficients and fraction lengths selected to 
ensure the best precision.

9 Now export the quantized filter to your workspace as an object. Since you are 
going to use the same variable name Hd for the quantized filter in your 
workspace, select Overwrite variables in the Export dialog. 

10 Back in MATLAB, perform the filter process again, using the quantized 
filter Hd and the signal x.

yq = filter(Hd,x);

11 This is the important step. Plot y and yq to see how the filtering process 
results differed between the double-precision filter Hd and the fixed-point 
filter Hd. 

plot([y,yq]) % The results are not close to matching.

A look at the plot reveals that the results of filtering the same data (x) with 
each filter were very different. Recall that the magnitude responses seemed 
to be the same. So quantizing the filter affected the filtering performance in 
a way that the magnitude response curve does not show. The answer is that 
the arithmetic performed by the filter after quantization is very different 
from the double-precision filter before quantization.
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Again, return to FDATool, which should still be open on your desktop. You are 
going to fix the discrepancy between y and yq by reordering the sections of the 
fixed-point filter and scaling the filter to improve the performance after 
quantization.

1 To access the scaling and SOS filter reordering capability in FDATool, select 
Edit—>Reorder and Scale Second-Order Sections from the menu bar. 
The Reordering and Scaling of Second-Order Sections dialog opens, 
shown below. Note the default settings:

- No reordering option is selected.

- Scaling is not selected.
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2 Review the settings. Set Reordering to Auto. 

3 Select Scale in the Scaling area. Review the default settings to be sure 
Maximum Numerator is 4 and Overflow Mode is Wrap.

4 Click OK to close the dialog and scale and reorder the filter.

5 One more time, export the now-scaled quantized filter to your workspace as 
Hd.

6 Filter the data x again, using the latest Hd filter—now reordered and scaled.

yqs = filter(Hd,x);

7 Finally, plot y and yqs to see if the filtering performance matches now.
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plot([y,yqs]) % y and yqs are identical.

Here is the plot showing the results. Scaling and reordering the fixed-point 
filter restores the filtering performance to match the double-precision filter 
performance. The results demonstrate the power of scaling and reordering SOS 
filters.
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In the Filter Design Toolbox you can implement and analyze single-input 
single-output filters either as fixed-point filters, or as single-precision or 
double-precision floating-point filters. Both the single-precision floating-point 
and fixed-point filters are referred to as quantized filters.

You can create a quantized filter from a reference filter, that is, a filter whose 
coefficients and arithmetic operations you want to quantize in some fashion.

When you apply a quantized filter to data, not only are the filter coefficients 
quantized to your specification, but so are

• The data that you filter, both input and output

• The results of any arithmetic operations that occur during filtering

Refer to “Bibliography” for a list of relevant references on quantized filtering.

This chapter covers what you need to know to construct and use quantized 
filters:

• Getting Started with fixed-point filters

• Constructing quantized and fixed-point filters

• Fixed-point filter properties

• Filtering data with fixed-point filters

• Transformation functions for fixed-point filter coefficients

• Working with fixed-point direct-form FIR filters

Most of the filters you create in this toolbox are objects with properties. You can 
find much of the basic information you need to know about setting and 
retrieving property values in your MATLAB documentation by reading about 
the set and get functions.
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Designing Fixed-Point Filters
As filter designers begin to use digital filters in applications where power 
limitations and size constraints drive the filter design, they move from 
double-precision, floating-point filters to fixed-point filters. This tutorial shows 
you how to analyze the quantization effects introduced by such a conversion 
using discrete-time filter objects (dfilt objects).

This exercise covers the following filter development and analysis processes:

• “Designing a Filter With Floating-Point Coefficients” on page 2-6

• “Converting the Filter to Fixed-Point” on page 2-7

• “Quantizing Filter Coefficients with Automatic Scaling” on page 2-9

• “Scaling Filter Coefficients Manually” on page 2-10

• “Specifying Arithmetic Rules” on page 2-12

Each section builds on the contents and filters from preceding sections, so 
progressing through the tutorial from the start is most effective. Otherwise, 
code examples that depend on earlier tutorial sections might not work 
properly.

The Filter Design Process
The toolbox uses a three step process to design filters.

1 Use fdesign.response to create a filter specifications object. For example, 
use fdesign.bandpass or fdesign.decimator.

2 Use designmethods to find out which design methods apply to your filter 
specification object.

3 Use one of the design methods from step 2 to design your filter from your 
specification object. Two of the design methods might be ellip or cheby2.

Now you have your filter and you can analyze it, test it, filter with it, or create 
other filters from your specification object to compare to the first filter.

Here is one example that design two highpass filters using different design 
methods, followed by a plot that shows both filter magnitude responses.
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Notice that the example specifies multiple filter response features in the 
specification string argument.

• fp1—cutoff of the first passband

• fst1—first edge of the stopband

• fst2—second edge of the stopband

• fp2—edge of the second passband

• ap1—attenuation in the first passband

• ast—attenuation in the stopband

• ap2—attenuation in the second passband

d=fdesign.bandstop('fp1,fst1,fst2,fp2,ap1,ast,ap2',0.35,0.40,0.55,...
0.60,1,50,1)
 
d =
 
               Response: 'Bandstop'                     
          Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
            Description: {7x1 cell}                     
    NormalizedFrequency: true                           
                 Fpass1: 0.35                           
                 Fstop1: 0.4                            
                 Fstop2: 0.55                           
                 Fpass2: 0.6                            
                 Apass1: 1                              
                  Astop: 50                             
                 Apass2: 1                              
                                                        
designmethods(d)

Design Methods for class fdesign.bandstop 
(Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

hd(1)=design(d,'butter','filterstructure','df1sos');
hd(2)=design(d,'ellip','filterstructure','df1sos');
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hd(1)
 
ans =
 
         FilterStructure: 'Direct-Form I, Second-Order Sections'
              Arithmetic: 'double'                              
               sosMatrix: [13x6 double]                         
             ScaleValues: [14x1 double]                         
        PersistentMemory: false                                 
                                                                
hd(2)
 
ans =
 
         FilterStructure: 'Direct-Form I, Second-Order Sections'
              Arithmetic: 'double'                              
               sosMatrix: [5x6 double]                          
             ScaleValues: [6x1 double]                          
        PersistentMemory: false                                 
                                                                
fvtool(hd)
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Designing a Filter With Floating-Point Coefficients 
Begin this tutorial by designing a lowpass filter specifications object d, 
specifying the filter values Fp, Fc, Ap, and Ast. Then use the kaiserwin method 
to design a direct-form FIR filter from d.

d=fdesign.lowpass(0.40,0.54,0.05,50)
 
d =
 
               Response: 'Lowpass'      
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fpass: 0.4            
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                  Fstop: 0.54           
                  Apass: 0.05           
                  Astop: 50 

d contains the specifications for a lowpass filter.

Design the filter from d by applying the kaiserwin design method and specify 
the direct-form FIR filter structure.

hd=design(d,'kaiserwin','filterstructure','dffir')
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x44 double]    
    PersistentMemory: false 

Converting the Filter to Fixed-Point
dfilt objects in the Filter Design Toolbox include a property Arithmetic that 
provides the capability to analyze the filter in double-precision floating-point 
arithmetic, single-precision floating-point arithmetic, and fixed-point 
arithmetic.

With the Fixed-Point Toolbox installed, you can set the Arithmetic property of 
the dfilt object hd to fixed to turn quantization on and implement filters that 
perform fixed-point arithmetic.

The examples in this section discuss fixed-point filters and assume that you 
have installed the Fixed Point Toolbox.

Fixed-Point Filter Properties
Setting the Arithmetic property to fixed adds filter properties to the dfilt 
object. The default display of the filter object properties enhances the 
readability of the properties by grouping them together in a logical manner.

hd.Arithmetic='fixed'
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
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          Arithmetic: 'fixed'          
           Numerator: [1x44 double]    
    PersistentMemory: false            
                                       
     CoeffWordLength: 16             
      CoeffAutoScale: true           
              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'

Notice that only writable properties show in the Command Window listing.

Some filter properties, such as CoeffAutoScale, control the display of other 
properties. CoeffAutoScale controls the display of NumFracLength and 
whether you can write (change) the property value for NumFracLength.

In contrast to the property display that the filter handle hd generates, the get 
function returns the complete collection of properties and property values for 
the filter, whether you can change the property value or not.

get(hd)
       PersistentMemory: 0
        FilterStructure: 'Direct-Form FIR'
                 States: [43x1 embedded.fi]
              Numerator: [1x44 double]
             Arithmetic: 'fixed'
        CoeffWordLength: 16
         CoeffAutoScale: 1
                 Signed: 1
              RoundMode: 'convergent'
           OverflowMode: 'wrap'
        InputWordLength: 16
        InputFracLength: 15
          NumFracLength: 16
        FilterInternals: 'FullPrecision'
       OutputWordLength: 33
       OutputFracLength: 31
      ProductWordLength: 31
      ProductFracLength: 31
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        AccumWordLength: 33
        AccumFracLength: 31

Quantizing Filter Coefficients with Automatic 
Scaling
To determine the number of bits the filter is using to represent the filter 
coefficients, you look at the value of the CoeffWordlength property.

hd.CoeffWordLength
ans =

    16

To determine how the coefficients are being scaled, look at the NumFracLength 
property.

hd.NumFracLength
ans =

    16

This tells you that the filter coefficients are 16 bits long (the word length), and 
the least significant bit (LSB) is weighted by 2-16 (the fraction length). The 
section “Notes About Fraction Length, Word Length, and Precision” on 
page 2-46 provides more information about interpreting the fraction length in 
the data format.

16 bits is the default value the filters use for coefficient word lengths. To 
understand the scaling, look at the CoeffAutoScale setting. 

hd.CoeffAutoScale % Returns a logical true = 1.

ans =

     1

When the CoeffAutoScale property is true (=1), the filter adjusts the 
coefficient fraction length to avoid overflow each time you change the 
coefficient word length. Verify this automatic scaling by changing the number 
of bits used to quantize the coefficients from 16 bits to 24 bits. 

hd.CoeffWordLength = 24;
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hd.NumFracLength
ans =

    24

The 2-24 weight has been computed automatically to represent the coefficients 
with the best precision possible while using the round-to-nearest value round 
for the filter property RoundMode . “RoundMode” on page 7-85 provides further 
information about RoundMode.

Scaling Filter Coefficients Manually
Setting the CoeffAutoScale property to false turns the NumFracLength 
property writable and visible in the display. 

h1 = copy(hd); % Keep a copy of the original object for...
% latter comparison

h1.CoeffAutoScale = false
h1 =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [1x102 double]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 24             
          CoeffAutoScale: false          
           NumFracLength: 24             
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
             ProductMode: 'FullPrecision'
                                         

AccumWordLength: 40             
           CastBeforeSum: true           
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               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

The quantized coefficients are always rounded to the nearest value and 
saturated when overflow occurs.

Because the scaling process chose the fraction length to avoid overflow, 
increasing the fraction length saturates the quantized coefficients, introducing 
severe distortion in the magnitude response of the filter. Try increasing the 
numerator fraction length to 25 bits.

h1.NumFracLength = 25;

This is more clear when you plot the magnitude response to show the effect of 
saturating the coefficients. Here is the code to display the response.

href = reffilter(hd); % Get the reference double-precision...
% floating-point filter.

hfvt = fvtool(href,hd,h1);
set(hfvt,'ShowReference','off'); % Reference already displayed.
legend(hfvt, 'Reference filter', '24 bits - no saturation',...
'24 bits - saturation')

Saturating the coefficients compromises the filter cutoff performance 
considerably, shown in the figure.
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Specifying Arithmetic Rules
After you quantize the coefficients, you need to pay attention to the filter 
internal settings that govern how arithmetic is done inside the filter. For the 
remainder of this tutorial, you use a classic 16-bit word length filter.

hd.CoeffWordLength = 16;

One property—ProductMode—helps you simulate different filter arithmetic 
scenarios in the multipliers and adders of the filter.

Setting these properties to specify full precision (set the property values to 
FullPrecision) allows you to determine the minimum resources required to 
avoid losing precision during filtering.
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hd.ProductMode = 'FullPrecision'; % (default)
[hd.ProductWordLength hd.ProductFracLength]
ans =

    32    31

[hd.AccumWordLength hd.AccumFracLength]
ans =

    39    31

Given an input format of [16 15] and coefficients format of [16 16]—the current 
settings for hd—these responses indicate that you need

• a product register twice the size of the coefficients (or twice the size of the 
input). 

• an accumulator register with seven guard bits to allow for bit growth during 
the accumulation process.

They also tell you the position of the binary point in those registers— the 
AccumFraclength and ProductFracLength property values.

Starting from this scenario that allows your filter to perform most accurately, 
you can introduce constraints on the product or the accumulator register or 
both. The KeepMSB option for the fraction length properties sets the fraction 
lengths automatically to avoid overflows while the KeepLSB option sets the 
fraction lengths automatically to avoid underflows.

Finally, the SpecifyPrecision option give you full control of the settings. You 
need to run your filter to see the effect of these settings on the output.

For further discussion about product and accumulator settings, refer to the 
tutorial “Working with Fixed-Point Direct-Form FIR Filters” on page 2-14.
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Working with Fixed-Point Direct-Form FIR Filters
This chapter ends with a tutorial that illustrates various aspects of working 
with direct-form FIR filters using fixed-point arithmetic.

As you follow this example, you learn about these topics:

• “Obtaining the Filter” on page 2-14

• “Creating the Direct-Form FIR Fixed-Point Filter” on page 2-15

• “Comparing Quantized Coefficients to Nonquantized Coefficients” on 
page 2-15

• “Determining the Number of Bits being Used” on page 2-16

• “Determining the Proper Coefficient Word Length” on page 2-17

• “Fixed-Point Filtering” on page 2-18

• “Generating a Baseline Output for Comparison” on page 2-20

• “Computing the Fixed-Point Filter Output” on page 2-21

• “Reducing Filter Output Quantization” on page 2-21

• “The Advantages of Guard Bits” on page 2-22

• “Avoiding Overflow Without Guard Bits” on page 2-26

Each section builds on the contents and filters from preceding sections. 
Progressing through the tutorial from the start is most effective. Otherwise, 
code examples that depend on earlier tutorial sections may not work properly.

Obtaining the Filter
For this tutorial, the FIR filter is not critical. Given the importance of 
direct-form FIR filters, use the direct-form structure here—it does not even 
need to have linear phase. This demonstration uses a firls design method to 
obtain the filter.

To display the filter, pass the filter object to the Filter Visualization Tool 
(FVTool).

d = fdesign.lowpass('N,Fp,Fst',80,.11,.19); % Order, and cutoff 
 % cutoff freqs.

hd = design(d,'firls','Wpass',1,'Wstop',100);
hfvt = fvtool(hd);
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Here is the magnitude response for hd as shown by FVTool.

Creating the Direct-Form FIR Fixed-Point Filter
To create the fixed-point direct-form FIR filter, change the Arithmetic 
property setting for hd to fixed-point arithmetic.

set(hd,'Arithmetic','fixed');

Comparing Quantized Coefficients to Nonquantized 
Coefficients
There are several parameters for a fixed-point direct-form FIR filter. To start 
with, concentrate on the coefficient word length and fraction length (scaling). 
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Use the Filter Visualization Tool to compare the quantized coefficients filter to 
the nonquantized (reference) coefficient filter.

hfvt=fvtool(hd,'Legend','on');

FVTool returns the plot of the magnitude responses for both filters—the 
quantized filter and the corresponding reference filter.

Determining the Number of Bits being Used
To determine the number of bits being used in the fixed-point filter hd, look at 
the CoeffWordlength property value. Check the CoeffAutoScale setting to 
determine how the filter is scaling the coefficients.

get(hd,'CoeffWordLength')
get(hd,'NumFracLength')
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ans =

    16

ans =

    17

These values tells us that hd uses 16 bits to represent the coefficients, and the 
least significant bit (LSB) is weighted by 2-17. 16 bits is the default coefficient 
word length the filter uses for coefficients, but the 2-17 weight has been 
computed automatically to represent the coefficients with the best possible 
precision, given the CoeffWordLength value.

You control this scaling through the CoeffAutoScale property. Set 
CoeffAutoScale to false to give yourself manual control of the coefficient 
scaling. The next command verifies that autoscaling is enabled in filter hd.

get(hd,'CoeffAutoScale') % Returns a logical true.

ans =

     1

Determining the Proper Coefficient Word Length
Make several copies of the filter to try different word lengths. Allow the 
coefficient autoscaling process to determine the best precision in each case.

In the figure that follows the code presented here, you see the magnitude 
responses for the various version of hd (h1, h2, and the reference filter) so you 
can compare the effects of changing the coefficient word length.

h1 = copy(hd);
set(h1,'CoeffWordLength',12); % Use 12 bits.
h2 = copy(hd);
set(h2,'CoeffWordLength',24); % Use 24 bits.
href = reffilter(hd);
set(hfvt, 'Filters', [href, h1, hd, h2],'ShowReference','off');
legend(hfvt,'Reference filter','12 bits','16 bits (original...
CoeffWordLength','24 bits');
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12 bits (filter h1) is not enough to represent this filter accurately. 16 bits is 
enough for many applications.

The remaining sections of this tutorial use 16 bits to represent the filter 
coefficients.

As a rule of thumb, expect an attainable attenuation in the stop band of about 
5 dB per bit of coefficient length—16-bit coefficients provide about 80 dB 
attenuation.

Fixed-Point Filtering
The main purpose of this tutorial is to evaluate the accuracy of the fixed-point 
filter when compared to a double-precision floating-point version of the same 
filter.
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Through the sections to come you see that representing the filter coefficients so 
the magnitude response of the fixed-point filter is close to the double-precision 
filter does not ensure the performance of the fixed-point filter during filtering. 

Generating Random Test Input Data
To evaluate the accuracy of the fixed-point filter, filter some random data with 
both filters. Create 1000 data points with range of [-1,1) to generate random, 
uniformly distributed white-noise data using 16 bits of word length.

rand('state',0); % Make results reproducible by initializing the 
% random generator.

x = (rand(1000,1)*2-1); % 1000 Data points in the range [-1,1).
xin = fi(x,true,16,15);

Now xin is an array of integers with 1000 members, represented as 
a fixed-point object (a fi object).

get(xin)

DataTypeMode: 'Fixed-point: binary point scaling'
                 DataType: 'Fixed'
                  Scaling: 'BinaryPoint'
                   Signed: 1
               WordLength: 16
           FractionLength: 15
            FixedExponent: -15
                    Slope: 3.0518e-005
    SlopeAdjustmentFactor: 1
                     Bias: 0
                RoundMode: 'round'
             OverflowMode: 'saturate'
              ProductMode: 'FullPrecision'
        ProductWordLength: 32
     MaxProductWordLength: 128
    ProductFractionLength: 30
                  SumMode: 'FullPrecision'
            SumWordLength: 32
         MaxSumWordLength: 128
        SumFractionLength: 30
            CastBeforeSum: 1
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Your Fixed-Point Toolbox documentation provides more information about 
fi objects.

Generating a Baseline Output for Comparison
When you evaluate the accuracy of fixed-point filtering, consider three 
quantities for comparing between the quantized filter and the reference filter:

1 The ideal filtered output—this is the goal. Compute it using the reference 
coefficients and double-precision floating-point arithmetic.

2 The best-you-can-hope-for filtered output—this is the best you can hope to 
achieve. Compute this using the quantized coefficients and double-precision 
floating-point arithmetic.

3  The filtered output you can actually attain with the quantized filter—this 
is the output you compute using the quantized coefficients and fixed-point 
arithmetic (compare this to number 2).

Compare what you can actually attain (number 3) to the best you can hope for 
(number 2). To compute the best-you-can-hope-for, cast the fixed-point filter to 
double-precision and filter with double-precision floating-point arithmetic, 
provided by filter hdouble.

xdouble = double(xin); % Cast the input data to doubles.
hdouble = double(hd); % Convert hd to double-precision.
ydouble = filter(hdouble,xdouble);

Notice that you had to cast the input data xin to double format to use it with 
the double-precision filter hdouble. Double-precision filters require 
double-precision input values.

For completeness, this is how you compute the ideal output (number 1 in the 
preceding list). Then you can see how much quantizing just the filter 
coefficients affects the filter output.

yideal = filter(href,xdouble); % Reference filter, double data.
norm(yideal-ydouble)     % Total error.

ans =

3.4887e-004
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norm(yideal-ydouble,inf) % Maximum deviation.

ans =

3.7218e-005

Computing the Fixed-Point Filter Output
Now perform the actual fixed-point filtering. Again, the best you can hope to 
achieve is to have an output identical to ydouble. 

y = filter(hd,xin);
norm(double(y)-ydouble)     % Total error.

ans =

    0.0

norm(double(y)-ydouble,inf) % Maximum deviation.

ans =

  0.0

The error between the filtered results is exactly zero. The accumulator is not 
introducing any quantization error. The results of products are represented 
with full precision, the default setting.

From that fact we know that no quantization errors are occurring there either. 
Finally, the output and accumulator share the same specification for word and 
fraction length which eliminates errors induced by quantization at the output.

Reducing Filter Output Quantization
To isolate any other quantization errors that are being introduced in the filter, 
you can eliminate quantization error at the output completely by setting the 
output format to have the same specifications as the accumulator. Think of this 
as being able to look inside the accumulator.

set(hd,'FilterInternals','SpecifyPrecision');
set(hd,'AccumWordLength',get(hd,'ProductWordLength'));
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set(hd,'OutputWordLength',get(hd,'AccumWordLength'));
y = filter(hd,xin);
norm(double(y)-ydouble)     % Total error.
ans =

8.0623

norm(double(y)-ydouble,inf) % Maximum deviation.
ans =

     0.5000

The errors are exactly zero, indicating that the accumulator is not adding 
further quantization to the output. The arithmetic products (multiplies) are set 
by default to use full precision, so you know that no errors are occurring in 
multiplication operations. 

Usually it is not possible to have a full 40-bit output of the filter, so you must 
expect some difference between y and ydouble. Nevertheless, you have verified 
that in this filtering case, the difference between the ideal filter and the 
quantized filter is due to output quantization. This is not always the case—in 
some cases bits get lost in the accumulator. In fact overflow can occur in the 
accumulator.

The Advantages of Guard Bits
If you compare the product word and fraction lengths with the accumulator 
word and fraction lengths, by looking at the filter properties 
ProductWordLength, ProductFracLength, AccumWordLength, and 
AccumFracLength, as shown here

get(hd,'ProductWordLength')

ans =

    31

get(hd,'ProductFracLength')

ans =
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    33

get(hd,'AccumWordLength')

ans =

    35

get(hd,'AccumFracLength')

ans =

    33

You see that the accumulator has 4 extra bits available (AccumWordLength is 
35 bits). Having extra accumulator bits is typical of many fixed-point DSP 
processors. The extra bits are usually referred to as guard bits. They provide 
a safety valve for overflows that occur during filtering calculations.

Using info provides the same information in one display.

info(hd)
Discrete-Time FIR Filter (real)                                                
-------------------------------                                                
Filter Structure  : Direct-Form FIR                                            
Filter Length     : 81                                                         
Stable            : Yes                                                        
Linear Phase      : Yes (Type 1)                                               
Arithmetic        : fixed                                                      
Numerator         : s16,18 -> [-1.250000e-001 1.250000e-001)                   
Input             : s16,15 -> [-1 1)                                           
Filter Internals  : Full Precision                                             
  Output          : s35,33 -> [-2 2)  (auto determined)                        
  Product         : s31,33 -> [-1.250000e-001 1.250000e-001)  (auto determined)
  Accumulator     : s35,33 -> [-2 2)  (auto determined)                        
  Round Mode      : No rounding                                                
  Overflow Mode   : No overflow                                                
                                                                               
Measurements                                                                   
Sampling Frequency : N/A (normalized frequency)                                
Passband Edge      : 0.064538                                                  
3-dB Point         : 0.10001                                                   
6-dB Point         : 0.11                                                      
Stopband Edge      : 0.15183                                                   
Passband Ripple    : 0.01 dB                                                   
Stopband Atten.    : 60 dB                                                     
Transition Width   : 0.087288 
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The easiest way of appreciating the value of guard bits is to remove them and 
see what happens (adjust the output settings accordingly).

set(hd,'FilterInternals','SpecifyPrecision');
set(hd,'AccumWordLength',get(hd,'ProductWordLength'));
set(hd,'OutputWordLength',get(hd,'AccumWordLength'));

hd
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'fixed'          
           Numerator: [1x81 double]    
    PersistentMemory: false            
                                       
     CoeffWordLength: 16                
      CoeffAutoScale: true              
              Signed: true              
                                        
     InputWordLength: 16                
     InputFracLength: 15                
                                        
     FilterInternals: 'SpecifyPrecision'
                                        
    OutputWordLength: 31                
    OutputFracLength: 32                
                                        
   ProductWordLength: 31                
   ProductFracLength: 32                
                                        
     AccumWordLength: 31                
     AccumFracLength: 32                
                                        
           RoundMode: 'convergent'      
        OverflowMode: 'wrap' 

Now the accumulator word length matches the product word length of 31 bits, 
and the output word length matches the accumulator word length, 32 bits. Now 
use hd to filter some data, and plot the results.
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y = filter(hd,xin);
norm(double(y)-ydouble)     % Total error.

ans =

    3.4641

norm(double(y)-ydouble,inf) % Maximum deviation.
ans =

     1

plot([ydouble,double(y)])
xlabel('Samples'); ylabel('Amplitude')
legend('ydouble','y')
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The total error is large because overflow occurred during filtering. The 
representable range for the accumulator and output formats [32 32] is -0.5 to 
0.5.

In the plot, one of the values around sample 800 is larger than 0.5, indicating 
an overflow. Recall that you set the output settings equal to the accumulator 
settings. You removed the guard bits by setting the accumulator word length 
to 32 bits. So the overflow is occurring in the accumulator itself. 

Avoiding Overflow Without Guard Bits
It is possible not to have overflow even when guard bits are not available in the 
accumulator. 

set(hd,'OutputFracLength',get(hd,'AccumFracLength'));
y = filter(hd,xin);
norm(double(y)-ydouble)     % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.

ans =

  2.4442e-006

ans =

  2.5332e-007

If the filter uses 16 bits for the output word length and sets the output mode to 
maintain the best precision for this word length, the resulting error is much 
larger—almost two orders of magnitude.

set(hd,'OutputWordLength',16);
set(hd,'OutputMode','BestPrecision');
y = filter(hd,xin);
norm(double(y)-ydouble)     % Total error.

ans =

  2.7627e-004

norm(double(y)-ydouble,inf)  % Maximum deviation.
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ans =

  1.5400e-005

From the earlier plots of y and ydouble, you might have realized that one extra 
bit was all that would have been required to avoid overflow in those examples. 

You can improve the results slightly with this one bit change, but remember 
that this is specific to the filter coefficients and input signal in this tutorial.

Reducing the accumulator fraction length from 32 bits to 31 bits provides one 
more bit in the integer part of the accumulator word and reduces the filtering 
error.

set(hd,'AccumFracLength',31);
y = filter(hd,xin);
norm(double(y)-ydouble)     % Total error.
norm(double(y)-ydouble,inf) % Maximum deviation.
ans =

  2.7623e-004

ans =

  1.5251e-005

The errors are the same as when the filter used 39 bits for the accumulator and 
2-32 to scale the least-significant bit. This indicates that the errors in filtering 
are due to quantization effects between the accumulator and the output.
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Constructing Fixed-Point Filters 
You construct filters by

• Using an fdesign.response object combined with a filter design method 
such as butter

• Using the appropriate filter constructor function dfilt.structure, where 
structure is the filter topology to implement

• Using FDATool design features

• Copying an existing filter

All filter characteristics are stored as properties that you can set or retrieve. 
These filter characteristics include

• Filter structure

• Reference filter coefficients

• Filter topology (single section or cascaded second-order sections)

• Fixed-point filter data format parameters such as

- Quantization parameters (word lengths, fraction lengths, and precisions).

- Data type (signed or unsigned fixed-point, double-precision or 
single-precision floating-point, and signed or unsigned integers)

- Rounding method used in quantization

- Overflow method used in quantization

• Scaling factors for each section of a second-order section filter

You can specify quantized filter properties by creating a quantized filter with 
default property values and then changing some or all of these property values 
later.

Defining Quantized and Fixed-Point Filters
With the dfilt objects in this toolbox you can create quantized and fixed-point 
filter objects that you use to filter signals or data.

In this user’s guide, we distinguish between fixed-point and quantized filters 
only very rarely—mostly we use the terms interchangeably. There is a 
difference between them that is worth recalling when you work with the filter 
objects in this toolbox.
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Quantized means using limited precision arithmetic, either fixed-point or 
floating-point. Underlying all the filters in this toolbox, including the 
floating-point filters, is quantized arithmetic.

Roughly explained, quantizing is the act of reducing the precision with which 
you represent numeric quantities.

With this in mind, we approximate ideal arithmetic (arithmetic with infinite 
precision) using double-precision, floating-point arithmetic and we refer to 
floating-point filters as nonquantized, or reference, filters.

Fixed-point arithmetic is a subset of quantized arithmetic, and fixed-point 
filters are thus a subset of quantized filters. In fixed-point arithmetic, the word 
length and fraction length you use limit the precision of your results. 
Arithmetic operations occur without moving the binary, or radix, point. Hence 
the name fixed-point or fixed binary-point arithmetic.

In summary, quantized filters use limited precision arithmetic and data 
representations. Fixed-point filters use limited precision representations and 
fixed-point arithmetic where the binary point location does not change.

Constructors for Fixed-Point Filters
The most direct way to create a fixed-point arithmetic filter (a fixed-point 
dfilt object) is to create one with the default properties. Fixed-point filter 
object construction requires these steps:

• Create a default double-precision lowpass filter hd by entering something 
like this command pair. First create a filter specifications object, and then 
design the filter.
d = fdesign.lowpass;
hd = design(d,'equiripple');

• Change the Arithmetic property setting for filter object hd to fixed.

set(hd,'arithmetic','fixed')

MATLAB displays a listing of all of the properties of the filter hd you created, 
along with the associated property values. All properties are set to defaults 
when you construct a fixed-point filter this way.
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Constructing a Quantized Filter from a Filter 
Specification Object
You construct quantized filters by constructing default filters or filters with 
specified filter coefficients. Begin with a set of nonquantized filter coefficients 
to implement in a quantized filter.

For this example, start with a filter specification object that defines the 
response of the filter to design. This code specifies the filter order, cutoff 
frequency, and attenuations for the filter design.

d = fdesign.lowpass('n,fp,fst,ap',3,0.5,0.6,3); 

To implement d as a quantized filter, use one of the design methods in the 
toolbox to design the filter and then change the value of the Arithmetic 
property to fixed:

hd=design(d,'ellip')
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [2x6 double]                           
             ScaleValues: [0.187365400536859;0.860421232522936;1]
        PersistentMemory: false 

set(hd,'arithmetic','fixed'); % Convert to quantized filter.

Because filters designed with second-order section topologies are more robust 
against quantization errors than those composed of higher-order transfer 
functions, ellip constructs the dfilt object as an SOS filter.

Constructing a Fixed-Point Filter in Second-Order Sections
By default, many of the filter design functions in the toolbox return filters that 
use second-order sections. In most cases, this is a desirable feature when you 
are using fixed-point arithmetic because SOS filters tend to resist errors 
caused by quantization. 
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hs = fdesign.bandpass(.3, .4, .6, .7, 80, .5, 60); % Specify the 
passband edges and attentuations.

designmethods(hs) % Find an appropriate design method.

Design Methods for class fdesign.bandpass:

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

hd=design(hs,'butter') % Design the filter.
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [13x6 double]                          
             ScaleValues: [14x1 double]                          
        PersistentMemory: false 

Copying Filters to Inherit Properties
When you have a quantized filter hd with the property values set the way you 
want them, you can create a new quantized filter hd2 with the same property 
values as hd by entering 

hd2 = copy(hd)

This function is convenient to use when you are changing a small number of 
properties on a set of filters. 

For example, create a 16-bit precision filter hd2 from an FIR reference filter 
with

hd = design((fdesign.lowpass('N,fc,ap,ast',80,0.5,.05,50)),...
'equiripple') % Reference filter with double-precision coeffs.;
hd2 = hd;
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hd2 inherits the property values for hd, but is an independent object that you 
can change without affecting hd. 

Fixed-Point Arithmetic Filter Structures
When you construct filter objects, the FilterStructure property value is 
returned containing one of the strings shown in the following table. Property 
FilterStructure indicates the filter architecture and comes from the 
constructor you use to create the filter.

After you create a filter object you cannot change the FilterStructure 
property value. To make filters that use different structures you construct new 
filters using the appropriate object constructors. In some instances, function 
convert allows you to change the structure of an existing filter object.

You specify the filter structure by selecting the appropriate dfilt.structure 
method to construct your filter. For information about setting properties for 
fixed-point filter objects, refer to the reference information for dfilt in your 
Signal Processing Toolbox documentation and in this user’s guide, and get and 
set in your MATLAB documentation.

The figures included in the reference page for each filter structure, such as 
dfilt.dfasymfir, act as aids to help you determine how to enter your filter 
coefficients for each filter structure and how the filter performs quantizations 
in the filter signal flow. Each reference page also contains an example for 
constructing a filter of the given structure. 

Filter Constructor Name FilterStructure Property String and Filter Type

dfilt.dfasymfir Antisymmetric finite impulse response (FIR)

dfilt.df1 Direct form I

dfilt.df1sos Direct form I filter implemented using 
second-order sections

dfilt.df1t Direct form I transposed

dfilt.df2 Direct form II

dfilt.df2sos Direct form II filter implemented using second 
order sections
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Fixed-Point Arithmetic Filter Structure Diagrams
To help you understand where quantizations occur in filter structures like 
those provided in the toolbox, the next figure presents the structure for a 
direct-form 2 filter, including the quantizations that the quantized filter 
incorporates. You see that one or more quantizations accompany each filter 
element, such as a delay, coefficient, or summation element. The input to or 
output from each element reflects the result of applying the associated 
quantization.

Wherever a particular filter element appears in a filter structure, recall the 
quantization that accompanies the element. For example, a product 
quantization, either numerator or denominator, follows every coefficient 
element. A sum quantization, also either numerator or denominator, follows 
each sum element.

In this figure, you see the structure for a direct-form 2 IIR filter, with the 
arithmetic property value set to 'fixed'.

dfilt.df2t Direct form II transposed.

dfilt.dffir Direct form FIR

dfilt.dffirt Direct form FIR transposed

dfilt.latticear Lattice autoregressive (AR)

dfilt.latticemamin Lattice moving average (MA) minimum phase

dfilt.latticemamax Lattice moving average (MA) maximum phase

dfilt.latticearma Lattice ARMA

dfilt.dfsymfir Symmetric FIR. Even and odd forms

dfilt.scalar Scalar

Filter Constructor Name FilterStructure Property String and Filter Type
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Note  To set the Arithmetic property of an IIR filter to fixed, the leading 
denominator coefficient a(1) must one.

Fixed-Point Arithmetic Filter Structures 
You choose among several filter structures when you create quantized filters. 
You can also specify filters with single or multiple cascaded sections of the 
same type. Because quantization is a nonlinear process, different quantized 
filter structures produce different results. 

About the Filter Structure Diagrams
In the diagrams that appear on each filter structure reference page, you see the 
active operators that define the filter, such as sums and gains, and the word 
length and fraction length formats that control the processing in the filter. 
Notice also that the coefficients are labeled in the figure, to tell you the order 
in which the filter processes the coefficients. 

While the meaning of the block elements is straightforward, the labels for the 
quantizers that form part of the filter are less clear.

Each figure includes text in the form labelformat that represents the existence 
of a quantization operation at that point in the structure. format stands for 
word length and fraction length applied at that point in the filter flow, and 
label specifies the data that the quantization process affects.

For example, in the dfilt.df2 filter shown in earlier, the labels InputFormat 
and OutputFormat are the quantizations applied to the filter input and output 

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat
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NumProdFormat
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1
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z
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data at the labeled location in the filter. InputFormat refers to the 
InputWordLength and InputFracLength filter properties and OutputFormat 
refers to the OutputWordLength and OutputFracLength filter properties. 

Property names like CoeffWordLength and DenFracLength define the 
properties that control filter operations with coefficients or denominator 
coefficients at that point in the structure and are properties of the filter.
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Data Type Handling in Discrete-Time Filters
In this section you learn how discrete-time filters (dfilt objects) handle 
different data types in significant filtering areas:

• Different data types as input data to your filter

• Different data types to represent your filter coefficients

• Different data types representing the states of your filter

• Reference filter coefficients

How these varied filter areas respond is driven primarily by the value you set 
for the Arithmetic property of the filter object. The next sections cover each of 
the areas noted above, discussing how each responds when you set the value 
for the Arithmetic property.

Property Arithmetic accepts one of three valid entries:

• Double
• Single
• Fixed

Each option affects how the filter handles the states, coefficients, input and 
output data, and filter arithmetic. And what you use as input to the filter 
object.

Filter Input Signals, Coefficients, and States
Filter object properties and their values directly affect how and in what form 
your filter works with input data, the filter coefficients, and the states of the 
filter.

In many cases, fixed-point filters use fixed-point objects to handle fixed-point 
values such as coefficients, input, or filter states. The Fixed-Point Toolbox 
documentation provides details about the fixed-point, or fi, object that dfilt 
objects use.

Input Data and the Arithmetic Property Setting
The Arithmetic property setting controls the handling and quantization of 
input to the filter. All arithmetic property settings—double, single, fixed—
support the same input data types:
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• Double-precision floating-point

• Single-precision floating-point

• int*

• uint*

• fi objects

Each Arithmetic property value refines how the filter accepts input data. 
When you specify one of the following values for Arithmetic, this is what 
happens in the filter.

• double

The filter casts the input data to double-precision format. The filter states 
and output are double data type as well. This is the default value for the 
filter Arithmetic property. The resulting filter is considered 
double-precision and floating-point.

• single

The filter casts the input data to single-precision format. Both the filter 
states and the output from the filter are in single data type. This is 
a quantized filter that uses single-precision floating-point data format.

• fixed

The filter casts the input data to fixed-point (fi) objects to use fixed-point 
formats defined by the filter properties [InputWordLength 
InputFracLength], adds properties to the filter object for configuring the 
filter, and switches the filter to using fixed-point arithmetic. The added 
properties let you determine the data formats (the word length and fraction 
length) the filter uses for all filter operations and data. 

Filter Coefficients and the Arithmetic Property Setting
Changing the arithmetic mode controls the format the filter uses to represent 
coefficients. Discrete-time filters accepts coefficients in any of the following 
formats:

• double-precision floating-point

• single-precision floating-point

• int*
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• uint*

• fi objects

Depending on the setting for Arithmetic, whether double, single, or fixed, 
the filter handles the coefficients in the following manner:

• double

The filter casts the coefficients to double data type. Reference coefficients for 
the filter are stored in the data type in which you provide them. In this case, 
the quantized and reference coefficients for the filter are identical.

• single

The filter casts the coefficients to singles. single data type coefficients are 
unchanged. Reference coefficients for the filter are stored in the data type 
that you use to provide them.

• fixed

The filter casts the coefficients to fixed-point (fi) objects, using the 
[InputWordLength InputFracLength] filter properties to format the 
coefficients. The resulting fixed-point filter stores the reference filter 
coefficients in the data type that you supply. When you use reffilter, you 
get back a reference filter whose coefficients are double-precision 
approximations to the actual reference coefficients.

Arithmetic Property Setting and Filter States
How the filter stores and operates on filter states depends on the setting of the 
Arithmetic property. You can provide the states in any of the following 
formats:

• double-precision floating-point

• single-precision floating-point

• int*

• uint*

• fixed-point (fi) objects

When you set the Arithmetic property value you change how the filter 
responds to the state values.

• double

The filter casts the states to double-precision data type. 
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• single

The filter casts the filter states to single-precision data type. 
• fixed

The filter casts the states to fixed-point objects, using the [InputWordLength 
InputFracLength] filter properties to format the states as

- Fixed-point objects

- Double

Other data types return an error in MATLAB.

When you set PersistentMemory to true, the word length and fraction length 
settings for the filter states must be the same as the filter input word length 
and fraction length. If these settings do not match, you receive an error.

Note that the filter does not store reference values for the states.

Disabling the autoscaling filter properties such as CoeffAutoScale, 
InputAutoScale, and OutputAutoScale results in all the additional fraction 
length properties becoming available in the filter. To make disabling the 
automatic scaling for a filter easier, use specifyall. When you use

specifyall(hd)

all of the automatic control properties of hd are set to SpecifyPrecision:

• ProductMode

• OutputMode

specifyall also disables the automatic scaling provided by

• CoeffAutoScale

• All other *AutoScale properties for the filter, since this varies from structure 
to structure

With autoscaling disabled you have access to the fraction length properties for 
coefficients, the accumulator, products, and output values, which lets you set 
the precision yourself.

specifyall also helps you return your filter to the default automatic modes. 
Use the syntax

specifyall(hd,false)

to reset filter hd to the default automatic mode settings. 
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You may want more information about filter states after you read this review. 
Refer to filtstates in your Signal Processing Toolbox documentation for 
detail about filter states and the filtstates object the filters use.

Reference Filter Coefficients for Fixed-Point Filters
Quantized or fixed-point filters in the toolbox have both quantized coefficients 
(or fixed-point coefficients) that result from changing the Arithmetic property 
to fixed or single, and reference coefficients. You can access both sets from 
the command line. 

How the toolbox stores the reference coefficients for a filter depends on the data 
type you use to specify the coefficients—reference filter coefficients are stored 
in the data type you specified when you constructed the filter. Retaining the 
specified data type prevents the memory for storing the coefficients from 
growing unnecessarily.

When you view the fixed-point filter coefficients, you see double-precision 
approximations to the actual fixed-point or quantized coefficients used for 
filtering. In many cases, the approximation is exact, including when your filter 
uses single or double arithmetic.

When the Arithmetic property value is fixed, the approximation is exact if the 
software can store the fixed-point values exactly as a double data type value. 
Otherwise, you see the double data type approximation of the value. 

Returning the double-precision approximations enables the software to 
represent the leading denominator coefficient of an IIR filter exactly as a 1, 
even if you are working in a fractional mode, such as Q15.

You use the function reffilter to return a filter that has the reference 
coefficients that accompany any fixed-point filter. For example, create a 
fixed-point direct form filter hd with

d=fdesign.lowpass('n,fc,ap,ast',5,0.45,0.1,50); % Order, cutoff,
% and filter attenuations in dB.

hd = design(d);
hd.arithmetic='fixed';

which has fixed point coefficients

hd.numerator

ans =
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-0.0122    0.1192    0.3959    0.3959    0.1192   -0.0122

Now change the word length the filter uses to represent the numerator 
coefficients.

hd.coeffautoScale=false
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'fixed'          
           Numerator: [1x6 double]     
    PersistentMemory: false            
                                       
     CoeffWordLength: 16             
      CoeffAutoScale: false          
       NumFracLength: 16             
              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'
set(hd,'coeffWordLength',14');
hd.numerator

ans =

-0.0122    0.1192    0.1250    0.1250    0.1192   -0.0122

Using reffilter returns a filter object with reference coefficients, as follows:

hdref=reffilter(hd)
 
hdref =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x6 double]     
    PersistentMemory: false            
                                       
hdref.Numerator

ans =
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   -0.0122    0.1192    0.3959    0.3959    0.1192   -0.0122

hdref has the original filter coefficients and is a double-precision filter. The 
reference filter coefficients match the original set of fixed-point coefficients for 
hd, but not the coefficients as represented by 14 bits.

Fixed-Point Filters and Second-Order Sections
Listed within the dfilt methods for creating quantized filters you find 
methods that return second-order section (SOS) versions of the direct-form IIR 
filters—df1sos, df1tsos, df2sos, and df2tsos.

The following figure shows how the second-order sections combine to form 
a filter, in this case a direct-form II SOS filter. This diagram (or a similar one) 
appears with each SOS filter structure as well.

Combining this figure with the structures and signal flows for each SOS filter 
helps you work out the details about quantization in the SOS filter.

Using second-order sections is not the same as cascading the filters, as the 
dfilt.cascade or dfilt.parallel methods in the Signal Processing Toolbox 
allow you to do with any dfilt objects.

The CastBeforeSum Filter Property
Setting the CastBeforeSum property determines how the filter handles the 
input values to sum operations in the filter.

After you set the filter Arithmetic property value to fixed, you have the option 
of using CastBeforeSum to control the data type of some inputs (addends) to 
summations in your filter.

To determine which addends reflect the CastBeforeSum property setting, refer 
to the reference page for the signal flow diagram for the specific filter structure. 

CastBeforeSum specifies whether to cast selected inputs to summations in the 
filter to the summation output format before performing the addition.

OutputFormatInputFormat StageInputFormatStageInputFormat

ScaleValueFormat

NumAccumFormat

ScaleValueFormat ScaleValueFormat

DenAccumFormat StageOutputFormat StageInputFormat StageOutputFormat

If scale value is equal to 1

1
output2

−K− −K−−K− Section nCastSection 1 Section 2 Cast1
input1
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Setting CastBeforeSum to True
When you specify true for the property value, the results of the affected sum 
operations match most closely the results found on most digital signal 
processors. Performing the cast operation before the summation adds one or 
two additional quantization operations that can add errors to your filter 
results.

Setting CastBeforeSum to False
Specifying CastBeforeSum to be false prevents the addends from being cast to 
the output format before the addition operation. Choose this setting to get the 
most accurate results from summations without considering the hardware 
your filter might use. 

Notice that the output format for every sum operation reflects the value of the 
output property specified in the filter structure diagram. Which input property 
CastBeforeSum refers to depends on the structure.

Diagrams of CastBeforeSum Settings
When CastBeforeSum is false, sum elements in filter signal flow diagrams 
look like this:

Property Value Description

false Configures filter summation operations to retain 
the addends in the format carried from the 
previous operation.

true Configures filter summation operations to convert 
the input format of the addends to match the 
summation output format before performing the 
summation operation. Usually this generates 
results from the summation that more closely 
match those found from digital signal processors
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showing that the input data to the sum operations (the addends) retain their 
format word length and fraction length from previous operations. The addition 
process uses the existing input formats and then casts the output to the format 
defined by AccumFormat.

Thus the output data has the word length and fraction length defined by 
AccumWordLength and AccumFracLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look 
like this:

showing that the input data gets cast to the accumulator format word length 
and fraction length (AccumFormat) before the sum operation occurs. The data 
output by the addition operation has the word length and fraction length 
defined by AccumWordLength and AccumFracLength.

+
AccumFormat

+
AccumFormat

Cast

Cast
AccumFormat

AccumFormat
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Introduction to Fixed-Point Arithmetic
You specify how numbers are quantized using fixed-point arithmetic in this 
toolbox with two quantities:

• Word length in bits

• Fraction length in bits

This toolbox does bit-true fixed-point arithmetic for all word lengths. It 
properly handles overflows and the results are bit-true when the numbers are 
scaled properly. For example, (small numbers + small numbers) works 
correctly and (large numbers + large numbers) are right as well. 

Fraction lengths used to represent numeric values can be any positive or 
negative integer, including integers larger than the associated word length for 
the value.

A general representation for a signed two’s-complement binary fixed-point 
number is

where

• bi are the binary digits (bits, 0s or 1s).

• The word length in bits is given by w.

• The most significant bit (MSB) is the leftmost bit. It is represented by the 
location bw-1. In Filter Design Toolbox, this value represents the sign bit; a 1 
indicates the number is negative, and a 0 indicates it is nonnegative.

•
… b0b1bw 2– b5 b3b4 b2bw 1–

Least significant bitBinary pointSign bit

Word length

Fraction length
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• The least significant bit (LSB) is the rightmost bit, represented by the 
location b0. 

• The binary point is shown four places to the left of the LSB for this example.

• The fraction length f is the distance from the LSB to the binary point.

Binary Point Interpretation
Where you place the binary point determines how fixed-point numbers are 
interpreted in two’s complement arithmetic. For example, the 5-bit binary 
number

• 10110 represents the integer –24+22+2 = –10.

• 10.110 represents –2+2–1+2–2 = –1.25.

• 1.0110 represents –2–0+2–2+2–3 = –0.625.

Notes About Fraction Length, Word Length, and Precision
Word length and fraction length combine to make the format for a fixed-point 
number, where word length is the number of bits used to represent the value 
and fraction length specifies, in bits, the location of the binary point in the 
fixed-point representation. Therein lies a problem—fraction length, which you 
specify in bits, can be larger than the word length, or a negative number of bits. 
This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to 
be used in this user’s guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the 
binary point) is true only when the fraction length is positive and less than or 
equal to the word length. In MATLAB, the format notation is 
[word length fraction length].

For example, for the format [16 16], the second 16 (the fraction length) is the 
number of fractional bits or bits to the right of the binary point. In this 
example, all 16 bits are to the right of the binary point.

It is also possible to have fixed-point formats of [16 18] or [16 -45]. In these 
cases the fraction length can no longer be the number of bits to the right of the 
binary point since the format says the word length is 16—there cannot be 18 
fraction length bits on the right. And how can there be a negative number of 
bits for the fraction length, such as [16 -45]?
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A better way to think about fixed-point format [word length fraction length] 
and what it means is that the representation of a fixed-point number is 
a weighted sum of powers of two driven by the fraction length, or the two’s 
complement representation of the fixed-point number.

Consider the format [B L], where the fraction length L can be positive, 
negative, 0, greater than B (the word length) or less than B. (B and L are 
always integers and B is always positive.)

Given a binary string b(1) b(2) b(3) ... b(B), to determine the two’s complement 
value of the string in the format described by [B L], use the value of the 
individual bits in the binary string in the following formula, where b(1) is the 
first binary bit (and most significant bit, MSB), b(2) is the second, and on up to 
b(B).

The decimal numeric value that those bits represent is given by

value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+...+ b(B)*2^(-L)

L, the fraction length, represents the negative of the weight of the last, or least 
significant bit (LSB). L is also the step size or the precision provided by a given 
fraction length.

For related information about scaling filters, refer to “Quantizing Filter 
Coefficients with Automatic Scaling” on page 2-9, which provides a discussion 
of how the toolbox scales filters automatically and how you can scale them 
yourself.

Precision
Here is how precision works.

When all of the bits of a binary string are 0 except for the LSB (which is 
therefore equal to 1), the value represented by the bit string is given by 2(-L). If 
L is negative, for example L=-16, the value is 216.

The smallest step between numbers that can be represented in a format where 
L=-16 is given by 1 x 216 (the rightmost term in the formula above), which is 
65536. Note that the precision does not depend on the word length.

Look at another example. When the word length is set to 8 bits, the decimal 
value of 12 is represented in binary by 00001100. That the decimal value 12 is 
equivalent to binary 00001100 indicates that the data format [8 0] is being 
used—the word length is 8 bits and fraction length 0 bits, and the precision (the 
smallest difference between two adjacent values in the format [8 0], is 20=1.
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Suppose you plan to keep only the upper 5 bits and discard the other 3. The 
resulting precision after removing the right-most 3 bits comes from the weight 
of the lowest remaining bit, the fifth bit from the left, which is 23=8, so the 
format would be [5 -3].

In this format the precision is 8. The [5 -3] format cannot represent numbers 
that are between multiples of 8.

In MATLAB, with the Fixed-Point Toolbox installed

x=8;
q=quantizer([8 0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq

binxq =

00001000

binxq1

binxq1 =

00001

But notice that in [5 -3] format, 00001 is the two’s complement representation 
for 8, not for 1; q = quantizer([8 0]) and q1 = quantizer([5 -3]) are not 
the same. They cover about the same range—range(q)>range(q1)—but their 
quantization step is different—eps(q)= 8, and eps(q1)=1.

Look at one more example. When you construct a quantizer q,

q = quantizer([a,b])

the first element in [a,b] is a, the word length used for quantization. b, second 
element in the expression, is related to the quantization step—the numerical 
difference between the two closest values that the quantizer can represent. 
This is also related to the weight given to the LSB. Note that 2^(-b) = eps(q).
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Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let 
q2 use the format [16, -16].

q1 = quantizer([32 0])
q2 = quantizer([16 -16])

Quantizers q1 and q2 cover the same range (they have the same word length), 
but q2 has less precision. It covers the range in steps of 216, while q covers the 
range in steps of 1.

This lost precision is due to (or can be used to model) throwing out 16 least 
significant bits.

An important point is that by setting the format for the output from the sum or 
product operation in dfilt objects and filtering, you control which bits are 
carried from the filter sum and product operations to the filter output.

For instance, if you use [16 0] as the output format for a 32-bit result from 
a sum operation when the original format is [32 0], you are taking the lower 16 
bits from the result. If you use [16 -16], you are taking the higher 16 bits of the 
original 32 bits. You could even take 16 bits somewhere in between the 32 bits 
by choosing something like [16 -8].

Precision and Dynamic Range
A fixed-point quantization scheme determines the dynamic range of the 
numbers that can be applied to it. Numbers outside this range are always 
mapped to fixed-point numbers within the range when you quantize them.

Precision is the distance between successive numbers occurring within the 
dynamic range in a fixed-point representation. The dynamic range and 
precision depend on the word length and the fraction length.

For a signed fixed-point number with word length w and fraction length f, the 
range is from –2w–f–1 to 2w–f–1–2–f.

For an unsigned fixed-point number with word length w and fraction length f, 
the range is from 0 to 2w–f–2–f.

In both cases the precision is 2–f.
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Overflows and Scaling
When you quantize a number outside of the dynamic range for your specified 
format, overflows occur. Overflows occur more frequently with fixed-point 
quantization than with floating-point, because the dynamic range of 
fixed-point numbers is much less than that of floating-point numbers with 
equivalent word lengths. 

Overflows can occur when you create a fixed-point quantized filter from an 
arbitrary floating-point design. You can normalize your fixed-point filter 
coefficients and introduce a corresponding scaling factor for filtering to avoid 
overflows in the coefficients.

In this toolbox you can specify how you want overflows to be handled:

• Saturate on the overflow

• Wrap on the overflow

For more about scaling and filters with fraction lengths that exceed the word 
length, refer to “Quantizing Filter Coefficients with Automatic Scaling” on 
page 2-9, which provides a discussion of how the toolbox scales filters 
automatically and how you can scale them yourself.
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Introducing Multirate Filters
Over the last few years, developments in multirate filter design and 
implementation have brought rapid growth in applying multirate filtering to 
signals in digital signal processing. Improved processors and development tools 
allow system designers to use multirate filters in a broad range of application 
areas, such as:

• POTS audio encryption—encrypts voice sent over plain old telephone 
systems (POTS).

• Digital audio—sound handled in digital rather than analog form. 
Enncompasses various signal compression schemes, analog-to-digital 
conversion techniques, and the opposite conversions, signal reproduction, 
and audio improvements.

• Subband speech and image coding—uses the techniques of separating 
a signal or image into subbands that each containing only a portion of the 
original signal. Then processing the subbands through filters before 
reconstructing the original signal from the processed subbands.

Polyphase filters—filters that separate an input signal into constituent 
bands that are easier to process, and can then be either recombined or used 
after processing—represent one way to accomplish signal separation. Filter 
performance depends on the phase differences between the input signals.

• Transmultiplexer design—uses filters to convert time division multiplexing 
(TDM) signals to frequency division multiplexing (FDM) format, and the 
reverse. FDM combines numerous signals for transmission on a single 
communications line or channel. Each signal is assigned a different 
frequency (subchannel) within the main channel. TDM puts multiple data 
streams in a single signal by separating the signal into many segments, each 
having a very short duration. Based on the timing of the signals, each 
individual data stream is reassembled at the receiving end.

These represent a few of the growing number of areas in which systems 
designers use multirate filters. 

Listed below are the examples in this chapter that introduce multirate filters. 
Each example includes a tutorial that uses toolbox features to demonstrate 
how you work with multirate filters:

• “Getting Started—Designing Multirate Filters” on page 3-4
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• “Audio Example—Audio Sample Rate Conversion” on page 3-47

• “CIC Filter Example—Using CIC Decimation Filters” on page 3-24

• “Audio Example—Audio Sample Rate Conversion” on page 3-47
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Getting Started—Designing Multirate Filters
This section demonstrates how to use the multirate filter (mfilt) objects 
available in the toolbox. By following these procedures you get introduced to 
multirate filter development. This tutorial covers the following tasks:

• “Creating Multirate Filters” on page 3-4

• “Getting and Setting Filter Coefficients” on page 3-6

• “Analyzing Multirate and Multistage Filters” on page 3-8

• “Specifying Initial Conditions to the Filter” on page 3-11

• “Streaming Data to the Filter” on page 3-12

• “Filtering Multichannel Signals” on page 3-13

• “Generating Simulink Blocks” on page 3-15

• “Getting Help About Multirate Filters” on page 3-15

Creating Multirate Filters
To develop a multirate filter (mfilt) object, you select the filter structure to be 
used by selecting the constructor function, such as mfilt.firdecim or 
mfilt.firinterp. 

Entering helpwin mfilt at the prompt gives you a list of all supported 
structures and constructor functions.

Most multirate filter constructors take the coefficients of the filter as an 
optional final right-hand input argument. If you do not specify the coefficients, 
the toolbox functions design a default filter according to the interpolation or 
decimation factor(s) you provide as input for L or M in the calling syntax, or 
both in the case of fractional rate changer filters.

Here is an example that creates an interpolating filter with order of three 
interpolation and a decimating filter that decimates by two.

l = 3; % Interpolation factor
m = 2; % Decimation factor
hm1 = mfilt.firinterp(l);
hm2 = mfilt.firtdecim(m);

Both filter constructors return direct-form FIR polyphase Nyquist filters by 
default. Nyquist filters tend to be well-suited for decimation and interpolation 
work, because the form is computationally efficient due to the zero-valued 
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coefficients inherent in the design. Used as interpolators, Nyquist filters 
preserve the nonzero samples of the upsampled output of the interpolator.

hm1
 
hm1 =
 
        FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
             Arithmetic: 'double'                                
              Numerator: [1x72 double]                           
    InterpolationFactor: 3                                       
       PersistentMemory: false                                   
                                                                 
hm2
 
hm2 =
 
     FilterStructure: 'Direct-Form Transposed FIR Polyphase 
Decimator'
          Arithmetic: 'double'                                        
           Numerator: [1x48 double]                                   
    DecimationFactor: 2                                               
    PersistentMemory: false 

Filter hm1 is a direct-form FIR polyphase interpolator filter with the cutoff 
frequency of π/l and gain of l. hm2 is a direct-form transposed FIR polyphase 
decimator with a cutoff frequency of π/m and a gain of 1.

For confirmation, here is the frequency response displayed by the Filter 
Visualization Tool (FVTool).
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hm1 and hm2 are filters and mfilt objects. As objects, they work with a range of 
functions (methods) such as filter, freqz, and tf, or display.

Getting and Setting Filter Coefficients
To access and manipulate the coefficients of a filter as a regular MATLAB 
vector, you use the common object functions set and get or dot notation. You 
can always get the coefficients from the mfilt object (filter). To modify the 
coefficients of an existing mfilt object, you set new ones. Direct-form FIR 
structures like those of hm1 and hm2 have numerator coefficients only—also 
known as the filter weights.
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Here are the filter coefficients for hm2. 

b = get(hm2,'numerator') % Could use command hm2.numerator as well. Assign the
% coefficients to vector b.

b =

  Columns 1 through 8 

         0   -0.0001         0    0.0004         0   -0.0010         0    0.0022

  Columns 9 through 16 

         0   -0.0043         0    0.0077         0   -0.0128         0    0.0207

  Columns 17 through 24 

         0   -0.0331         0    0.0542         0   -0.1002         0    0.3163

  Columns 25 through 32 

    0.5000    0.3163         0   -0.1002         0    0.0542         0   -0.0331

  Columns 33 through 40 

         0    0.0207         0   -0.0128         0    0.0077         0   -0.0043

  Columns 41 through 48 

After you get the coefficients, create a new Nyquist FIR filter bmod and set the 
coefficients of hm2 to the coefficients from bmod.

bmod = firnyquist(8,m,kaiser(9,0.1102*(80-8.71)));
set(hm2,'Numerator',bmod); % Set the modified coefficients.
hm2.numerator

ans =

  Columns 1 through 6 

         0   -0.0092         0    0.2522    0.5000    0.2522

  Columns 7 through 9 

         0   -0.0092         0

You do not have to use a Nyquist filter to get new filter coefficients; other FIR 
filter design techniques in the toolbox work as well.
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Analyzing Multirate and Multistage Filters
Analyzing multirate or multistage filter objects is similar to analyzing 
discrete-time filter (dfilt) objects. Many if not all of the analysis functions for 
dfilt objects apply to mfilt objects equally. In particular, the Filter 
Visualization Tool (FVTool) provides most of the filter analysis tools you need.

h = fvtool(hm1,hm2);

But one difference is very important. In analyzing multirate and multistage 
filters, the filter sample rates become important. The toolbox and tools let you 
specify sample rates for all of your analyses.

Additionally, polyphase for mfilt objects provides a tool for analyzing the 
polyphase components of mfilt objects. Calling the polyphase method without 
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output arguments (as shown here using filter hm1) starts an FVTool session 
with the polyphase subfilters ready for you to analyze.

polyphase(hm1)

polyphase(hm) lets you analyze your filter in more detail, such as checking 
that the group delay of each filter phase is flat, the desirable state.

Filtering with Multirate Filters
By default, multirate filters begin with zero-valued filter states. Furthermore 
the PersistentMemory property is set to false, meaning that the filter object 
properties, such as the filter states, are reset before each filter run. This 
built-in reset process allows you to filter the same sequence input data 
sequence twice and produce the same output. For example:
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x = 1:6;
y1 = filter(hm2,x) % First run

y1 =

         0   -0.0184    0.9676

At this point, you can verify that the filter hm2 holds nonzero final conditions 
in the filter states.

zf1 = hm2.States

zf1 =

    3.0133
    3.4904
   -0.0369
         0

Run the filter again using the same input data x.

y2 = filter(hm2,x) % Second run

y2 =

         0   -0.0184    0.9676

zf2 = hm2.States

zf2 =

    3.0133
    3.4904
   -0.0369

After the second run, the states of the filter are the same as they were after the 
first run. With PersistentMemory property set to false, the filter states were 
reinitialized to zeros before the second run.
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Specifying Initial Conditions to the Filter
You make it possible to specify the initial conditions for your filter by setting 
both of the following:

• The PersistentMemory property to true

• The States property to your initial conditions (ICs)

Setting the PersistentMemory property to true is essential in the process of 
specifying initial conditions. If you set your filter ICs to specific values but you 
do not enable the filter memory, when you use the filter with input data the ICs 
get reset to zeros before the filter runs. As a result you lose your desired ICs 
and the results of filtering are not correct, or not what you might anticipate.

When you set the ICs, if you provide a scalar, that value is expanded to the 
correct number of states. If you specify a vector of values, its length must be 
equal to the number of states for the filter.

For example, using hm2 as the filter, experiment with setting the filter states 
before filtering an input data set.

hm2.persistentmemory='true'
 

hm2.States=zf1
 
hm2 =
 
     FilterStructure: 'Direct-Form Transposed FIR Polyphase Decimator'
          Arithmetic: 'double'                                        
           Numerator: [1x9 double]                                    
    DecimationFactor: 2                                               
    PersistentMemory: false 

y3=filter(hm2,x)

y3 =

    2.9580    4.9853    2.4440

zf3=hm2.states

zf3 =

    2.9580
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    3.4904
   -0.0369

As you might have anticipated, the filter output and the filter states are 
different now than they were after the first run.

Streaming Data to the Filter
Setting the filter property PersistentMemory to true is a valuable feature 
when you are filtering streaming data. Since breaking a signal into sections 
and filtering the sections in a loop is equivalent to filtering the entire signal at 
once, this example simulates filtering streaming data by using the filter hm2 in 
a loop.

reset(hm2); % Clear history of the filter by resetting all states.
xsec = reshape(x(:),2,3); % Break the input signal into

% three sections.
yloop = zeros(1,3); % Preallocate memory for storing

% intermediate results.
for i=1:3,
    yloop(i)=filter(hm2,xsec(:,i));
end
yloop

yloop =

         0   -0.0184    0.9676

y1

y1 =

         0   -0.0184    0.9676

You have verified that yloop (the signal filtered by three sections) is equal to 
y1 (entire signal filtered at once). Without changing the property value for 
PersistentMemory, this test does not work.

Note that sample mode is a special case where you feed your input data to your 
filter one sample at a time. In this operating mode, debugging and cosimulation 
might be easier to do. 
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Filtering Multichannel Signals
Up to this point you have only done single channel filtering, entering a vector 
of data x for the filter. When the input signal x is a matrix, the filter interprets 
each column of x as an independent input channel. Thus an 11-by-4 matrix 
provides 4 channels of input data where each channel contains 11 samples.

As was true for the streaming data case, sample-by-sample filtering is a special 
case. In sample mode operation, you have to provide a third input argument to 
filter that defines the input matrix dimension, in this case one dimension:

y = filter(hm,2,1)

Before you can continue this tutorial and experiment with multichannel 
filtering, you must either reset your filter to the initial states, or set the 
PersistentMemory property to false. The toolbox does not let you switch 
between single channel and multichannel filtering unless PersistentMemory is 
false or you reset the filter manually. If you forget to do this step, MATLAB 
returns an error message to tell you to reset your filter.

This example begins by resetting hm2 and defining some data to filter.

reset(hm2);
x = randn(10,3); % Three channel signal; each channel providing 

% ten samples.
y = filter(hm2,x)

y =

         0         0         0
   -0.0094    0.0095   -0.0022
    0.0794    0.3678    0.5956
    0.0440   -0.2253    1.1980
    0.6913    0.3884    0.3812

zf = hm2.States

zf =

    0.9268   -0.0027    0.4663
   -0.5359   -0.6960    0.3092
    0.0066    0.0123   -0.0029
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Notice that the filter object stores the final conditions for each channel 
separately. Each column of the States property corresponds to one input 
channel or column in the input matrix x.

Filtering Multichannel Data in Loops
When x is a matrix, the filter treats each matrix column as an independent 
channel. When you are filtering multichannel data, dim lets you specify which 
dimension of the input matrix to filter along—whether a row represents a 
channel or a column represents a channel. To filter multichannel data in a loop 
environment, you must use the dim input argument to set the processing 
dimension. 

You  specify the initial conditions for each channel individually, when needed, 
by setting hm.states to a matrix of nstates(hm)rows (each individual row 
containing the states for one channel of input data) and size(x,2) columns 
(one column containing the filter states for each channel).

Here is an example that uses the dim input argument to filter the multichannel 
input data matrix x.

      Fs = 44.1e3;             % Original sampling frequency 44.1kHz
      n = [0:10239].';         % 10240 samples, 0.232s signal.
      x  = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
      M = 2;                   % Decimation factor.
      Hm = mfilt.firdecim(M);  % We use the default filter.
 
      % No initial conditions
      y1 = filter(Hm,x);       % PersistentMemory is false.
      zf = Hm.States;          % Final conditions.
    
      % Non-zero initial conditions.
      Hm.PersistentMemory = true;
      Hm.States = 1;           % Uses scalar expansion.
      y2 = filter(Hm,x);
      stem([y1(1:60) y2(1:60)])% Different sequences at the 

% beginning.
      % Streaming data
      reset(Hm);               % Clear filter history.
      y3 = filter(Hm,x);       % Filter the entire signal in one 

% block.
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      reset(Hm);               % Clear filter history.
      yloop = [];
      xblock = reshape(x,[2048 5]);
      % Filtering the signal section by section is equivalent to 

% filtering the entire signal at once.
      for i=1:5,
        yloop = [yloop; filter(Hm,xblock(:,i))];
      end

Generating Simulink Blocks
When the Signal Processing Blockset is installed, you can generate 
a Simulink® block of the mfilt object if the Signal Processing Blockset 
supports the filter structure. For example hm1, the direct-form FIR polyphase 
interpolator that you have been using throughout these examples, can be 
rendered as a Simulink block.

block(hm1,'destination','new','blockname','FIR Interp');

This figure shows the block as generated by the toolbox from the filter hm1.

Getting Help About Multirate Filters
Entering helpwin mfilt in the MATLAB Command Window returns a list of 
multirate structures that the toolbox supports, as well as functions that 
operate on mfilt objects. For further information about a particular structure 
or function, enter helpwin mfilt.functionname, which returns the help 
information about functionname in a formatted HTML view, or enter help 
mfilt.functionname that returns the help information as plain text. For 
example:

help mfilt.firinterp % Help on the FIRINTERP structure

returns the following text in the Command Window.

FIRINTERP Direct-Form FIR Polyphase Interpolator.
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Hm = mfilt.FIRINTERP(L,NUM) returns a direct-form FIR polyphase 
interpolator Hm.

L is the interpolation factor. It must be an integer. If not 
specified, it defaults to 2.

NUM is a vector containing the coefficients of the FIR lowpass filter 
used for interpolation. If omitted, a low-pass Nyquist filter of gain 
L

EXAMPLE: Interpolation by a factor of 2 (used to convert from 
22.05kHz to 44.1kHz)

L = 2; % Interpolation factor.

Hm = mfilt.firinterp(L); % We use the default filter.

Fs = 22.05e3; % Original sampling frequency: 22.05kHz.

n = 0:5119; % 5120 samples, 0.232 second long 
signal.

x  = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.

y = filter(Hm,x); % 10240 samples, still 0.232 seconds.

stem(n(1:22)/Fs,x(1:22),'filled') % Plot original sampled at 
% 22.05kHz.

hold on % Plot interpolated signal (44.1kHz) in 
% red.

stem(n(1:44)/(Fs*L),y(25:68),'r')

xlabel('Time (sec)');

ylabel('Signal value')

See also mfilt/HOLDINTERP, mfilt/LINEARINTERP, mfilt/FFTFIRINTERP, 
mfilt/FIRFRACINTERP, mfilt/CICINTERP, mfilt/CICINTERPZEROLAT, 
FDESIGN/INTERP, FDESIGN/SRC.

You can also enter

help mfilt.polyphase

at the MATLAB prompt to return this information about polyphase.

POLYPHASE Polyphase decomposition of multirate filters.

P=POLYPHASE(Hm) returns the polyphase matrix of the multirate filter 
Hm. The ith row of the matrix P represents the ith subfilter.
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POLYPHASE(Hm) called with no outputs launches the Filter 
Visualization Tool (FVTool) with all the polyphase subfilters to 
allow analysis of each component individually.

To use the online help system, use the doc function instead of help.

doc mfilt

opens the Help browser and displays the general help text for multirate filter 
objects.

To obtain information about CIC decimation filter objects, enter one of the 
following commands:

help mfilt.cicdecim
doc mfilt.cicdecim

at the command prompt, depending on which structure you need to know 
about.

For a complete list of the multirate filters that are available in the toolbox, 
enter help mfilt.
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FIR Decimation—Filtering with FIR Decimators
This section demonstrates how you can decrease the sampling rate of a signal 
using FIR decimators from the toolbox. To show you how this works, this 
section takes you through the following tasks:

•  “Creating FIR Decimators” on page 3-18

• “Understanding Input Sample Processing and the InputOffset Property” on 
page 3-19

• “Filtering with FIR Decimators” on page 3-21

Creating FIR Decimators
The Filter Design Toolbox supports different structures to perform decimation 
including different FIR-based structures and cascaded integrator-comb (CIC) 
structures. Entering helpwin mfilt at the prompt gives you a list of all 
supported structures.

Start by defining the filter decimation factor for your FIR decimator.

m = 3; % Specify the decimation factor as m.

Because the toolbox uses objects to implement multirate filters, you use the 
same methods to create most decimators. First you specify the decimation 
factor and then the FIR filter coefficients. If you do not include filter 
coefficients when you construct the filter, the toolbox filter constructor returns 
a lowpass filter with a cutoff frequency of (π/decimation factor) and a gain of 1. 
This example uses mfilt.firdecim to create a direct-form polyphase FIR 
decimator. After constructing the filter, you can change the filter coefficients 
that are stored in the Numerator property.

Begin by designing an FIR decimator with the decimation factor set to 3.

hm1 = mfilt.firdecim(m); % Default decimator filter

mfilt.firdecim produces filters that decimate signals by integer factors. To 
change the sampling rate of a signal by a fractional factor, you might use 
a direct-form FIR polyphase sample rate converter. One way to create such a 
rate-changing filter is mfilt.firsrc. This structure uses L polyphase 
subfilters where L is the interpolation factor. Sample rate convertors use both 
a decimation factor and interpolation factor to perform fractional rate 
changing.
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l = 2; % Set the interpolation factor.
hm2 = mfilt.firsrc(l,m); % Create the rate changing filter.

Here is the configuration information about hm2.

hm2 =
 
         FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
               Numerator: [1x72 double]
       RateChangeFactors: [2 3]

PersistentMemory: false
States: [35x1 double]

Understanding Input Sample Processing and the 
InputOffset Property
When you decimate signals whose length is not a multiple of the decimation 
factor M, the last samples—(nM +1) to [(n+1)(M) -1], where n is an integer—
are processed and used to track where the filter stopped processing input data 
and when to expect the next output sample. If you think of the filtering process 
as generating an output for a block of input data, where each block has M 
elements, every complete input data block yields one output sample. 
Incomplete blocks of data (one or more input samples up to one less than the 
decimation factor) increment the InputOffset property by one for each sample 
in the incomplete block.

Note  InputOffset applies only when you set PersistentMemory to true. 
Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:

1 The input signal is a multiple of the filter decimation factor. In this case, the 
filter processes the input samples and generates output samples for all 
inputs as determined by the decimation factor. For example, processing 99 
input samples with a filter that decimates by three returns 33 output 
samples.

2 The input signal is not a multiple of the decimation factor. When this occurs, 
the filter processes all of the input samples, generates output samples as 
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determined by the decimation factor, and has one or more input samples 
that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has 
decimation factor of 3, you get 33 output samples, and 1 sample that did not 
generate an output. In this case, InputOffset stores the value 1 after the 
filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into 
blocks of data with length equal to your filter decimation factor, the filter 
processed one sample from a new block of data. Subsequent inputs to the 
filter are concatenated with this single sample to form the next block of 
length m.

One way to define the value stored in InputOffset is

InputOffset = mod(length(nx),m)

where nx is the number of input samples in the data set and m is the decimation 
factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any 
point and start over from there (provided that the PersistentMemory property 
is set to true). Being able to resume filtering after stopping a signal lets you 
break large data sets in to smalller pieces for filtering. With PersistentMemory 
set to true and the InputOffset property in the filter, breaking a signal into 
sections of arbitrary length and filtering the sections is equivalent to filtering 
the entire signal at once.

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092
reset(hm1);  % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092
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This test verifies that ysec (the signal filtered by sections) is equal to ytot (the 
entire signal filtered at once).

All of the preceding discussion applies to interpolation filters as well, with 
appropriate changes from decimation to interpolation.

Filtering with FIR Decimators
After creating your decimator, you are ready to filter data. Rather than use 
random data, as you did earlier, this example uses a more realistic data set.

For this example, define the input signal x as a 1 kHz sinusoid sampled at 44.1 
kHz. Here is one way to create x[n].

N = 159;
fs = 44.1e3;
n = 0:N-1;
x = sin(2*pi*n*1e3/fs); % Signal as required. 159 data points. 

Now you can use filter hm1 you designed earlier to try decimating x.

Filtering with the Direct-Form FIR Polyphase Decimator hm1
You have data and a decimator in your workspace. Applying the filter to the 
data takes two steps—reset the filter and use filter to apply the decimator 
to x.

reset(hm1) % Reset the filter history and states to zeros.
y1 = filter(hm1,x);

Two stem plots give a sense of the decimation.
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y1 contains 53 samples—one-third of the number in x. Filter hm1 decimated 
x by two-thirds. Since multirate filters support sample-by-sample processing, 
all input samples passed through the filter.

For further information about filtering options in general and specifying initial 
conditions for filters in particular, refer to “Getting Started—Designing 
Multirate Filters” on page 3-4.

The previous stem plot shows a feature of the filter—a delay of a number of 
samples before the filter starts to output the decimated input signal. Called the 
transient response, the length of the transient response of the decimator is 
equal to half the order of a polyphase subfilter. For hm1, the subfilter order is 
24, so the transient response should be 12 samples. This is also the group delay 
of the filter.
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From the plot, it appears that the transient response is about 12 samples long. 
The next plot makes this more clear by plotting the decimated signal with a 
delayed version of the input x.

delay = mean(grpdelay(hm1)); % Constant group delay equal to its 
% mean.

tx = delay+[1:length(x)];
ty = 1:m:m*length(y1);

Plot the output of the direct-form FIR polyphase decimator hm1 and overlay 
a shifted version of the original signal using tx and ty.

stem(tx,x,'k');hold on;stem(ty,y1,'filled');

Using the delayed signals makes the transient response clear.
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CIC Filter Example—Using CIC Decimation Filters
This demonstration shows how to use multirate cascaded integrator-comb 
(CIC) decimation filters in the Filter Design Toolbox. CIC filters are efficient, 
multiplierless structures that are often used in high-decimation ratio or 
high-interpolation ratio systems.

Digital down convertors and digital up convertors commonly use CIC filters. 
Refer to the demonstration program “Design of a Digital Down-Converter for 
GSM (Group Speciale Mobile)” in the Filter Design Toolbox demos for an 
example that uses a CIC decimator for digital down-conversion processing of a 
signal.

To help you understand what CIC filters do and how, this example includes the 
following sections:

• “Creating CIC Decimator filters” on page 3-24

• “Analyzing CIC Decimation Filters” on page 3-26

• “Working with Section Word Lengths” on page 3-28

• “CIC Filter States” on page 3-31

• “Filter Implementation—Signal Flow Graph” on page 3-33

• “Reference” on page 3-35

Creating CIC Decimator filters
The Filter Design Toolbox provides a CIC decimating filter structure—the 
Cascaded Integrator-Comb Decimator. As you see in the figure below, the 
structure is optimized for pipelined implementations such as might be used on 
field-programmable gate arrays (FPGAs). The following Simulink model 
provides a signal-flow graph of the structure.
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With the Fixed-Point Toolbox installed (required for you to use CIC filters), you 
create a default cascaded integrator-comb decimator object with this command

hm = mfilt.cicdecim

at the prompt. MATLAB returns the CIC filter with the specifications shown 
here.

hm =
 
      FilterStructure: 'Cascaded Integrator-Comb Decimator'
           Arithmetic: 'fixed'
    DifferentialDelay: 1
     NumberOfSections: 2
     DecimationFactor: 2
     PersistentMemory: false

      InputWordLength: 16              
      InputFracLength: 15              
                                       
SectionWordLengthMode: 'MinWordLengths'
                                       
     OutputWordLength: 16 

The CIC decimation filter comprises three portions—an integrator portion, a 
rate change factor, and a comb portion. Similarly, you can completely specify a 
CIC decimation filter with three parameters—a decimation factor r, the 
number of individual integrator or comb sections n, and the differential delay 
of the comb section m.

The display of the multirate filter object (mfilt) in the Command Window 
groups the filter properties together in a logical manner, making the filter 
specification more clear.

Only the writable properties appear in the display by default. Changing a filter 
property, such as resetting PersistentMemory from false to true reveals more 
properties as they become writable—in this case the States property appears 
when PersistentMemory is true.

Unlike other multirate filters and discrete-time objects, CIC filter objects allow 
only fixed-point arithmetic (the Arithmetic property is always set to fixed) 
since these filters are inherently fixed-point filters. Check the value of the 
Arithmetic property
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set(hm,'arithmetic')

ans =

'fixed'

to see that fixed is the only option. As with all filter objects, and all objects in 
general, the get function returns the complete set of properties (read-only and 
writable) for the filter and object.

get(hm)

Analyzing CIC Decimation Filters
Analyzing CIC filters is the same as analyzing any multirate filter object in the 
Filter Design Toolbox. The Filter Visualization Tool (FVTool) provides 
graphical access to all analyses.

hm = mfilt.cicdecim(8,1,4);
hfvt=fvtool(hm);
hfvt.showreference='off';

FVTool returns the magnitude response for hm, shown here. As hm is a 
fixed-point filter, we suppress the reference filter in the display by setting the 
ShowReference property in FVTool to off.
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After you have the filter displayed in FVTool, you can use any of the filter 
analysis capabilities provided to learn more about hm. To perform an analysis, 
select one of the analytical options, such as Impulse Response or Round-off 
Noise Power Spectrum from Analysis on the FVTool menu bar.

About the MSB at the Filter Output
A significant consideration in CIC filters is the size (number of bits) of data that 
can pass through the filter without loss. The most significant bit (MSB) of the 
filter represents the maximum number of bits that can be propagated through 
the filter while maintaining the integrity of the data. 

Parameters R, M, N and the InputWordLength specify the MSB of the filter 
output. Since the output of the integrator sections of the filter can grow without 
bounds, the MSB at the filter output is also the MSB for all filter sections.
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Called Bmax in the reference, the maximum word length in the filter, or most 
significant bit (MSB), is both the maximum word length for all of the filter 
sections as well as the MSB at the filter output.

Hogenauer defines Bmax , the MSB at the filter output, as follows:

with

• N is the number of filter sections

• M is the comb portion differential delay

• R is the decimation factor

• Bin is the input word length in bits

Working with Section Word Lengths
CIC filters include a property that defines how you specify the section word and 
fraction lengths for the filter. Called SectionWordLengthMode, this property 
specifies the specific data format (word length and fraction length) the filter 
uses when accumulating data in the integrator sections or subtracting data in 
the comb sections. SectionWordLengthMode can take one of two values:

• MinWordLengths—the filter calculates the optimal section word lengths 
given the filter parameters R (the rate change factor), M (the differential 
delay), N (the number of filter sections), and the input and output word 
lengths. 

• SpecifyWordLengths—you specify the word lengths for the sections by 
entering a scalar or a vector of length 2*N. When you provide a scalar, the 
filter method expands the scalar into a vector with 2*N elements, applying 
the same word length to all sections. If you specify a vector, it must meet 
these requirements:

- It must contain 2*N elements.

- The values of the vector elements must be monotonically decreasing.

When you construct a new CIC decimating filter, SectionWordLengthMode is 
set to MinWordLength by default.

Using hm as an example, here is the SectionWordLengthMode.

set(hm,'SectionWordLengthMode')

Bmax N 2RMlog Bin 1–+[ ]=
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ans = 

    'MinWordLengths'
    'SpecifyWordLengths'

In the reference provided later in this section ([1] on page 3-35), Hogenauer 
shows that during filtering you can discard least significant bits (LSBs) from 
each section (refer to Equation 21 of the reference) of the filter so long as the 
error introduced by removing the LSBs is acceptable at the filter output. In this 
case, the section word lengths reported by the filter are computed by 
subtracting the LSBs from the maximum word lengths in the filter (refer to 
Equation 11 in the reference for details). 

To help connect the CIC filter designs in the toolbox to the analysis by 
Hogenauer, the next example designs a CIC decimator that matches the design 
on page 159 of the Hogenauer paper.

m=1; % Set the differential delay to one.
n=4; % Specify the number of sections.
r=25; % Set the rate change factor.
inwl=16; % Set the word length at the filter input.
outwl=16; % Set the filter output word length.

% With the specifications prepared, design the CIC decimator.
hm=mfilt.cicdecim(r,m,n,inwl,outwl);

hm reproduces the referenced filter exactly. To see the correspondence, check 
that the word lengths applied to each filter section match those developed in 
the reference example, where the MSB is 34 bits.

Filter 
Section

Number of LSBs 
Discarded

Word Length Calculated in 
[1] on page 3-35
(MSB-Discarded LSBs)

1 1 33 (34-1)

2 6 28 (34-6)

3 9 25 (34-9)

4 13 21 (34-13)
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In the referenced paper by Hogenauer, [1] on page 3-35, the MSB is also called 
Bmax. Use get to verify the match.

get(hm,'sectionwordlengths')

ans =

    33    28    25    21    20    19    18    17

For cases where you enter the word lengths explicitly when you construct the 
filter, rather than letting the mfilt constructor determine them, by setting 
SectionWordLengthMode to SpecifyWordLengths, you enter the word lengths 
to use as either a scalar or a vector of length 2*n. Recall from earlier that the 
input vector containing the section word lengths must meet two criteria—the 
number of elements must be twice the number of filter sections n, and the 
element values must be monotonically decreasing.

As you see in this example, when you enter the word length as a scalar, the 
filter constructor expands the scalar to apply it as the section word length for 
all of the filter sections. 

set(hm,'sectionWordLengthMode','SpecifyWordLengths');
hm.sectionWordLengths=32;
get(hm,'sectionWordLengths')

ans =

    32    32    32    32    32    32    32    32

5 14 20 (34-14)

6 15 19 (34-15)

7 16 18 (34-16)

8 17 17 (34-17)

Filter 
Section

Number of LSBs 
Discarded

Word Length Calculated in 
[1] on page 3-35
(MSB-Discarded LSBs)
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CIC Filter States
The States property of CIC decimation filters contains an object— 
filtstates.cic. This object represents or stores the initial conditions of the 
filter before filtering and the final conditions after filtering. filtstates.cic 
has two properties, Integrator and Comb, that correspond to their respective 
portions of the filter. When you construct a CIC filter, the states contain zeros. 
After you filter data with the filter, the states contain the values stored in the 
filter delay elements. To demonstrate the filter states, the following example 
creates a decimator, and then applies the filter to a set of fixed-point input 
data.

% Construct the input data set for filter filter some fixed-point 
% ones.
x = fi(ones(1,10),true,16,0);
% Construct a decimator to use to filter x.
hm = mfilt.cicdecim(2,1,2,16,16,16);

Take a look at x and hm to see what you have.

x
 
x =
 
     1     1     1     1     1     1     1     1     1     1

          DataTypeMode: Fixed-point: binary point scaling
                Signed: true
            WordLength: 16
        FractionLength: 0

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true
hm
 
hm =
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      FilterStructure: 'Cascaded Integrator-Comb Decimator'
           Arithmetic: 'fixed'
    DifferentialDelay: 1
     NumberOfSections: 2
     DecimationFactor: 2
     PersistentMemory: false

      InputWordLength: 16                  
      InputFracLength: 15                  
                                           
SectionWordLengthMode: 'SpecifyWordLengths'
                                           
   SectionWordLengths: [16 16 16 16]       
                                           
     OutputWordLength: 16                  
get(hm,'states')
 
ans =
 
    Integrator: [2x1 States]
          Comb: [2x1 States]

At this point, the states for the filter are zeros. That changes after you filter 
a set of data.

hm.inputfraclength = 0; % Set the input to use integer data.
y = filter(hm,x);

You can extract the final states by using the int function and assigning the 
output to a variable.

sts = int(Hm.states)
sts =

     10     45
     28     13

As you see, the states now contain nonzero values related to the filtering 
operation.
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This states matrix has dimensions M+1-by-N, where M is the differential delay 
of the comb section and N is the number of sections. Filter hm stores the 
integrator sections states (hm.states.integrator) in the first row of the states 
matrix and stores the states for the comb portion in the remaining rows in the 
matrix. 

You might have noticed that the States property is not displayed by the default 
filter display. When PersistentMemory is set to false, you do not see the states 
property in the default listing in MATLAB.

hm % Generate the default filter display.
 
hm =
 
      FilterStructure: 'Cascaded Integrator-Comb Decimator'
           Arithmetic: 'fixed'
    DifferentialDelay: 1
     NumberOfSections: 2
     DecimationFactor: 2
     PersistentMemory: false

      InputWordLength: 16              
      InputFracLength: 15              
                                       
SectionWordLengthMode: 'MinWordLengths'
                                       
     OutputWordLength: 16 

Setting PersistentMemory to true reveals the States property in the filter 
display. However, when you use get to review the properties, you see the 
States property listed in all instances. 

For more information about the fi object used in x above, refer to the 
Fixed-Point Toolbox documentation in the online Help system. 

Filter Implementation—Signal Flow Graph
The toolbox implements a structure that differs slightly from the one in the 
referenced paper by [1] on page 3-35. The difference lies in the location of the 
delays in the integrator portion of the filter. We made this change to optimize 
the filter for pipelining on hardware such as field-programmable gate arrays 
(FPGAs). The following figure shows the flow graph as implemented by 
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mfilt.cicdecim. After the table following the figure, is a short example that 
should help interpret the entries in the figure.

The word length and fraction length at each stage of the decimator are shown 
in the following table. Either you specify the word length for each filter stage 
in the SectionWordLengths property as a vector of integers, or you let the filter 
constructor set the word lengths by making MinWordLengths the value for 
SectionWordLengthMode. The calculation for each fraction length is shown 
below:
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Decimator Word Lengths and Fraction Lengths

Position in the 
Signal Flow

Word Length Fraction Length

Filter Input InputWL InputFL

1st Section Output SectionOneWL InputFL

2nd Section Output SectionTwoWL InputFL (SectionTwoWL - SectionOneWL)

3rd Section Output SectionThreeWL SectionTwoFL + (SectionThreeWL - SectionTwoWL)

4th Section Output SectionFourWL SectionThreeFL + (SectionFourWL - 
SectionThreeWL)

Nth Section Output Section(N)WL Section(N-1)FL + (Section(N)WL - 
Section(N-1)WL)

Filter Output OutputWL FinalSectionFL + (OutputWL - FinalSectionWL)
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Reference
The following paper formed the basis for developing the CIC filters in the Filter 
Design Toolbox. Many more details of the CIC multirate filters are discussed 
in this reference.

[1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation 
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal 
Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.
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Analyzing Multirate and Multistage Filters
Multirate filter analysis presents some differences from analyzing single-rate 
discrete-time filters. While most of the same analytical tools apply, the primary 
difference is the filter sample rate—what the sample rate is, how it is defined, 
and where. Filter sample rate, called Fs in the toolbox, changes depending on 
the type of multirate filter you are using. Or more precisely, how the sample 
rate is defined changes according to the multirate filter under discussion.

Generally, filter sample rate refers to the rate at which the filter is running:

• For decimators, the filter sample rate equals the sample rate at the filter 
input, prior to decimating the input.

• For interpolators, the filter sample rate is equal to the sample rate at the 
output of the filter, after interpolation.

• For sample rate change filters, Fs is the input rate multiplied by the 
interpolation factor. The decimation factor does not apply to define the 
sample rate.

When you provide a sampling frequency for the analysis, the analytical tool, 
such as FVTool, assume that the rate specified is the sampling frequency at 
which the filter is operating.

Another feature of analyzing multirate filters that have more than one stage is 
that the analysis process applies to a filter that is the overall equivalent of the 
multistage filter under consideration. Recognizing that the analytical tool you 
choose first computes an equivalent filter makes understanding the analytical 
process somewhat easier.

For example, a multistage filter that included

• Multiple interpolators

• Multiple decimators

might be reduced to an equivalent filter with

• One equivalent interpolation filter

• One equivalent decimation stage

For more about how the tools develop the equivalent filter they use to analyze 
your filter, refer to “Performing Multistage Filter Analysis” on page 3-40.
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A pair of definitions will help as you read this section:

• Multirate filters consist of sections.

• Multistage filters are the result of using cascade or parallel (refer to dfilt 
in the Signal Processing Toolbox documentation for more information about 
parallel and cascade filter design) to create filters by combining other filters. 
Each filter that composes the multistage filter is called a stage.

This tutorial demonstrates how to perform analysis on single-stage and 
multistage multirate filters by presenting the following topics:

• “Analyzing Single-Stage Multirate Filters” on page 3-37

• “Comparing Interpolators” on page 3-38

• “Performing Multistage Filter Analysis” on page 3-40

• “Analyzing Multistage Interpolators” on page 3-42

• “Analyzing a Multistage Sample-Rate Converter” on page 3-43

• “Analyzing Other Multistage Configurations” on page 3-45

Analyzing Single-Stage Multirate Filters 
You analyze single-stage multirate filters at the rate the filter is operating. As 
mentioned in the introduction to this tutorial section, the sample rate you use 
depends on the filter your are analyzing.

The following plot overlays the magnitude response of a sample-rate converter, 
an interpolator, and a decimator. For the first filter, the input sampling 
frequency is 1000/5 and the output sampling frequency is 1000/3. For the 
interpolator, the input fs is 1000/4 and the output fs is 1000. Finally, for the 
decimator, the input fs is 1000 and the output fs is 1000/3.

Here are the commands to create the three filters to analyze.

h1 = mfilt.firsrc(5,3);  % Use a default filter.
h2 = mfilt.firinterp(4); % Use a default filter.
h3 = mfilt.firdecim(3);  % Use a default filter.

Now you need to specify the sampling rate and the number of points in the FFT 
used.

fs = 1000; nfft = 8192;
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With the filters in your workspace and the sampling frequency set, use FVTool 
to visualize the filters using a common sampling rate.

fvtool(h1,h2,h3,'fs',fs);

Comparing Interpolators
Interpolators and decimators exhibit a lowpass magnitude response. Simple 
interpolators, like the CIC interpolator and the hold or linear interpolators, 
have a poor lowpass response. However, they are easy to implement and, 
except for the linear interpolator, they do not require the filter to perform 
multiplications in real-time while filtering data. The following plot compares 
the lowpass response of four different interpolators:

• An FIR interpolator (mfilt.firinterp)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−200

−150

−100

−50

0

50

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

Sample−Rate Converter

Interpolator

Decimator



Analyzing Multirate and Multistage Filters

3-39

• A linear interpolator (mfilt.linearinterp) 

• A hold interpolator (mfilt.holdinterp)

• A CIC interpolator (mfilt.cicinterp)

They each have an interpolation factor of 4. You can see that the quality of the 
lowpass filter, such as the sharpness of the lowpass cutoff, depends on which 
type of interpolator you use. By design, the CIC interpolator has more gain 
than the other interpolators. For the purposes of this analysis, we include 
a scalar in cascade with the CIC filter to normalize its gain. Normalizing the 
gain makes comparing the different filters easier.

h(1) = mfilt.firinterp(4); % Use the default filter.
h(2) = mfilt.linearinterp(4);
h(3) = mfilt.holdinterp(4);
hcic = mfilt.cicinterp(4,1,3); % 3-section CIC with

% differential delay = 1.
hscalar = dfilt.scalar(1/gain(hcic));
h(4) = cascade(hscalar,hcic); % Add a gain correction...

% filter in cascade.

Use FVTool to see the results of the four filters. An interesting trick you might 
notice—naming the filters as indexes of the variable h lets you plot all four 
interpolators by passing h to FVTool.

fvtool(h);
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Performing Multistage Filter Analysis
Using the tools provided in the toolbox, either from the command line or in 
FVtool, you can analyze multirate filters of the following form.
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In a multirate filter, any of the blue, red, or green sections is optional. Since 
that is true, you can perform analysis on multistage interpolators, multistage 
decimators, or multistage sample-rate converters.

When you choose to perform the analysis, the analysis tool computes an 
equivalent overall filter for the interpolation section and/or the decimation 
section as shown in the next figure, and performs the requested analysis on the 
equivalent filter.

In the equivalent filter shown in the figure, the following conversions apply.

• Upsample block L = Lo*L1*L2*...*Lm; (convolved interpolators)

• Downsample block M = Mo*M1*M2*...*Mn; (convolved decimators)

• Interpolator transfer function 
H(z) = H1(z^(Lo*L1*...Lm))*H2(z^(Lo*L2...Lm))...Hm(z^(Lo)); 

• Decimator transfer function 
G(z) = G1(z^(Mo*M1*...Mn))*G2(z^(Mo*M2...Mn))...Gn(z^(Mo)) 

Finally, filters H(z), G(z), and Ho(z) are all operating at the same rate and can 
be combined into a single filter on which to perform the analysis. If you specify 
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a sampling frequency as an input to the analytical tool, the analysis assumes 
that the single overall filter (equivalent to the subfilters that have been 
combined) is operating at the rate you specified.

Analyzing Multistage Interpolators
Here is an example of how you might analyze a multistage interpolator. Refer 
to the demo “Design of a Digital Down-Converter for GSM” in the Filter Design 
Toolbox demos for an example in which the Global System for Mobile 
Communications (GSM) uses a multistage decimator.

This section cascades four interpolators to form a four stage filter. The fourth 
interpolator is a CIC filter. In this case, the sampling frequency specified for 
the filter corresponds to the output of the four stage interpolator because this 
is the rate at which the equivalent filter operates. 

h(1) = mfilt.firinterp(4);
h(2) = mfilt.firinterp(2);
h(3) = mfilt.firinterp(2);
h(4) = mfilt.cicinterp(16);
hc = cascade(h);

hc
 
hc =
 
         FilterStructure: Cascade
                Stage(1): Direct-Form FIR Polyphase Interpolator
                Stage(2): Direct-Form FIR Polyphase Interpolator
                Stage(3): Direct-Form FIR Polyphase Interpolator
                Stage(4): Cascaded Integrator-Comb Interpolator
    PersistentMemory: false

To perform the analysis on hc, compute the frequency response between 0 and 
200 Hz. set the sampling frequency Fs to 1000 Hz.

[hf,f] = freqz(hc,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))

freqz returns the transfer function for the cascaded filter at the sampling 
frequency you entered as an input argument.
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Analyzing a Multistage Sample-Rate Converter
To demonstrate working with multistage sample rate convertors, add some 
decimation stages to filter hc to form a multistage sample-rate converter. 
Again, the sampling frequency fs you specify as input to freqz once again 
represents and is assumed to be the rate of the equivalent filter. And this is the 
rate at which the frequency response of hc2 is analyzed. This fs is the fastest 
rate in the entire system in this case. 

h(5) = mfilt.firsrc(2,3);
h(6) = mfilt.cicdecim(13);
h(7) = mfilt.firdecim(5);
hc2 = cascade(h)
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hc2 =
 
         FilterStructure: Cascade
                Stage(1): Direct-Form FIR Polyphase Interpolator
                Stage(2): Direct-Form FIR Polyphase Interpolator
                Stage(3): Direct-Form FIR Polyphase Interpolator
                Stage(4): Cascaded Integrator-Comb Interpolator
                Stage(5): Direct-Form FIR Polyphase Sample-Rate Converter
                Stage(6): Cascaded Integrator-Comb Decimator
                Stage(7): Direct-Form FIR Polyphase Decimator
    PersistentMemory: false

As you did in the preceding section, compute the frequency response between 
0 and 200 Hz using Fs equal to 1000 Hz.

[hf,f] = freqz(hc2,0:1e-2:20,1000);
plot(f,20*log10(abs(hf)))

The figure show the frequency response of hc2, the result of adding decimators 
and a rate changing filter to hc.
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Analyzing Other Multistage Configurations
In addition to the multistage filters hc and hc2 shown, the toolbox lets you 
analyze multistage filters where decimation occurs prior to interpolation, 
provided the overall filter interpolation and decimation factors are the same. 
Notice that this does not necessarily mean that there is an equal number of 
decimation and interpolation stages.
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One multistage structure that you could analyze in the toolbox is this one: 

In this case, the analysis tools develop two equivalent filters as shown in the 
next figure, where M = M1*M2*…Mn = L1*L2*…Lm = L. 

Because the overall interpolation factor L is equal to the overall decimation 
factor M, the equivalent filters are operating at the same rate.

As before, when you provide a sampling frequency for the analysis, the tools 
assume that the supplied rate is the rate at which both filters are operating. 
For this case, this would also be equal to the input and output rate for these 
filters.

To see a demonstration about this type of analysis, where you are analyzing 
multistage, multirate filters, refer to “Multirate Multistage FIR Filter Design” 
in the Filter Design Toolbox demos.
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Audio Example—Audio Sample Rate Conversion
For a more concrete application of multirate filters, this section illustrates 
multirate filters that you might use to perform sample rate conversion on 
different audio formats. During this section, you create each of the following:

• FIR sample rate conversion filter

• FIR fractional interpolator

• FIR fractional decimator

To do these tasks, this section contains the following topics:

• “Creating the Multirate Filters” on page 3-47

• “Decreasing the Sample Rate by a Fractional Factor” on page 3-48

• “Constructing the Fractional Decimator” on page 3-48

• “Filtering to Change the Sample Rate” on page 3-49

• “Comparing the Resampled Signals” on page 3-49

• “Increasing the Sample Rate by a Fractional Factor” on page 3-51

• “Plotting the Original Signal and the Reconverted Signal” on page 3-52

• “Converting from 48 kHz to 44.1 kHz” on page 3-53

• “Plotting the 48 kHz Signal and the 44.1 kHz Signal” on page 3-54

Creating the Multirate Filters
All fractional sample rate conversion filters are created in the same way. You 
specify the interpolation factor L, and the decimation factor M, and the FIR 
filter coefficients. L and M must be relatively prime. 

Two integers a and b are relatively prime when they do not share any common 
factors. For example, 21 and 54 are not relatively prime—3 is a factor common 
to both. 14 and 25 are relatively prime.

When L and M are not relatively prime, they are converted to relatively prime 
factors and you get a warning in MATLAB.

If you do not provide filter coefficients when you construct your filter, the filter 
design process returns a lowpass filter with a cutoff frequency of π/max(L,M) 
and a gain of L in the passband.

Begin by designing a default rate change filter hm1.
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hm1 = mfilt.firsrc(4,3); % Default sample rate change filter.
hm2 = mfilt.firfracinterp(8,6);

Warning: L and M are not relatively prime. Converting ratio 8/6 
to 4/3.
The cutoff frequency of the filter should be approximately pi/4.

MATLAB notifies you that the factors 8 and 6 do not meet the relatively prime 
specification and reduces each by the common factor 2. Then MATLAB designs 
the filter.

Decreasing the Sample Rate by a Fractional Factor
Suppose you are converting an audio signal recorded at 48kHz to 32kHz for 
broadcasting. Consider the following audio sample recorded at 48kHz 
(Copyright 2002 FingerBomb) by loading the sample into MATLAB and then 
playing the file.

load audio48;

To listen to the original 48 kHz signal, you can use an audio player object in 
MATLAB.

p48 = audioplayer(signal48kHz,Fs48); % Create audio player 
% object.

play(p48); % Play the track. Use stop(p48) to stop play.

In all, the track lasts about 9 seconds.

Constructing the Fractional Decimator
Reducing the 48kHz sample rate for the signal to 32 kHz requires decimating 
the signal by two-thirds (discard one sample out of every three). Decimation by 
two-thirds is an example of fractional decimation.

The interpolation factor for this case is 2 and the decimation factor is 3. You 
can use a fractional decimator to achieve this sample rate modification. To 
avoid making this example more complicated, use the default filter that 
mfilt.firfracdecim designs for now. 

hfd = mfilt.firfracdecim(2,3); % Use default decimator filter.
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hfd
 
hfd =
 
         FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
               Numerator: [1x72 double]
       RateChangeFactors: [2 3]

PersistentMemory: false
                  States: [36x1 double]

You could also use your own lowpass filter by specifying the coefficients as 
a third input argument

hfd = mfilt.firfracdecim(l,m,coeffs)

where coeffs contains the FIR filter coefficients to use.

Filtering to Change the Sample Rate
To use the fractional decimator hfd to convert the sample rate of the signal, you 
invoke the filter method with the signal signal48kHz and hfd.

s32 = filter(hfd,signal48kHz);

Once again, you can use an audioplayer object to listen to the down-converted 
signal.

p32 = audioplayer(s32,32e3); % Create a new audio player.
play(p32);

Comparing the Resampled Signals
You now have about 9 seconds of audio. Of course, you can find the exact length 
in seconds from

length(signal48kHz)/Fs48 % Or length(s32)/32e3.

ans =

    8.9634

For clarity, you should overlay the two signals on a plot to compare them. 
Because the audio track contains some 430,000 samples, you show only a small 
signal segment. You also have to account for the delay the filter introduces in 
the 32 kHz signal (the transient response mentioned earlier). Filter hfd has a 
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group-delay of 36 samples. Since it is running three times faster than the 32 
kHz signal, the delay is equivalent to 12 low speed samples.

Note that there are three samples of the 48 kHz signal for every two samples 
of the 32 kHz signal. Now to pick some audio data samples to display.

To make the overlay work, you need the same starting point for each signal. 
The following code finds common points for the 48 kHz and 32 kHz signals and 
displays them in a stem plot.

xindx = 999:1500; % 0.0105 seconds of audio at 48 kHz.
figure
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on;
xindx2 = xindx(1)*32e3/48e3:xindx(end)*32e3/48e3; % Find the same 

% start and 
% stop times.

stem(xindx2/32,s32(xindx2+12),'r'); % Add 12 samples to account 
% for filter transient delay.
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Increasing the Sample Rate by a Fractional Factor
You can convert the broadcast quality signal at 32 kHz back to 48 kHz with 
a fractional interpolator, perhaps to store it on a digital audio tape (DAT). 
Moving from 32 to 48 requires upsampling by 50 percent, achieved using an 
interpolation factor of 3 and decimation by 2. Again, you use the fractional FIR 
interpolator.

hfi = mfilt.firfracinterp(3,2);
s48 = filter(hfi,s32);

Listening to the up-converted audio might be interesting. Use an audio player 
again. 

ps48 = audioplayer(s48,Fs48);
play(ps48);
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Plotting the Original Signal and the Reconverted 
Signal
To compare both 48 kHz signals—the original and the twice-converted signal, 
you must account for the delay introduced by both the fractional decimation 
and the fractional interpolation processes when you converted the signal down 
to 32 kHz and back to 48 kHz. In the stem plot shown here, notice that most of 
the reconverted signal samples have moved slightly from where they were 
originally. This is distortion introduced by converting down to 32 kHz by 
decimation and then converting back up to 48 kHz by interpolation.

figure;
xindx = 1000:1500;
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on;
stem(xindx/Fs48*1e3,s48(1037:1537),'r'); % Account for the 

% process-induced 
% delays.
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Different filters achieve different results. You used the default filters which do 
not optimize the output. 

Converting from 48 kHz to 44.1 kHz
To convert from studio quality audio at 48 kHz to CD quality audio, 44.1 kHz, 
you would use a multirate filter better suited for this ratio change 
(interpolation factor of 147, decimation factor of 160; decimation by 1.088). To 
avoid the startup delay (latency) introduced by the filter, preload half of the 
filter states with the beginning of the signal. Doing this step compensates for 
the delay caused by filtering and decimation. For this rate change, you use the 
FIR sample rate change multirate filter—firsrc.

hsrc = mfilt.firsrc(147,160) % Use default filter coefficients.
hsrc =
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         FilterStructure: 'Direct-Form FIR Polyphase Sample-Rate Converter'
               Numerator: [1x3840 double]
       RateChangeFactors: [147 160]

PersistentMemory: true
                  States: [26x1 double]

hsrc.persistentmemory = true; % Allows you to set the states 
% to eliminate delay.

hsrc.States(13:-1:1) = signal48kHz(1:13); % Preload the states.
s441 = filter(hsrc,signal48kHz(14:end)); % This takes a few 

% seconds.

Again, you can play the down-converted signal at 44.1 kHz with a MATLAB 
audio player.

p441 = audioplayer(s441,44.1e3);
play(p441);

When you are doing sample-rate conversion with large values of L or M, as you 
are in this case where L=147 and M=160, using the mfilt.firsrc structure is 
the most effective approach. Other possible fractional rate change structures, 
such as mfilt.firfracinterp (where L > M) or mfilt.firfracdecim (where 
L <  M) may have prohibitively large memory requirements for applications 
that require large rate changes. 

Plotting the 48 kHz Signal and the 44.1 kHz Signal
Now compare segments of the two signals graphically. In this case you can 
verify visually in the stem plot shown that the filter does not introduce delay 
since you compensated for its group delay by preloading the states.

figure
xindx = 1:160;
stem(xindx/Fs48*1e3,signal48kHz(xindx));
hold on
xindx2 = 1:147;
stem(xindx2/44.1,s441(xindx2),'r');
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4

Designing Adaptive Filters

Introducing Adaptive Filtering (p. 4-2) Provides a little background on the development of 
adaptive filters and the contents of this section

Getting Started with Adaptive Filters 
(p. 4-4)

Uses a signal enhancement application to introduce 
adaptive filters

Overview of Adaptive Filters and 
Applications (p. 4-14)

Provides a short discussion about adaptive filters and 
their uses

System Identification (p. 4-17) Learn about the questions to ask when you need an 
adaptive filter

Adaptive Filters in the Filter Design 
Toolbox (p. 4-21)

Learn about the adaptive filter objects provided in the 
toolbox

Examples of Adaptive Filters That Use 
LMS Algorithms (p. 4-26)

Presents examples of adaptive filters that use LMS 
algorithms to determine filter coefficients

Example of Adaptive Filter That Uses 
RLS Algorithm (p. 4-47)

Presents examples of adaptive filters that use RLS 
algorithms to determine filter coefficients

Selected Bibliography (p. 4-52) Lists a few books that cover adaptive filters in both detail 
and with broad scope
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Introducing Adaptive Filtering
Over the past three decades, digital signal processors have made great 
advances in increasing speed and complexity, and reducing power 
consumption. As a direct result, real-time adaptive filtering is quickly 
becoming essential for the future of communications, both wired and wireless.

In the following sections, this guide presents an overview of adaptive filtering; 
discussions of some of the common applications for adaptive filters; and details 
about the adaptive filters available in the toolbox.

Listed below are the sections that cover adaptive filters in this guide. Within 
each section, examples and a short discussion of the theory of the filters 
introduce the adaptive filter concepts.

• “Getting Started with Adaptive Filters” on page 4-4 introduces adaptive 
filtering through a worked example.

• “Overview of Adaptive Filters and Applications” on page 4-14 presents 
a general discussion of adaptive filters and their applications.

- “System Identification” on page 4-17—Using adaptive filters to identify 
the response of an unknown system such as a communications channel or 
a telephone line.

- “Inverse System Identification” on page 4-18—Using adaptive filters to 
develop a filter that has a response that is the inverse of an unknown 
system.

- “Noise Cancellation (or Interference Cancellation)” on page 4-18— 
Performing active noise cancellation where the filter adapts in real-time to 
remove noise by keeping the error small. 

- “Prediction” on page 4-19—describes using adaptive filters to predict 
a signal’s future values.

• “System Identification” on page 4-17 describes the important considerations 
for selecting an adaptive filter for an application.

• “Adaptive Filters in the Filter Design Toolbox” on page 4-21 lists the 
adaptive filters included in the toolbox.

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 4-26 
presents a discussion of using LMS techniques to perform the filter 
adaptation process.
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• “Example of Adaptive Filter That Uses RLS Algorithm” on page 4-47 
discusses adaptive filters based on the RMS techniques for minimizing the 
total error between the known and unknown systems.

For more detailed information about adaptive filters and adaptive filter theory, 
refer to the books listed in “Selected Bibliography” on page 4-52.
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Getting Started with Adaptive Filters
This demonstration illustrates one way to use a few of the adaptive filter 
algorithms provided in the toolbox. 

This example uses a signal enhancement application as an illustration. While 
there are about 30 different adaptive filtering algorithms included with the 
toolbox, this example demonstrates two algorithms—least means square 
(LMS), adaptfilt.lms, and normalized LMS, adaptfilt.nlms, for adaptation.

Tutorial Contents 
As you follow this tutorial, you encounter these subjects.

• “Create the Signals for Adaptation” on page 4-4

• “Construct Two Adaptive Filters” on page 4-5

• “Choose the Step Size” on page 4-6 

• “Set the Adapting Filter Step Size” on page 4-7

• “Filter with the Adaptive Filters” on page 4-7

• “Compute the Optimal Solution” on page 4-8

• “Plot the Results” on page 4-8

• “Compare the Final Coefficients” on page 4-9

• “Reset the Filter Before Filtering” on page 4-10

• “Compute the Learning Curves” on page 4-11

• “Compute the Theoretical Learning Curves” on page 4-12 

Create the Signals for Adaptation
The goal is to use an adaptive filter to extract a desired signal from 
a noise-corrupted signal by filtering out the noise. The desired signal (the 
output from the process) is a sinusoid with 1000 samples.

n = (1:1000)';
s = sin(0.075*pi*n);

To perform adaptation requires two signals:
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• a reference signal

• a noisy signal that contains both the desired signal and an added noise 
component.

Generate the Noise Signal 
To create a noise signal, assume that the noise v1 is autoregressive, meaning 
that the value of the noise at time t depends only on its previous values and 
on a random disturbance.

v = 0.8*randn(1000,1); % Random noise part.
ar = [1, 1/2]; % Autoregression coefficients.
v1 = filter(1,ar,v); % Noise signal. Applies a 1-D digital 

% filter.

Corrupt the Desired Signal to Create a Noisy Signal
To generate the noisy signal that contains both the desired signal and the 
noise, add the noise signal v1 to the desired signal s. The noise corrupted 
sinusoid x is

x = s + v1;

where s is the desired signal the the noise is v1. Adaptive filter processing 
seeks to recover s from x. To complete the signals needed to perform adaptive 
filtering, the process requires a reference signal.

Create a Reference Signal 
Define a moving average signal v2 that is correlated with v1. This v2 is the 
reference signal for the examples.

ma = [1, -0.8, 0.4 , -0.2];
v2 = filter(ma,1,v);

Construct Two Adaptive Filters 
Two similar adaptive filters—LMS and NLMS—form the basis of this example, 
both sixth order. Set the order as a variable in MATLAB and create the filters.

l = 7; % Seven taps or weights. Order equals 6.
halms=adaptfilt.lms(l)

 
halms =
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           Algorithm: 'Direct-Form FIR LMS Adaptive Filter'
        FilterLength: 7                                    
            StepSize: 0.1                                  
             Leakage: 1                                    
    PersistentMemory: false                                
                                                           
hanlms=adaptfilt.nlms(l)
 
hanlms =
 
           Algorithm: 'Direct-Form FIR Normalized LMS Adaptive Filter'
        FilterLength: 7                                               
            StepSize: 1                                               

             Leakage: 1                                               
              Offset: 0                                               
    PersistentMemory: false

Choose the Step Size 
LMS-like algorithms have a step size that determines the amount of correction 
applied as the filter adapts from one iteration to the next. Choosing the 
approprite step size is not always easy, usually requiring experience in 
adaptive filter design.

• A step size that is too small increases the time for the filter to converge on 
a set of coefficients. This becomes an issue of speed and accuracy.

• One that is too large may cause the adapting filter to diverge, never reaching 
convergence. In this case, the issue is stability—the resulting filter might not 
be stable.

As a rule of thumb, smaller step sizes improve the accuracy of the convergence 
of the filter to match the characteristics of the unknown, at the expense of the 
time it takes to adapt.

The toolbox includes an algorithm—maxstep—to determine the maximum step 
size suitable for each LMS adaptive filter algorithm that still ensures that the 
filter converges to a solution. Often, the notation for the step size is μ.

[mumaxlms,mumaxmselms]   = maxstep(halms,x)
[mumaxnlms,mumaxmsenlms] = maxstep(hanlms) % Always equal to 2.

Warning: Step size is not in the range 0 < mu < mumaxmse/2: 
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Erratic behavior might result.
mumaxlms =

    0.2270

mumaxmselms =

    0.1356

mumaxnlms =

     2

mumaxmsenlms =

     2

Set the Adapting Filter Step Size 
The first output of maxstep is the value needed for the mean of the coefficients 
to converge while the second is the value needed for the mean squared 
coefficients to converge. Choosing a large step size often causes large variations 
from the convergence values, so choose smaller step sizes generally.

halms.stepsize  = mumaxmselms/30; % You can set this graphically. 
inspect(halms) % Opens the Property Inspector in MATLAB.
hanlms.stepsize = mumaxmsenlms/20;
inspect(hanlms)

If you know the step size to use, set the step size value when you create the 
filter with the step input argument. 

halms = adaptfilt.lms(n,step); Adds the step input argument.

Filter with the Adaptive Filters 
Now you have set up the parameters of the adaptive filters and are ready to 
filter the noisy signal. The reference signal, v2 is the input to the adaptive 
filters, while x is the desired signal in this configuration.
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Through adaptation y, the output of the filters, tries to emulate x as closely as 
possible. 

Since v2 is correlated only with the noise component v1 of x, it can only really 
emulate v1. The error signal, the desired x, minus the actual output y, 
constitutes an estimate of the part of x that is not correlated with v2 — s, the 
signal to extract from x. 

[ylms,elms] = filter(hlms,v2,x);
[ynlms,enlms] = filter(hnlms,v2,x);

Compute the Optimal Solution 
For comparison, compute the optimal FIR Wiener filter.

filterbw = firwiener(L-1,v2,x); % Optimal FIR Wiener. 
filteryw = filter(bw,1,v2);   % Estimate of x using Wiener. 
filterew = x-yw;            % Estimate of actual sinusoid.

Plot the Results 
Plot the resulting denoised sinusoid for each filter—the Wiener filter, the LMS 
adaptive filter, and the NLMS adaptive filter—to compare the performance of 
the various techniques.

plot(n(900:end),[ew(900:end), elms(900:end),enlms(900:end)]);
legend('Wiener filter denoised sinusoid','LMS denoised...
sinusoid', 'NLMS denoised sinusoid');

As a reference point, include the noisy signal as a dotted line in the plot.

hold on
plot(n(900:end),x(900:end),'k:')
hold off
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Compare the Final Coefficients 
Finally, compare the Wiener filter coefficients with the coefficients of the 
adaptive filters. While adapting, the adaptive filters try to converge to the 
Wiener coefficients.

[bw.' hlms.Coefficients.' hnlms.Coefficients.']
ans =

    1.0221    0.8751    1.0411
    0.3345    0.1201    0.3601
    0.1217   -0.0118    0.1077
    0.0483   -0.0183    0.0081
    0.1179    0.0558    0.0420
    0.0637   -0.0049   -0.0290
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    0.0216   -0.0235   -0.0222

Reset the Filter Before Filtering 
Adaptive fiters have a PersistentMemory property that you can use to 
reproduce experiments exactly. By default, the PersistentMemory is false. 
The states and the coefficients of the filter are reset before filtering and the 
filter does not remember the results from previous times you use the filter.

For instance, the following succesive calls produce the same output when 
PersistentMemory is false.

[ylms,elms] = filter(hlms,v2,x);
[ylms2,elms2] = filter(hlms,v2,x);

To keep the history of the filter when filtering a new set of data, enable 
persistent memory for the filter by setting the PersistentMemory property to 
true. In this configuration, the filter uses the final states and coefficients from 
the previous run as the initial conditions for the next run and set of data. 

[ylms,elms] = filter(hlms,v2,x);
hlms.PersistentMemory = true;
[ylms2,elms2] = filter(hlms,v2,x); % No longer the same.

Setting the property value to true is useful when you are filtering large 
amounts of data that you partition into smaller sets and then feed into the filter 
using a for-loop construction.

Investigate Convergence Through Learning Curves
To analyze the convergence of the adaptive filters, look at the learning curves. 
The toolbox provides methods to generate the learning curves, but you need 
more than one iteration of the experiment to obtain significant results.

This demonstration uses 25 sample realizations of the noisy sinusoids. 

n = (1:5000)';
s = sin(0.075*pi*n);
nr = 25;
v = 0.8*randn(5000,nr);
v1 = filter(1,ar,v);
x = repmat(s,1,nr) + v1;
v2 = filter(ma,1,v);
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Compute the Learning Curves 
Now compute the mean-square error. To speed things up, compute the error 
every 10 samples.

First, reset the adaptive filters to avoid using the coefficients it has already 
computed and the states it has stored. 

reset(hlms);
reset(hnlms);
M = 10; % Decimation factor.
mselms = msesim(hlms,v2,x,M);
msenlms = msesim(hnlms,v2,x,M);
plot(1:M:n(end),[mselms,msenlms])legend('LMS learning...
curve','NLMS learning curve')

In the next plot you see the calculated learning curves for the LMS and NLMS 
adaptive filters.
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Compute the Theoretical Learning Curves 
For the LMS and NLMS algorithms, functions in the toolbox help you compute 
the theoretical learning curves, along with the minimum mean-square error 
(MMSE) the excess mean-square error (EMSE) and the mean value of the 
coefficients. 

MATLAB may take some time to calculate the curves. The figure shown after 
the code plots the predicted and actual LMS curves.

reset(hlms);
[mmselms,emselms,meanwlms,pmselms] = msepred(hlms,v2,x,M);
plot(1:M:n(end),[mmselms*ones(500,1),emselms*ones(500,1),...        
pmselms,mselms])
legend('MMSE','EMSE','Predicted LMS learning curve',...
'LMS learning curve')
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Overview of Adaptive Filters and Applications
This section presents a brief description of how adaptive filters work and some 
of the applications where they can be useful.

Adaptive filters self learn. As the signal into the filter continues, the adaptive 
filter coefficients adjust themselves to achieve the desired result, such as 
identifying an unknown filter or canceling noise in the input signal. In the 
figure below, the shaded box represents the adaptive filter, comprising the 
adaptive filter and the adaptive recursive least squares (RLS) algorithm.

Block Diagram That Defines the Inputs and Output of a Generic RLS Adaptive 
Filter

The next figure provides the general adaptive filter setup with inputs and 
outputs.

Block Diagram Defining General Adaptive Filter Algorithm Inputs and Outputs
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Filter Design Toolbox includes adaptive filters of a broad range of forms, all of 
which can be worthwhile for specific needs. Some of the common ones are:

• Adaptive filters based on least mean squares (LMS) techniques, such as 
adaptfilt.lms, adaptfilt.filtxlms, and adaptfilt.nlms

• Adaptive filters based on recursive least squares (RLS) techniques. For 
example, adaptfilt.rls and adaptfilt.swrls

• Adaptive filters based on sign-data (adaptfilt.sd), sign-error 
(adaptfilt.se), and sign-sign (adaptfilt.ss) techniques

• Adaptive filters based on lattice filters. For example, adaptfilt.gal and 
adaptfilt.lsl

• Adaptive filters that operate in the frequency domain, such as 
adaptfilt.fdaf and adaptfilt.pbufdaf.

• Adaptive filters that operate in the transform domain. Two of these are the 
adaptfilt.tdafdft and adaptfilt.tdafdct filters

An adaptive filter designs itself based on the characteristics of the input signal 
to the filter and a signal that represents the desired behavior of the filter on its 
input.

Designing the filter does not require any other frequency response information 
or specification. To define the self-learning process the filter uses, you select 
the adaptive algorithm used to reduce the error between the output signal y(k) 
and the desired signal d(k).

When the LMS performance criterion for e(k) has achieved its minimum value 
through the iterations of the adapting algorithm, the adaptive filter is finished 
and its coefficients have converged to a solution. Now the output from the 
adaptive filter matches closely the desired signal d(k). When you change the 
input data characteristics, sometimes called the filter environment, the filter 
adapts to the new environment by generating a new set of coefficients for the 
new data. Notice that when e(k) goes to zero and remains there you achieve 
perfect adaptation, the ideal result but not likely in the real world. 

The adaptive filter functions in this toolbox implement the shaded portion of 
the figures, replacing the adaptive algorithm with an appropriate technique. 
To use one of the functions, you provide the input signal or signals and the 
initial values for the filter.
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“Adaptive Filters in the Filter Design Toolbox” on page 4-21 offers details 
about the algorithms available and the inputs required to use them in 
MATLAB.

Choosing an Adaptive Filter
Selecting the adaptive filter that best meets your needs requires careful 
consideration. An exhaustive discussion of the criteria for selecting your 
approach is beyond the scope of this User’s Guide. However, a few guidelines 
can help you make your choice.

Two main considerations frame the decision—how you plan to use the filter 
and the filter algorithm to use.

When you begin to develop an adaptive filter for your needs, most likely the 
primary concern is whether using an adaptive filter is a cost-competitive 
approach to solving your filtering needs. Generally many areas determine the 
suitability of adaptive filters (these areas are common to most filtering and 
signal processing applications). Four such areas are

• Filter consistency—Does your filter performance degrade when the filter 
coefficients change slightly as a result of quantization, or you switch to 
fixed-point arithmetic? Will excessive noise in the signal hurt the 
performance of your filter? 

• Filter performance—Does your adaptive filter provide sufficient 
identification accuracy or fidelity, or does the filter provide sufficient signal 
discrimination or noise cancellation to meet your requirements?

• Tools—Do tools exist that make your filter development process easier? 
Better tools can make it practical to use more complex adaptive algorithms.

• DSP requirements—Can your filter perform its job within the constraints of 
your application? Does your processor have sufficient memory, throughput, 
and time to use your proposed adaptive filtering approach? Can you trade 
memory for throughput: use more memory to reduce the throughput 
requirements or use a faster signal processor?

Of the preceding considerations, characterizing filter consistency or robustness 
may be the most difficult. 

The simulations in the Filter Design Toolbox offers a good first step in 
developing and studying these issues. LMS algorithm filters provide both 
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a relatively straightforward filters to implement and sufficiently powerful tool 
for evaluating whether adaptive filtering can be useful for your problem.

Additionally, starting with an LMS approach can form a solid baseline against 
which you can study and compare the more complex adaptive filters available 
in the toolbox. Finally, your development process should, at some time, test 
your algorithm and adaptive filter with real data. For truly testing the value of 
your work there is no substitute for actual data.

System Identification
One common adaptive filter application is to use adaptive filters to identify an 
unknown system, such as the response of an unknown communications 
channel or the frequency response of an auditorium, to pick fairly divergent 
applications. Other applications include echo cancellation and channel 
identification. 

In the figure, the unknown system is placed in parallel with the adaptive filter. 
This layout represents just one of many possible structures. The shaded area 
contains the adaptive filter system.

Using an Adaptive Filter to Identify an Unknown System

Clearly, when e(k) is very small, the adaptive filter response is close to the 
response of the unknown system. In this case the same input feeds both the 
adaptive filter and the unknown. If, for example, the unknown system is 
a modem, the input often represents white noise, and is a part of the sound you 
hear from your modem when you log in to your Internet service provider.

text

Unknown System

Adaptive Filter SUM
x(k)

d(k)

y(k) e(k)
_

+
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Inverse System Identification
By placing the unknown system in series with your adaptive filter, your filter 
adapts to become the inverse of the unknown system as e(k) becomes very 
small. As shown in the figure the process requires a delay inserted in the 
desired signal d(k) path to keep the data at the summation synchronized. 
Adding the delay keeps the system causal.

Determining an Inverse Response to an Unknown System

Including the delay to account for the delay caused by the unknown system 
prevents this condition.

Plain old telephone systems (POTS) commonly use inverse system 
identification to compensate for the copper transmission medium. When you 
send data or voice over telephone lines, the copper wires behave like a filter, 
having a response that rolls off at higher frequencies (or data rates) and having 
other anomalies as well.

Adding an adaptive filter that has a response that is the inverse of the wire 
response, and configuing the filter to adapt in real time, lets the filter 
compensate for the rolloff and anomalies, increasing the available frequency 
output range and data rate for the telephone system. 

Noise Cancellation (or Interference Cancellation)
In noise cancellation, adaptive filters let you remove noise from a signal in real 
time. Here, the desired signal, the one to clean up, combines noise and desired 
information. To remove the noise, feed a signal n'(k) to the adaptive filter that 
represents noise that is correlated to the noise to remove from the desired 
signal. 

Adaptive FilterUnknown System SUM
x(k)

d(k)

y(k) e(k)
+

_

Delay

s(k)
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Using an Adaptive Filter to Remove Noise from an Unknown System

So long as the input noise to the filter remains correlated to the unwanted noise 
accompanying the desired signal, the adaptive filter adjusts its coefficients to 
reduce the value of the difference between y(k) and d(k), removing the noise 
and resulting in a clean signal in e(k). Notice that in this application, the error 
signal actually converges to the input data signal, rather than converging to 
zero.

Prediction
Predicting signals requires that you make some key assumptions. Assume that 
the signal is either steady or slowly varying over time, and periodic over time 
as well. 

Predicting Future Values of a Periodic Signal

Accepting these assumptions, the adaptive filter must predict the future values 
of the desired signal based on past values. When s(k) is periodic and the filter 
is long enough to remember previous values, this structure with the delay in 
the input signal, can perform the prediction. You might use this structure to 
remove a periodic signal from stochastic noise signals. 

Adaptive Filter SUMn'(k)

d(k)

y(k) e(k)
+

_

s(k) + n(k)

x(k)

Adaptive Filter SUM
s(k)

d(k)

y(k) e(k)
+

_
x(k)

Delay
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Finally, notice that most systems of interest contain elements of more than one 
of the four adaptive filter structures. Carefully reviewing the real structure 
may be required to determine what the adaptive filter is adapting to.

Also, for clarity in the figures, the analog-to-digital (A/D) and digital-to-analog 
(D/A) components do not appear. Since the adaptive filters are assumed to be 
digital in nature, and many of the problems produce analog data, converting 
the input signals to and from the analog domain is probably necessary.
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Adaptive Filters in the Filter Design Toolbox
Filter Design Toolbox contains many objects for constructing and applying 
adaptive filters to data. As you see in the tables in the next section, the objects 
use various algorithms to determine the weights for the filter coefficients of the 
adapting filter. While the algorithms differ in their detail implementations, the 
LMS and RLS share a common operational approach—minimizing the error 
between the filter output and the desired signal.

Algorithms
For adaptive filter (adaptfilt) objects, the algorithm string determines which 
adaptive filter algorithm your adaptfilt object implements. Each available 
algorithm entry appears in one of the tables along with a brief description of 
the algorithm. Click on the algorithm in the first column to get more 
information about the associated adaptive filter technique.

• LMS based adaptive filters

• RLS based adaptive filters

• Affine projection adaptive filters

• Adaptive filters in the frequency domain

• Lattice based adaptive filters
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Least Mean Squares (LMS) Based FIR Adaptive Filters

For further information about an adapting algorithm, refer to the reference 
page for the algorithm.

Adaptive Filter 
Method

Adapting Algorithm Used to Generate Filter 
Coefficients During Adaptation

adaptfilt.adjlms Adjoint LMS FIR adaptive filter algorithm

adaptfilt.blms Block LMS FIR adaptive filter algorithm

adaptfilt.blmsfft FFT-based Block LMS FIR adaptive filter 
algorithm

adaptfilt.dlms Delayed LMS FIR adaptive filter algorithm

adaptfilt.filtxlms Filtered-x LMS FIR adaptive filter algorithm

adaptfilt.lms LMS FIR adaptive filter algorithm

adaptfilt.nlms Normalized LMS FIR adaptive filter algorithm

adaptfilt.sd Sign-data LMS FIR adaptive filter algorithm

adaptfilt.se Sign-error LMS FIR adaptive filter algorithm

adaptfilt.ss Sign-sign LMS FIR adaptive filter algorithm
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Recursive Least Squares (RLS) Based FIR Adaptive Filters

For more complete information about an adapting algorithm, refer to the 
reference page for the algorithm.

Affine Projection (AP) FIR Adaptive Filters

To find more information about an adapting algorithm, refer to the reference 
page for the algorithm.

Adaptive Filter 
Method

Adapting Algorithm Used to Generate Filter 
Coefficients During Adaptation

adaptfilt.ftf Fast transversal least-squares adaptation 
algorithm

adaptfilt.qrdrls QR-decomposition RLS adaptation algorithm

adaptfilt.hrls Householder RLS adaptation algorithm

adaptfilt.hswrls Householder SWRLS adaptation algorithm

adaptfilt.rls Recursive-least squares (RLS) adaptation 
algorithm

adaptfilt.swrls Sliding window (SW) RLS adaptation algorithm

adaptfilt.swftf Sliding window FTF adaptation algorithm

Adaptive Filter 
Method

Adapting Algorithm Used to Generate Filter 
Coefficients During Adaptation

adaptfilt.ap Affine projection algorithm that uses direct 
matrix inversion

adaptfilt.apru Affine projection algorithm that uses recursive 
matrix updating

adaptfilt.bap Block affine projection adaptation algorithm 
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FIR Adaptive Filters in the Frequency Domain (FD)

For more information about an adapting algorithm, refer to the reference page 
for the algorithm.

Lattice Based (L) FIR Adaptive Filters

For more information about an adapting algorithm, refer to the reference page 
for the algorithm.

Presenting a detailed derivation of the Wiener-Hopf equation and determining 
solutions to it is beyond the scope of this User’s Guide. Full descriptions of the 

Adaptive Filter 
Method

Description of the Adapting Algorithm Used to 
Generate Filter Coefficients During Adaptation

adaptfilt.fdaf Frequency domain adaptation algorithm

adaptfilt.pbfdaf Partition block version of the FDAF algorithm

adaptfilt.pbufdaf Partition block unconstrained version of the 
FDAF algorithm

adaptfilt.tdafdct Transform domain adaptation algorithm using 
DCT

adaptfilt.tdafdft Transform domain adaptation algorithm using 
DFT

adaptfilt.ufdaf Unconstrained FDAF algorithm for adaptation

Adaptive Filter 
Method

Description of the Adapting Algorithm Used to 
Generate Filter Coefficients During Adaptation

adaptfilt.gal Gradient adaptive lattice filter adaptation 
algorithm

adaptfilt.lsl Least squares lattice adaptation algorithm

adaptfilt.qrdlsl QR decomposition RLS adaptation algorithm
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theory appear in the adaptive filter references provided in the “Selected 
Bibliography” on page 4-52.

Using Adaptive Filter Objects
After you construct an adaptive filter object, how do you apply it to your data 
or system? Like quantizer objects, adaptive filter objects have a filter method 
that you use to apply the adaptfilt object to data. In the following sections, 
various examples of using LMS and RLS adaptive filters show you how filter 
works with the objects to apply them to data.

• “Examples of Adaptive Filters That Use LMS Algorithms” on page 4-26

• “Example of Adaptive Filter That Uses RLS Algorithm” on page 4-47
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Examples of Adaptive Filters That Use LMS Algorithms
This section provides introductory examples using some of the least mean 
squares (LMS) adaptive filter functions in the toolbox. 

The toolbox provides many adaptive filter design functions that use the LMS 
algorithms to search for the optimal solution to the adaptive filter, including

• adaptfilt.lms—Implement the LMS algorithm to solve the Wiener-Hopf 
equation and find the filter coefficients for an adaptive filter.

• adaptfilt.nlms—implement the normalized variation of the LMS 
algorithm to solve the Wiener-Hopf equation and determine the filter 
coefficients of an adaptive filter.

• adaptfilt.sd—Implement the sign-data variation of the LMS algorithm to 
solve the Wiener-Hopf equation and determine the filter coefficients of an 
adaptive filter. The correction to the filter weights at each iteration depends 
on the sign of the input x(k).

• adaptfilt.se—Implement the sign-error variation of the LMS algorithm to 
solve the Wiener-Hopf equation and determine the filter coefficients of an 
adaptive filter. The correction applied to the current filter weights for each 
successive iteration depends on the sign of the error, e(k).

• adaptfilt.ss—Implement the sign-sign variation of the LMS algorithm to 
solve the Wiener-Hopf equation and determine the filter coefficients of an 
adaptive filter. The correction applied to the current filter weights for each 
successive iteration depends on both the sign of x(k) and the sign of e(k).

To demonstrate the differences and similarities among the various LMS 
algorithms supplied in the toolbox, the LMS and NLMS adaptive filter 
examples use the same filter for the unknown system. The unknown filter is 
the constrained lowpass filter from “firgr and fircband Examples” on page 2-9.

[b,err,res]=firgr(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

From the figure you see that the filter is indeed lowpass and constrained to 0.2 
ripple in the stopband. With this as the baseline, the adaptive LMS filter 
examples use the adaptive LMS algorithms and their initialization functions to 
identify this filter in a system identification role.
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To review the general model for system ID mode, look at “System 
Identification” on page 4-17 for the layout.

For the sign variations of the LMS algorithm, the examples use noise 
cancellation as the demonstration application, as opposed to the system 
identification application used in the LMS examples. 

adaptfilt.lms Example—System Identification
To use the adaptive filter functions in the toolbox you need to provide three 
things:

• The adaptive LMS function to use. This example uses the LMS adaptive 
filter function adaptfilt.lms.

• An unknown system or process to adapt to. In this example, the filter 
designed by firgr is the unknown system.
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• Appropriate input data to exercise the adaptation process. In terms of the 
generic LMS model, these are the desired signal d(k) and the input signal 
x(k).

Start by defining an input signal x.

x = 0.1*randn(1,250);

The input is broadband noise. For the unknown system filter, use firgr to 
create a twelfth-order lowpass filter:

[b,err,res] = firgr(22,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});

Although you do not need them here, include the err and res output 
arguments.

Now filter the signal through the unknown system to get the desired signal. 

d = filter(b,1,x);

With the unknown filter designed and the desired signal in place you construct 
and apply the adaptive LMS filter object to identify the unknown.

Preparing the adaptive filter object requires that you provide starting values 
for estimates of the filter coefficients and the LMS step size. You could start 
with estimated coefficients of some set of nonzero values; this example uses 
zeros for the 12 initial filter weights.

For the step size, 0.8 is a reasonable value—a good compromise between being 
large enough to converge well within the 250 iterations (250 input sample 
points) and small enough to create an accurate estimate of the unknown filter.

mu = 0.8;
ha = adaptfilt.lms(13,mu,w0)

Finally, using the adaptfilt object ha, desired signal, d, and the input to the 
filter, x, run the adaptive filter to determine the unknown system and plot the 
results, comparing the actual coefficients from firgr to the coefficients found 
by adaptlms.

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])
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In the stem plot the actual and estimated filter weights are the same. As an 
experiment, try changing the step size to 0.2. Repeating the example with 
mu = 0.2 results in the following stem plot. The estimated weights fail to 
approximate the actual weights closely. 

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Adaptive LMS Algorithm

Actual Filter Weights
Estimated Filter Weights



4 Designing Adaptive Filters

4-30

Since this may be because you did not iterate over the LMS algorithm enough 
times, try using 1000 samples. With 1000 samples, the stem plot, shown in the 
next figure, looks much better, albeit at the expense of much more 
computation. Clearly you should take care to select the step size with both the 
computation required and the fidelity of the estimated filter in mind. 
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adaptfilt.nlms Example—System Identification
To improve the convergence performance of the LMS algorithm, the 
normalized variant (NLMS) uses an adaptive step size based on the signal 
power. As the input signal power changes, the algorithm calculates the input 
power and adjusts the step size to maintain an appropriate value. Thus the 
step size changes with time.

As a result, the normalized algorithm converges more quickly with fewer 
samples in many cases. For input signals that change slowly over time, the 
normalized LMS can represent a more efficient LMS approach. 

In the adaptlms example, you used firgr to create the filter that you would 
identify. So you can compare the results, you use the same filter, and replace 
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adaptlms with adaptnlms, to use the normalized LMS algorithm variation. You 
should see better convergence with similar fidelity.

First, generate the input signal and the unknown filter.

x = 0.1*randn(1,500);
[b,err,res] = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2],...
{'w' 'c'});
d = filter(b,1,x);

Again d represents the desired signal d(x) as you defined it earlier and 
b contains the filter coefficients for your unknown filter. 

mu = 0.8;
ha = adaptfilt.nlms(13,mu);

You use the preceding code to initialize the normalized LMS algorithm. For 
more information about the optional input arguments, refer to adaptfilt.nlms 
in the reference section of this User’s Guide.

Running the system identification process is a matter of using adaptfilt.nlms 
with the desired signal, the input signal, and the initial filter coefficients and 
conditions specified in s as input arguments. Then plot the results to compare 
the adapted filter to the actual filter.

[y,e] = filter(ha,x,d);
stem([b.' ha.coefficients.'])

As shown in the following stem plot (a convenient way to compare the 
estimated and actual filter coefficients), the two are nearly identical. 
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If you compare the convergence performance of the regular LMS algorithm to 
the normalized LMS variant, you see the normalized version adapts in far 
fewer iterations to a result almost as good as the nonnormalized version.

0 2 4 6 8 10 12 14
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
System Identification by Normalized LMS Algorithm

Actual Filter Weights
Estimated Filter Weights



4 Designing Adaptive Filters

4-34

adaptfilt.sd Example—Noise Cancellation
When the amount of computation required to derive an adaptive filter drives 
your development process, the sign-data variant of the LMS (SDLMS) 
algorithm may be a very good choice as demonstrated in this example.

Fortunately, the current state of digital signal processor (DSP) design has 
relaxed the need to minimize the operations count by making DSPs whose 
multiply and shift operations are as fast as add operations. Thus some of the 
impetus for the sign-data algorithm (and the sign-error and sign-sign 
variations) has been lost to DSP technology improvements.

In the standard and normalized variations of the LMS adaptive filter, 
coefficients for the adapting filter arise from the mean square error between 
the desired signal and the output signal from the unknown system. Using the 
sign-data algorithm changes the mean square error calculation by using the 
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sign of the input data to change the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients 
plus the error multiplied by the step size μ. If the error is negative, the new 
coefficients are again the previous coefficients minus the error multiplied by 
μ—note the sign change.

When the input is zero, the new coefficients are the same as the previous set.

In vector form, the sign-data LMS algorithm is

,  

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SDLMS algorithm seeks to 
minimize. μ (mu) is the step size.

As you specify mu smaller, the correction to the filter weights gets smaller for 
each sample and the SDLMS error falls more slowly. Larger mu changes the 
weights more for each step so the error falls more rapidly, but the resulting 
error does not approach the ideal solution as closely. To ensure good 
convergence rate and stability, select mu within the following practical bounds

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computing.

Note  How you set the initial conditions of the sign-data algorithm profoundly 
influences the effectiveness of the adaptation. Because the algorithm 
essentially quantizes the input signal, the algorithm can become unstable 
easily. 

A series of large input values, coupled with the quantization process may 
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result in the error growing beyond all bounds. You restrain the tendency of 
the sign-data algorithm to get out of control by choosing a small step size (μ<< 
1) and setting the initial conditions for the algorithm to nonzero positive and 
negative values.

In this noise cancellation example, adaptfilt.sd requires two input data sets:

• Data containing a signal corrupted by noise. In Figure , this is d(k), the 
desired signal. The noise cancellation process removes the noise, leaving the 
signal.

• Data containing random noise (x(k) in Figure ) that is correlated with the 
noise that corrupts the signal data. Without the correlation between the 
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is 
correlated, pass the noise through a lowpass FIR filter, and then add the 
filtered noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data 
algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs 
and mu for the object. As noted earlier in this section, the values you set for 
coeffs and mu determine whether the adaptive filter can remove the noise from 
the signal path.

In “adaptfilt.lms Example—System Identification” on page 4-27, you 
constructed a default filter that sets the filter coefficients to zeros. In most 
cases that approach does not work for the sign-data algorithm. The closer you 
set your initial filter coefficients to the expected values, the more likely it is 
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that the algorithm remains well behaved and converges to a filter solution that 
removes the noise effectively.

For this example, start with the coefficients in the filter you used to filter the 
noise (nfilt), and modify them slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for adaptfilt.sd prepared, construct the 
adaptfilt object, run the adaptation, and view the results.

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

When adaptfilt.sd runs, it uses far fewer multiply operations than either of 
the LMS algorithms. Also, performing the sign-data adaptation requires only 
bit shifting multiplys when the step size is a power of two. 

Although the performance of the sign-data algorithm as shown in the next 
figure is quite good, the sign-data algorithm is much less stable than the 
standard LMS variations. In this noise cancellation example, the signal after 
processing is a very good match to the input signal, but the algorithm could 
very easily grow without bound rather than achieve good performance. 

Changing coeffs, mu, or even the lowpass filter you used to create the 
correlated noise can cause noise cancellation to fail and the algorithm to 
become useless.
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adaptfilt.se Example—Noise Cancellation
In some cases, the sign-error variant of the LMS algorithm (SELMS) may be 
a very good choice for an adaptive filter application.

In the standard and normalized variations of the LMS adaptive filter, the 
coefficients for the adapting filter arise from calculating the mean square error 
between the desired signal and the output signal from the unknown system, 
and applying the result to the current filter coefficients. Using the sign-error 
algorithm replaces the mean square error calculation by using the sign of the 
error to modify the filter coefficients.

When the error is positive, the new coefficients are the previous coefficients 
plus the error multiplied by the step size μ. If the error is negative, the new 
coefficients are again the previous coefficients minus the error multiplied by 
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μ—note the sign change. When the input is zero, the new coefficients are the 
same as the previous set. 

In vector form, the sign-error LMS algorithm is

,  

with vector w containing the weights applied to the filter coefficients and 
vector x containing the input data. e(k) (equal to desired signal - filtered signal) 
is the error at time k and is the quantity the SELMS algorithm seeks to 
minimize. μ (mu) is the step size. As you specify mu smaller, the correction to the 
filter weights gets smaller for each sample and the SELMS error falls more 
slowly.

Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following   
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computation.

Note  How you set the initial conditions of the sign-data algorithm profoundly 
influences the effectiveness of the adaptation. Because the algorithm 
essentially quantizes the error signal, the algorithm can become unstable 
easily.

A series of large error values, coupled with the quantization process may 
result in the error growing beyond all bounds. You restrain the tendency of 
the sign-error algorithm to get out of control by choosing a small step size (μ<< 
1) and setting the initial conditions for the algorithm to nonzero positive and 
negative values.

In this noise cancellation example, adaptfilt.se requires two input data sets:

w k 1+( ) w k( ) μ e k( )[ ]sgn x k( )[ ]+= sgn e k( )[ ]
 1  e k( ), 0>

   0  e k( ), 0=
1–  e k( ), 0<⎩

⎪
⎨
⎪
⎧

=

0 μ 1
N InputSignalPower{ }
-------------------------------------------------------------------< <
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• Data containing a signal corrupted by noise. In Figure , this is d(k), the 
desired signal. The noise cancellation process removes the noise, leaving the 
signal.

• Data containing random noise (x(k) in Figure ) that is correlated with the 
noise that corrupts the signal data. Without the correlation between the 
noise data, the adapting algorithm cannot remove the noise from the signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is 
correlated, pass the noise through a lowpass FIR filter, then add the filtered 
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter.
fnoise=filter(nfilt,1,noise); % Correlated noise data.
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data 
algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs 
and mu for the object. As noted earlier in this section, the values you set for 
coeffs and mu determine whether the adaptive filter can remove the noise from 
the signal path. In “adaptfilt.lms Example—System Identification” on 
page 4-27, you constructed a default filter that sets the filter coefficients to 
zeros.

Setting the coefficients to zero often does not work for the sign-error algorithm. 
The closer you set your initial filter coefficients to the expected values, the more 
likely it is that the algorithm remains well behaved and converges to a filter 
solution that removes the noise effectively.

For this example, you start with the coefficients in the filter you used to filter 
the noise (nfilt), and modify them slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm update.
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With the required input arguments for adaptfilt.se prepared, run the 
adaptation and view the results.

ha = adaptfilt.sd(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

Notice that you have to set the property PersistentMemory to true when you 
manually change the settings of object ha.

If PersistentMemory is left to false, the default, when you try to apply ha with 
the method filter, the filtering process starts by resetting the object 
properties to their initial conditions at construction. To preserve the 
customized coefficients in this example, you set PersistentMemory to true so 
the coefficients do not get reset automatically back to zero.

When adaptfilt.se runs, it uses far fewer multiply operations than either of 
the LMS algorithms. Also, performing the sign-error adaptation requires only 
bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-data algorithm as shown in the next 
figure is quite good, the sign-data algorithm is much less stable than the 
standard LMS variations. In this noise cancellation example, the signal after 
processing is a very good match to the input signal, but the algorithm could 
very easily become unstable rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the 
correlated noise can cause noise cancellation to fail and the algorithm to 
become useless.
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adaptfilt.ss Example—Noise Cancellation
One more example of a variation of the LMS algorithm in the toolbox is the 
sign-sign variant (SSLMS). The rationale for this version matches those for the 
sign-data and sign-error algorithms presented in preceding sections. For more 
details, refer to “adaptfilt.sd Example—Noise Cancellation” on page 4-34.

The sign-sign algorithm (SSLMS) replaces the mean square error calculation 
with using the sign of the input data to change the filter coefficients. When the 
error is positive, the new coefficients are the previous coefficients plus the error 
multiplied by the step size μ.

If the error is negative, the new coefficients are again the previous coefficients 
minus the error multiplied by μ—note the sign change. When the input is zero, 
the new coefficients are the same as the previous set.
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In essence, the algorithm quantizes both the error and the input by applying 
the sign operator to them.

In vector form, the sign-sign LMS algorithm is

,

where

Vector w contains the weights applied to the filter coefficients and vector 
x contains the input data. e(k) ( = desired signal - filtered signal) is the error at 
time k and is the quantity the SSLMS algorithm seeks to minimize. μ (mu) is 
the step size. As you specify mu smaller, the correction to the filter weights gets 
smaller for each sample and the SSLMS error falls more slowly.

Larger mu changes the weights more for each step so the error falls more 
rapidly, but the resulting error does not approach the ideal solution as closely. 
To ensure good convergence rate and stability, select mu within the following 
practical bounds

where N is the number of samples in the signal. Also, define mu as a power of 
two for efficient computation.

Note  How you set the initial conditions of the sign-sign algorithm profoundly 
influences the effectiveness of the adaptation. Because the algorithm 
essentially quantizes the input signal and the error signal, the algorithm can 
become unstable easily.

A series of large error values, coupled with the quantization process may 

w k 1+( ) w k( ) μ e k( )[ ]sgn x k( )[ ]sgn+= sgn z k( )[ ]
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⎪
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⎪
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result in the error growing beyond all bounds. You restrain the tendency of 
the sign-sign algorithm to get out of control by choosing a small step size 
(μ<< 1) and setting the initial conditions for the algorithm to nonzero positive 
and negative values.

In this noise cancellation example, adaptfilt.ss requires two input data sets:

• Data containing a signal corrupted by noise. In Figure , this is d(k), the 
desired signal. The noise cancellation process removes the noise, leaving the 
cleaned signal as the content of the error signal.

• Data containing random noise (x(k) in Figure ) that is correlated with the 
noise that corrupts the signal data, called. Without the correlation between 
the noise data, the adapting algorithm cannot remove the noise from the 
signal.

For the signal, use a sine wave. Note that signal is a column vector of 1000 
elements.

signal = sin(2*pi*0.055*[0:1000-1]');

Now, add correlated white noise to signal. To ensure that the noise is 
correlated, pass the noise through a lowpass FIR filter, then add the filtered 
noise to the signal.

noise=randn(1,1000);
nfilt=fir1(11,0.4); % Eleventh order lowpass filter
fnoise=filter(nfilt,1,noise); % Correlated noise data
d=signal.'+fnoise;

fnoise is the correlated noise and d is now the desired input to the sign-data 
algorithm.

To prepare the adaptfilt object for processing, set the input conditions coeffs 
and mu for the object. As noted earlier in this section, the values you set for 
coeffs and mu determine whether the adaptive filter can remove the noise from 
the signal path. In “adaptfilt.lms Example—System Identification” on 
page 4-27, you constructed a default filter that sets the filter coefficients to 
zeros. Usually that approach does not work for the sign-sign algorithm.

The closer you set your initial filter coefficients to the expected values, the more 
likely it is that the algorithm remains well behaved and converges to a filter 
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solution that removes the noise effectively. For this example, you start with the 
coefficients in the filter you used to filter the noise (nfilt), and modify them 
slightly so the algorithm has to adapt.

coeffs = nfilt.' -0.01; % Set the filter initial conditions.
mu = 0.05; % Set the step size for algorithm updating.

With the required input arguments for adaptfilt.ss prepared, run the 
adaptation and view the results.

ha = adaptfilt.ss(12,mu)
set(ha,'coefficients',coeffs);
set(ha,'persistentmemory',true); % Prevent filter reset.
[y,e] = filter(ha,noise,d);
plot(0:199,signal(1:200),0:199,e(1:200));

Notice that you have to set the property PersistentMemory to true when you 
manually change the settings of object ha.

If PersistentMemory is left to false, when you try to apply ha with the method 
filter the filtering process starts by resetting the object properties to their 
initial conditions at construction. To preserve the customized coefficients in 
this example, you set PersistentMemory to true so the coefficients do not get 
reset automatically back to zero.

When adaptfilt.ss runs, it uses far fewer multiply operations than either of 
the LMS algorithms. Also, performing the sign-sign adaptation requires only 
bit shifting multiplys when the step size is a power of two.

Although the performance of the sign-sign algorithm as shown in the next 
figure is quite good, the sign-sign algorithm is much less stable than the 
standard LMS variations. In this noise cancellation example, the signal after 
processing is a very good match to the input signal, but the algorithm could 
very easily become unstable rather than achieve good performance.

Changing coeffs, mu, or even the lowpass filter you used to create the 
correlated noise can cause noise cancellation to fail and the algorithm to 
become useless.
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As an aside, the sign-sign LMS algorithm is part of the international CCITT 
standard for 32 Kb/s ADPCM telephony.
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Example of Adaptive Filter That Uses RLS Algorithm
This section provides an introductory example that uses the RLS adaptive 
filter function adaptfilt.rls. 

If LMS algorithms represent the simplest and most easily applied adaptive 
algorithms, the recursive least squares (RLS) algorithms represents increased 
complexity, computational cost, and fidelity. In performance, RLS approaches 
the Kalman filter in adaptive filtering applications, at somewhat reduced 
required throughput in the signal processor.

Compared to the LMS algorithm, the RLS approach offers faster convergence 
and smaller error with respect to the unknown system, at the expense of 
requiring more computations.

In contrast to the least mean squares algorithm, from which it can be derived, 
the RLS adaptive algorithm minimizes the total squared error between the 
desired signal and the output from the unknown system.

Referring to Figure , you see the signal flow graph (or model) for the RLS 
adaptive filter system. Note that the signal paths and identifications are the 
same whether the filter uses RLS or LMS. The difference lies in the adapting 
portion.

Within limits, you can use any of the adaptive filter algorithms to solve an 
adaptive filter problem by replacing the adaptive portion of the application 
with a new algorithm.

Examples of the sign variants of the LMS algorithms demonstrated this 
feature to demonstrate the differences between the sign-data, sign-error, and 
sign-sign variations of the LMS algorithm.

One interesting input option that applies to RLS algorithms is not present in 
the LMS processes—a forgetting factor, λ, that determines how the algorithm 
treats past data input to the algorithm.

When the LMS algorithm looks at the error to minimize, it considers only the 
current error value. In the RLS method, the error considered is the total error 
from the beginning to the current data point.

Said another way, the RLS algorithm has infinite memory—all error data is 
given the same consideration in the total error. In cases where the error value 
might come from a spurious input data point or points, the forgetting factor lets 
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the RLS algorithm reduce the value of older error data by multiplying the old 
data by the forgetting factor.

Since 0 ≤ λ < 1, applying the factor is equivalent to weighting the older error. 
When λ = 1, all previous error is considered of equal weight in the total error. 

As λ approaches zero, the past errors play a smaller role in the total. For 
example, when λ = 0.9, the RLS algorithm multiplies an error value from 50 
samples in the past by an attenuation factor of 0.950 = 5.15 x 10-3, considerably 
deemphasizing the influence of the past error on the current total error. 

adaptfilt.rls Example—Inverse System Identification
Rather than use a system identification application to demonstrate the RLS 
adaptive algorithm, or a noise cancellation model, this example use the inverse 
system identification model shown in here.

Cascading the adaptive filter with the unknown filter causes the adaptive filter 
to converge to a solution that is the inverse of the unknown system.

If the transfer function of the unknown is H(z) and the adaptive filter transfer 
function is G(z), the error measured between the desired signal and the signal 
from the cascaded system reaches its minimum when the product of H(z) and 
G(z) is 1, G(z)*H(z) = 1. For this relation to be true, G(z) must equal -H(z), the 
inverse of the transfer function of the unknown system.

To demonstrate that this is true, create a signal to input to the cascaded filter 
pair.

x = randn(1,3000);

text

Unknown System

Adaptive Filter SUM
x(k)

d(k)

y(k) e(k)
_

+
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In the cascaded filters case, the unknown filter results in a delay in the signal 
arriving at the summation point after both filters. To prevent the adaptive 
filter from trying to adapt to a signal it has not yet seen (equivalent to 
predicting the future), delay the desired signal by 32 samples, the order of the 
unknown system.

Generally, you do not know the order of the system you are trying to identify. 
In that case, delay the desired signal by the number of samples equal to half 
the order of the adaptive filter. Delaying the input requires prepending 12 
zero-values samples to x.

delay = zeros(1,12);
d = [delay x(1:2988)]; % Concatenate the delay and the signal.

You have to keep the desired signal vector d the same length as x, hence adjust 
the signal element count to allow for the delay samples.

Although not generally true, for this example you know the order of the 
unknown filter, so you add a delay equal to the order of the unknown filter.

For the unknown system, use a lowpass, 12th-order FIR filter.

ufilt = fir1(12,0.55,'low');

Filtering x provides the input data signal for the adaptive algorithm function.

xdata = filter(ufilt,1,x);

To set the input argument values for the adaptfilt.rls object, use the 
constructor adaptfilt.rls, providing the needed arguments l, lambda, and 
invcov.

For more information about the input conditions to prepare the RLS algorithm 
object, refer to adaptfilt.rls in the reference section of this user’s guide.

p0 = 2*eye(13);
lambda = 0.99;
ha = adaptfilt.rls(13,lambda,p0);

Most of the process to this point is the same as the preceding examples. 
However, since this example seeks to develop an inverse solution, you need to 
be careful about which signal carries the data and which is the desired signal.

Earlier examples of adaptive filters use the filtered noise as the desired signal. 
In this case, the filtered noise (xdata) carries the unknown system information. 
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With Gaussian distribution and variance of 1, the unfiltered noise d is the 
desired signal. The code to run this adaptive filter example is

[y,e] = filter(ha,xdata,d);

where y returns the coefficients of the adapted filter and e contains the error 
signal as the filter adapts to find the inverse of the unknown system. You can 
review the returned elements of the adapted filter in the properties of ha.

The next figure presents the results of the adaptation. In the figure, the 
magnitude response curves for the unknown and adapted filters show. As a 
reminder, the unknown filter was a lowpass filter with cutoff at 0.55, on the 
normalized frequency scale from 0 to 1.

Viewed alone (refer to the following figure), the inverse system looks like a fair 
compensator for the unknown lowpass filter—a high pass filter with linear 
phase.
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User’s Guide

Digital Frequency Transformations 
(p. 5-1)

Provides tutorial information about performing 
transformations of discrete-time filters

Using FDATool with the Filter Design 
Toolbox (p. 6-1)

Presents a detailed reference covering the fixed-point, 
multirate, and scaling pages of the Filter Design and 
Analysis Tool

Reference for the Properties of Filter 
Objects (p. 7-1) 

Provides:

• A summary of the filter objects properties 

• A detailed filter property reference, including 
descriptions of the filter structures and properties for 
adaptfilt, dfilt, and mfilt objects

Functions — By Category (p. 8-2) 
(online only)

Provides:

• Tables that include short descriptions of the functions 
in this toolbox

• A detailed alphabetical function reference

Bibliography (p. A-1) Lists references for filtering texts and papers
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5
Digital Frequency 
Transformations

Introduction (p. 5-2) Provides background about digital frequency 
transformations for filters

Definition of the Problem (p. 5-3) Presents and defines the problem of using digital 
frequency transformation

Frequency Transformations for Real 
Filters (p. 5-11)

Discusses the functions for transforming real filters to 
other real filters

Frequency Transformations for 
Complex Filters (p. 5-26)

Describes the functions for transforming complex filters 
to other complex filters, or real filters to complex filters
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Introduction
Converting existing FIR or IIR filter designs to a modified IIR form is often 
done using allpass frequency transformations. Although the resulting designs 
can be considerably more expensive in terms of dimensionality than the 
prototype (original) filter, their ease of use in fixed or variable applications is a 
big advantage.

The general idea of the frequency transformation is to take an existing 
prototype filter and produce another filter from it that retains some of the 
characteristics of the prototype, in the frequency domain. Transformation 
functions achieve this by replacing each delaying element of the prototype filter 
with an allpass filter carefully designed to have a prescribed phase 
characteristic for achieving the modifications requested by the designer.

This tutorial gives an overview and interpretation of the frequency 
transformations, and describes the range of transformations available to the 
toolbox user. To aid this purpose the tutorial has been arranged into three 
sections:

• “Definition of the Problem” on page 5-3 introduces the frequency 
transformation concept and provides its mathematical and intuitive 
interpretations.

• “Frequency Transformations for Real Filters” on page 5-11 describes the real 
frequency transformations available in the toolbox. Such transformations 
start from a real prototype filter and return a real target filter.

• “Frequency Transformations for Complex Filters” on page 5-26 describes 
complex frequency transformations available in the toolbox. Such 
transformations start from the any real or complex prototype filter and 
return a complex target filter.
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Definition of the Problem
The basic form of mapping in common use is

The HA(z) is an Nth-order allpass mapping filter given by

where

Ho(z)— Transfer function of the prototype filter

HA(z)— Transfer function of the allpass mapping filter

HT(z)— Transfer function of the target filter

Let’s look at a simple example of the transformation given by

The target filter has its poles and zeroes flipped across the origin of the real and 
imaginary axes. For the real filter prototype, it gives a mirror effect against 0.5, 
which means that lowpass Ho(z) gives rise to a real highpass HT(z). This is 
shown in the following figure for the prototype filter designed as a third-order 
halfband elliptic filter.
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Figure 5-1:  Example of a Simple Mirror Transformation

The choice of an allpass filter to provide the frequency mapping is necessary to 
provide the frequency translation of the prototype filter frequency response to 
the target filter by changing the frequency position of the features from the 
prototype filter without affecting the overall shape of the filter response.

The phase response of the mapping filter normalized to π can be interpreted as 
a translation function:

The graphical interpretation of the frequency transformation is shown in the 
figure below. The complex multiband transformation takes a real lowpass filter 
and converts it into a number of passbands around the unit circle.

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
 in

 d
B

Normalized Frequency  (×π rad/sample)
0 0.2 0.4 0.6 0.8 1

−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency  (×π rad/sample)

Prototype filter Pole−Zero plot Target filter Pole−Zero plot

H wnew( ) ωold=



Definition of the Problem

5-5

Figure 5-2:  Graphical Interpretation of the Mapping Process

Most of the frequency transformations are based on the second-order allpass 
mapping filter:

The two degrees of freedom provided by α1 and α2 choices are not fully used by 
the usual restrictive set of “flat-top” classical mappings like lowpass to 
bandpass. Instead, any two transfer function features can be migrated to 
(almost) any two other frequency locations if α1 and α2 are chosen so as to keep 
the poles of HA(z) strictly outside the unit circle (since HA(z) is substituted for 
z in the prototype transfer function). Moreover, as first pointed out by 
Constantinides, the selection of the outside sign influences whether the 
original feature at zero can be moved (the minus sign, a condition known as 

HA z( )
1 α1z 1– α2z 2–+ +

α2 α1z 1– z 2–+ +
----------------------------------------------±=
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“DC mobility”) or whether the Nyquist frequency can be migrated (the “Nyquist 
mobility” case arising when the leading sign is positive).

All the transformations forming the package are explained in the next sections 
of the tutorial. They are separated into those operating on real filters and those 
generating or working with complex filters. The choice of transformation 
ranges from standard Constantinides first and second-order ones [19][20] up to 
the real multiband filter by Mullis and Franchitti [21], and the complex 
multiband filter and real/complex multipoint ones by Krukowski, Cain and 
Kale [22].

Selecting Features Subject to Transformation
Choosing the appropriate frequency transformation for achieving the required 
effect and the correct features of the prototype filter is very important and 
needs careful consideration. It is not advisable to use a first-order 
transformation for controlling more than one feature. The mapping filter will 
not give enough flexibility. It is also not good to use higher order 
transformation just to change the cutoff frequency of the lowpass filter. The 
increase of the filter order would be too big, without considering the additional 
replica of the prototype filter that may be created in undesired places.

Figure 5-3:  Feature Selection for Real Lowpass to Bandpass Transformation

To illustrate the idea, the second-order real multipoint transformation was 
applied three times to the same elliptic halfband filter in order to make it into 
a bandpass filter. In each of the three cases, two different features of the 
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prototype filter were selected in order to obtain a bandpass filter with passband 
ranging from 0.25 to 0.75. The position of the DC feature was not important, 
but it would be advantageous if it were in the middle between the edges of the 
passband in the target filter. In the first case the selected features were the left 
and the right band edges of the lowpass filter passband, in the second case they 
were the left band edge and the DC, in the third case they were DC and the 
right band edge.

Figure 5-4:  Result of choosing different features

The results of all three approaches are completely different. For each of them 
only the selected features were positioned precisely where they were required. 
In the first case the DC is moved toward the left passband edge just like all the 
other features close to the left edge being squeezed there. In the second case the 
right passband edge was pushed way out of the expected target as the precise 
position of DC was required. In the third case the left passband edge was pulled 
toward the DC in order to position it at the correct frequency. The conclusion 
is that if only the DC can be anywhere in the passband, the edges of the 
passband should have been selected for the transformation. For most of the 
cases requiring the positioning of passbands and stopbands, designers should 
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always choose the position of the edges of the prototype filter in order to make 
sure that they get the edges of the target filter in the correct places. Frequency 
responses for the three cases considered are shown in the figure. The prototype 
filter was a third-order elliptic lowpass filter with cutoff frequency at 0.5.

The MATLAB code used to generate the figure is given here.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

In the example the requirements are set to create a real bandpass filter with 
passband edges at 0.1 and 0.3 out of the real lowpass filter having the cutoff 
frequency at 0.5. This is attempted in three different ways. In the first 
approach both edges of the passband are selected, in the second approach the 
left edge of the passband and the DC are chosen, while in the third approach 
the DC and the right edge of the passband are taken:

[num1,den1] = iirlp2xn(b, a, [-0.5, 0.5], [0.1, 0.3]);
[num2,den2] = iirlp2xn(b, a, [-0.5, 0.0], [0.1, 0.2]);
[num3,den3] = iirlp2xn(b, a, [ 0.0, 0.5], [0.2, 0.3]);

Mapping from Prototype Filter to Target Filter
In general the frequency mapping converts the prototype filter, Ho(z), to the 
target filter, HT(z), using the NAth-order allpass filter, HA(z). The general form 
of the allpass mapping filter is given in Equation . The frequency mapping is a 
mathematical operation that replaces each delayer of the prototype filter with 
an allpass filter. There are two ways of performing such mapping. The choice 
of the approach is dependent on how prototype and target filters are 
represented.

When the Nth-order prototype filter is given with pole-zero form

the mapping will replace each pole, pi, and each zero, zi, with a number of poles 
and zeros equal to the order of the allpass mapping filter:

Ho z( )

z zi–( )

i 1=

N

∑

z pi–( )

i 1=

N

∑

-----------------------------=
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The root finding needs to be used on the bracketed expressions in order to find 
the poles and zeros of the target filter.

When the prototype filter is described in the numerator-denominator form:

Then the mapping process will require a number of convolutions in order to 
calculate the numerator and denominator of the target filter:

For each coefficient αi and βi of the prototype filter the NAth-order polynomials 
must be convolved N times. Such approach may cause rounding errors for large 
prototype filters and/or high order mapping filters. In such a case the user 
should consider the alternative of doing the mapping using via poles and zeros. 

Summary of Frequency Transformations

Advantages

• Most frequency transformations are described by closed-form solutions or 
can be calculated from the set of linear equations.

• They give predictable and familiar results.

• Ripple heights from the prototype filter are preserved in the target filter.

• They are architecturally appealing for variable and adaptive filters.

Ho z( )

S αkzk

k 0=

N 1–

∑ zi αkzN k–

k 0=

N 1–

∑⋅–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

i 1=

N

∑

S αkzk

k 0=

N 1–

∑ pi αkzN k–

k 0=

N 1–

∑⋅–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

i 1=

N

∑

----------------------------------------------------------------------------------------------=

HT z( )
β0zN β1zN 1– … βN+ + +

α0zN α1zN 1– … αN+ + +
--------------------------------------------------------------------

z HA z( )=

=

HT z( )
β1NA z( )N β2NA z( )N 1– DA z( ) … βNDA z( )N+ + +

β1NA z( )N β2NA z( )N 1– DA z( ) … βNDA z( )N+ + +
-----------------------------------------------------------------------------------------------------------------------------------=
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Disadvantages

• There are cases when using optimization methods to design the required 
filter gives better results.

• High-order transformations increase the dimensionality of the target filter, 
which may give expensive final results.

• Starting from fresh designs helps avoid locked-in compromises.
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Frequency Transformations for Real Filters
This section discusses real frequency transformations that take the real 
lowpass prototype filter and convert it into a different real target filter. The 
target filter has its frequency response modified in respect to the frequency 
response of the prototype filter according to the characteristic of the applied 
frequency transformation:

• “Real Frequency Shift” on page 5-12

• “Real Lowpass to Real Lowpass” on page 5-13

• “Real Lowpass to Real Highpass” on page 5-15

• “Real Lowpass to Real Bandpass” on page 5-17

• “Real Lowpass to Real Bandstop” on page 5-19

• “Real Lowpass to Real Multiband” on page 5-21

• “Real Lowpass to Real Multipoint” on page 5-23
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Real Frequency Shift
Real frequency shift transformation uses a second-order allpass mapping filter. 
It performs an exact mapping of one selected feature of the frequency response 
into its new location, additionally moving both the Nyquist and DC features. 
This effectively moves the whole response of the lowpass filter by the distance 
specified by the selection of the feature from the prototype filter and the target 
filter. As a real transformation, it works in a similar way for positive and 
negative frequencies.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

The example below shows how this transformation can be used to move the 
response of the prototype lowpass filter in either direction. Please note that 
because the target filter must also be real, the response of the target filter will 
inherently be disturbed at frequencies close to Nyquist and close to DC. Here 
is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

HA z( ) z 1– 1 αz 1––

α z 1––
---------------------⋅=

α

π
2
--- ωold 2ωnew–( )cos

π
2
---ωoldcos

----------------------------------------------------- for π
2
--- ωold 2ωnew–( )cos 1<

π
2
--- ωold 2ωnew–( )sin

π
2
---ωoldsin

----------------------------------------------------- otherwise

⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

=
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Figure 5-5:  Example of Real Frequency Shift Mapping

Real Lowpass to Real Lowpass
Real lowpass filter to real lowpass filter transformation uses a first-order 
allpass mapping filter. It performs an exact mapping of one feature of the 
frequency response into the new location keeping DC and Nyquist features 
fixed. As a real transformation, it works in a similar way for positive and 
negative frequencies. It is important to mention that using first-order mapping 
ensures that the order of the filter after the transformation is the same as it 
was originally.

with α given by
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where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to modify the cutoff frequency of the prototype 
filter. The MATLAB code for this example is shown in the figure below.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The cutoff frequency moves from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

α

π
2
--- wold wnew–( )sin

π
2
--- wold wnew+( )sin

---------------------------------------------------=
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Figure 5-6:  Example of Real Lowpass to Real Lowpass Mapping

Real Lowpass to Real Highpass
Real lowpass filter to real highpass filter transformation uses a first-order 
allpass mapping filter. It performs an exact mapping of one feature of the 
frequency response into the new location additionally swapping DC and 
Nyquist features. As a real transformation, it works in a similar way for 
positive and negative frequencies. Just like in the previous transformation 
because of using a first-order mapping, the order of the filter before and after 
the transformation is the same.

with α given by
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where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Frequency location of the same feature in the target filter

The example below shows how to convert the lowpass filter into a highpass 
filter with arbitrarily chosen cutoff frequency. In the MATLAB code below, the 
lowpass filter is converted into a highpass with cutoff frequency shifted from0.5 
to 0.75. Results are shown in the figure.

The prototype filter is a halfband elliptic, real, third-order filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example moves the cutoff frequency from 0.5 to 0.75:

[num,den] = iirlp2lp(b, a, 0.5, 0.75);

α

π
2
--- wold wnew+( )cos

π
2
--- wold wnew–( )cos

---------------------------------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

–=



Frequency Transformations for Real Filters

5-17

Figure 5-7:  Example of Real Lowpass to Real Highpass Mapping

Real Lowpass to Real Bandpass
Real lowpass filter to real bandpass filter transformation uses a second-order 
allpass mapping filter. It performs an exact mapping of two features of the 
frequency response into their new location additionally moving a DC feature 
and keeping the Nyquist feature fixed. As a real transformation, it works in a 
similar way for positive and negative frequencies.
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where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how to move the response of the prototype lowpass 
filter in either direction. Please note that because the target filter must also be 
real, the response of the target filter will inherently be disturbed at frequencies 
close to Nyquist and close to DC. Here is the MATLAB code for generating the 
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates the passband between 0.5 and 0.75:

[num,den] = iirlp2bp(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2,– wnew 1,+( )sin

π
4
--- 2wold wnew 2, wnew 1,–+( )sin

-------------------------------------------------------------------------------------=

β π
2
--- wnew 1, wnew 2,+( )cos=
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Figure 5-8:  Example of Real Lowpass to Real Bandpass Mapping

Real Lowpass to Real Bandstop
Real lowpass filter to real bandstop filter transformation uses a second-order 
allpass mapping filter. It performs an exact mapping of two features of the 
frequency response into their new location additionally moving a Nyquist 
feature and keeping the DC feature fixed. This effectively creates a stopband 
between the selected frequency locations in the target filter. As a real 
transformation, it works in a similar way for positive and negative frequencies.
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where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows how this transformation can be used to convert the 
prototype lowpass filter with cutoff frequency at 0.5 into a real bandstop filter 
with the same passband and stopband ripple structure and stopband 
positioned between 0.5 and 0.75. Here is the MATLAB code for generating the 
example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bs(b, a, 0.5, [0.5, 0.75]);

α

π
4
--- 2wold wnew 2, wnew 1,–+( )cos

π
4
--- 2wold wnew 2, wnew 1,+–( )cos

-------------------------------------------------------------------------------------=

β π
2
--- wnew 1, wnew 2,+( )cos=
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Figure 5-9:  Example of Real Lowpass to Real Bandstop Mapping

Real Lowpass to Real Multiband
This high-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into a number of new 
locations in the target filter. Its most common use is to convert a real lowpass 
with predefined passband and stopband ripples into a real multiband filter 
with N arbitrary band edges, where N is the order of the allpass mapping filter.
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The coefficients α are given by

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility or either DC or Nyquist feature:

The example below shows how this transformation can be used to convert the 
prototype lowpass filter with cutoff frequency at 0.5 into a filter having a 
number of bands positioned at arbitrary edge frequencies 1/5, 2/5, 3/5 and 4/5. 
Parameter S was such that there is a passband at DC. Here is the MATLAB 
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates three passbands, from DC to 0.2, from 0.4 
to 0.6 and from 0.8 to Nyquist:

[num,den] = iirlp2mb(b, a, 0.5, [0.2, 0.4, 0.6, 0.8], `pass');

HA z( ) S

αiz
i–

i 0=

N

∑

αiz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

α0 1= k 1 … N, ,=

αk S

π
2
--- Nωnew 1–( )kωold+( )sin

π
2
--- N 2k–( )ωnew 1–( )kωold+( )sin

----------------------------------------------------------------------------------------–=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

S
1 Nyquist
1– DC⎩

⎨
⎧

=
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Figure 5-10:  Example of Real Lowpass to Real Multiband Mapping

Real Lowpass to Real Multipoint
This high-order frequency transformation performs an exact mapping of a 
number of selected features of the prototype filter frequency response to their 
new locations in the target filter. The mapping filter is given by the general IIR 
polynomial form of the transfer function as given below.
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For the Nth-order multipoint frequency transformation the coefficients α are

where

ωold,k – Frequency location of the first feature in the prototype filter

ωnew,k – Position of the feature originally at ωold,k in the target filter

The mobility factor, S, specifies the mobility of either DC or Nyquist feature:

The example below shows how this transformation can be used to move 
features of the prototype lowpass filter originally at -0.5 and 0.5 to their new 
locations at 0.5 and 0.75, effectively changing a position of the filter passband. 
Here is the MATLAB code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.5 to 0.75:

HA z( ) S

αiz
i–

i 0=

N

∑

αiz
N– i+

i 0=

N

∑

---------------------------------=

α0 1=

αN i– zold k, znew k,
i S znew k,

N i–⋅–⋅

i 1=

N

∑ zold k, S znew k,⋅––=

zold k, e
jπωold k,=

znew k, e
jπωnew k,=

k 1 … N, ,=⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

S
1 Nyquist
1– DC⎩

⎨
⎧

=



Frequency Transformations for Real Filters

5-25

[num,den] = iirlp2xn(b, a, [-0.5, 0.5], [0.5, 0.75], `pass');

Figure 5-11:  Example of Real Lowpass to Real Multipoint Mapping
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Frequency Transformations for Complex Filters
This section discusses complex frequency transformation that take the complex 
prototype filter and convert it into a different complex target filter. The target 
filter has its frequency response modified in respect to the frequency response 
of the prototype filter according to the characteristic of the applied frequency 
transformation from:

• “Complex Frequency Shift” on page 5-26

• “Real Lowpass to Complex Bandpass” on page 5-28

• “Real Lowpass to Complex Bandstop” on page 5-29

• “Real Lowpass to Complex Multiband” on page 5-31

• “Real Lowpass to Complex Multipoint” on page 5-33

• “Complex Bandpass to Complex Bandpass” on page 5-35

Complex Frequency Shift
Complex frequency shift transformation is the simplest first-order 
transformation that performs an exact mapping of one selected feature of the 
frequency response into its new location. At the same time it rotates the whole 
response of the prototype lowpass filter by the distance specified by the 
selection of the feature from the prototype filter and the target filter.

with α given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew — Position of the feature originally at ωold in the target filter

A special case of the complex frequency shift is a, so called, Hilbert 
Transformer. It can be designed by setting the parameter to |α|=1, that is

HA z( ) αz 1–=

α e
j2π νnew νold–( )

=

α
1 forward
1– inverse⎩

⎨
⎧

=
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The example below shows how to apply this transformation to rotate the 
response of the prototype lowpass filter in either direction. Please note that 
because the transformation can be achieved by a simple phase shift operator, 
all features of the prototype filter will be moved by the same amount. Here is 
the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation moves the feature originally at 0.5 to 0.9:

[num,den] = iirshift(b, a, 0.5, 0.9);

Figure 5-12:  Example of Complex Frequency Shift Mapping
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Real Lowpass to Complex Bandpass
This first-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into two new locations in the 
target filter creating a passband between them. Both Nyquist and DC features 
can be moved with the rest of the frequency response.

with α and β are given by

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real 
halfband lowpass filter into a complex bandpass filter with band edges at 0.5 
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a half band elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a passband from 0.5 to 0.75:

[num,den] = iirlp2bpc(b, a, 0.5, [0.5 0.75]);

HA z( ) β αz 1––

z 1– αβ–
---------------------=

α

π
4
--- 2wold wnew 2, wnew 1,+–( )sin

π 2wold wnew 2, wnew 1,–+( )sin
-------------------------------------------------------------------------------------=

β e
j– π wnew wold–( )

=
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Figure 5-13:  Example of Real Lowpass to Complex Bandpass Mapping

Real Lowpass to Complex Bandstop
This first-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into two new locations in the 
target filter creating a stopband between them. Both Nyquist and DC features 
can be moved with the rest of the frequency response.

with α and β are given by
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where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,1 — Position of the feature originally at (−ωold) in the target filter

ωnew,2 — Position of the feature originally at (+ωold) in the target filter

The example below shows the use of such a transformation for converting a real 
halfband lowpass filter into a complex bandstop filter with band edges at 0.5 
and 0.75. Here is the MATLAB code for generating the example in the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The transformation creates a stopband from 0.5 to 0.75:

[num,den] = iirlp2bsc(b, a, 0.5, [0.5 0.75]);

β e
j– π wnew wold–( )

=
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Figure 5-14:  Example of Real Lowpass to Complex Bandstop Mapping

Real Lowpass to Complex Multiband
This high-order transformation performs an exact mapping of one selected 
feature of the prototype filter frequency response into a number of new 
locations in the target filter. Its most common use is to convert a real lowpass 
with predefined passband and stopband ripples into a multiband filter with 
arbitrary band edges. The order of the mapping filter must be even, which 
corresponds to an even number of band edges in the target filter. The Nth-order 
complex allpass mapping filter is given by the general transfer function form 
as shown below.
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The coefficients α are calculated from the system of linear equations:

where

ωold — Frequency location of the selected feature in the prototype filter

ωnew,i — Position of features originally at ±ωold in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC, 
giving the additional flexibility of achieving the required mapping:

The example shows the use of such a transformation for converting a prototype 
real lowpass filter with the cutoff frequency at 0.5 into a multiband complex 
filter with band edges at 0.2, 0.4, 0.6 and 0.8, creating two passbands around 
the unit circle. Here is the MATLAB code for generating the figure.
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∑
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N

∑

------------------------------------=
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Figure 5-15:  Example of Real Lowpass to Complex Multiband Mapping

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two complex passbands:

[num,den] = iirlp2mbc(b, a, 0.5, [0.2, 0.4, 0.6, 0.8]);

Real Lowpass to Complex Multipoint
This high-order transformation performs an exact mapping of a number of 
selected features of the prototype filter frequency response to their new 
locations in the target filter. The Nth-order complex allpass mapping filter is 
given by the general transfer function form as shown below.
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The coefficients α can be calculated from the system of linear equations:

where

ωold,k — Frequency location of the first feature in the prototype filter

ωnew,k — Position of the feature originally at ωold,k in the target filter

Parameter S is the additional rotation factor by the frequency distance ΔC, 
giving the additional flexibility of achieving the required mapping:

The example below shows how this transformation can be used to move one 
selected feature of the prototype lowpass filter originally at -0.5 to two new 
frequencies -0.5 and 0.1, and the second feature of the prototype filter from 0.5 
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to new locations at -0.25 and 0.3. This creates two nonsymmetric passbands 
around the unit circle, creating a complex filter. Here is the MATLAB code for 
generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates two nonsymmetric passbands:

[num,den] = iirlp2xc(b,a,0.5*[-1,1,-1,1], [-0.5,-0.25,0.1,0.3]);

Figure 5-16:  Example of Real Lowpass to Complex Multipoint Mapping

Complex Bandpass to Complex Bandpass
This first-order transformation performs an exact mapping of two selected 
features of the prototype filter frequency response into two new locations in the 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Prototype filter

|H
(ω

)|
in

 d
B

Normalized Frequency  (×π rad/sample)

ωo1 ωo2

ωo3 ωo4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0
Target filter

|H
(ω

)|
 in

 d
B

Normalized Frequency  (×π rad/sample)

ωt1 ωt2 ωt3 ωt4



5 Digital Frequency Transformations

5-36

target filter. Its most common use is to adjust the edges of the complex 
bandpass filter.

with α and β are given by

where

ωold,1 — Frequency location of the first feature in the prototype filter

ωold,2 — Frequency location of the second feature in the prototype filter

ωnew,1 — Position of the feature originally at ωold,1 in the target filter

ωnew,2 — Position of the feature originally at ωold,2 in the target filter

The example below shows how this transformation can be used to modify the 
position of the passband of the prototype filter, either real or complex. In the 
example below the prototype filter passband spanned from 0.5 to 0.75. It was 
converted to having a passband between -0.5 and 0.1. Here is the MATLAB 
code for generating the figure.

The prototype filter is a halfband elliptic, real, third-order lowpass filter:

[b, a] = ellip(3, 0.1, 30, 0.409);

The example transformation creates a passband from 0.25 to 0.75:

[num,den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.1]);

HA z( ) α γ βz 1––( )

z 1– β– γ
-----------------------------=

α

π
4
--- wold 2, wold 1,–( ) wnew 2, wnew 1,–( )–( )sin

π
4
--- wold 2, wold 1,–( ) wnew 2, wnew 1,–( )+( )sin

----------------------------------------------------------------------------------------------------------------------=

α e
j– π wold 2, wold 1,–( )

=

γ e
j– π wnew 2, wnew 1,–( )
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Figure 5-17:  Example of Complex Bandpass to Complex Bandpass Mapping
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6
Using FDATool with the 
Filter Design Toolbox

Designing Advanced Filters in 
FDATool (p. 6-5)

Using FDATool to design more advanced filters. This 
sections assumes you are familiar with FDATool from the 
Signal Processing Toolbox.

Switching FDATool to Quantization 
Mode (p. 6-8)

After you open FDATool, this section explain how to 
access the quantization features in the tool.

Quantizing Filters in the Filter Design 
and Analysis Tool (p. 6-12)

Explains how you quantize a filter in FDATool.

Analyzing Filters with a Noise-Based 
Method (p. 6-23)

FDATool provides a variety of analysis methods for 
quantized filters; this section explains how to use two of 
them.

Scaling Second-Order Section Filters 
(p. 6-30)

You can adjust the way FDATool scales SOS filters. To 
learn how, read this section.

Reordering the Sections of 
Second-Order Section Filters (p. 6-38)

Shows you how to change the order of the sections in an 
SOS filter.

Viewing SOS Filter Sections (p. 6-46) Shows you how to use the SOS View feature in FDATool 
to analyze the sections of SOS filters.

Importing and Exporting Quantized 
Filters (p. 6-53)

Shows you how to import and export filters to and from 
your MATLAB workspace, as well as to other 
destinations.

Importing XILINX Coefficient (.COE) 
Files (p. 6-58)

Import the coefficients from a XILINX .coe file to create 
a quantized filter in FDATool.

Transforming Filters (p. 6-59) Describes how you use the filter transformation 
capability in FDATool to change the magnitude response 
of your FIR or IIR filters in the tool.
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Designing Multirate Filters in 
FDATool (p. 6-70)

Explains how to use FDATool to design multirate filters. 
This section assumes you are familiar with FDATool from 
the Signal Processing Toolbox and you are familiar with 
mfilt objects.

Quantizing Multirate Filters (p. 6-81) Explains how to use FDATool to quantize multirate 
filters.

Realizing Filters as Simulink 
Subsystem Blocks (p. 6-84)

Using the Realize Model feature to create a Simulink 
model of your quantized filter as a subsystem block.

Getting Help for FDATool (p. 6-89) Shows you how to get help about the features in FDATool, 
such as using Help or using the What’s This option.
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The Filter Design Toolbox adds new dialogs and operating modes, and new 
menu selections, to the Filter Design and Analysis Tool (FDATool) provided by 
the Signal Processing Toolbox. From the new dialogs, one titled Set 
Quantization Parameters and one titled Frequency Transformations, you 
can:

• Design advanced filters that Signal Processing Toolbox does not provide the 
design tools to develop.

• View Simulink models of the filter structures available in the toolbox.

• Quantize double-precision filters you design in this GUI using the design 
mode.

• Quantize double-precision filters you import into this GUI using the import 
mode.

• Analyze quantized filters.

• Scale second-order section filters.

• Select the quantization settings for the properties of the quantized filter 
displayed by the tool:

- Coefficients—select the quantization options applied to the filter 
coefficients

- Input/output—control how the filter processes input and output data

- Filter Internals—specify how the arithmetic for the filter behaves

• Design multirate filters.

• Transform both FIR and IIR filters from one response to another.

After you import a filter in to FDATool, the options on the quantization dialog 
let you quantize the filter and investigate the effects of various quantization 
settings.

Options in the frequency transformations dialog let you change the frequency 
response of your filter, keeping various important features while changing the 
response shape.

This section presents the following information and procedures for using 
FDATool:

• “Designing Advanced Filters in FDATool” on page 6-5

• “Switching FDATool to Quantization Mode” on page 6-8

• “Quantizing Filters in the Filter Design and Analysis Tool” on page 6-12
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• “Analyzing Filters with a Noise-Based Method” on page 6-23

• “Choosing Quantized Filter Structures” on page 6-28

• “Reordering the Sections of Second-Order Section Filters” on page 6-38

• “Viewing SOS Filter Sections” on page 6-46

• “Importing XILINX Coefficient (.COE) Files” on page 6-58

• “Transforming Filters” on page 6-59

• “Designing Multirate Filters in FDATool” on page 6-70

• “Realizing Filters as Simulink Subsystem Blocks” on page 6-84
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Designing Advanced Filters in FDATool
Adding the Filter Design Toolbox to your tool suite adds a number of filter 
design techniques to FDATool. Use the new filter responses to develop filters 
that meet more complex requirements than those you can design in the Signal 
Processing Toolbox. While the designs in FDATool are available as command 
line functions, the graphical user interface of FDATool makes the design 
process more clear and easier to accomplish.

As you select a response type, the options in the panels to the right in FDATool 
change to let you set the values that define your filter. You also see that the 
analysis area includes a diagram (called a design mask)that describes the 
options for the filter response you choose.

By reviewing the mask you can see how the options are defined and how to use 
them. While this is usually straightforward for lowpass or highpass filter 
responses, setting the options for the arbitrary response types or the 
peaking/notching filters is more complicated. Having the masks leads you to 
your result more easily.

Changing the filter design method changes the available response type options. 
Similarly, the response type you select may change the filter design methods 
you can choose.

Example—Design a Notch Filter
Notch filters aim to remove one or a few frequencies from a broader 
spectrum.You must specify the frequencies to remove by setting the filter 
design options in FDATool appropriately:

• Response Type

• Design Method

• Frequency Specifications

• Magnitude Specifications

Here is how you design a notch filter that removes concert A (440 Hz) from an 
input musical signal spectrum.

1 Select Notching from the Differentiator list in Response Type.

2 Select IIR in Filter Design Method and choose Single Notch from the list.
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3 For the Frequency Specifications, set Units to Hz and Fs, the full scale 
frequency, to 10000.

4 Set the location of the center of the notch, in either normalized frequency 
or Hz. For the notch center at 440 Hz, enter 440.

5 To shape the notch, enter the bandwidth, bw, to be 40.

6 Leave the Magnitude Specification in dB (the default) and leave Apass 
as 1.

7 Click Design Filter. 

FDATool computes the filter coefficients and plots the filter magnitude 
response in the analysis area for you to review.

When you design a single notch filter, you do not have the option of setting the 
filter order—the Filter Order options are disabled.

Your filter should look about like this:

For more information about a design method, refer to the online Help system. 
For instance, to get further information about the Q setting for the notch filter 
in FDATool, enter 
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doc iirnotch

at the prompt. This opens the Help browser and displays the reference page for 
function iirnotch.

Designing other filters follows a similar procedure, adjusting for different 
design specification options as each design requires.

Any one of the designs may be quantized in FDATool and analyzed with the 
available analyses on the Analysis menu. For more general information about 
FDATool, such as the user interface and areas, refer to the FDATool 
documentation in the Signal Processing Toolbox documentation. One way to do 
this is to enter

doc signal/fdatool

at the prompt. The signal qualifier is necessary to open the reference page in 
the Signal Processing Toolbox documentation, rather than the page in the 
Filter Design Toolbox documentation. You might also look at the general 
section on FDATool in the Signal Processing Toolbox User’s Guide.
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Switching FDATool to Quantization Mode
You use the quantization mode in FDATool to quantize filters. Quantization 
represents the fourth operating mode for FDATool, along with the filter design, 
filter transformation, and import modes. To switch to quantization mode, open 
FDATool from the MATLAB command prompt by entering

fdatool

You see FDATool in this configuration.
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When FDATool opens, click the Set Quantization Parameters button on the 
side bar. FDATool switches to quantization mode and you see the following 
panel at the bottom of FDATool, with the default double-precision option 
shown for Filter arithmetic.

The Filter arithmetic option lets you quantize filters and investigate the 
effects of changing quantization settings. To enable the quantization settings 
in FDATool, select Fixed-point from the Filter Arithmetic.

The quantization options appear in the lower panel of FDATool. You see tabs 
that access various sets of options for quantizing your filter.
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You use the following tabs in the dialog to perform tasks related to quantizing 
filters in FDATool:

• Coefficients provides access the settings for defining the coefficient 
quantization. This is the default active panel when you switch FDATool to 
quantization mode without a quantized filter in the tool. When you import a 
fixed-point filter into FDATool, this is the active pane when you switch to 
quantization mode. 

• Input/Output switches FDATool to the options for quantizing the inputs and 
outputs for your filter.

• Filter Internals lets you set a variety of options for the arithmetic your filter 
performs, such as how the filter handles the results of multiplication 
operations or how the filter uses the accumulator.
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• Apply—applies changes you make to the quantization parameters for your 
filter.
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Quantizing Filters in the Filter Design and Analysis Tool
Quantized filters have properties that define how they quantize data you filter. 
Use the Set Quantization Parameters dialog in FDATool to set the properties. 
Using options in the Set Quantization Parameters dialog, FDATool lets you 
perform a number of tasks:

• Create a quantized filter from a double-precision filter after either importing 
the filter from your workspace, or using FDATool to design the prototype 
filter.

• Create a quantized filter that has the default structure (Direct form II 
transposed) or any structure you choose, and other property values you 
select.

• Change the quantization property values for a quantized filter after you 
design the filter or import it from your workspace.

When you click Set Quantization Parameters, and then change Filter 
Arithmetic to Fixed-point, the quantized filter panel opens in FDATool, with 
the coefficient quantization options set to default values. In this image, you see 
the options for an SOS filter. Some of the options shown apply only to SOS 
filters. Other filter structures present a subset of the options you see here.
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Coefficients Options
To let you set the properties for the filter coefficients that make up your 
quantized filter, FDATool lists options for numerator word length (and 
denominator word length if you have an IIR filter). The following table lists 
each coefficients option and a short description of what the option setting does 
in the filter.

Option Name When Used Description

Numerator Word Length FIR filters only Sets the word length used to represent 
numerator coefficients in FIR filters.

Numerator Frac. Length FIR/IIR Sets the fraction length used to 
interpret numerator coefficients in FIR 
filters.

Numerator Range (+/-) FIR/IIR Lets you set the range the numerators 
represent. You use this instead of the 
Numerator Frac. Length option to set 
the precision. When you enter a value x, 
the resulting range is -x to x. Range 
must be a positive integer.

Coefficient Word Length IIR filters only Sets the word length used to represent 
both numerator and denominator 
coefficients in IIR filters. You cannot set 
different word lengths for the numerator 
and denominator coefficients.

Denominator Frac. Length IIR filters Sets the fraction length used to 
interpret denominator coefficients in IIR 
filters. 

Denominator Range (+/-) IIR filters Lets you set the range the denominator 
coefficients represent. You use this 
instead of the Denominator Frac. 
Length option to set the precision. 
When you enter a value x, the resulting 
range is -x to x. Range must be a 
positive integer.
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Input/Output Options
The options that specify how the quantized filter uses input and output values 
are listed in the table below. In the following picture you see the options for an 
SOS filter.

Best-precision fraction 
lengths

All filters Directs FDATool to select the fraction 
lengths for numerator (and denominator 
where available) values to maximize the 
filter performance. Selecting this option 
disables all of the fraction length options 
for the filter.

Scale Values frac. length SOS IIR filters Sets the fraction length used to 
interpret the scale values in SOS filters. 

Scale Values range (+/-) SOS IIR filters Lets you set the range the SOS scale 
values represent. You use this with SOS 
filters to adjust the scaling used 
between filter sections. Setting this 
value disables the Scale Values frac. 
length option. When you enter a value 
x, the resulting range is -x to x. Range 
must be a positive integer.

Use unsigned 
representation

All filters Tells FDATool to interpret the 
coefficients as unsigned values.

Scale the numerator 
coefficients to fully utilize 
the entire dynamic range

All filters Directs FDATool to scale the numerator 
coefficients to effectively use the 
dynamic range defined by the 
numerator word length and fraction 
length format.

Option Name When Used Description
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Option Name When Used Description

Input Word Length All filters Sets the word length used to represent 
the input to a filter.

Input fraction length All filters Sets the fraction length used to interpret 
input values to filter.

Input range (+/-) All filters Lets you set the range the inputs 
represent. You use this instead of the 
Input fraction length option to set the 
precision. When you enter a value x, the 
resulting range is -x to x. Range must be 
a positive integer.

Output word length All filters Sets the word length used to represent 
the output from a filter.
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Avoid overflow All filters Directs the filter to set the fraction 
length for the input to prevent the 
output values from exceeding the 
available range as defined by the word 
length. Clearing this option lets you set 
Output fraction length.

Output fraction length All filters Sets the fraction length used to 
represent output values from a filter.

Output range (+/-) All filters Lets you set the range the outputs 
represent. You use this instead of the 
Output fraction length option to set the 
precision. When you enter a value x, the 
resulting range is -x to x. Range must be 
a positive integer.

Stage input word length SOS filters only Sets the word length used to represent 
the input to an SOS filter section.

Avoid overflow SOS filters only Directs the filter to use a fraction length 
for stage inputs that prevents overflows 
in the values. When you clear this 
option, you can set Stage input fraction 
length.

Stage input fraction length SOS filters only Sets the fraction length used to 
represent input to a section of an SOS 
filter.

Stage output word length SOS filters only Sets the word length used to represent 
the output from an SOS filter section.

Option Name When Used Description
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Filter Internals Options
The options that specify how the quantized filter performs arithmetic 
operations are listed in the table after the figure. In the following picture you 
see the options for an SOS filter.

Avoid overflow SOS filters only Directs the filter to use a fraction length 
for stage outputs that prevents overflows 
in the values. When you clear this 
option, you can set Stage output 
fraction length.

Stage output fraction 
length

SOS filters only Sets the fraction length used to 
represent the output from a section of an 
SOS filter.

Option Name When Used Description
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Option Equivalent Filter Property 
(using wildcard *)

Description

Round towards RoundMode Sets the mode the filter uses to 
quantize numeric values when the 
values lie between representable 
values for the data format (word and 
fraction lengths). Choose from one of:

- Ceiling—round up to the nearest 
allowable quantized value. 

- Floor—round down to the next 
allowable quantized value.

- Nearest—round to the nearest 
allowable quantized value. 
Numbers that are halfway 
between the two nearest 
allowable quantized values are 
rounded up.

- Nearest(convergent)—round to 
the next allowable quantized 
value. For numbers that lie 
halfway between the two nearest 
allowable values, round up to the 
nearest value only when the least 
significant bit after rounding 
would be a 1.

- Zero—round negative numbers 
and positive numbers towards 
zero to the next allowable 
quantized value
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Overflow Mode OverflowMode Sets the mode used to respond to 
overflow conditions in fixed-point 
arithmetic. Choose from either 
saturate (limit the output to the 
largest positive or negative 
representable value) or wrap (set 
overflowing values to the nearest 
representable value using modular 
arithmetic.

Filter Product (Multiply) 
Options

Product Mode ProductMode Determines how the filter handles the 
output of product operations. Choose 
from full precision (FullPrecision), 
or whether to keep the most 
significant bit (KeepMSB) or least 
significant bit (KeepLSB) in the result 
when you need to shorten the word 
length. Specify all lets you set the 
fraction length applied to the results 
of product operations.

Product word length *ProdWordLength Sets the word length applied to 
interpret the results of multiply 
operations.

Num. fraction length NumProdFracLength Sets the fraction length used to 
interpret the results of product 
operations that involve numerator 
coefficients.

Den. fraction length DenProdFracLength Sets the fraction length used to 
interpret the results of product 
operations that involve denominator 
coefficients.

Option Equivalent Filter Property 
(using wildcard *)

Description
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Filter Sum Options

Accum. mode AccumMode Determines how the accumulator 
outputs stored values. Choose from 
full precision (FullPrecision), or 
whether to keep the most significant 
bits (KeepMSB) or least significant bits 
(KeepLSB) when output results need 
shorter word length than the 
accumulator supports. To let you set 
the word length and the precision 
(the fraction length) used by the 
output from the accumulator, set this 
to Specify all.

Accum. word length *AccumWordLength Sets the word length used to store 
data in the accumulator/buffer.

Num. fraction length NumAccumFracLength Sets the fraction length used to 
interpret the numerator coefficients.

Den. fraction length DenAccumFracLength Sets the fraction length the filter uses 
to interpret denominator coefficients. 

Cast signals before sum CastBeforeSum Specifies whether to cast numeric 
data to the appropriate accumulator 
format (as shown in the signal flow 
diagrams for each filter structure) 
before performing sum operations.

Filter State Options

State word length *StateWordLength Sets the word length used to 
represent the filter states. Applied to 
both numerator- and 
denominator-related states

Option Equivalent Filter Property 
(using wildcard *)

Description
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Filter Internals Options for CIC Filters
CIC filters use slightly different options for specifying the fixed-point 
arithmetic in the filter. The next table shows and describes the options.

Example—Quantize Double-Precision Filters
When you are quantizing a double-precision filter by switching to fixed-point 
or single-precision floating point arithmetic, follow these steps.

1 Click Set Quantization Parameters to display the Set Quantization 
Parameters pane in FDATool.

2 Select Single-precision floating point or Fixed-point from Filter 
arithmetic.

When you select one of the optional arithmetic settings, FDATool quantizes 
the current filter according to the settings of the options in the Set 
Quantization Parameter panes, and changes the information displayed in 
the analysis area to show quantized filter data.

3 In the quantization panes, set the options for your filter. Set options for 
Coefficients, Input/Output, and Filter Internals.

4 Click Apply.

FDATool quantizes your filter using your new settings.

Avoid overflow None Prevent overflows in arithmetic 
calculations by setting the fraction 
length appropriately.

State fraction length *StateFracLength Lets you set the fraction length 
applied to interpret the filter states. 
Applied to both numerator- and 
denominator-related states

Option Equivalent Filter Property 
(using wildcard *)

Description
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5 Use the analysis features in FDATool to determine whether your new 
quantized filter meets your requirements.

Example—Change the Quantization Properties of Quantized Filters
When you are changing the settings for the quantization of a quantized filter, 
or after you import a quantized filter from your MATLAB workspace, follow 
these steps to set the property values for the filter:

1 Verify that the current filter is quantized.

2 Click Set Quantization Parameters to display the Set Quantization 
Parameters panel.

3 Review and select property settings for the filter quantization: Coefficients, 
Input/Output, and Filter Internals. Settings for options on these panes 
determine how your filter quantizes data during filtering operations. 

4 Click Apply to update your current quantized filter to use the new 
quantization property settings from Step 3. 

5 Use the analysis features in FDATool to determine whether your new 
quantized filter meets your requirements.
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Analyzing Filters with a Noise-Based Method
One technique for estimating the frequency response for quantized filters is the 
magnitude response estimate. FDATool offers this noise-based method as a 
filter analysis tool accessible from the toolbar.

Using the Magnitude Response Estimate Method
After you design and quantize your filter, the Magnitude Response Estimate 
option on the Analysis menu lets you apply the noise loading method to your 
filter. When you select Analysis -> Magnitude Response Estimate from the 
menubar, FDATool immediately starts the Monte Carlo trials that form the 
basis for the method and runs the analysis, ending by displaying the results in 
the analysis area in FDATool.

With the noise-based method, you estimate the complex frequency response for 
your filter as determined by applying a noise- like signal to the filter input. 
Magnitude Response Estimate uses the Monte Carlo trials to generate a 
noise signal that contains complete frequency content across the range 0 to Fs. 
The first time you run the analysis, magnitude response estimate uses default 
settings for the various conditions that define the process, such as the number 
of test points and the number of trials.

Analysis Parameter Default Setting Description

Number of Points 512 Number of equally spaced points 
around the upper half of the 
unit circle.

Frequency Range 0 to Fs/2 Frequency range of the plot 
x-axis.

Frequency Units Hz Units for specifying the 
frequency range.

Sampling 
Frequency

48000 Inverse of the sampling period.
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After your first analysis run ends, open the Analysis Parameters dialog and 
adjust your settings appropriately, such as changing the number of trials or 
number of points.

To open the Analysis Parameters dialog, use either of the next procedures 
when you have a quantized filter in FDATool:

• Select Analysis -> Analysis Parameters from the menu bar

• Right-click in the filter analysis area and select Analysis Parameters from 
the context menu

Whichever option you choose opens the dialog as shown in the figure. Notice 
that the settings for the options reflect the defaults.

Frequency Scale dB Units used for the y-axis display 
of the output.

Normalized 
Frequency

Off Use normalized frequency for 
the display.

Analysis Parameter Default Setting Description
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Example—Noise Method Applied to a Filter
To demonstrate the magnitude response estimate method, start by creating a 
quantized filter. For this example, use FDATool to design a sixth-order 
Butterworth IIR filter.

To Use Noise-Based Analysis in FDATool

1 Enter fdatool at the MATLAB prompt to launch FDATool.

2 Under Response Type, select Highpass.

3 Select IIR in Design Method. Then select Butterworth.

4 To set the filter order to 6, select Specify order under Filter Order. Enter 
6 in the text box.

5 Click Design Filter.

In FDATool, the analysis area changes to display the magnitude response 
for your filter.

6 To generate the quantized version of your filter, using default quantizer 
settings, click  on the side bar.

FDATool switches to quantization mode and displays the quantization 
panel.

7 From Filter arithmetic, select fixed-point.

Now the analysis areas shows the magnitude response for both filters—your 
original filter and the fixed-point arithmetic version.

8 Finally, to use noise-based estimation on your quantized filter, select 
Analysis -> Magnitude Response Estimate from the menubar.

FDATool runs the trial, calculates the estimated magnitude response for the 
filter, and displays the result in the analysis area as shown in this figure.
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In the figure you see the magnitude response as estimated by the analysis 
method.

To View the Noise Power Spectrum
When you use the noise method to estimate the magnitude response of a filter, 
FDATool simulates and applies a spectrum of noise values to test your filter 
response. While the simulated noise is essentially white, you might want to see 
the actual spectrum that FDATool used to test your filter.

From the Analysis menu bar option, select Round-off Noise Power 
Spectrum. In the analysis area in FDATool, you see the spectrum of the noise 
used to estimate the filter response. The details of the noise spectrum, such as 
the range and number of data points, appear in the Analysis Parameters 
dialog.

To Change Your Noise Analysis Parameters
In “Example—Noise Method Applied to a Filter”, you used synthetic white 
noise to estimate the magnitude response for a fixed-point highpass 
Butterworth filter. Since you ran the estimate only once in FDATool, your noise 
analysis used the default analysis parameters settings shown in “Using the 
Magnitude Response Estimate Method”. 
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To change the settings, follow these steps after the first time you use the noise 
estimate on your quantized filter.

1 With the results from running the noise estimating method displayed in the 
FDATool analysis area, select Analysis->Analysis Parameters from the 
menubar.

To give you access to the analysis parameters, the Analysis Parameters 
dialog opens as shown here (with default settings).

2 To use more points in the spectrum to estimate the magnitude response, 
change Number of Points to 1024 and click OK to run the analysis.

FDATool closes the Analysis Parameters dialog and reruns the noise 
estimate, returning the results in the analysis area.

To rerun the test without closing the dialog, press Enter after you type your 
new value into a setting, then click Apply. Now FDATool runs the test 
without closing the dailog. When you want to try many different settings for 
the noise-based analysis, this is a useful shortcut.
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Comparing the Estimated and Theoretical 
Magnitude Responses
An important measure of the effectiveness of the noise method for estimating 
the magnitude response of a quantized filter is to compare the estimated 
response to the theoretical response. 

One way to do this comparison is to overlay the theoretical response on the 
estimated response. While you have the Magnitude Response Estimate 
displaying in FDATool, select Analysis->Overlay Analysis from the menu bar. 
Then select Magnitude Response to show both response curves plotted 
together in the analysis area. 

Choosing Quantized Filter Structures
FDATool lets you change the structure of any quantized filter. Use the Convert 
structure option to change the structure of your filter to one that meets your 
needs. 

To learn about changing the structure of a filter in FDATool, refer to 
“Converting to a New Structure” in your Signal Processing Toolbox 
documentation.

Converting the Structure of a Quantized Filter
You use the Convert structure option to change the structure of filter. When 
the Source is Designed(Quantized) or Imported(Quantized), Convert 
structure lets you recast the filter to one of the following structures:

• “Direct Form II Transposed Filter Structure” on page 7-52

• “Direct Form I Transposed Filter Structure” on page 7-48

• “Direct Form II Filter Structure” on page 7-49

• “Direct Form I Filter Structure” on page 7-47

• “Direct Form Finite Impulse Response (FIR) Filter Structure” on page 7-57

• “Direct Form FIR Transposed Filter Structure” on page 7-58

• “Lattice Autoregressive Moving Average (ARMA) Filter Structure” on 
page 7-64

• “dfilt.calattice” on page 8-305

• “dfilt.calatticepc” on page 8-308
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• “Direct Form Symmetric FIR Filter Structure (Any Order)” on page 7-66

Starting from any quantized filter, you can convert to one of the following 
representation:

• Direct form I 

• Direct form II 

• Direct form I transposed 

• Direct form II transposed 

• Lattice ARMA 

Additionally, FDATool lets you do the following conversions:

• Minimum phase FIR filter to Lattice MA minimum phase

• Maximum phase FIR filter to Lattice MA maximum phase

• Allpass filters to Lattice allpass

Refer to “FilterStructure” on page 7-43 for details about each of these 
structures.

Converting Filters to Second-Order Sections Form
To learn about using FDATool to convert your quantized filter to use 
second-order sections, refer to “Converting to Second-Order Sections” in your 
Signal Processing Toolbox documentation. You might notice that filters you 
design in FDATool, rather than filters you imported, are implemented in SOS 
form.

To View Filter Structures in FDATool
To open the demonstration, click Help -> Show filter structures. After the 
Help browser opens, you see the reference page for the current filter. You find 
the filter structure signal flow diagram on this reference page, or you can 
navigate to reference pages for other filter.
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Scaling Second-Order Section Filters
FDATool provides the ability to scale SOS filters after you create them. Using 
options on the Reordering and Scaling Second-Order Sections dialog, FDATool 
scales either or both the filter numerators and filter scale values according to 
your choices for the scaling options.
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Parameter Description and Valid Value 

Scale Apply any scaling options to the filter. 
Select this when you are reordering your 
SOS filter and you want to scale it at the 
same time. Or when you are scaling your 
filter, with or without reordering. Scaling 
is disabled by default.

No Overflow—High SNR 
slider

Lets you set whether scaling favors 
reducing arithmetic overflow in the filter 
or maximizing the signal-to-noise ratio 
(SNR)) at the filter output. Moving the 
slider to the right increases the 
emphasis on SNR at the expense of 
possible overflows.

The markings indicate the P-norm 
applied to achieve the desired result in 
SNR or overflow protection. For more 
information about the P-norm settings, 
refer to norm for details.

Maximum Numerator Maximum allowed value for numerator 
coefficients after scaling.

Numerator Constraint Specifies whether and how to constrain 
numerator coefficient values. Options 
are none, normalize, power of 2, and 
unit. Choosing none lets the scaling use 
any scale value for the numerators by 
removing any constraints on the 
numerators. Normalize. The power of 2 
option forces scaling to use numerator 
values that are powers of 2, such as 2 or 
0.5.
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Various combinations of settings let you scale filter numerators without 
changing the scale values, or adjust the filter scale values without changing the 
numerators. There is no scaling control for denominators.

Overflow Mode Sets the way the filter handles 
arithmetic overflow situations during 
scaling. Choose from either saturate 
(limit the output to the largest positive 
or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular 
arithmetic.

Scale Value Constraint Specify whether to constrain the filter 
scale values, and how to constrain them. 
Valid options are none, power of 2, and 
unit. Choosing unit for the constraint 
disables the Max. Scale Value setting 
and limits scale values to one. 
Power of 2 constrains the scale values 
to be powers of 2, such as 2 or 0.5, while 
none removes any constraint on the scale 
values.

Max. Scale Value Sets the maximum allowed scale values. 
SOS filter scaling applies the Max. Scale 
Value limit only when you set Scale 
Value Constraint to a value other than 
unit (the default setting). Note that 
setting a maximum scale value removes 
any other limits on the scale values.

Revert to Original Filter Returns your filter to the original 
scaling. Being able to revert to your 
original filter makes it easier to assess 
the results of scaling your filter.

Parameter Description and Valid Value 
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Example—Scale An SOS Filter
Start the process by designing a lowpass elliptical filter in FDATool.

1 Launch FDATool.

2 In Response Type, select Lowpass.

3 In Design Method, select IIR and Elliptic from the IIR design methods list.

4 Select Minimum Order for the filter.

5 Switch the frequency units by choosing Normalized(0 to 1) from the Units 
list.

6 To set the passband specifications, enter 0.45 for wpass and 0.55 for wstop. 
Finally, in Magnitude Specifications, set Astop to 60.

7 Click Design Filter to design the filter.

After FDATool finishes designing the filter, you see the following plot and 
settings in the tool.
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You kept the Options setting for Match exactly as both, meaning the filter 
design matches the specification for the passband and the stopband.

8 To switch to scaling the filter, select Edit—>Reorder and Scale 
Second-Order Sections from the menu bar.

Your selection opens the Reordering and Scaling Second-Order Sections 
dialog shown here.
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9 To see the filter coefficients, return to FDATool and select Filter 
Coefficients from the Analysis menu. FDATool displays the coefficients 
and scale values in FDATool.
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With the coefficients displayed you can see the effects of scaling your filter 
directly in the scale values and filter coefficients.

Now try scaling the filter in a few different ways. First scale the filter to 
maximize the SNR.

1 Return to the Reordering and Scaling Second-Order Sections dialog and 
select None for Reordering in the left pane. This prevents FDATool from 
reordering the filter sections when you rescale the filter. 

2 Move the No Overflow—High SNR slider from No Overflow to High SNR.

3 Click Apply to scale the filter and leave the dialog open.

After a few moments, FDATool updates the coefficients displayed so you see 
the new scaling, as shown here.
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All of the scale factors are now 1, and the SOS matrix of coefficients shows 
that none of the numerator coefficients are 1 and the first denominator 
coefficient of each section is 1.

4 Click Revert to Original Filter to restore the filter to the original settings 
for scaling and coefficients.
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Reordering the Sections of Second-Order Section Filters
FDATool design most discrete-time filters in second-order sections. Generally, 
SOS filters resist the effects of quantization changes when you create 
fixed-point filters. After you have a second-order section filter in FDATool, 
either one you designed in the tool, or one you imported, FDATool provides the 
capability to change the order of the sections that compose the filter.

Any SOS filter in FDATool allows reordering of the sections.

Switching FDATool to Reorder Filters
To reorder the sections of a filter, you access the Reorder and Scaling of 
Second-Order Sections dialog in FDATool.

With your SOS filter in FDATool, select
Edit—>Reorder and Scale Second-Order Sections from the menu bar. 
FDATool returns the reordering dialog shown here with the default settings.
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Controls on the Reordering and Scaling of 
Second-Order Sections Dialog
In this dialog, the left-hand side contains options for reordering SOS filters. On 
the right you see the scaling options. These are independent—reordering your 
filter does not require scaling (note the Scale option) and scaling does not 
require that you reorder your filter (note the None option under Reordering). 
For more about scaling SOS filters, refer to “Scaling Second-Order Section 
Filters” on page 6-30 and to scale in the reference section.
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Reordering SOS filters involves using the options in the Reordering and 
Scaling of Second-Order Sections dialog. The following table lists each 
reorder option and provides a description of what the option does.

Control Option Description

Auto Reorders the filter sections to minimize the 
output noise power of the filter. Note that 
different ordering applies to each specification 
type, such as lowpass or highpass. Automatic 
ordering adapts to the specification type of your 
filter.

None Does no reordering on your filter. Selecting 
None lets you scale your filter without 
applying reordering at the same time. When 
you access this dialog with a current filter, this 
is the default setting—no reordering is applied.

Least selective section 
to most selective 
section

Rearranges the filter sections so the least 
restrictive (lowest Q) section is the first section 
and the most restrictive (highest Q) section is 
the last section. 

Most selective section 
to least selective 
section

Rearranges the filter sections so the most 
restrictive (highest Q) section is the first 
section and the least restrictive (lowest Q) 
section is the last section.

Custom reordering Lets you specify the section ordering to use by 
enabling the Numerator Order and 
Denominator Order options

Numerator Order Specify new ordering for the sections of your 
SOS filter. Enter a vector of the indices of the 
sections in the order in which to rearrange 
them. For example, a filter with five sections 
has indices 1, 2, 3, 4, and 5. To switch the 
second and fourth sections, the vector would be 
[1,4,3,2,5].
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Example—Reorder an SOS Filter
With FDATool open and a second-order filter as the current filter, you use the 
following process to access the reordering capability and reorder you filter. 
Start by launching FDATool from the command prompt.

1 Enter fdatool at the command prompt to launch FDATool.

2 Design a lowpass Butterworth filter with order 10 and the default frequency 
specifications by entering the following settings:

- Under Response Type select Lowpass.

Use Numerator Order Rearranges the denominators in the order 
assigned to the numerators.

Specify Lets you specify the order of the denominators, 
rather than using the numerator order. Enter 
a vector of the indices of the sections to specify 
the order of the denominators to use. For 
example, a filter with five sections has indices 
1, 2, 3, 4, and 5. To switch the second and 
fourth sections, the vector would be [1,4,3,2,5].

Use Numerator Order Reorders the scale values according to the 
order of the numerators.

Specify Lets you specify the order of the scale values, 
rather than using the numerator order. Enter 
a vector of the indices of the sections to specify 
the order of the denominators to use. For 
example, a filter with five sections has indices 
1, 2, 3, 4, and 5. To switch the second and 
fourth sections, the vector would be [1,4,3,2,5].

Revert to Original 
Filter

Returns your filter to the original section 
ordering. Being able to revert to your original 
filter makes comparing the results of changing 
the order of the sections easier to assess.

Control Option Description
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- Under Design Method, select IIR and Butterworth from the list.

- Specify the order equal to 10 in Specify order under Filter Order.

- Keep the default Fs and Fc values in Frequency Specifications.

3 Click Design Filter.

FDATool design the Butterworth filter and returns your filter as a 
Direct-Form II filter implemented with second-order sections. You see the 
specifications in the Current Filter Information area.

With the second-order filter in FDATool, reordering the filter uses the 
Reordering and Scaling of Second-Order Sections feature in FDATool 
(also available in Filter Visualization Tool, fvtool).

4 To reorder your filter, select Edit—>Reorder and Scale Second-Order 
Sections from the FDATool menus. FDATool opens the following dialog that 
controls reordering of the sections of your filter.
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Now you are ready to reorder the sections of your filter. Note that FDATool 
performs the reordering on the current filter in the session.

Use Least Selective to Most Selective Section Reordering
To let FDATool reorder your filter so the least selective section is first and the 
most selective section is last, perform the following steps in the Reordering 
and Scaling of Second-Order Sections dialog.

1 In Reordering, select Least selective section to most selective section.

2 To prevent filter scaling at the same time, clear Scale in Scaling.

3 In FDATool, select View—>SOS View from the menu bar so you see the 
sections of your filter displayed in FDATool.
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4 In the SOS View dialog, select Individual sections. Making this choice 
configures FDATool to show the magnitude response curves for each section 
of your filter in the analysis area.

5 Back in the Reordering and Scaling of Second-Order Sections dialog, 
click Apply to reorder your filter according to the Qs of the filter sections, 
and keep the dialog open. In response, FDATool presents the responses for 
each filter section (there should be five sections) in the analysis area.

In the next two figures you can compare the ordering of the sections of your 
filter. In the first figure, your original filter sections appear. In the second 
figure, the sections have been rearranged from least selective to most 
selective.
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You see what reordering does, although the result is a bit subtle. Now try 
custom reordering the sections of your filter or using the most selective to least 
selective reordering option.
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Viewing SOS Filter Sections
Since you can design and reorder the sections of SOS filters, FDATool provides 
the ability to view the filter sections in the analysis area—SOS View. Once you 
have a second-order section filter as your current filter in FDATool, you turn 
on the SOS View option to see the filter sections individually, or cumulatively, 
or even only some of the sections. Enabling SOS View puts FDATool in a mode 
where all second-order section filters display sections until you disable the SOS 
View option. SOS View mode applies to any analysis you display in the analysis 
area. For example, if you configure FDATool to show the phase responses for 
filters, enabling SOS View means FDATool displays the phase response for 
each section of SOS filters.

Controls on the SOS View Dialog
SOS View uses a few options to control how FDATool displays the sections, or 
which sections to display. When you select View—>SOS View from the 
FDATool menu bar, you see this dialog containing options to configure SOS 
View operation.
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By default, SOS View shows the overall response of SOS filters. Options in the 
SOS View dialog let you change the display. This table lists all the options and 
describes the effects of each.

Option Description

Overall Filter This is the familiar display in FDATool. 
For a second-order section filter you see 
only the overall response rather than the 
responses for the individual sections. This 
is the default configuration.

Individual sections When you select this option, FDATool 
displays the response for each section as a 
curve. If your filter has five sections you 
see five response curves, one for each 
section, and they are independent. 
Compare to Cumulative sections.

Cumulative sections When you select this option, FDATool 
displays the response for each section as 
the accumulated response of all prior 
sections in the filter. If your filter has five 
sections you see five response curves:

• The first curve plots the response for the 
first filter section.

• The second curve plots the response for 
the combined first and second sections.

• The third curve plots the response for 
the first, second, and third sections 
combined. 

And so on until all filter sections appear in 
the display. The final curve represents the 
overall filter response. Compare to 
Cumulative sections and Overall Filter.
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Example—View the Sections of SOS Filters
After you design or import an SOS filter in to FDATool, the SOS view option 
lets you see the per section performance of your filter. Enabling SOS View from 

User defined Here you define which sections to display, 
and in which order. Selecting this option 
enables the text box where you enter a cell 
array of the indices of the filter sections. 

Each index represents one section. 
Entering one index plots one response. 
Entering something like {1:2} plots the 
combined response of sections 1 and 2. If 
you have a filter with four sections, the 
entry {1:4} plots the combined response for 
all four sections, whereas {1,2,3,4} plots 
the response for each section.

Note that after you enter the cell array, 
you need to click OK or Apply to update 
the FDATool analysis area to the new SOS 
View configuration.

Use secondary-scaling 
points

This directs FDATool to use the secondary 
scaling points in the sections to determine 
where to split the sections. This option 
applies only when the filter is a df2sos or 
df1tsos filter. For these structures, the 
secondary scaling points refer to the 
scaling locations between the recursive 
and the nonrecursive parts of the section 
(the "middle" of the section). By default, 
secondary -scaling points is not enabled.

You use this with the Cumulative 
sections option only.

Option Description
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the View menu in FDATool configures the tool to display the sections of SOS 
filters whenever the current filter is an SOS filter.

These next steps demonstrate using SOS View to see your filter sections 
displayed in FDATool.

1 Launch FDATool.

2 Create a lowpass SOS filter using the Butterworth design method. Specify 
the filter order to be 6. Using a low order filter makes seeing the sections 
more clear.

3 Design your new filter by clicking Design Filter.

FDATool design your filter and show you the magnitude response in the 
analysis area. In Current Filter Information you see the specifications for 
your filter. You should have a sixth-order Direct-Form II, Second-Order 
Sections filter with three sections.

4 To enable SOS View, select View—>SOS View from the menu bar. 

Now you see the SOS View dialog in FDATool. Options here let you specify 
how to display the filter sections.
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By default the analysis area in FDATool shows the overall filter response, 
not the individual filter section responses. This dialog lets you change the 
display configuration to see the sections.

5 To see the magnitude responses for each filter section, select Individual 
sections.

6 Click Apply to update FDATool to display the responses for each filter 
section. The analysis area changes to show you something like the following 
figure.
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If you switch FDATool to display filter phase responses, you see the phase 
response for each filter section in the analysis area.
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7 To define your own display of the sections, you use the User defined option 
and enter a vector of section indices to display. Now we display the first 
section response, and the cumulative first, second. and third sections 
response:

- Select User defined to enable the text entry box in the dialog.

- Enter the cell array {1,1:3} to specify that FDATool should display the 
response of the first section and the cumulative response of the first three 
sections of the filter.

8 To apply your new SOS View selection, click Apply or OK (which closes the 
SOS View dialog).

In the FDATool analysis area you see two curves—one for the response of 
the first filter section and one for the combined response of sections 1, 2, and 
3.
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Importing and Exporting Quantized Filters
When you import a quantized filter into FDATool, or export a quantized filter 
from FDATool to your workspace, the import and export functions use objects 
and you specify the filter as a variable. This contrasts with importing and 
exporting nonquantized filters, where you select the filter structure and enter 
the filter numerator and denominator for the filter transfer function.

You have the option of exporting quantized filters to your MATLAB workspace, 
exporting them to text files, or exporting them to MAT-files. 

This section includes:

• “Example—Import Quantized Filters”

• “To Export Quantized Filters”

For general information about importing and exporting filters in FDATool, 
refer to “Filter Design and Analysis Tool” section in your Signal Processing 
Toolbox User’s Guide.

FDATool imports quantized filters having the following structures:

• Direct form I

• Direct form II

• Direct form I transposed

• Direct form II transposed

• Direct form symmetric FIR

• Direct form antisymmetric FIR

• Lattice allpass

• Lattice AR

• Lattice MA minimum phase

• Lattice MA maximum phase

• Lattice ARMA

• Lattice coupled-allpass

• Lattice coupled-allpass power complementary
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Example—Import Quantized Filters
After you design or open a quantized filter in your MATLAB workspace, 
FDATool lets you import the filter for analysis. Follow these steps to import 
your filter in to FDATool:

1 Open FDATool.

2 Select Filter->Import Filter from the menu bar.

In the lower region of FDATool, the Design Filter pane becomes Import 
Filter, and options appear for importing quantized filters, as shown.

3 From the Filter Structure list, select Filter object.

The options for importing filters change to include:

- Discrete filter—Enter the variable name for the discrete-time, fixed-point 
filter in your workspace.

- Frequency units—Select the frequency units from the Units list under 
Sampling Frequency, and specify the sampling frequency value in Fs if 
needed. Your sampling frequency must correspond to the units you select. 
For example, when you select Normalized (0 to 1), Fs defaults to one. 
But if you choose one of the frequency options, enter the sampling 
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frequency in your selected units. If you have the sampling frequency 
defined in your workspace as a variable, enter the variable name for the 
sampling frequency.

4 Click Import to import the filter.

FDATool checks your workspace for the specified filter. It imports the filter 
if it finds it, displaying the magnitude response for the filter in the analysis 
area. If it cannot find the filter it returns an FDATool Error dialog.

Note  If, during any FDATool session, you switch to quantization mode and 
create a fixed-point filter, FDATool remains in quantization mode. If you 
import a double-precision filter, FDATool automatically quantizes your 
imported filter applying the most recent quantization parameters.

When you check the current filter information for your imported filter, it will 
indicate that the filter is Source: imported (quantized) even though you did 
not import a quantized filter.

To Export Quantized Filters
To save your filter design, FDATool lets you export the quantized filter to your 
MATLAB workspace (or you can save the current session in FDATool). When 
you choose to save the quantized filter by exporting it, you select one of these 
options:

• Export to your MATLAB workspace

• Export to a text file

• Export to a MAT-file

Example—Export Coefficients or Objects to the Workspace
You can save the filter as filter coefficients variables or as a dfilt filter object 
variable. To save the filter to the MATLAB workspace:

1 Select Export from the File menu. The Export dialog appears.

2 Select Workspace from the Export To list.
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3 Select Coefficients from the Export As list to save the filter coefficients or 
select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator and 
Denominator options under Variable Names. For objects, assign the 
variable name in the Discrete or Quantized filter option. If you have 
variables with the same names in your workspace and you want to overwrite 
them, select the Overwrite Variables box.

5 Click the OK button

If you try to export the filter to a variable name that exists in your 
workspace, and you did not select Overwrite existing variables, FDATool 
stops the export operation and returns a warning that the variable you 
specified as the quantized filter name already exists in the workspace. To 
continue to export the filter to the existing variable, click OK to dismiss the 
warning dialog, select the Overwrite existing variables check box and click 
OK or Apply.

Getting Filter Coefficients after Exporting
To extract the filter coefficients from your quantized filter after you export the 
filter to MATLAB, use the celldisp function in MATLAB. For example, create 
a quantized filter in FDATool and export the filter as Hq. To extract the filter 
coefficients for Hq, use

celldisp(Hq.referencecoefficients)

which returns the cell array containing the filter reference coefficients, or

celldisp(Hq.quantizedcoefficients)

to return the quantized coefficients.

Example—Exporting as a Text File
To save your quantized filter as a text file, follow these steps:

1 Select Export from the File menu.

2 Select Text-file under Export to.
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3 Click OK to export the filter and close the dialog. Click Apply to export the 
filter without closing the Export dialog. Clicking Apply lets you export your 
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to Text-file dialog appears. This is the 
standard Microsoft Windows save file dialog.

4 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a text file with the name you 
provided, and the MATLAB editor opens, displaying the file for editing.

Example—Exporting as a MAT-File
To save your quantized filter as a MAT-file, follow these steps:

1 Select Export from the File menu.

2 Select MAT-file under Export to.

3 Assign a variable name for the filter.

4 Click OK to export the filter and close the dialog. Click Apply to export the 
filter without closing the Export dialog. Clicking Apply lets you export your 
quantized filter to more than one name without leaving the Export dialog.

The Export Filter Coefficients to MAT-file dialog appears. This is the 
standard Microsoft Windows save file dialog.

5 Choose or enter a directory and filename for the text file and click OK.

FDATool exports your quantized filter as a MAT-file with the specified 
name.
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Importing XILINX Coefficient (.COE) Files
You can import XILINX coefficients (.coe) files into FDATool to create 
quantized filters directly using the imported filter coefficients.

Example—Import XILINX .COE Files
To use the new import file feature:

1 Select File->Import Filter From XILINX Coefficient (.COE) File in 
FDATool.

2 In the Import Filter From XILINX Coefficient (.COE) File dialog, find and 
select the .coe file to import.

3 Click Open to dismiss the dialog and start the import process.

FDATool imports the coefficient file and creates a quantized, single-section, 
direct-form FIR filter.
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Transforming Filters
The toolbox provides functions for transforming filters between various forms. 
When you use FDATool with the Toolbox installed, a side bar button and 
a menu bar option enable you to use the Transform Filter panel to transform 
filters as well as using the command line functions.

From the selection on the FDATool menu bar—Transformations—you can 
transform lowpass FIR and IIR filters to a variety of passband shapes.

You can convert your FIR filters from:

• Lowpass to lowpass.

• Lowpass to highpass.

For IIR filters, you can convert from:

• Lowpass to lowpass.

• Lowpass to highpass.

• Lowpass to bandpass.

• Lowpass to bandstop.

When you click the Transform Filter button, , on the side bar, the 
Transform Filter panel opens in FDATool, as shown here.
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Your options for Original filter type refer to the type of your current filter to 
transform. If you select lowpass, you can transform your lowpass filter to 
another lowpass filter or to a highpass filter, or to numerous other filter 
formats, real and complex. 

Note  When your original filter is an FIR filter, both the FIR and IIR 
transformed filter type options appear on the Transformed filter type list. 
Both options remain active because you can apply the IIR transforms to an 
FIR filter. If your source is as IIR filter, only the IIR transformed filter options 
show on the list.

Original Filter Type
Select the magnitude response of the filter you are transforming from the list. 
Your selection changes the types of filters you can transform to. For example:

• When you select Lowpass with an IIR filter, your transformed filter type can 
be

- Lowpass
- Highpass
- Bandpass
- Bandstop
- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

• When you select Lowpass with an FIR filter, your transformed filter type 
can be

- Lowpass
- Lowpass (FIR)
- Highpass
- Highpass (FIR) narrowband
- Highpass (FIR) wideband
- Bandpass
- Bandstop
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- Multiband
- Bandpass (complex)
- Bandstop (complex)
- Multiband (complex)

In the following table you see each available original filter type and all the 
types of filter to which you can transform your original.

Original Filter Available Transformed Filter Types

Lowpass FIR • Lowpass

• Lowpass (FIR)

• Highpass

• Highpass (FIR) narrowband

• Highpass (FIR) wideband

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Lowpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)



6 Using FDATool with the Filter Design Toolbox

6-62

Highpass FIR • Lowpass

• Lowpass (FIR) narrowband

• Lowpass (FIR) wideband

• Highpass (FIR)

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Highpass IIR • Lowpass

• Highpass

• Bandpass

• Bandstop

• Multiband

• Bandpass (complex)

• Bandstop (complex)

• Multiband (complex)

Bandpass FIR • Bandpass

• Bandpass (FIR)

Bandpass IIR Bandpass

Bandstop FIR • Bandstop

• Bandstop (FIR)

Bandstop IIR Bandstop

Original Filter Available Transformed Filter Types
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Note also that the transform options change depending on whether your 
original filter is FIR or IIR. Starting from an IIR filter, you can transform to 
IIR or FIR forms. With an IIR original filter, you are limited to IIR target 
filters.

After selecting your response type, use Frequency point to transform to 
specify the magnitude response point in your original filter to transfer to your 
target filter. Your target filter inherits the performance features of your 
original filter, such as passband ripple, while changing to the new response 
form.

For more information about transforming filters, refer to “Frequency 
Transformations for Real Filters” on page 5-11 and “Frequency 
Transformations for Complex Filters” on page 5-26.

Frequency Point to Transform
The frequency point you enter in this field identifies a magnitude response 
value (in dB) on the magnitude response curve. 

When you enter frequency values in the Specify desired frequency location 
option, the frequency transformation tries to set the magnitude response of the 
transformed filter to the value identified by the frequency point you enter in 
this field.

While you can enter any location, generally you should specify a filter passband 
or stopband edge, or a value in the passband or stopband.

The Frequency point to transform sets the magnitude response at the values 
you enter in Specify desired frequency location. Specify a value that lies at 
either the edge of the stopband or the edge of the passband.

If, for example, you are creating a bandpass filter from a highpass filter, the 
transformation algorithm sets the magnitude response of the transformed 
filter at the Specify desired frequency location to be the same as the 
response at the Frequency point to transform value. Thus you get a bandpass 
filter whose response at the low and high frequency locations is the same. 
Notice that the passband between them is undefined. In the next two figures 
you see the original highpass filter and the transformed bandpass filter.

For more information about transforming filters, refer to “Digital Frequency 
Transformations” on page 5-1.
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Transformed Filter Type
Select the magnitude response for the target filter from the list. The complete 
list of transformed filter types is:

• Lowpass
• Lowpass (FIR)
• Highpass
• Highpass (FIR) narrowband
• Highpass (FIR) wideband
• Bandpass
• Bandstop
• Multiband
• Bandpass (complex)
• Bandstop (complex)
• Multiband (complex)

Not all types of transformed filters are available for all filter types on the 
Original filter types list. You can transform bandpass filters only to bandpass 
filters. Or bandstop filters to bandstop filters. Or IIR filters to IIR filters.

For more information about transforming filters, refer to “Frequency 
Transformations for Real Filters” on page 5-11 and “Frequency 
Transformations for Complex Filters” on page 5-26.

Specify Desired Frequency Location
The frequency point you enter in Frequency point to transform matched 
a magnitude response value. At each frequency you enter here, the 
transformation tries to make the magnitude response the same as the response 
identified by your Frequency point to transform value.

While you can enter any location, generally you should specify a filter passband 
or stopband edge, or a value in the passband or stopband.

For more information about transforming filters, refer to “Digital Frequency 
Transformations” on page 5-1.

Example—Transform Filters
To transform the magnitude response of your filter, use the Transform Filter 
option on the side bar.
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1 Design or import your filter into FDATool.

2 Click Transform Filter, , on the side bar.

FDATool opens the Transform Filter panel in FDATool.

3 From the Original filter type list, select the response form of the filter you 
are transforming.

When you select the type, whether is lowpass, highpass, bandpass, or 
bandstop, FDATool recognizes whether your filter form is FIR or IIR. Using 
both your filter type selection and the filter form, FDATool adjusts the 
entries on the Transformed filter type list to show only those that apply to 
your original filter.

4 Enter the frequency point to transform value in Frequency point to 
transform. Notice that the value you enter must be in KHz; for example, 
enter 0.1 for 100 Hz or 1.5 for 1500 Hz.

5 From the Transformed filter type list, select the type of filter you want to 
transform to.

Your filter type selection changes the options here. 

- When you pick a lowpass or highpass filter type, you enter one value in 
Specify desired frequency location.
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- When you pick a bandpass or bandstop filter type, you enter two values— 
one in Specify desired low frequency location and one in 
Specify desired high frequency location. Your values define the edges 
of the passband or stopband.

- When you pick a multiband filter type, you enter values as elements in a 
vector in Specify a vector or desired frequency locations— one element for 
each desired location. Your values define the edges of the passbands and 
stopbands.

After you click Transform Filter, FDATool transforms your filter, 
displays the magnitude response of your new filter, and updates the 
Current Filter Information to show you that your filter has been 
transformed. In the filter information, the Source is Transformed.

For example, the figure shown here includes the magnitude response 
curves for two filter. The original filter is a lowpass filter with rolloff 
between 0.2 and 0.25. The transformed filter is a lowpass filter with rolloff 
region between 0.8 and 0.85.
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- To transform your lowpass filter to a highpass filter, select Lowpass to 
Highpass.

When you select Lowpass to Highpass, FDATool returns the dialog shown 
here. More information about the Select Transform... dialog follows the 
figure.
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To demonstrate the effects of selecting Narrowband Highpass or Wideband 
Highpass, the next figure presents the magnitude response curves for a source 
lowpass filter after it is transformed to both narrow- and wideband highpass 
filters. For comparison, the response of the original filter appears as well.
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For the narrowband case, the transformation algorithm essentially reverses 
the magnitude response, like reflecting the curve around the y-axis, then 
translating the curve to the right until the origin lies at 1 on the x-axis. After 
reflecting and translating, the passband at high frequencies is the reverse of 
the passband of the original filter at low frequencies with the same rolloff and 
ripple characteristics.
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Designing Multirate Filters in FDATool
Not only can you design multirate filters from the MATLAB command prompt, 
FDATool provides the same design capability in a graphical user interface tool. 
By starting FDATool and switching to the multirate filter design mode you 
have access to all of the multirate design capabilities in the toolbox—
decimators, interpolators, and fractional rate changing filters, among others.

Switching FDATool to Multirate Filter Design Mode
The multirate filter design mode in FDATool lets you specify and design a wide 
range of multirate filters, including decimators and interpolators.

With FDATool open, click Create a Multirate Filter, , on the side bar. You 
see FDATool switch to the design mode showing the multirate filter design 
options. Shown in the figure below is the default multirate design configuration 
that designs an interpolating filter with an interpolation factor of 2. The design 
uses the current FIR filter in FDATool.
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When the current filter in FDATool is not an FIR filter, the multirate filter 
design panel removes the Use current FIR filter option and selects the Use 
default Nyquist FIR filter option instead as the default setting.

Controls on the Multirate Design Panel
You see the options that allow you to design a variety of multirate filters. The 
Type option is your starting point. From this list you select the multirate filter 
to design. Based on your selection, other options change to provide the controls 
you need to specify your filter.
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Notice the separate sections of the design panel. On the left is the filter type 
area where you choose the type of multirate filter to design and set the filter 
performance specifications.

In the center section FDATool provides choices that let you pick the filter 
design method to use.

The rightmost section offers options that control filter configuration when you 
select Cascaded-Integrator Comb (CIC) as the design method in the center 
section. Both the Decimator type and Interpolator type filters let you use the 
Cascaded-Integrator Comb (CIC) option to design multirate filters.
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Here are all the options available when you switch to multirate filter design 
mode. Each option listed includes a brief description of what the option does 
when you use it.

Option for Selecting and 
Configuring Your Filter

Description

Type Specifies the type of multirate filter to design. Choose from 
Decimator, Interpolator, or Fractional-rate convertor.

• When you choose Decimator, set Decimation Factor to specify 
the decimation to apply.

• When you choose Interpolator, set Interpolation Factor to 
specify the interpolation amount applied.

• When you choose Fractional-rate convertor, set both 
Interpolation Factor and Decimation Factor. FDATool uses 
both to determine the fractional rate change by dividing 
Interpolation Factor by Decimation Factor to determine the 
fractional rate change in the signal.

You should select values for interpolation and decimation that are 
relatively prime. When your interpolation factor and decimation 
factor are not relatively prime, FDATool reduces the 
interpolation/decimation fractional rate to the lowest common 
denominator and issues a message in the status bar in FDATool. 

For example, if the interpolation factor is 6 and the decimation 
factor is 3, FDATool reduces 6/3 to 2/1 when you design the rate 
changer. But if the interpolation factor is 8 and the decimation 
factor is 3, FDATool designs the filter without change.

Interpolation Factor Use the up-down control arrows to specify the amount of 
interpolation to apply to the signal. Factors range upwards from 2.

Decimation Factor Use the up-down control arrows to specify the amount of decimation 
to apply to the signal. Factors range upwards from 2.

Sampling Frequency No settings here. Just Units and Fs below.
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To see the difference between hold interpolation and linear interpolation, the 
following figure presents a sine wave signal s1 in three forms:

Units Specify whether Fs is specified in Hz, kHz, MHz, GHz, or Normalized 
(0 to 1) units.

Fs Set the full scale sampling frequency in the frequency units you 
specified in Units. When you select Normalized for Units, you do 
not enter a value for Fs. 

Options for Designing Your Filter Description

Use current FIR filter Directs FDATool to use the current FIR filter to design the 
multirate filter. If the current filter is an IIR form, you 
cannot select this option. You cannot design multirate 
filters with IIR structures.

Use a default Nyquist Filter Tells FDATool to use the default Nyquist design method 
when the current filter in FDATool is not an FIR filter.

Cascaded Integrator-Comb (CIC) Design CIC filters using the options provided in the 
right-hand area of the multirate design panel.

Hold Interpolator (Zero-order) When you design an interpolator, you can specify how the 
filter sets interpolated values between signal values. 
When you select this option, the interpolator applies the 
most recent signal value for each interpolated value until 
it processes the next signal value. This is similar to 
sample-and-hold techniques. Compare to the Linear 
Interpolator option.

Linear Interpolator (First-order) When you design an interpolator, you can specify how the 
filter sets interpolated values between signal values. 
When you select this option, the interpolator applies 
linear interpolation between signal value to set the 
interpolated value until it processes the next signal value. 
Compare to the Linear Interpolator option.

Option for Selecting and 
Configuring Your Filter 

Description
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• The top subplot in the figure presents s1 without interpolation.

• The middle subplot shows signal s1 interpolated by a linear interpolator with 
an interpolation factor of 5.

• The bottom subplot shows signal s1 interpolated by a hold interpolator with 
an interpolation factor of 5. 

You see in the bottom figure the sample and hold nature of hold interpolation, 
and the first-order linear interpolation applied by the linear interpolator.

We used FDATool to create interpolators similar to the following code for the 
figure:

• Linear interpolator—hm=mfilt.linearinterp(5)
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• Hold interpolator—hm=mfilt.holdinterp(5)

Example—Design a Fractional Rate Convertor
To introduce the process you use to design a multirate filter in FDATool, this 
example uses the options to design a fractional rate convertor which uses 7/3 
as the fractional rate. Begin the design by creating a default lowpass FIR filter 
in FDATool. You do not have to begin with this FIR filter, but the default filter 
works fine.

1 Launch FDATool.

2 Select the settings for a minimum-order lowpass FIR filter, using the 
Equiripple design method.

3 When FDATool displays the magnitude response for the filter, click  in 
the side bar. FDATool switches to multirate filter design mode, showing the 
multirate design panel, shown here.

Options for Designing 
CIC Filters

Description

Differential Delay Sets the differential delay for the CIC filter. Usually a value of one or 
two is appropriate.

Number of Sections Specifies the number of sections in a CIC decimator. The default 
number of sections is 2 and the range is any positive integer.
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4 To design a fractional rate filter, select Fractional-rate convertor from 
the Type list. The Interpolation Factor and Decimation Factor options 
become available.

5 In Interpolation Factor, use the up arrow to set the interpolation factor 
to 7.

6 Using the up arrow in Decimation Factor, set 3 as the decimation factor.
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7 Select Use a default Nyquist FIR filter. You could design the rate 
convertor with the current FIR filter as well.

8 Enter 24000 to set Fs.

9 Click Create Multirate Filter.

After designing the filter, FDATool returns with the specifications for your 
new filter displayed in Current Filter Information, and shows the 
magnitude response of the filter.
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You can test the filter by exporting it to your workspace and using it to filter 
a signal. For information about exporting filters, refer to “Importing and 
Exporting Quantized Filters” on page 6-53.

Example—Design a CIC Decimator for 8 Bit Input/Output Data
Another kind of filter you can design in FDATool is Cascaded-Integrator Comb 
(CIC) filters. FDATool provides the options needed to configure your CIC to 
meet your needs.

1 Launch FDATool and design the default FIR lowpass filter. Designing 
a filter at this time is an optional step.

2 Switch FDATool to multirate design mode by clicking  on the side bar.

3 For Type, select Decimator, and set Decimation Factor to 3.

4 To design the decimator using a CIC implementation, select 
Cascaded-Integrator Comb (CIC). This enables the CIC-related options on 
the right of the panel.

5 Set Differential Delay to 2. Generally, 1 or 2 are good values to use.

6 Enter 2 for the Number of Sections. Settings in the multirate design panel 
should look like this.
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7 Click Create Multirate Filter.

FDATool designs the filter, shows the magnitude response in the analysis 
area, and updates the current filter information to show that you designed 
a tenth-order cascaded-integrator comb decimator with two sections. Notice 
the source is Multirate Design, indicating you used the multirate design 
mode in FDATool to make the filter. FDATool should look like this now.

Designing other multirate filters follows the same pattern.

To design other multirate filters, do one of the following depending on the filter 
to design:
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• To design an interpolator, select one of these options.
- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)
- Hold Interpolator (Zero-order)
- Linear Interpolator (First-order)

• To design a decimator, select from these options.

- Use a default Nyquist FIR filter
- Cascaded-Integrator Comb (CIC)

• To design a fractional-rate convertor, select Use a default Nyquist FIR 
filter. 

Quantizing Multirate Filters
After you design a multirate filter in FDATool, the quantization features 
enable you to convert your floating-point multirate filter to fixed-point 
arithemetic.

Note  CIC filters are always fixed-point.

With your multirate filter as the current filter in FDATool, you can quantize 
your filter and use the quantization options to specify the fixed-point 
arithmetic the filter uses.

To Quantize and Configure Multirate Filters
Follow these steps to convert your multirate filter to fixed-point arithmetic and 
set the fixed-point options.

1 Design or import your multirate filter and make sure it is the current filter 
in FDATool.

2 Click the Set Quantization Parameters button on the side bar.

3 From the Filter Arithmetic list on the Filter Arithmetic pane, select 
Fixed-point. If your filter is a CIC filter, the Fixed-point option is enabled 
by default and you do not set this option.
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4 In the quantization panes, set the options for your filter. Set options for 
Coefficients, Input/Output, and Filter Internals.

5 Click Apply.

When you current filter is a CIC filter, the options on the Input/Output and 
Filter Internals panes change to provide specific features for CIC filters.

Input/Output
The options that specify how your CIC filter uses input and output values are 
listed in the table below.

Option Name Description

Input Word Length Sets the word length used to represent the 
input to a filter.

Input fraction length Sets the fraction length used to interpret 
input values to filter.

Input range (+/-) Lets you set the range the inputs 
represent. You use this instead of the 
Input fraction length option to set the 
precision. When you enter a value x, the 
resulting range is -x to x. Range must be 
a positive integer.

Output word length Sets the word length used to represent the 
output from a filter.

Avoid overflow Directs the filter to set the fraction length 
for the input to prevent the output values 
from exceeding the available range as 
defined by the word length. Clearing this 
option lets you set Output fraction 
length.
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The available options change when you change the Filter precision setting. 
Moving from Full to Specify all adds increasing control by enabling more 
input and output word options.

Filter Internals
With a CIC filter as your current filter, the Filter precision option on the 
Filter Internals pane includes modes for controlling the filter word and 
fraction lengths.

There are four usage modes for this (the same mode you select for the 
FilterInternals property in CIC filters at the MATLAB prompt).

• Full—All word and fraction lengths set to Bmax + 1, called Baccum by harris 
in [14]. Full Precision is the default setting.

• Minimum section word lengths—Set the section word lengths to minimum 
values that meet roundoff noise and output requirements as defined by 
Hogenauer in “Hogenauer, E. B., “An Economical Class of Digital Filters for 
Decimation and Interpolation,” IEEE Transactions on Acoustics, Speech, 
and Signal Processing, Vol. ASSP-29, No. 2, April 1981, pp. 155-162.” on 
page A-3.

• Specify word lengths—Enables the Section word length option for you to 
enter word lengths for each section. Enter either a scalar to use the same 
value for every section, or a vector of values, one for each section.

• Specify all—Enables the Section fraction length option in addition to 
Section word length. Now you can provide both the word and fraction 
lengths for each section, again using either a scalar or a vector of values.

Output fraction length Sets the fraction length used to represent 
output values from a filter.

Output range (+/-) Lets you set the range the outputs 
represent. You use this instead of the 
Output fraction length option to set the 
precision. When you enter a value x, the 
resulting range is -x to x. Range must be 
a positive integer.

Option Name Description
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Realizing Filters as Simulink Subsystem Blocks
After you design or import a filter in FDATool, the realize model feature lets 
you create a Simulink subsystem block that implements your filter. The 
generated filter subsystem block uses the delay, gain, and sum blocks in fixed- 
point mode from Simulink. If you do not own Simulink Fixed Point, FDATool 
still realizes your model using blocks in fixed-point mode from Simulink, but 
you cannot run any model that includes your filter subsystem block in 
Simulink.

The block you realize from FDATool accepts only individual sample-based 
input, not vectors or frames as input. If you have input data in frames, consider 
unbuffering the input or converting the frames to sample-by-sample input in 
some other way.

About the Realize Model Panel in FDATool

Switching FDATool to realize model mode, by clicking on the sidebar, 
gives you access to the Realize Model panel and the options for realizing your 
quantized filter as a Simulink subsystem block.

On the panel, as shown here, are the options provided for configuring how 
FDATool realizes your model.

Model Options
Under Model, you set options that direct FDATool where to put your new 
subsystem block and what to name the block.
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Destination. Tells FDATool whether to put the new block in your current 
Simulink model or open a new Simulink model and add the block to that 
window. Select Current model to add the block to your current model, or select 
New model to create a new model for the block.

Block name. Provides FDATool with a name to assign to your block. When you 
realize your filter as a subsystem, the resulting block shows the name you enter 
here as the block name, positioned just below the block.

Overwrite block. Directs FDATool whether to overwrite an existing block with 
this block in the destination model. The result is that the new filter realization 
subsystem block replaces the existing filter subsystem block. Selecting this 
option replaces your existing filter realization subsystem block with the one 
you create when you click Realize Model. Clearing Overwrite block causes 
FDATool to create a new block in the destination model, rather than replacing 
the existing block.

Block Type Option
To realize your quantized filter as a subsystem block, the most appropriate 
choice is to select Fixed-point blocks from the list. When you are licensed to 
use the fixed-point blocks in Signal Processing Blockset, you have the option of 
realizing your model as either fixed- or floating-point blocks. Since your filter 
is designed to use quantized coefficients, the fixed-point blocks option usually 
matches your needs most closely. 

You can elect to realize your filter using floating-point blocks, with the 
understanding that while the coefficients and gains of your filter retain their 
fixed-point values (the filter uses the fixed-point values for both gain and 
coefficients, in floating-point format), the math performed during filtering uses 
floating-point arithmetic and does not truly match the output of your filter 
running in fixed-point mode. Although realizing your quantized filter with 
floating-point blocks is not recommended, selecting Floating-point blocks 
from the list creates your filter from blocks in Simulink and the Signal 
Processing Blockset.

If you do not own a license for Simulink Fixed Point, realizing your 
quantized filter as a subsystem generates a subsystem block that uses 
fixed-point blocks, but you cannot run or edit the block. If you use the filter 
subsystem in a Simulink model, you cannot run the model.
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Optimization Options
Four options enable you to tailor the way the realized model optimizes various 
filter features such as delays and gains. When you open the Realize Model 
panel, these options are selected by default.

Optimize for zero gains. Specify whether to remove zero-gain blocks from the 
realized filter.

Optimize for unity gains. Specify whether to replace unity-gain blocks with direct 
connections in the filter subsystem.

Optimize for -1 gains. Specify whether to replace negative unity-gain blocks with 
a sign change at the nearest sum block in the filter.

Optimize delay chains. Specify whether to replace cascaded chains of delay blocks 
with a single integer delay block to provide an equivalent delay.

Each of these options can optimize the way your filter performs in simulation 
and in code you might generate from your model. 

Example—Realize a Filter Using FDATool
After your quantized filter in FDATool is performing the way you want, with 
your desired phase and magnitude response, and with the right coefficients 
and form, follow these steps to realize your filter as a subsystem that you can 
use in a Simulink model.

1 Click Realize Model on the sidebar to change FDATool to realize model 
mode.

2 From the Destination list under Model, select either:

- Current model—to add the realized filter subsystem to your current model

- New model—to open a new Simulink model window and add your filter 
subsystem to the new window

3 Provide a name for your new filter subsystem in the Name field.

4 Decide whether to overwrite an existing block with this new one, and select 
or clear Overwrite block to direct FDATool which way to go—overwrite or 
not.
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5 Select Fixed-point blocks from the list in Block Type.

6 Select or clear the optimizations to apply.

- Optimize for zero gains—removes zero gain blocks from the model 
realization

- Optimize for unity gains—replaces unity gain blocks with direct 
connections to adjacent blocks

- Optimize for -1 gains—replaces negative gain blocks by a change of sign 
at the nearest sum block

- Optimize delay chains—replaces cascaded delay blocks with a single 
delay block that produces the equivalent gain

7 Click Realize Model to realize your quantized filter as a subsystem block 
according to the settings you selected.

If you double-click the filter block subsystem created by FDATool, you see the 
filter implementation in Simulink model form. Depending on the options you 
chose when you realized your filter, and the filter you started with, you might 
see one or more sections, or different architectures based on the form of your 
quantized filter. From this point on, the subsystem filter block acts like any 
other block that you use in Simulink models.

Supported Filter Structures
FDATool lets you realize discrete-time and multirate filters from the following 
forms:

Structure Description

firdecim Decimators based on FIR filters

firtdecim Decimators based on transposed FIR 
filters 

linearinterp Linear interpolators

firinterp Interpolators based on FIR filters

multirate polyphase Multirate filters
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holdinterp Interpolators that use the hold 
interpolation algorithm

dfilt.allpass Discrete-time filters with allpass 
structure

dfilt.cascadeallpass

dfilt.cascadewdfallpass

mfilt.iirdecim Decimators based on IIR filters

mfilt.iirwdfdecim

mfilt.iirinterp Interpolators based on IIR filters

mfilt.iirwdfinterp

dfilt.wdfallpass

Structure Description
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Getting Help for FDATool
To find out more about the buttons or options in the FDATool dialogs, use the 
What’s This? button to access context-sensitive help.

The What’s This? Option
To find information on a particular option or region of the dialog:

1 Click the What’s This? button .

Your cursor changes to .

2 Click the region or option of interest.

For example, click Turn quantization on to find out what this option does.

You can also select What’s this? from the Help menu to launch 
context-sensitive help.

Additional Help for FDATool
For help about importing filters into FDATool, or for details about using 
FDATool to create and analyze double-precision filters, refer to the “Filter 
Design and Analysis Tool Overview” in your Signal Processing Toolbox 
documentation.



6 Using FDATool with the Filter Design Toolbox

6-90



 

7
Reference for the 
Properties of Filter Objects

Fixed-Point Filter Properties (p. 7-3) Provides an overview and details of the properties of 
fixed-point filters

Adaptive Filter Properties (p. 7-103) Summarizes and details the properties of adaptive filters

Multirate Filter Properties (p. 7-117) Provides a summary and the details of the properties of 
multirate filters
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Overview
This chapter presents all of the properties for adaptive filters (adaptfilt 
objects), discrete-time filters (both floating-point and fixed-point dfilt 
objects), and multirate filters (mfilt objects).

• “Fixed-Point Filter Properties” on page 7-3

• “Adaptive Filter Properties” on page 7-103

• “Multirate Filter Properties” on page 7-117
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Fixed-Point Filter Properties
There is a distinction between fixed-point filters and quantized filters—
quantized filters represent a superset that includes fixed-point filters.

When dfilt objects have their Arithmetic property set to single or fixed, 
they are quantized filters. However, after you set the Arithmetic property to 
fixed, the resulting filter is both quantized and fixed-point. Fixed-point filters 
perform arithmetic operations without allowing the binary point to move in 
response to the calculation—hence the name fixed-point. You can find out more 
about fixed-point arithmetic in your Fixed-Point Toolbox documentation or 
from the Help system.

With the Arithmetic property set to single, meaning the filter uses 
single-precision floating-point arithmetic, the filter allows the binary point to 
move during mathematical operations, such as sums or products. Therefore 
these filters cannot be considered fixed-point filters. But they are quantized 
filters.

This section presents the properties for fixed-point filters, which includes all 
the properties for double-precision and single-precision floating-point filters as 
well.

Fixed-Point Objects and Filters
Fixed-point filters depend in part on fixed-point objects from the Fixed-Point 
Toolbox. You can see this when you display a fixed-point filter at the command 
prompt.

hd=dfilt.df2t
 
hd =
 
         FilterStructure: 'Direct-Form II Transposed'
              Arithmetic: 'double'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [0x1 double]

set(hd,'arithmetic','fixed')
hd
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hd =
 
         FilterStructure: 'Direct-Form II Transposed'
              Arithmetic: 'fixed'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
        OutputFracLength: 15             
                                         
         StateWordLength: 16             
          StateAutoScale: true           
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

Look at the States property, shown here

States: [1x1 embedded.fi]
The notation embedded.fi indicates that the states are being represented by 
fixed-point objects, usually called fi objects. If you take a closer look at the 
property States, you see how the properties of the fi object represent the values 
for the filter states.

hd.states
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ans =
 
[]

              DataType: Fixed
               Scaling: BinaryPoint
                Signed: true
            WordLength: 16
        FractionLength: 15

             RoundMode: round
          OverflowMode: saturate
           ProductMode: FullPrecision
  MaxProductWordLength: 128
               SumMode: FullPrecision
      MaxSumWordLength: 128
         CastBeforeSum: true

To learn more about fi objects (fixed-point objects) in general, refer to your 
Fixed-Point Toolbox documentation. Commands like the following can help you 
get the information you are looking for:

docsearch(fixed-point object)

or

docsearch(fi)

Either command opens the Help system and searches for information about 
fixed-point objects in the Fixed Point Toolbox.

As inputs (data to be filtered), fixed-point filters accept both regular 
double-precision values and fi objects. Which you use depends on your needs. 
How your filter responds to the input data is determined by the settings of the 
filter properties, discussed in the next few sections.

Summary—Fixed-Point Filter Properties
Discrete-time filters in this toolbox use objects that perform the filtering and 
configuration of the filter. As objects, they include properties and methods 
(that we often call functions—not strictly the same as MATLAB functions but 
mostly so) to provide filtering capability. In discrete-time filters, or dfilt 
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objects, many of the properties are dynamic, meaning they become available 
depending on the settings of other properties in the dfilt object or filter.

Dynamic Properties
When you use a dfilt.structure function to create a filter, MATLAB displays 
the filter properties in the command window in return (unless you end the 
command with a semicolon which suppresses the output display). Generally 
you see six or seven properties, ranging from the property FilterStructure to 
PersistentMemory. These first properties are always present in the filter. One 
of the most important properties is Arithmetic. The Arithmetic property 
controls all of the dynamic properties for a filter.

Dynamic properties become available when you change another property in the 
filter. For example, when you change the Arithmetic property value to fixed, 
the display now shows many more properties for the filter, all of them 
considered dynamic. Here is an example that uses a direct form II filter. First 
create the default filter:

hd=dfilt.df2
 
hd =
 
         FilterStructure: 'Direct-Form II'
              Arithmetic: 'double'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [0x1 double]

With the filter hd in the workspace, convert the arithmetic to fixed-point. Do 
this by setting the property Arithmetic to fixed. Notice the display. Instead of 
a few properties, the filter now has many more, each one related to a particular 
part of the filter and its operation. Each of the now-visible properties is 
dynamic.

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form II'
              Arithmetic: 'fixed'
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               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

Even this list of properties is not yet complete. Changing the value of other 
properties such as the ProductMode or CoeffAutoScale properties may reveal 
even more properties that control how the filter works. Remember this feature 
about dfilt objects and dynamic properties as you review the rest of this 
section about properties of fixed-point filters.

An important distinction is you cannot change the value of a property unless 
you see the property listed in the default display for the filter. Entering the 
filter name at the MATLAB prompt generates the default property display for 
the named filter. Using get(filtername) does not generate the default 
display—it lists all of the filter properties, both those that you can change and 
those that are not available yet.
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The following table summarizes the properties, static and dynamic, of 
fixed-point filters and provides a brief description of each. Full descriptions of 
each property, in alphabetical order, follow the table.

Property Name Valid Values 
[default value]

Brief Description

AccumFracLength Any positive or 
negative integer 
number of bits [29]

Specifies the fraction length used to 
interpret data output by the accumulator. 
This is a property of FIR filters and lattice 
filters. IIR filters have two similar 
properties—DenAccumFracLength and 
NumAccumFracLength—that let you set the 
precision for numerator and denominator 
operations separately.

AccumWordLength Any positive 
integer number of 
bits [40]

Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic [Double], single, 
fixed

Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the 
operating mode for your filter.

CastBeforeSum [True] or false Specifies whether to cast numeric data to 
the appropriate accumulator format (as 
shown in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale [True] or false Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.
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CoeffFracLength Any positive or 
negative integer 
number of bits [14]

Set the fraction length the filter uses to 
interpret coefficients. CoeffFracLength is 
not available until you set CoeffAutoScale 
to false. Scalar filters include this 
property.

CoeffWordLength Any positive 
integer number of 
bits [16]

Specifies the word length to apply to filter 
coefficients.

DenAccumFracLength Any positive or 
negative integer 
number of bits [29]

Specifies how the filter algorithm 
interprets the results of addition operations 
involving denominator coefficients. 

DenFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

Denominator Any filter 
coefficient value 
[1]

Holds the denominator coefficients for IIR 
filters.

DenProdFracLength Any positive or 
negative integer 
number of bits [29]

Specifies how the filter algorithm 
interprets the results of product operations 
involving denominator coefficients. You can 
change this property value after you set 
ProductMode to SpecifyPrecision.

DenStateFracLength Any positive or 
negative integer 
number of bits [15]

Specifies the fraction length used to 
interpret the states associated with 
denominator coefficients in the filter.

DenStateWordLength Any positive 
integer number of 
bits [16]

Specifies the word length used to represent 
the states associated with denominator 
coefficients in the filter.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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FilterInternals [FullPrecision], 
SpecifyPrecision

Controls whether the filter sets the output 
word and fraction lengths, and the 
accumulator word and fraction lengths 
automatically to maintain the best 
precision results during filtering. The 
default value, FullPrecision, sets 
automatic word and fraction length 
determination by the filter. 
SpecifyPrecision exposes the output and 
accumulator related properties so you can 
set your own word and fraction lengths for 
them.

FilterStructure Not applicable. Describes the signal flow for the filter 
object, including all of the active elements 
that perform operations during filtering—
gains, delays, sums, products, and 
input/output.

InputFracLength Any positive or 
negative integer 
number of bits [15]

Specifies the fraction length the filter uses 
to interpret data to be processed by the 
filter.

InputWordLength Any positive 
integer number of 
bits [16]

Specifies the word length applied to 
represent input data.

Ladder Any ladder 
coefficients in 
double-precision 
data type [1]

latticearma filters include this property to 
store the ladder coefficients.

LadderAccumFracLength Any positive or 
negative integer 
number of bits [29]

latticearma filters use this to define the 
fraction length applied to values output by 
the accumulator that stores the results of 
ladder computations.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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LadderFracLength Any positive or 
negative integer 
number of bits [14]

latticearma filters use ladder coefficients 
in the signal flow. This property determines 
the fraction length used to interpret the 
coefficients.

Lattice Any lattice 
structure 
coefficients. No 
default value.

Stores the lattice coefficients for 
lattice-based filters.

LatticeAccumFracLength Any positive or 
negative integer 
number of bits [29]

Specifies how the accumulator outputs the 
results of operations on the lattice 
coefficients.

LatticeFracLength Any positive or 
negative integer 
number of bits [15]

Specifies the fraction length applied to the 
lattice coefficients.

MultiplicandFracLength Any positive or 
negative integer 
number of bits [15]

Sets the fraction length for values used in 
product operations in the filter. Direct-form 
I transposed (df1t) filter structures include 
this property.

MultiplicandWordLength Any positive 
integer number of 
bits [16]

Sets the word length applied to the values 
input to a multiply operation (the 
multiplicands). The filter structure df1t 
includes this property.

NumAccumFracLength Any positive or 
negative integer 
number of bits [29]

Specifies how the filter algorithm 
interprets the results of addition operations 
involving numerator coefficients. 

Numerator Any 
double-precision 
filter coefficients 
[1]

Holds the numerator coefficient values for 
the filter.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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NumFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length used to interpret 
the numerator coefficients.

NumProdFracLength Any positive or 
negative integer 
number of bits [29]

Specifies how the filter algorithm 
interprets the results of product operations 
involving numerator coefficients. You can 
change the property value after you set 
ProductMode to SpecifyPrecision.

NumStateFracLength Any positive or 
negative integer 
number of bits [15]

For IIR filters, this defines the fraction 
length applied to the numerator states of 
the filter. Specifies the fraction length used 
to interpret the states associated with 
numerator coefficients in the filter.

NumStateWordLength Any positive 
integer number of 
bits [16]

For IIR filters, this defines the word length 
applied to the numerator states of the filter. 
Specifies the word length used to interpret 
the states associated with numerator 
coefficients in the filter.

OutputFracLength Any positive or 
negative integer 
number of bits—
[15] or [12] bits 
depending on the 
filter structure

Determines how the filter interprets the 
filtered data. You can change the value of 
OutputFracLength after you set 
OutputMode to SpecifyPrecision.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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OutputMode [AvoidOverflow], 
BestPrecision,
SpecifyPrecision

Sets the mode the filter uses to scale the 
filtered input data. You have the following 
choices:

- AvoidOverflow—directs the filter to set 
the output data fraction length to avoid 
causing the data to overflow.

- BestPrecision—directs the filter to set 
the output data fraction length to 
maximize the precision in the output 
data.

- SpecifyPrecision—lets you set the 
fraction length used by the filtered 
data.

OutputWordLength Any positive 
integer number of 
bits [16]

Determines the word length used for the 
filtered data.

OverflowMode Saturate or [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to 
the largest positive or negative 
representable value) or wrap (set 
overflowing values to the nearest 
representable value using modular 
arithmetic. The choice you make affects 
only the accumulator and output 
arithmetic. Coefficient and input 
arithmetic always saturates. Finally, 
products never overflow—they maintain 
full precision.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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ProductFracLength Any positive or 
negative integer 
number of bits [29]

For the output from a product operation, 
this sets the fraction length used to 
interpret the numeric data. This property 
becomes writable (you can change the 
value) after you set ProductMode to 
SpecifyPrecision.

ProductMode [FullPrecision], 
KeepLSB, 
KeepMSB, 
SpecifyPrecision

Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether 
to keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Any positive 
number of bits. 
Default is 16 or 32 
depending on the 
filter structure

Specifies the word length to use for the 
results of multiplication operations. This 
property becomes writable (you can change 
the value) after you set ProductMode to 
SpecifyPrecision.

PersistentMemory True or [false] Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. True is 
the default setting.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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RoundMode [Convergent], ceil, 
fix, floor, round

Sets the mode the filter uses to quantize 
numeric values when the values lie 
between representable values for the data 
format (word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are 
exactly halfway between the two nearest 
allowable quantized values are rounded 
up only if the least significant bit (after 
rounding) would be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest 
allowable quantized values are rounded 
up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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ScaleValueFracLength Any positive or 
negative integer 
number of bits [29]

Scale values work with SOS filters. Setting 
this property controls how your filter 
interprets the scale values by setting the 
fraction length. Available only when you 
disable CoeffAutoScale by setting it to 
false.

ScaleValues [2 x 1 double] 
array with values 
of 1

Stores the scaling values for sections in 
SOS filters. 

Signed [True] or false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

sosMatrix [1 0 0 1 0 0] Holds the filter coefficients as property 
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a 
filter with 6 coefficients per section and 15 
sections, using data type double to 
represent the coefficients.

SectionInputAutoScale [True] or false Specifies whether the filter automatically 
chooses the proper fraction length to 
prevent overflow by data entering a section 
of an SOS filter. Setting this property to 
false enables you to change the 
SectionInputFracLength property to 
specify the precision used. Available only 
for SOS filters.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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SectionInputFracLength Any positive or 
negative integer 
number of bits [29]

Section values work with SOS filters. 
Setting this property controls how your 
filter interprets the section values between 
sections of the filter by setting the fraction 
length. This applies to data entering a 
section. Compare to 
SectionOutputFracLength. Available only 
when you disable SectionInputAutoScale 
by setting it to false.

SectionInputWordLength Any positive or 
negative integer 
number of bits [29]

Sets the word length used to represent the 
data moving into a section of an SOS filter.

SectionOutputAutoScale [True] or false Specifies whether the filter automatically 
chooses the proper fraction length to 
prevent overflow by data leaving a section 
of an SOS filter. Setting this property to 
false enables you to change the 
SectionOutputFracLength property to 
specify the precision used.

SectionOutputFracLength Any positive or 
negative integer 
number of bits [29]

Section values work with SOS filters. 
Setting this property controls how your 
filter interprets the section values between 
sections of the filter by setting the fraction 
length. This applies to data leaving a 
section. Compare to 
SectionInputFracLength. Available after 
you disable SectionOutputAutoScale by 
setting it to false.

SectionOutputWordLength Any positive or 
negative integer 
number of bits [32]

Sets the word length used to represent the 
data moving out of one section of an SOS 
filter.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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StateFracLength Any positive or 
negative integer 
number of bits [15]

Lets you set the fraction length applied to 
interpret the filter states.

States [1x1 embedded fi] Contains the filter states before, during, 
and after filter operations. States act as 
filter memory between filtering runs or 
sessions. Notice that the states use fi 
objects, with the associated properties from 
those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

StateWordLength Any positive 
integer number of 
bits [16]

Sets the word length used to represent the 
filter states.

TapSumFracLength Any positive or 
negative integer 
number of bits [15]

Sets the fraction length used to represent 
the filter tap values in addition operations. 
This is available after you set TapSumMode 
to false. Symmetric and antisymmetric 
FIR filters include this property.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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Property Details for Fixed-Point Filters
When you create a fixed-point filter, you are creating a filter object (a dfilt 
object). In this manual, we use filter, dfilt object, and filter object 
interchangeably. To filter data, you apply the filter object to your data set. The 
output of the operation is the data filtered by the filter and the filter property 
values.

Filter objects have properties to which you assign property values. You use 
these property values to assign various characteristics to the filters you create, 
including

• The type of arithmetic to use in filtering operations

• The structure of the filter used to implement the filter (not a property you 
can set or change—you select it by the dfilt.structure function you choose)

• The locations of quantizations and cast operations in the filter

• The data formats used in quantizing, casting, and filtering operations

TapSumMode FullPrecision, 
KeepLSB, 
[KeepMSB], 
SpecifyPrecision

Determines how the accumulator outputs 
stored that involve filter tap weights. 
Choose from full precision (FullPrecision) 
to prevent overflows, or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when outputting 
results from the accumulator. To let you set 
the precision (the fraction length) used by 
the output from the accumulator, set 
FilterInternals to SpecifyPrecision.

Symmetric and antisymmetric FIR filters 
include this property.

TapSumWordLength Any positive 
number of bits [17]

Sets the word length used to represent the 
filter tap weights during addition. 
Symmetric and antisymmetric FIR filters 
include this property.

Property Name (Continued) Valid Values 
[default value]

Brief Description
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Details of the properties associated with fixed-point filters are described in 
alphabetical order on the following pages.

AccumFracLength
Except for state-space filters, all dfilt objects that use fixed arithmetic have 
this property that defines the fraction length applied to data in the 
accumulator. Combined with AccumWordLength, AccumFracLength helps fully 
specify how the accumulator outputs data after processing addition operations. 
As with all fraction length properties, AccumFracLength can be any integer, 
including integers larger than AccumWordLength, and positive or negative 
integers.

AccumWordLength
You use AccumWordLength to define the data word length used in the 
accumulator. Set this property to a value that matches your intended 
hardware. For example, many digital signal processors use 40-bit 
accumulators, so set AccumWordLength to 40 in your fixed-point filter:

set(hq,'arithmetic','fixed');
set(hq,'AccumWordLength',40);

Note that AccumWordLength only applies to filters whose Arithmetic property 
value is fixed.

Arithmetic
Perhaps the most important property when you are working with dfilt 
objects, Arithmetic determines the type of arithmetic the filter uses, and the 
properties or quantizers that compose the fixed-point or quantized filter. You 
use strings to set the Arithmetic property value.

The next table shows the valid strings for the Arithmetic property. Following 
the table, each property string appears with more detailed information about 



Fixed-Point Filter Properties

7-21

what happens when you select the string as the value for Arithmetic in your 
dfilt.

double
When you use one of the dfilt.structure methods to create a filter, the 
Arithmetic property value is double by default. Your filter is identical to the 
same filter without the Arithmetic property, as you would create if you used 
the Signal Processing Toolbox.

Double means that the filter uses double-precision floating-point arithmetic in 
all operations while filtering:

Arithmetic Property String Brief Description of Effect on the Filter

double All filtering operations and coefficients 
use double-precision floating-point 
representations and math. When you 
use dfilt.structure to create a filter 
object, double is the default value for 
the Arithmetic property.

single All filtering operations and coefficients 
use single-precision floating-point 
representations and math.

fixed This string applies selected default 
values for the properties in the 
fixed-point filter object, including such 
properties as coefficient word lengths, 
fraction lengths, and various operating 
modes. Generally, the default values 
match those you use on many digital 
signal processors. Allows signed fixed 
data types only. Fixed-point arithmetic 
filters are available only when you 
install the Fixed-Point Toolbox with this 
toolbox.
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• All input to the filter must be double data type. Any other data type returns 
an error.

• The states and output are doubles as well.

• All internal calculations are done in double math.

When you use double data type filter coefficients, the reference and quantized 
(fixed-point) filter coefficients are identical. The filter stores the reference 
coefficients as double data type.

single
When your filter should use single-precision floating-point arithmetic, set the 
Arithmetic property to single so all arithmetic in the filter processing gets 
restricted to single-precision data type. 

• Input data must be single data type. Other data types return errors.

• The filter states and filter output use single data type.

When you choose single, you can provide the filter coefficients in either of two 
ways:

• Double data type coefficients. With Arithmetic set to single, the filter casts 
the double data type coefficients to single data type representation.

• Single data type. These remain unchanged by the filter.

Depending on whether you specified single or double data type coefficients, the 
reference coefficients for the filter are stored in the data type you provided. If 
you provide coefficients in double data type, the reference coefficients are 
double as well. Providing single data type coefficients generates single data 
type reference coefficients. Note that the arithmetic used by the reference filter 
is always double.

When you use reffilter to create a reference filter from the reference 
coefficients, the resulting filter uses double-precision versions of the reference 
filter coefficients.

To set the Arithmetic property value, create your filter, then use set to change 
the Arithmetic setting, as shown in this example using a direct form FIR filter.

b=fir1(7,0.45);

hd=dfilt.dffir(b)
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hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'double'
               Numerator: [1x8 double]

PersistentMemory: false
                  States: [7x1 double]

set(hd,'arithmetic','single')
hd
 
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'single'
               Numerator: [1x8 double]

PersistentMemory: false
                  States: [7x1 single]

fixed
Converting your dfilt object to use fixed arithmetic results in a filter structure 
that uses properties and property values to match how the filter would behave 
on digital signal processing hardware.

Note  The fixed option for the property Arithmetic is available only when 
you install the Fixed-Point Toolbox as well as the Filter Design Toolbox.

After you set Arithmetic to fixed, you are free to change any property value 
from the default value to a value that more closely matches your needs. You 
cannot, however, mix floating-point and fixed-point arithmetic in your filter 
when you select fixed as the Arithmetic property value. Choosing fixed 
restricts you to using either fixed-point or floating point throughout the filter 
(the data type must be homogenous). Also, all data types must be signed. fixed 
does not support unsigned data types except for unsigned coefficients when you 
set the property Signed to false. Mixing word and fraction lengths within the 
fixed object is acceptable. In short, using fixed arithmetic assumes
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• fixed word length.

• fixed size and dedicated accumulator and product registers.

• the ability to do either saturation or wrap arithmetic.

• that multiple rounding modes are available.

Making these assumptions simplifies your job of creating fixed-point filters by 
reducing repetition in the filter construction process, such as only requiring 
you to enter the accumulator word size once, rather than for each step that uses 
the accumulator.

Default property values are a starting point in tailoring your filter to common 
hardware, such as choosing 40-bit word length for the accumulator, or 16-bit 
words for data and coefficients.

In this dfilt object example, get returns the default values for dfilt.df1t 
structures.

[b,a]=butter(6,0.45);
hd=dfilt.df1(b,a)
 
hd =
 
         FilterStructure: 'Direct-Form I'
              Arithmetic: 'double'
               Numerator: [1x7 double]
             Denominator: [1x7 double]

PersistentMemory: false
                  States: Numerator:  [6x1 double]
                          Denominator:[6x1 double]

set(hd,'arithmetic','fixed')
get(hd)

PersistentMemory: false
         FilterStructure: 'Direct-Form I'
                  States: [1x1 filtstates.dfiir]
               Numerator: [1x7 double]
             Denominator: [1x7 double]
              Arithmetic: 'fixed'
         CoeffWordLength: 16
          CoeffAutoScale: 1
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                  Signed: 1
               RoundMode: 'convergent'
            OverflowMode: 'wrap'
         InputWordLength: 16
         InputFracLength: 15
             ProductMode: 'FullPrecision'
        OutputWordLength: 16
        OutputFracLength: 15
           NumFracLength: 16
           DenFracLength: 14
       ProductWordLength: 32
       NumProdFracLength: 31
       DenProdFracLength: 29
         AccumWordLength: 40
      NumAccumFracLength: 31
      DenAccumFracLength: 29
           CastBeforeSum: 1

Here is the default display for hd.

hd
 
hd =
 
         FilterStructure: 'Direct-Form I'
              Arithmetic: 'fixed'
               Numerator: [1x7 double]
             Denominator: [1x7 double]

PersistentMemory: false
                  States: Numerator:  [6x1 fi]
                          Denominator:[6x1 fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
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        OutputFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

This second example shows the default property values for 
dfilt.latticemamax filter objects, using the coefficients from an fir1 filter.

b=fir1(7,0.45)

hdlat=dfilt.latticemamax(b)
 
hdlat =
 
         FilterStructure: [1x45 char]
              Arithmetic: 'double'
                 Lattice: [1x8 double]

PersistentMemory: false
                  States: [8x1 double]

hdlat.arithmetic='fixed'
 
hdlat =
 
         FilterStructure: [1x45 char]
              Arithmetic: 'fixed'
                 Lattice: [1x8 double]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
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         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

Unlike the single or double options for Arithmetic, fixed uses properties to 
define the word and fraction lengths for each portion of your filter. By changing 
the property value of any of the properties, you control your filter performance. 
Every word length and fraction length property is independent—set the one 
you need and the others remain unchanged, such as setting the input word 
length with InputWordLength, while leaving the fraction length the same.

d=fdesign.lowpass('n,fc',6,0.45)
 
d =
 
               Response: 'Lowpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
            FilterOrder: 6
                Fcutoff: 0.4500

designmethods(d)

Design Methods for class fdesign.lowpass:
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butter

hd=butter(d)
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [3x6 double]
             ScaleValues: [4x1 double]

PersistentMemory: false
                  States: [2x3 double]

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'fixed'
               sosMatrix: [3x6 double]
             ScaleValues: [4x1 double]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
SectionInputWordLength: 16             
SectionInputAutoScale: true           

                                         
SectionOutputWordLength: 16             
 Section OutputAutoScale: true           
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
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         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

hd.inputWordLength=12
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'fixed'
               sosMatrix: [3x6 double]
             ScaleValues: [4x1 double]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 12             
         InputFracLength: 15             
                                         
SectionInputWordLength: 16             

 SectionInputAutoScale: true           
                                         
SectionOutputWordLength: 16             
SectionOutputAutoScale: true           

                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
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         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

Notice that the properties for the lattice filter hdlat and direct-form II filter hd 
are different, as befits their differing filter structures. Also, some properties 
are common to both objects, such as RoundMode and PersistentMemory and 
behave the same way in both objects.

Notes About Fraction Length, Word Length, and Precision
Word length and fraction length combine to make the format for a fixed-point 
number, where word length is the number of bits used to represent the value 
and fraction length specifies, in bits, the location of the binary point in the 
fixed-point representation. Therein lies a problem—fraction length, which you 
specify in bits, can be larger than the word length, or a negative number of bits. 
This section explains how that idea works and how you might use it.

Unfortunately fraction length is somewhat misnamed (although it continues to 
be used in this User’s Guide and elsewhere for historical reasons).

Fraction length defined as the number of fractional bits (bits to the right of the 
binary point) is true only when the fraction length is positive and less than or 
equal to the word length. In MATLAB format notation we use 
[word length fraction length]. For example, for the format [16 16], the second 
16 (the fraction length) is the number of fractional bits or bits to the right of the 
binary point. In this example, all 16 bits are to the right of the binary point.

But it is also possible to have fixed-point formats of [16 18] or [16 -45]. In these 
cases the fraction length can no longer be the number of bits to the right of the 
binary point since the format says the word length is 16—there cannot be 18 
fraction length bits on the right. And how can there be a negative number of 
bits for the fraction length, such as [16 -45]?

A better way to think about fixed-point format [word length fraction length] 
and what it means is that the representation of a fixed-point number is a 
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weighted sum of powers of two driven by the fraction length, or the two’s 
complement representation of the fixed-point number.

Consider the format [B L], where the fraction length L can be positive, 
negative, 0, greater than B (the word length) or less than B. (B and L are 
always integers and B is always positive.)

Given a binary string b(1) b(2) b(3) ... b(B), to determine the two’s-complement 
value of the string in the format described by [B L], use the value of the 
individual bits in the binary string in the following formula, where b(1) is the 
first binary bit (and most significant bit, MSB), b(2) is the second, and on up to 
b(B).

The decimal numeric value that those bits represent is given by

value =-b(1)*2^(B-L-1)+b(2)*2^(B-L-2)+b(3)*2^(B-L-3)+...+ b(B)*2^(-L)

L, the fraction length, represents the negative of the weight of the last, or least 
significant bit (LSB). L is also the step size or the precision provided by a given 
fraction length.

Precision
Here is how precision works.

When all of the bits of a binary string are zero except for the LSB (which is 
therefore equal to one), the value represented by the bit string is given by 2(-L). 
If L is negative, for example L=-16, the value is 216. The smallest step between 
numbers that can be represented in a format where L=-16 is given by 1 x 216 
(the rightmost term in the formula above), which is 65536. Note the precision 
does not depend on the word length.

Take a look at another example. When the word length set to 8 bits, the decimal 
value 12 is represented in binary by 00001100. That 12 is the decimal 
equivalent of 00001100 tells us we are using [8 0] data format representation—
the word length is 8 bits and fraction length 0 bits, and the step size or 
precision (the smallest difference between two adjacent values in the format 
[8,0], is 20=1.

Suppose you plan to keep only the upper 5 bits and discard the other three. The 
resulting precision after removing the right-most three bits comes from the 
weight of the lowest remaining bit, the fifth bit from the left, which is 23=8, so 
the format would be [5,-3].
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Note that in this format the step size is 8, I cannot represent numbers that are 
between multiples of 8.

In MATLAB, with the Fixed-Point Toolbox installed:

x=8;
q=quantizer([8,0]); % Word length = 8, fraction length = 0
xq=quantize(q,x);
binxq=num2bin(q,xq);
q1=quantizer([5 -3]); % Word length = 5, fraction length = -3
xq1 = quantize(q1,xq);
binxq1=num2bin(q1,xq1);
binxq

binxq =

00001000

binxq1

binxq1 =

00001

But notice that in [5,-3] format, 00001 is the two’s complement representation 
for 8, not for 1; q = quantizer([8 0]) and q1 = quantizer([5 -3]) are not 
the same. They cover the about the same range—range(q)>range(q1)—but 
their quantization step is different—eps(q)= 8, and eps(q1)=1.

Look at one more example. When you construct a quantizer q

q = quantizer([a,b])

the first element in [a,b] is a, the word length used for quantization. The 
second element in the expression, b, is related to the quantization step—the 
numerical difference between the two closest values that the quantizer can 
represent. This is also related to the weight given to the LSB. Note that 
2^(-b) = eps(q).

Now construct two quantizers, q1 and q2. Let q1 use the format [32,0] and let 
q2 use the format [16, -16].

q1 = quantizer([32,0])
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q2 = quantizer([16,-16])

Quantizers q1 and q2 cover the same range, but q2 has less precision. It covers 
the range in steps of 216, while q covers the range in steps of 1.

This lost precision is due to (or can be used to model) throwing out 16 
least-significant bits.

An important point to understand is that in dfilt objects and filtering you 
control which bits are carried from the sum and product operations in the filter 
to the filter output by setting the format for the output from the sum or product 
operation.

For instance, if you use [16 0] as the output format for a 32-bit result from 
a sum operation when the original format is [32 0], you take the lower 16 bits 
from the result. If you use [16 -16], you take the higher 16 bits of the original 
32 bits. You could even take 16 bits somewhere in between the 32 bits by 
choosing something like [16 -8], but you probably do not want to do that.

Filter scaling is directly implicated in the format and precision for a filter. 
When you know the filter input and output formats, as well as the filter 
internal formats, you can scale the inputs or outputs to stay within the format 
ranges. For more information about scaling filters, refer to “Working with 
Fixed-Point Direct-Form FIR Filters” on page 2-14.

Notice that overflows or saturation might occur at the filter input, filter output, 
or within the filter itself, such as during add or multiply or accumulate 
operations. Improper scaling at any point in the filter can result in numerical 
errors that dramatically change the performance of your fixed-point filter 
implementation. 

CastBeforeSum
Setting the CastBeforeSum property determines how the filter handles the 
input values to sum operations in the filter. After you set your filter 
Arithmetic property value to fixed, you have the option of using 
CastBeforeSum to control the data type of some inputs (addends) to 
summations in your filter. To determine which addends reflect the 
CastBeforeSum property setting, refer to the reference page for the signal flow 
diagram for the filter structure. 

CastBeforeSum specifies whether to cast selected addends to summations in 
the filter to the output format from the addition operation before performing 
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the addition. When you specify true for the property value, the results of the 
affected sum operations match most closely the results found on most digital 
signal processors. Performing the cast operation before the summation adds 
one or two additional quantization operations that can add error sources to 
your filter results.

Specifying CastBeforeSum to be false prevents the addends from being cast to 
the output format before the addition operation. Choose this setting to get the 
most accurate results from summations without considering the hardware 
your filter might use.

Notice that the output format for every sum operation reflects the value of the 
output property specified in the filter structure diagram. Which input property 
is referenced by CastBeforeSum depends on the structure.

Another point—with CastBeforeSum set to false, the filter realization process 
inserts an intermediate data type format to hold temporarily the full precision 
sum of the inputs. A separate Convert block performs the process of casting the 
addition result to the accumulator format. This intermediate data format 
occurs because the Sum block in Simulink always casts input (addends) to the 
output data type.

Diagrams of CastBeforeSum Settings
When CastBeforeSum is false, sum elements in filter signal flow diagrams 
look like this:

Property Value Description

false Configures filter summation operations to retain 
the addends in the format carried from the 
previous operation.

true Configures filter summation operations to convert 
the input format of the addends to match the 
summation output format before performing the 
summation operation. Usually this generates 
results from the summation that more closely 
match those found from digital signal processors
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showing that the input data to the sum operations (the addends) retain their 
format word length and fraction length from previous operations. The addition 
process uses the existing input formats and then casts the output to the format 
defined by AccumFormat. Thus the output data has the word length and fraction 
length defined by AccumWordLength and AccumFracLength.

When CastBeforeSum is true, sum elements in filter signal flow diagrams look 
like this:

showing that the input data gets recast to the accumulator format word length 
and fraction length (AccumFormat) before the sum operation occurs. The data 
output by the addition operation has the word length and fraction length 
defined by AccumWordLength and AccumFracLength.
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CoeffAutoScale
How the filter represents the filter coefficients depends on the property value 
of CoeffAutoScale. When you create a dfilt object, you use coefficients in 
double-precision format. Converting the dfilt object to fixed-point arithmetic 
forces the coefficients into a fixed-point representation. The representation the 
filter uses depends on whether the value of CoeffAutoScale is true or false.

• CoeffAutoScale = true means the filter chooses the fraction length to 
maintain the value of the coefficients as close to the double-precision values 
as possible. When you change the word length applied to the coefficients, the 
filter object changes the fraction length to try to accommodate the change. 
true is the default setting.

• CoeffAutoScale = false removes the automatic scaling of the fraction 
length for the coefficients and exposes the property that controls the 
coefficient fraction length so you can change it. For example, if the filter is 
a direct form FIR filter, setting CoeffAutoScale = false exposes the 
NumFracLength property that specifies the fraction length applied to 
numerator coefficients. If the filter is an IIR filter, setting 
CoeffAutoScale = false exposes both the NumFracLength and 
DenFracLength properties.

Here is an example of using CoeffAutoScale with a direct form filter.

hd2=dfilt.dffir([0.3 0.6 0.3])
 
hd2 =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'double'
               Numerator: [0.3000 0.6000 0.3000]

PersistentMemory: false
                  States: [2x1 double]

hd2.arithmetic='fixed'
 
hd2 =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [0.3000 0.6000 0.3000]
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PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

To this point, the filter coefficients retain the original values from when you 
created the filter as shown in the Numerator property. Now change the 
CoeffAutoScale property value from true to false.

hd2.coeffautoScale=false
 
hd2 =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [0.3000 0.6000 0.3000]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: false          
           NumFracLength: 15             
                  Signed: true           
                                         
         InputWordLength: 16             
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         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

With the NumFracLength property now available, change the word length to 
5 bits.

Notice the coefficient values. Setting CoeffAutoScale to false removes the 
automatic fraction length adjustment and the filter coefficients cannot be 
represented by the current format of [5 15]—a word length of 5 bits, fraction 
length of 15 bits.

hd2.coeffwordlength=5
 
hd2 =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [4.5776e-004 4.5776e-004 4.5776e-004]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 5              
          CoeffAutoScale: false          
           NumFracLength: 15             
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
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             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

Restoring CoeffAutoScale to true goes some way to fixing the coefficient 
values. Automatically scaling the coefficient fraction length results in setting 
the fraction length to 4 bits. You can check this with get(hd2) as shown below.

hd2.coeffautoScale=true
 
hd2 =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [0.3125 0.6250 0.3125]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 5              
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         



7 Reference for the Properties of Filter Objects

7-40

get(hd2)
PersistentMemory: false

FilterStructure: 'Direct-Form FIR'
                  States: [1x1 embedded.fi]
               Numerator: [0.3125 0.6250 0.3125]
              Arithmetic: 'fixed'
         CoeffWordLength: 5
          CoeffAutoScale: 1
                  Signed: 1
               RoundMode: 'convergent'
            OverflowMode: 'wrap'
         InputWordLength: 16
         InputFracLength: 15
        OutputWordLength: 16
              OutputMode: 'AvoidOverflow'
             ProductMode: 'FullPrecision'
           NumFracLength: 4
        OutputFracLength: 12
       ProductWordLength: 21
       ProductFracLength: 19
         AccumWordLength: 40
         AccumFracLength: 19
           CastBeforeSum: 1

Clearly five bits is not enough to represent the coefficients accurately.

CoeffFracLength
Fixed-point scalar filters that you create using dfilt.scalar use this property 
to define the fraction length applied to the scalar filter coefficients. Like the 
coefficient-fraction-length-related properties for the FIR, lattice, and IIR 
filters, CoeffFracLength is not displayed for scalar filters until you set 
CoeffAutoScale to false. Once you change the automatic scaling you can set 
the fraction length for the coefficients to any value you require.

As with all fraction length properties, the value you enter here can be any 
negative or positive integer, or zero. Fraction length can be larger than the 
associated word length, as well. By default, the value is 14 bits, with the 
CoeffWordlength of 16 bits.
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CoeffWordLength
One primary consideration in developing filters for hardware is the length of 
a data word. CoeffWordLength defines the word length for these data storage 
and arithmetic locations:

• Numerator and denominator filter coefficients

• Tap sum in dfilt.dfsymfir and dfilt.dfasymfir filter objects

• Section input, multiplicand, and state values in direct-form SOS filter 
objects such as dfilt.df1t and dfilt.df2

• Scale values in second-order filters

• Lattice and ladder coefficients in lattice filter objects, such as 
dfilt.latticearma and dfilt.latticemamax

• Gain in dfilt.scalar

Setting this property value controls the word length for the data listed. In most 
cases, the data words in this list have separate fraction length properties to 
define the associated fraction lengths.

Any positive, integer word length works here, limited by the machine you use 
to develop your filter and the hardware you use to deploy your filter.

DenAccumFracLength
Filter structures df1, df1t, df2, and df2t that use fixed arithmetic have this 
property that defines the fraction length applied to denominator coefficients in 
the accumulator. In combination with AccumWordLength, the properties fully 
specify how the accumulator outputs data stored there.

As with all fraction length properties, DenAccumFracLength can be any integer, 
including integers larger than AccumWordLength, and positive or negative 
integers. To be able to change the property value for this property, you set 
FilterInternals to SpecifyPrecision.

DenFracLength
Property DenFracLength contains the value that specifies the fraction length 
for the denominator coefficients for your filter. DenFracLength specifies the 
fraction length used to interpret the data stored in C. Used in combination with 
CoeffWordLength, these two properties define the interpretation of the 
coefficients stored in the vector that contains the denominator coefficients.
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As with all fraction length properties, the value you enter here can be any 
negative or positive integer, or zero. Fraction length can be larger than the 
associated word length, as well. By default, the value is 15 bits, with the 
CoeffWordLength of 16 bits.

Denominator
The denominator coefficients for your IIR filter, taken from the prototype you 
start with, are stored in this property. Generally this is a 1-by-N array of data 
in double format, where N is the length of the filter.

All IIR filter objects include Denominator, except the lattice-based filters which 
store their coefficients in the Lattice property, and second-order section 
filters, such as dfilt.df1tsos, which use the SosMatrix property to hold the 
coefficients for the sections.

DenProdFracLength
A property of all of the direct form IIR dfilt objects, except the ones that 
implement second-order sections, DenProdFracLength specifies the fraction 
length applied to data output from product operations that the filter performs 
on denominator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you 
see that denominators and numerators are handled separately. When you set 
ProductMode to SpecifyPrecision, you can change the DenProdFracLength 
setting manually. Otherwise, for multiplication operations that use the 
denominator coefficients, the filter sets the fraction length as defined by the 
ProductMode setting.

DenStateFracLength
When you look at the flow diagram for the dfilt.df1sos filter object, the states 
associated with denominator coefficient operations take the fraction length 
from this property. In combination with the DenStateWordLength property, 
these properties fully specify how the filter interprets the states.

As with all fraction length properties, the value you enter here can be any 
negative or positive integer, or zero. Fraction length can be larger than the 
associated word length, as well. By default, the value is 15 bits, with the 
DenStateWordLength of 16 bits.
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DenStateWordLength
When you look at the flow diagram for the dfilt.df1sos filter object, the states 
associated with the denominator coefficient operations take the data format 
from this property and the DenStateFracLength property. In combination, 
these properties fully specify how the filter interprets the state it uses.

By default, the value is 16 bits, with the DenStateFracLength of 15 bits.

FilterInternals
Similar to the FilterInternals pane in FDATool, this property controls whether 
the filter sets the output word and fraction lengths automatically, and the 
accumulator word and fraction lengths automatically as well, to maintain the 
best precision results during filtering. The default value, FullPrecision, sets 
automatic word and fraction length determination by the filter. Setting 
FilterInternals to SpecifyPrecision exposes the output and accumulator 
related properties so you can set your own word and fraction lengths for them. 
Note that 

FilterStructure
Every dfilt object has a FilterStructure property. This is a read-only 
property containing a string that declares the structure of the filter object you 
created. 

When you construct filter objects, the FilterStructure property value is 
returned containing one of the strings shown in the following table. Property 
FilterStructure indicates the filter architecture and comes from the 
constructor you use to create the filter.

After you create a filter object, you cannot change the FilterStructure 
property value. To make filters that use different structures, you construct new 
filters using the appropriate methods, or use convert to switch to a new 
structure.

Default value: Since this depends on the constructor you use and the 
constructor includes the filter structure definition, there is no default value. 
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When you try to create a filter without specifying a structure, MATLAB 
returns an error.

Filter Structures with Quantizations Shown in Place
To help you understand how and where the quantizations occur in filter 
structures in this toolbox, Figure 7-1 presents the structure for a Direct Form 2 
filter, including the quantizations (fixed-point formats) that compose part of 

Filter Constructor Name FilterStructure Property String and Filter Type

'dfilt.df1' Direct form I

'dfilt.df1sos' Direct form I filter implemented using 
second-order sections

'dfilt.df1t' Direct form I transposed

'dfilt.df2' Direct form II

'dfilt.df2sos' Direct form II filter implemented using second 
order sections

'dfilt.df2t' Direct form II transposed

'dfilt.dfasymfir' Antisymmetric finite impulse response (FIR). 
Even and odd forms.

'dfilt.dffir' Direct form FIR

'dfilt.dffirt' Direct form FIR transposed

'dfilt.latticeallpass' Lattice allpass

'dfilt.latticear' Lattice autoregressive (AR)

'dfilt.latticemamin' Lattice moving average (MA) minimum phase

'dfilt.latticemamax' Lattice moving average (MA) maximum phase

'dfilt.latticearma' Lattice ARMA

'dfilt.dfsymfir' Symmetric FIR. Even and odd forms

'dfilt.scalar' Scalar
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the fixed-point filter. You see that one or more quantization processes, specified 
by the *format label, accompany each filter element, such as a delay, product, 
or summation element. The input to or output from each element reflects the 
result of applying the associated quantization as defined by the word length 
and fraction length format. Wherever a particular filter element appears in a 
filter structure, recall the quantization process that accompanies the element 
as it appears in this figure. Each filter reference page, such as the dfilt.df2 
reference page, includes the signal flow diagram showing the formatting 
elements that define the quantizations that occur throughout the filter flow.

For example, a product quantization, either numerator or denominator, follows 
every product (gain) element and a sum quantization, also either numerator or 
denominator, follows each sum element. In this figure, we set the Arithmetic 
property value to fixed.

Figure 7-1:  df2 IIR Filter Structure Including The Formatting Objects, With 
Arithmetic Property Value fixed

When your df2 filter uses the Arithmetic property set to fixed, the filter 
structure contains the formatting features shown in the diagram. The formats 
included in the structure are fixed-point objects that include properties to set 
various word and fraction length formats. For example, the NumFormat or 
DenFormat in the fixed-point arithmetic filter set the properties for quantizing 
numerator or denominator coefficients according to word and fraction length 
settings.
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When the leading denominator coefficient a(1) in your filter is not 1, choose it 
to be a power of two so that a shift replaces the multiply that would otherwise 
be used.

Fixed-Point Arithmetic Filter Structures 
You choose among several filter structures when you create fixed-point filters. 
You can also specify filters with single or multiple cascaded sections of the 
same type. Because quantization is a nonlinear process, different fixed-point 
filter structures produce different results. 

To specify the filter structure, you select the appropriate dfilt.structure 
method to construct your filter. Refer to the function reference information for 
dfilt and set for details on setting property values for quantized filters.

The figures in the following subsections of this section serve as aids to help you 
determine how to enter your filter coefficients for each filter structure. Each 
subsection contains an example for constructing a filter of the given structure. 

Scale factors for the input and output for the filters do not appear in the block 
diagrams. The default filter structures do not include, nor assume, the scale 
factors. For filter scaling information, refer to scale in the Help system.

About the Filter Structure Diagrams
In the diagrams that accompany the following filter structure descriptions, you 
see the active operators that define the filter, such as sums and gains, and the 
formatting features that control the processing in the filter. Notice also that the 
coefficients are labeled in the figure. This tells you the order in which the filter 
processes the coefficients. 

While the meaning of the block elements is straightforward, the labels for the 
formats that form part of the filter are less clear. Each figure includes text in 
the form labelFormat that represents the existence of a formatting feature at 
that point in the structure. The Format stands for formatting object and the 
label specifies the data that the formatting object affects.

For example, in the dfilt.df2 filter shown on page 7-45, the entries 
InputFormat and OutputFormat are the formats applied, that is the word 
length and fraction length, to the filter input and output data. For example, 
filter properties like OutputWordLength and InputWordLength specify values 
that control filter operations at the input and output points in the structure 
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and are represented by the formatting objects InputFormat and OutputFormat 
shown in the filter structure diagrams.

Direct Form I Filter Structure
The following figure depicts the direct form I filter structure that directly 
realizes a transfer function with a second-order numerator and denominator. 
The numerator coefficients are numbered b(i), i=1, 2, 3; the denominator 
coefficients are numbered a(i), i = 1, 2, 3; and the states (used for initial and 
final state values in filtering) are labeled z(i). In the figure, the Arithmetic 
property is set to fixed.

Example—Specifying a Direct Form I Filter. You can specify a second-order direct 
form I structure for a quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1(b,a);

To create the fixed-point filter, set the Arithmetic property to fixed as shown 
here.
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set(hq,'arithmetic','fixed');

Direct Form I Filter Structure With Second-Order Sections
The following figure depicts a direct form I filter structure that directly realizes 
a transfer function with a second-order numerator and denominator and 
second-order sections. The numerator coefficients are numbered b(i), i=1, 2, 3; 
the denominator coefficients are numbered a(i), i = 1, 2, 3; and the states (used 
for initial and final state values in filtering) are labeled z(i). In the figure, the 
Arithmetic property is set to fixed to place the filter in fixed-point mode.

Example—Specifying a Direct Form I Filter with Second-Order Sections. You can specify 
an eighth-order direct form I structure for a quantized filter hq with the 
following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1sos(b,a);

To create the fixed-point filter, set the Arithmetic property to fixed, as shown 
here.

set(hq,'arithmetic','fixed');

Direct Form I Transposed Filter Structure
The next signal flow diagram depicts a direct form I transposed filter structure 
that directly realizes a transfer function with a second-order numerator and 
denominator. The numerator coefficients are b(i), i = 1, 2, 3; the denominator 
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coefficients are a(i), i = 1, 2, 3; and the states (used for initial and final state 
values in filtering) are labeled z(i). With the Arithmetic property value set to 
fixed, the figure shows the filter with the properties indicated. 

Example—Specifying a Direct Form I Transposed Filter. You can specify a second-order 
direct form I transposed filter structure for a quantized filter hq with the 
following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df1t(b,a);
set(hq,'arithmetic','fixed');

Direct Form II Filter Structure
The following graphic depicts a direct form II filter structure that directly 
realizes a transfer function with a second-order numerator and denominator. 
In the figure, the Arithmetic property value is fixed. Numerator coefficients 
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are named b(i); denominator coefficients are named a(i), i = 1, 2, 3; and the 
states (used for initial and final state values in filtering) are named z(i).

Use the method dfilt.df2 to construct a quantized filter whose 
FilterStructure property is Direct-Form II. 

Example—Specifying a Direct Form II Filter. You can specify a second-order direct 
form II filter structure for a quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2({b,a});
hq.arithmetic = 'fixed'

To convert your initial double-precision filter hq to a quantized or fixed-point 
filter, set the Arithmetic property to fixed, as shown.
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Direct Form II Filter Structure With Second-Order Sections

The following figure depicts direct form II filter structure using second-order 
sections that directly realizes a transfer function with a second-order 
numerator and denominator sections. In the figure, the Arithmetic property 
value is fixed. Numerator coefficients are labeled b(i); denominator 
coefficients are labeled a(i), i = 1, 2, 3; and the states (used for initial and final 
state values in filtering) are labeled z(i).

Use the method dfilt.df2sos to construct a quantized filter whose 
FilterStructure property is Direct-Form II. 

Example—Specifying a Direct Form II Filter with Second-Order Sections. You can specify 
a tenth-order direct form II filter structure that uses second-order sections for 
a quantized filter hq with the following code.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hq = dfilt.df2sos({b,a});
hq.arithmetic = 'fixed'

To convert your prototype double-precision filter hq to a fixed-point filter, set 
the Arithmetic property to fixed, as shown.

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

DenAccumFormat

NumProdFormat

NumAccumFormatDenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1

z
−1

1
input



7 Reference for the Properties of Filter Objects

7-52

Direct Form II Transposed Filter Structure
The following figure depicts the direct form II transposed filter structure that 
directly realizes transfer functions with a second-order numerator and 
denominator. The numerator coefficients are labeled b(i), the denominator 
coefficients are labeled a(i), i = 1, 2, 3, and the states (used for initial and final 
state values in filtering) are labeled z(i). In the first figure, the Arithmetic 
property value is fixed. 
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Use the constructor dfilt.df2t to specify the value of the FilterStructure 
property for a filter with this structure that you can convert to fixed-point 
filtering. 

Example—Specifying a Direct Form II Transposed Filter. Specifying or constructing 
a second-order direct form II transposed filter for a fixed-point filter hq starts 
with the following code to define the coefficients and construct the filter.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t({b,a});

Now create the fixed-point filtering version of the filter from hd, which is 
floating point.

hq = set(hd,'arithmetic','fixed');
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Direct Form Antisymmetric FIR Filter Structure (Any Order)
The following figure depicts a direct form antisymmetric FIR filter structure 
that directly realizes a second-order antisymmetric FIR filter. The filter 
coefficients are labeled b(i), and the initial and final state values in filtering are 
labeled z(i). This structure reflects the Arithmetic property set to fixed.

Use the method dfilt.dfasymfir to construct the filter, and then set the 
Arithmetic property to fixed to convert to a fixed-point filter with this 
structure. 

Example—Specifying an Odd-Order Direct Form Antisymmetric FIR Filter. Specify a 
fifth-order direct form antisymmetric FIR filter structure for a fixed-point filter 
hq with the following code.

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hq = dfilt.dfasymfir(b);
set(hq,'arithmetic','fixed')
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hq
 
hq =
 
         FilterStructure: 'Direct-Form Antisymmetric FIR'
              Arithmetic: 'fixed'
               Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]

PersistentMemory: false
                  States: [1x1 fi object]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
              TapSumMode: 'KeepMSB'      
        TapSumWordLength: 17             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
                                         
           CastBeforeSum: true           
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         
                                         
         InheritSettings: false 

Example—Specifying an Even-Order Direct Form Antisymmetric FIR Filter. You can specify 
a fourth-order direct form antisymmetric FIR filter structure for a fixed-point 
filter hq with the following code.

b = [-0.01 0.1 0.0 -0.1 0.01];
hq = dfilt.dfasymfir(b);
hq.arithmetic='fixed'
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hq =
 
         FilterStructure: 'Direct-Form Antisymmetric FIR'
              Arithmetic: 'fixed'
               Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]

PersistentMemory: false
                  States: [1x1 fi object]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
              TapSumMode: 'KeepMSB'      
        TapSumWordLength: 17             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
                                         
           CastBeforeSum: true           
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         
                                         
         InheritSettings: false 
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Direct Form Finite Impulse Response (FIR) Filter Structure
In the next figure, you see the signal flow graph for a direct form finite impulse 
response (FIR) filter structure that directly realizes a second-order FIR filter. 
The filter coefficients are b(i), i = 1, 2, 3, and the states (used for initial and final 
state values in filtering) are z(i). To generate the figure, set the Arithmetic 
property to fixed after you create your prototype filter in double-precision 
arithmetic.

Use the dfilt.dffir method to generate a filter that uses this structure. 

Example—Specifying a Direct Form FIR Filter. You can specify a second-order direct 
form FIR filter structure for a fixed-point filter hq with the following code.

b = [0.05 0.9 0.05];
hd = dfilt.dffir({b});
hq = set(hd,'arithmetic','fixed');
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Direct Form FIR Transposed Filter Structure
This figure uses the filter coefficients labeled b(i), i = 1, 2, 3, and states (used 
for initial and final state values in filtering) are labeled z(i). These depict 
a direct form finite impulse response (FIR) transposed filter structure that 
directly realizes a second-order FIR filter.

With the Arithmetic property set to fixed, your filter matches the figure. 
Using the method dfilt.dffirt returns a double-precision filter that you 
convert to a fixed-point filter. 
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Example—Specifying a Direct Form FIR Transposed Filter. You can specify 
a second-order direct form FIR transposed filter structure for a fixed-point 
filter hq with the following code.

b = [0.05 0.9 0.05];
hd=dfilt.dffirt({b});
hq = copy(hd);
hq.arithmetic = 'fixed';
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Lattice Allpass Filter Structure
The following figure depicts the lattice allpass filter structure. The pictured 
structure directly realizes third-order lattice allpass filters using fixed-point 
arithmetic. The filter reflection coefficients are labeled k1(i), i = 1, 2, 3. The 
states (used for initial and final state values in filtering) are labeled z(i).

To create a quantized filter that uses the lattice allpass structure shown in the 
figure, use the dfilt.latticeallpass method and set the Arithmetic 
property to fixed.

Example—Specifying a Lattice Allpass Filter. You can create a third-order lattice 
allpass filter structure for a quantized filter hq with the following code.

k = [.66 .7 .44];
hd=dfilt.latticeallpass({k});
hq = copy(hd)
set(hq,'arithmetic','fixed');
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Lattice Moving Average Maximum Phase Filter Structure
In the next figure you see a lattice moving average maximum phase filter 
structure. This signal flow diagram directly realizes a third-order lattice 
moving average (MA) filter with the following phase form depending on the 
initial transfer function:

• When you start with a minimum phase transfer function, the upper branch 
of the resulting lattice structure returns a minimum phase filter. The lower 
branch returns a maximum phase filter.

• When your transfer function is neither minimum phase nor maximum 
phase, the lattice moving average maximum phase structure will not be 
maximum phase.

• When you start with a maximum phase filter, the resulting lattice filter is 
maximum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for 
initial and final state values in filtering) are labeled z(i). In the figure, we set 
the Arithmetic property to fixed to reveal the fixed-point arithmetic format 
features that control such options as word length and fraction length.

Example—Constructing a Lattice Moving Average Maximum Phase Filter. Constructing 
a fourth-order lattice MA maximum phase filter structure for a quantized filter 
hq begins with the following code.

k = [.66 .7 .44 .33];
hd=dfilt.latticemamax({k});
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Lattice Autoregressive (AR) Filter Structure
The method dfilt.latticear directly realizes lattice autoregressive filters in 
the toolbox. The following figure depicts the third-order lattice autoregressive 
(AR) filter structure—with the Arithmetic property equal to fixed. The filter 
reflection coefficients are labeled k(i), i = 1, 2, 3, and the states (used for initial 
and final state values in filtering) are labeled z(i).

Example—Specifying a Lattice AR Filter. You can specify a third-order lattice AR 
filter structure for a quantized filter hq with the following code.

k = [.66 .7 .44];
hd=dfilt.latticear({k});
hq = copy(hd);
hq.arithmetic = 'custom';
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Lattice Moving Average (MA) Filter Structure for Minimum Phase
The following figures depict lattice moving average (MA) filter structures that 
directly realize third-order lattice MA filters for minimum phase. The filter 
reflection coefficients are labeled k(i), i = 1, 2, 3, and the states (used for initial 
and final state values in filtering) are labeled z(i). Setting the Arithmetic 
property of the filter to fixed results in a fixed-point filter that matches the 
figure.

This signal flow diagram directly realizes a third-order lattice moving average 
(MA) filter with the following phase form depending on the initial transfer 
function:

• When you start with a minimum phase transfer function, the upper branch 
of the resulting lattice structure returns a minimum phase filter. The lower 
branch returns a minimum phase filter.

• When your transfer function is neither minimum phase nor maximum 
phase, the lattice moving average minimum phase structure will not be 
minimum phase.

• When you start with a minimum phase filter, the resulting lattice filter is 
minimum phase also.

The filter reflection coefficients are labeled k(i), i = 1, 2, 3. The states (used for 
initial and final state values in filtering) are labeled z(i). In the figure, we set 
the Arithmetic property to fixed to reveal the fixed-point arithmetic format 
features that control such options as word length and fraction length.
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Example—Specifying a Minimum Phase Lattice MA Filter. You can specify a third-order 
lattice MA filter structure for minimum phase applications using variations of 
the following code.

k = [.66 .7 .44];
hd=dfilt.latticemamin({k});
hq = copy(hd);
set(hq,'arithmetic','fixed');

Lattice Autoregressive Moving Average (ARMA) Filter Structure
The figure below depicts a lattice autoregressive moving average (ARMA) filter 
structure that directly realizes a fourth-order lattice ARMA filter. The filter 
reflection coefficients are labeled k(i), i = 1, ..., 4; the ladder coefficients are 
labeled v(i), i = 1, 2, 3; and the states (used for initial and final state values in 
filtering) are labeled z(i). 

Example—Specifying an Lattice ARMA Filter. The following code specifies 
a fourth-order lattice ARMA filter structure for a quantized filter hq, starting 
from hd, a floating-point version of the filter.
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k = [.66 .7 .44 .66];
v = [1 0 0];
hd=dfilt.latticearma({k,v});
hq = copy(hd);
hq.arithmetic = 'fixed';
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Direct Form Symmetric FIR Filter Structure (Any Order)
Shown in the next figure, you see signal flow that depicts a direct form 
symmetric FIR filter structure that directly realizes a fifth-order direct form 
symmetric FIR filter. Filter coefficients are labeled b(i), i = 1, ..., n, and states 
(used for initial and final state values in filtering) are labeled z(i). Showing the 
filter structure used when you select fixed for the Arithmetic property value, 
the first figure details the properties in the filter object.

Example—Specifying an Odd-Order Direct Form Symmetric FIR Filter. By using the 
following code in MATLAB, you can specify a fifth-order direct form symmetric 
FIR filter for a fixed-point filter hq:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd=dfilt.dfsymfir({b});
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hq = copy(hd);
set(hq,'arithmetic','fixed');

Assigning Filter Coefficients 
The syntax you use to assign filter coefficients for your floating-point or 
fixed-point filter depends on the structure you select for your filter. 

Converting Filters Between Representations
Filter conversion functions in this toolbox and in the Signal Processing Toolbox 
let you convert filter transfer functions to other filter forms, and from other 
filter forms to transfer function form. Relevant conversion functions include 
the following functions. 

Conversion Function Description

ca2tf Converts from a coupled allpass filter to a 
transfer function.

cl2tf Converts from a lattice coupled allpass filter to 
a transfer function.

convert Convert a discrete-time filter from one filter 
structure to another.

sos Converts quantized filters to create 
second-order sections. We recommend this 
method for converting quantized filters to 
second-order sections.

tf2ca Converts from a transfer function to a coupled 
allpass filter.

tf2cl Converts from a transfer function to a lattice 
coupled allpass filter.

tf2latc Converts from a transfer function to a lattice 
filter.

tf2sos Converts from a transfer function to a 
second-order section form.
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Note that these conversion routines do not apply to dfilt objects.

Function convert is a special case—when you use convert to change the filter 
structure of a fixed-point filter, you lose all of the filter states and settings. 
Your new filter has default values for all properties, and it in not fixed-point.

To demonstrate the changes that occur, convert a fixed-point direct form I 
transposed filter to direct form II structure.

hd=dfilt.df1t
 
hd =
 
         FilterStructure: 'Direct-Form I Transposed'
              Arithmetic: 'double'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: Numerator:  [0x0 double]
                          Denominator:[0x0 double]

hd.arithmetic='fixed'
hd =

tf2ss Converts from a transfer function to 
state-space form.

tf2zp Converts from a rational transfer function to 
its factored (single section) form 
(zero-pole-gain form).

zp2sos Converts a zero-pole-gain form to a 
second-order section form.

zp2ss Conversion of zero-pole-gain form to a 
state-space form.

zp2tf Conversion of zero-pole-gain form to transfer 
functions of multiple order sections.

Conversion Function Description
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         FilterStructure: 'Direct-Form I Transposed'
              Arithmetic: 'fixed'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: Numerator:  [0x0 fi]
                          Denominator:[0x0 fi]

convert(hd,'df2')

Warning: Using reference filter for structure conversion. 
Fixed-point attributes will not be converted.

ans =
 
         FilterStructure: 'Direct-Form II'
              Arithmetic: 'double'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [0x1 double]

You can specify a filter with L sections of arbitrary order by

1 Factoring your entire transfer function with tf2zp. This converts your 
transfer function to zero-pole-gain form.

2 Using zp2tf to compose the transfer function for each section from the 
selected first-order factors obtained in step 1.

Note  You are not required to normalize the leading coefficients of each 
section’s denominator polynomial when you specify second-order sections, 
though tf2sos does.
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Gain
dfilt.scalar filters have a gain value stored in the gain property. By default 
the gain value is one—the filter acts as a wire.

InputFracLength
InputFracLength defines the fraction length assigned to the input data for 
your filter. Used in tandem with InputWordLength, the pair defines the data 
format for input data you provide for filtering. 

As with all fraction length properties in dfilt objects, the value you enter here 
can be any negative or positive integer, or zero. Fraction length can be larger 
than the associated word length, in this case InputWordLength, as well.

InputWordLength
Specifies the number of bits your filter uses to represent your input data. Your 
word length option is limited by the arithmetic you choose—up to 32 bits for 
double, float, and fixed. Setting Arithmetic to single (single-precision 
floating-point) limits word length to 16 bits. The default value is 16 bits.

Ladder
Included as a property in dfilt.latticearma filter objects, Ladder contains 
the denominator coefficients that form an IIR lattice filter object. For instance, 
the following code creates a high pass filter object that uses the lattice ARMA 
structure.

[b,a]=cheby1(5,.5,.5,'high')

b =

    0.0282   -0.1409    0.2817   -0.2817    0.1409   -0.0282

a =

    1.0000    0.9437    1.4400    0.9629    0.5301    0.1620

hd=dfilt.latticearma(b,a)
 
hd =
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         FilterStructure: [1x44 char]
              Arithmetic: 'double'
                 Lattice: [1x6 double]
                  Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]

PersistentMemory: false
                  States: [6x1 double]

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: [1x44 char]
              Arithmetic: 'fixed'
                 Lattice: [1x6 double]
                  Ladder: [1 0.9437 1.4400 0.9629 0.5301 0.1620]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

LadderAccumFracLength
Autoregressive, moving average lattice filter objects (lattticearma) use ladder 
coefficients to define the filter. In combination with LadderFracLength and 
CoeffWordLength, these three properties specify or reflect how the 
accumulator outputs data stored there. As with all fraction length properties, 
LadderAccumFracLength can be any integer, including integers larger than 
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AccumWordLength, and positive or negative integers. The default value is 29 
bits.

LadderFracLength
To let you control the way your latticearma filter interprets the denominator 
coefficients, LadderFracLength sets the fraction length applied to the ladder 
coefficients for your filter. The default value is 14 bits.

As with all fraction length properties, LadderFracLength can be any integer, 
including integers larger than AccumWordLength, and positive or negative 
integers. 

Lattice
When you create a lattice-based IIR filter, your numerator coefficients (from 
your IIR prototype filter or the default dfilt lattice filter function) get stored 
in the Lattice property of the dfilt object. The properties CoeffWordLength 
and LatticeFracLength define the data format the object uses to represent the 
lattice coefficients. By default, lattice coefficients are in double-precision 
format.

LatticeAccumFracLength
Lattice filter objects (latticeallpass, latticearma, latticemamax, and 
latticemamin) use lattice coefficients to define the filter. In combination with 
LatticeFracLength and CoeffWordLength, these three properties specify how 
the accumulator outputs lattice coefficient-related data stored there. As with 
all fraction length properties, LatticeAccumFracLength can be any integer, 
including integers larger than AccumWordLength, and positive or negative 
integers. By default, the property is set to 31 bits.

LatticeFracLength
To let you control the way your filter interprets the denominator coefficients, 
LatticeFracLength sets the fraction length applied to the lattice coefficients 
for your lattice filter. When you create the default lattice filter, 
LatticeFracLength is 16 bits.

As with all fraction length properties, LatticeFracLength can be any integer, 
including integers larger than CoeffWordLength, and positive or negative 
integers. 
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MultiplicandFracLength
Each input data element for a multiply operation has both word length and 
fraction length to define its representation. MultiplicandFracLength sets the 
fraction length to use when the filter object performs any multiply operation 
during filtering. For default filters, this is set to 15 bits.

As with all word and fraction length properties, MultiplicandFracLength can 
be any integer, including integers larger than CoeffWordLength, and positive 
or negative integers. 

MultiplicandWordLength
Each input data element for a multiply operation has both word length and 
fraction length to define its representation. MultiplicandWordLength sets the 
word length to use when the filter performs any multiply operation during 
filtering. For default filters, this is set to 16 bits. Only the df1t and df1tsos 
filter objects include the MultiplicandFracLength property.

Only the df1t and df1tsos filter objects include the MultiplicandWordLength 
property.

NumAccumFracLength
Filter structures df1, df1t, df2, and df2t that use fixed arithmetic have this 
property that defines the fraction length applied to numerator coefficients in 
output from the accumulator. In combination with AccumWordLength, the 
NumAccumFracLength property fully specifies how the accumulator outputs 
numerator-related data stored there.

As with all fraction length properties, NumAccumFracLength can be any integer, 
including integers larger than AccumWordLength, and positive or negative 
integers. 30 bits is the default value when you create the filter object. To be able 
to change the value for this property, set FilterInternals for the filter to 
SpecifyPrecision.

Numerator
The numerator coefficients for your filter, taken from the prototype you start 
with or from the default filter, are stored in this property. Generally this is 
a 1-by-N array of data in double format, where N is the length of the filter.
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All of the filter objects include Numerator, except the lattice-based and 
second-order section filters, such as dfilt.latticema and dfilt.df1tsos.

NumFracLength
Property NumFracLength contains the value that specifies the fraction length 
for the numerator coefficients for your filter. NumFracLength specifies the 
fraction length used to interpret the numerator coefficients. Used in 
combination with CoeffWordLength, these two properties define the 
interpretation of the coefficients stored in the vector that contains the 
numerator coefficients.

As with all fraction length properties, the value you enter here can be any 
negative or positive integer, or zero. Fraction length can be larger than the 
associated word length, as well. By default, the value is 15 bits, with the 
CoeffWordLength of 16 bits.

NumProdFracLength
A property of all of the direct form IIR dfilt objects, except the ones that 
implement second-order sections, NumProdFracLength specifies the fraction 
length applied to data output from product operations the filter performs on 
numerator coefficients.

Looking at the signal flow diagram for the dfilt.df1t filter, for example, you 
see that denominators and numerators are handled separately. When you set 
ProductMode to SpecifyPrecision, you can change the NumProdFracLength 
setting manually. Otherwise, for multiplication operations that use the 
numerator coefficients, the filter sets the word length as defined by the 
ProductMode setting.

NumStateFracLength
All the variants of the direct form I structure include the property 
NumStateFracLength to store the fraction length applied to the numerator 
states for your filter object. By default, this property has the value 15 bits, with 
the CoeffWordLength of 16 bits, which you can change after you create the 
filter object.

As with all fraction length properties, the value you enter here can be any 
negative or positive integer, or zero. Fraction length can be larger than the 
associated word length, as well. 
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NumStateWordLength
When you look at the flow diagram for the df1sos filter object, the states 
associated with the numerator coefficient operations take the data format from 
this property and the NumStateFracLength property. In combination, these 
properties fully specify how the filter interprets the state it uses.

As with all fraction length properties, the value you enter here can be any 
negative or positive integer, or zero. Fraction length can be larger than the 
associated word length, as well. By default, the value is 16 bits, with the 
NumStateFracLength of 11 bits.

OutputFracLength
To define the output from your filter object, you need both the word and 
fraction lengths. OutputFracLength determines the fraction length applied to 
interpret the output data. Combining this with OutputWordLength fully 
specifies the format of the output.

Your fraction length can be any negative or positive integer, or zero. In 
addition, the fraction length you specify can be larger than the associated word 
length. Generally, the default value is 11 bits.

OutputMode
Sets the mode the filter uses to scale the filtered (output) data. You have the 
following choices:

• AvoidOverflow—directs the filter to set the property that controls the output 
data fraction length to avoid causing the data to overflow. In a df2 filter, this 
would be the OutputFracLength property.

• BestPrecision—directs the filter to set the property that controls the output 
data fraction length to maximize the precision in the output data. For df1t 
filters, this is the OutputFracLength property. When you change the word 
length (OutputWordLength), the filter adjusts the fraction length to maintain 
the best precision for the new word size.

• SpecifyPrecision—lets you set the fraction length used by the filtered data. 
When you select this choice, you can set the output fraction length using the 
OutputFracLength property to define the output precision.
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All filters include this property except the direct form I filter which takes the 
output format from the filter states. 

Here is an example that changes the mode setting to bestprecision, and then 
adjusts the word length for the output.

hd=dfilt.df2
 
hd =
 
         FilterStructure: 'Direct-Form II'
              Arithmetic: 'double'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [0x1 double]

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form II'
              Arithmetic: 'fixed'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
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             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

get(hd)
PersistentMemory: false

FilterStructure: 'Direct-Form II'
                  States: [1x1 embedded.fi]
               Numerator: 1
             Denominator: 1
              Arithmetic: 'fixed'
         CoeffWordLength: 16
          CoeffAutoScale: 1
                  Signed: 1
               RoundMode: 'convergent'
            OverflowMode: 'wrap'
         InputWordLength: 16
         InputFracLength: 15
        OutputWordLength: 16
              OutputMode: 'AvoidOverflow'
             ProductMode: 'FullPrecision'
         StateWordLength: 16
         StateFracLength: 15
           NumFracLength: 14
           DenFracLength: 14
        OutputFracLength: 13
       ProductWordLength: 32
       NumProdFracLength: 29
       DenProdFracLength: 29
         AccumWordLength: 40
      NumAccumFracLength: 29
      DenAccumFracLength: 29
           CastBeforeSum: 1

hd.outputMode='bestprecision'
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hd =
 
         FilterStructure: 'Direct-Form II'
              Arithmetic: 'fixed'
               Numerator: 1
             Denominator: 1

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'BestPrecision'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

hd.outputWordLength=8;

get(hd)
PersistentMemory: false
FilterStructure: 'Direct-Form II'

                  States: [1x1 embedded.fi]
               Numerator: 1
             Denominator: 1
              Arithmetic: 'fixed'
         CoeffWordLength: 16
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          CoeffAutoScale: 1
                  Signed: 1
               RoundMode: 'convergent'
            OverflowMode: 'wrap'
         InputWordLength: 16
         InputFracLength: 15
        OutputWordLength: 8
              OutputMode: 'BestPrecision'
             ProductMode: 'FullPrecision'
         StateWordLength: 16
         StateFracLength: 15
           NumFracLength: 14
           DenFracLength: 14
        OutputFracLength: 5
       ProductWordLength: 32
       NumProdFracLength: 29
       DenProdFracLength: 29
         AccumWordLength: 40
      NumAccumFracLength: 29
      DenAccumFracLength: 29
           CastBeforeSum: 1

Changing the OutputWordLength to 8 bits caused the filter to change the 
OutputFracLength to 5 bits to keep the best precision for the output data.

OutputWordLength
Use the property OutputWordLength to set the word length used by the output 
from your filter. Set this property to a value that matches your intended 
hardware. For example, some digital signal processors use 32-bit output so you 
would set OutputWordLength to 32.

[b,a] = butter(6,.5);
hd=dfilt.df1t(b,a);

set(hd,'arithmetic','fixed')

hd
 
hd =
 
         FilterStructure: 'Direct-Form I Transposed'
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              Arithmetic: 'fixed'
               Numerator: [1x7 double]
             Denominator: [1 0 0.7777 0 0.1142 0 0.0018]

PersistentMemory: false
                  States: Numerator:  [6x1 fi]
                          Denominator:[6x1 fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
  MultiplicandWordLength: 16             
  MultiplicandFracLength: 15             
                                         
         StateWordLength: 16             
          StateAutoScale: true           
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

hd.outputwordLength=32
 
hd =
 
         FilterStructure: 'Direct-Form I Transposed'
              Arithmetic: 'fixed'
               Numerator: [1x7 double]
             Denominator: [1 0 0.7777 0 0.1142 0 0.0018]

PersistentMemory: false
                  States: Numerator:  [6x1 fi]
                          Denominator:[6x1 fi]
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         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 32             
              OutputMode: 'AvoidOverflow'
                                         
  MultiplicandWordLength: 16             
  MultiplicandFracLength: 15             
                                         
         StateWordLength: 16             
          StateAutoScale: true           
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

When you create a filter object, this property starts with the value 16.

OverflowMode
The OverflowMode property is specified as one of the following two strings 
indicating how to respond to overflows in fixed-point arithmetic:

• 'saturate'—saturate overflows. 

When the values of data to be quantized lie outside of the range of the largest 
and smallest representable numbers (as specified by the applicable word 
length and fraction length properties), these values are quantized to the 
value of either the largest or smallest representable value, depending on 
which is closest. 

• 'wrap'—wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest 
and smallest representable numbers (as specified by the data format 
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properties), these values are wrapped back into that range using modular 
arithmetic relative to the smallest representable number. You can learn 
more about modular arithmetic in the Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.

• Applies to the accumulator and output data only. 

• Does not apply to coefficients or input data. These always saturate the 
results.

• Does not apply to products. Products maintain full precision at all times. 
Your filters do not lose precision in the products.

Default value: 'saturate'

Note  Numbers in floating-point filters that extend beyond the dynamic 
range overflow to ±inf.

ProductFracLength
After you set ProductMode for a fixed-point filter to SpecifyPrecision, this 
property becomes available for you to change. ProductFracLength sets the 
fraction length the filter uses for the results of multiplication operations. Only 
the FIR filters such as asymmetric FIRs or lattice autoregressive filters include 
this dynamic property.

Your fraction length can be any negative or positive integer, or zero. In 
addition, the fraction length you specify can be larger than the associated word 
length. Generally, the default value is 11 bits.

ProductMode
This property, available when your filter is in fixed-point arithmetic mode, 
specifies how the filter outputs the results of multiplication operations. All 
dfilt objects include this property when they use fixed-point arithmetic.

When available, you select from one of the following values for ProductMode:

• FullPrecision—means the filter automatically chooses the word length and 
fraction length it uses to represent the results of multiplication operations. 
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The setting allow the product to retain the precision provided by the inputs 
(multiplicands) to the operation. 

• KeepMSB—means you specify the word length for representing product 
operation results. The filter sets the fraction length to discard the LSBs, keep 
the higher order bits in the data, and maintain the precision. 

• KeepLSB—means you specify the word length for representing the product 
operation results. The filter sets the fraction length to discard the MSBs, 
keep the lower order bits, and maintain the precision. Compare to the 
KeepMSB option.

• SpecifyPrecision—means you specify the word length and the fraction 
length to apply to data output from product operations.

When you switch to fixed-point filtering from floating-point, you are most likely 
going to throw away some data bits after product operations in your filter, 
perhaps because you have limited resources. When you have to discard some 
bits, you might choose to discard the least significant bits (LSB) from a result 
since the resulting quantization error would be small as the LSBs carry less 
weight. Or you might choose to keep the LSBs because the results have MSBs 
that are mostly zero, such as when your values are small relative to the range 
of the format in which they are represented. So the options for ProductMode let 
you choose how to maintain the information you need from the accumulator.

For more information about data formats, word length, and fraction length in 
fixed-point arithmetic, refer to “Notes About Fraction Length, Word Length, 
and Precision” on page 7-30.

ProductWordLength
You use ProductWordLength to define the data word length used by the output 
from multiplication operations. Set this property to a value that matches your 
intended application. For example, the default value is 32 bits, but you can set 
any word length.

set(hq,'arithmetic','fixed');
set(hq,'ProductWordLength',64);

Note that ProductWordLength applies only to filters whose Arithmetic 
property value is fixed. 
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PersistentMemory
Determine whether the filter states get restored to their starting values for 
each filtering operation. The starting values are the values in place when you 
create the filter object. PersistentMemory returns to zero any state that the 
filter changes during processing. States that the filter does not change are not 
affected. Defaults to false—the filter does not retain memory about filtering 
operations from one to the next. Maintaining memory (setting 
PersistentMemory to true) lets you filter large data sets as collections of 
smaller subsets and get the same result.

In this example, filter hd first filters data xtot in one pass. Then we use hd to 
filter x as two separate data sets. The results ytot and ysec are the same in 
both cases.

xtot=[x,x];
ytot=filter(hd,xtot)
ytot =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092
reset(hm1);  % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hd,x) filter(hd,x)]

ysec =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the 
entire signal filtered at once).
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RoundMode
The RoundMode property value specifies the rounding method used for 
quantizing numerical values. Specify the RoundMode property values as one of 
the following five strings.

Default value: 'convergent'

The choice you make affects only the accumulator and output arithmetic. 
Coefficient and input arithmetic always round. Finally, products never 
overflow—they maintain full precision.

ScaleValueFracLength
Filter structures df1sos, df1tsos, df2sos, and df2tsos that use fixed 
arithmetic have this property that defines the fraction length applied to the 

RoundMode String Description of Rounding Algorithm

'ceil' Round up to the next representable quantized 
value.

'convergent' Round to the nearest representable quantized 
value. Numbers that are exactly halfway 
between the two nearest representable 
quantized values are rounded up when the least 
significant bit would be set to 1 after rounding. 
Otherwise, the number is rounded down. Filter 
objects use convergent rounding by default.

'fix' Round negative numbers up and positive 
numbers down to the next representable 
quantized value.

'floor' Round down to the next representable quantized 
value.

'round' Round to the nearest representable quantized 
value. Numbers that are halfway between the 
two nearest representable quantized values are 
rounded up. 
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scale values the filter uses between sections. In combination with 
CoeffWordLength, these two properties fully specify how the filter interprets 
and uses the scale values stored in the property ScaleValues. As with fraction 
length properties, ScaleValueFracLength can be any integer, including 
integers larger than CoeffWordLength, and positive or negative integers. 15 
bits is the default value when you create the filter.

ScaleValues
The ScaleValues property values are specified as a scalar (or vector) that 
introduces scaling for inputs (and the outputs from cascaded sections in the 
vector case) during filtering:

• When you only have a single section in your filter:

- Specify the ScaleValues property value as a scalar if you only want to 
scale the input to your filter.

- Specify the ScaleValues property as a vector of length 2 if you want to 
specify scaling to the input (scaled with the first entry in the vector) and 
the output (scaled with the last entry in the vector).

• When you have L cascaded sections in your filter:

- Specify the ScaleValues property value as a scalar if you only want to 
scale the input to your filter.

- Specify the value for the ScaleValues property as a vector of length L+1 if 
you want to scale the inputs to every section in your filter, along with the 
output:

-The first entry of your vector specifies the input scaling

- Each successive entry specifies the scaling at the output of the next section

- The final entry specifies the scaling for the filter output. 

The interpretation of this property is described below with diagrams in 
“Interpreting the ScaleValues Property”.

Default value: 0

Remarks: The value of the ScaleValues property is not quantized. Data 
affected by the presence of a scaling factor in the filter is quantized according 
to the appropriate data format.
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When you apply normalize to a fixed-point filter, the value for the 
ScaleValues property is changed accordingly.

It is good practice to choose values for this property that are either positive or 
negative powers of two.

Interpreting the ScaleValues Property
When you specify the values of the ScaleValues property of a quantized filter, 
the values are entered as a vector, the length of which is determined by the 
number of cascaded sections in your filter:

• When you have only one section, the value of the Scalevalues property can 
be a a scalar or a two-element vector.

• When you have L cascaded sections in your filter, the value of the 
Scalevalues property can be a scalar or an L+1-element vector.

The following diagram shows how the ScaleValues property values are applied 
to a quantized filter with only one section.

Application of ScaleValues
to a Single Section

1
Output

−K−

ScaleValues(2)

−K−

ScaleValues(1)

Input Output

Filter

1
Input
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The following diagram shows how the ScaleValues property values are applied 
to a quantized filter with two sections.

Signed
When you create a dfilt object for fixed-point filtering (you set the property 
Arithmetic to fixed, the property Signed specifies whether the filter 
interprets coefficients as signed or unsigned. This setting applies only to the 
coefficients. While the default setting is true, meaning that all coefficients are 
assumed to be signed, you can change the setting to false after you create the 
fixed-point filter.

For example, create a fixed-point direct-form II transposed filter with both 
negative and positive coefficients, and then change the property value for 
Signed from true to false to see what happens to the negative coefficient 
values.

hd=dfilt.df2t(-5:5)
 
hd =
 
         FilterStructure: 'Direct-Form II Transposed'
              Arithmetic: 'double'
               Numerator: [-5 -4 -3 -2 -1 0 1 2 3 4 5]
             Denominator: 1

PersistentMemory: false
                  States: [10x1 double]

set(hd,'arithmetic','fixed')
hd.numerator

Application of ScaleValues
to Multiple Sections

1
Output
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ScaleValues(3)

−K−

ScaleValues(2)
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ScaleValues(1)
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Filter2
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Filter1

1
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ans =

    -5    -4    -3    -2    -1     0     1     2     3     4     5

set(hd,'signed',false)
hd.numerator

ans =

     0     0     0     0     0     0     1     2     3     4     5

Using unsigned coefficients limits you to using only positive coefficients in your 
filter. Signed is a dynamic property—you cannot set or change it until you 
switch the setting for the Arithmetic property to fixed.

SosMatrix
When you convert a dfilt object to second-order section form, or create 
a second-order section filter, sosMatrix holds the filter coefficients as property 
values. Using the double data type by default, the matrix is in 
[sections coefficients per section] form, displayed as [15-x-6] for filters with 
6 coefficients per section and 15 sections, [15 6].

To demonstrate, the following code creates an order 30 filter using 
second-order sections in the direct-form II transposed configuration. Notice the 
sosMatrix property contains the coefficients for all the sections.

d = fdesign.lowpass('n,fc',30,0.5);
hd = butter(d);

hd =
 

FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [15x6 double]
             ScaleValues: [16x1 double]

PersistentMemory: false
                  States: [2x15 double]

hd.arithmetic='fixed'
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hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'fixed'
               sosMatrix: [15x6 double]
             ScaleValues: [16x1 double]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
SectionInputWordLength: 16             
SectionInputAutoScale: true           

                                         
SectionOutputWordLength: 16             
SectionOutputAutoScale: true           

                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

hd.sosMatrix

ans =
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    1.0000    2.0000    1.0000    1.0000         0    0.9005
    1.0000    2.0000    1.0000    1.0000         0    0.7294
    1.0000    2.0000    1.0000    1.0000         0    0.5888
    1.0000    2.0000    1.0000    1.0000         0    0.4724
    1.0000    2.0000    1.0000    1.0000         0    0.3755
    1.0000    2.0000    1.0000    1.0000         0    0.2948
    1.0000    2.0000    1.0000    1.0000         0    0.2275
    1.0000    2.0000    1.0000    1.0000         0    0.1716
    1.0000    2.0000    1.0000    1.0000         0    0.1254
    1.0000    2.0000    1.0000    1.0000         0    0.0878
    1.0000    2.0000    1.0000    1.0000         0    0.0576
    1.0000    2.0000    1.0000    1.0000         0    0.0344
    1.0000    2.0000    1.0000    1.0000         0    0.0173
    1.0000    2.0000    1.0000    1.0000         0    0.0062
    1.0000    2.0000    1.0000    1.0000         0    0.0007

The SOS matrix is an M-by-6 matrix, where M is the number of sections in the 
second-order section filter. Filter hd has M equal to 15 as shown above (15 
rows). Each row of the SOS matrix contains the numerator and denominator 
coefficients (b’s and a’s) and the scale factors of the corresponding section in the 
filter.

SectionInputAutoScale
Second-order section filters include this property that determines who the 
filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends 
on the property value of SectionInputAutoScale. The representation the filter 
uses between the filter sections depends on whether the value of 
SectionInputAutoScale is true or false.

• SectionInputAutoScale = true means the filter chooses the fraction length 
to maintain the value of the data between sections as close to the output 
values from the previous section as possible. true is the default setting.

• SectionInputAutoScale = false removes the automatic scaling of the 
fraction length for the intersection data and exposes the property that 
controls the coefficient fraction length (SectionInputFracLength) so you can 
change it. For example, if the filter is a second-order, direct form FIR filter, 
setting SectionInputAutoScale = false exposes the 
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SectionInputFracLength property that specifies the fraction length applied 
to data between the sections.

SectionInputFracLength
Second-order section filters use quantizers at the input to each section of the 
filter. The quantizers apply to the input data entering each filter section. Note 
that the quantizers for each section are the same. To set the fraction length for 
interpreting the input values, use the property value in 
SectionInputFracLength.

In combination with CoeffWordLength, SectionInputFracLength fully 
determines how the filter interprets and uses the state values stored in the 
property States. As with all word and fraction length properties, 
SectionInputFracLength can be any integer, including integers larger than 
CoeffWordLength, and positive or negative integers. 15 bits is the default value 
when you create the filter object.

SectionInputWordLength
SOS filters are composed of sections, each one a second-order filter. Filtering 
data input to the filter involves passing the data through each filter section. 
SectionInputWordLength specifies the word length applied to data as it enters 
one filter section from the previous section. Only second-order 
implementations of direct-form I transposed and direct-form II transposed 
filters include this property.

By looking at one of the SOS transposed filter structures, such as this one for 
the transposed direct-form I filter implemented using second-order sections, 
you see the filter sections at the bottom of the figure.
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SectionInputWordLength defaults to 16 bits.

SectionOutputAutoScale
Second-order section filters include this property that determines who the 
filter handles data in the transitions from one section to the next in the filter.

How the filter represents the data passing from one section to the next depends 
on the property value of SectionOutputAutoScale. The representation the 
filter uses between the filter sections depends on whether the value of 
SectionOutputAutoScale is true or false.

• SectionOutputAutoScale = true means the filter chooses the fraction 
length to maintain the value of the data between sections as close to the 
output values from the previous section as possible. true is the default 
setting.
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• SectionOutputAutoScale = false removes the automatic scaling of the 
fraction length for the intersection data and exposes the property that 
controls the coefficient fraction length (SectionOutputFracLength) so you 
can change it. For example, if the filter is a second-order, direct form FIR 
filter, setting SectionOutputAutoScale = false exposes the 
SectionOutputFracLength property that specifies the fraction length 
applied to data between the sections.

SectionOutputFracLength
Second-order section filters use quantizers at the output from each section of 
the filter. The quantizers apply to the output data leaving each filter section. 
Note that the quantizers for each section are the same. To set the fraction 
length for interpreting the output values, use the property value in 
SectionOutputFracLength.

In combination with CoeffWordLength, SectionOutputFracLength determines 
how the filter interprets and uses the state values stored in the property 
States. As with all fraction length properties, SectionOutputFracLength can 
be any integer, including integers larger than CoeffWordLength, and positive 
or negative integers. 15 bits is the default value when you create the filter 
object.

SectionOutputWordLength
SOS filters are composed of sections, each one a second-order filter. Filtering 
data input to the filter involves passing the data through each filter section. 
SectionOutputWordLength specifies the word length applied to data as it 
leaves one filter section to go to the next. Only second-order implementations 
direct-form I transposed and direct-form II transposed filters include this 
property.

By looking at one of the SOS transposed filter structures, such as this one for 
the transposed direct-form I filter implemented using second-order sections, 
you see the filter sections at the bottom of the figure.
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SectionOutputWordLength defaults to 16 bits.

StateAutoScale
Although all filters use states, some do not allow you to choose whether the 
filter automatically scales the state values to prevent overruns or bad 
arithmetic errors. You select either of the following settings:

• StateAutoScale = true means the filter chooses the fraction length to 
maintain the value of the states as close to the double-precision values as 
possible. When you change the word length applied to the states (where 
allowed by the filter structure), the filter object changes the fraction length 
to try to accommodate the change. true is the default setting.

• StateAutoScale = false removes the automatic scaling of the fraction 
length for the states and exposes the property that controls the coefficient 
fraction length so you can change it. For example, in a direct form I 
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transposed SOS FIR filter, setting StateAutoScale = false exposes the 
NumStateFracLength and DenStateFracLength properties that specify the 
fraction length applied to states.

Each of the following filter structures provides the StateAutoScale property:

• df1t

• df1tsos
• df2t
• df2tsos
• dffirt

Other filter structures do not include this property.

StateFracLength
Filter states stored in the property States have both word length and fraction 
length. To set the fraction length for interpreting the stored filter object state 
values, use the property value in StateFracLength.

In combination with CoeffWordLength, StateFracLength fully determines how 
the filter interprets and uses the state values stored in the property States.

As with all fraction length properties, StateFracLength can be any integer, 
including integers larger than CoeffWordLength, and positive or negative 
integers. 15 bits is the default value when you create the filter object.

States
Digital filters are dynamic systems. The behavior of dynamic systems (their 
response) depends on the input (stimulus) to the system and the current or 
previous state of the system. You can say the system has memory or inertia. All 
fixed- or floating-point digital filters (as well as analog filters) have states.

Filters use the states to compute the filter output for each input sample, as well 
using them while filtering in loops to maintain the filter state between loop 
iterations. In the toolbox we assume zero-valued initial conditions (the 
dynamic system is at rest) by default when we filter the first input sample. 
Assuming the states are zero initially does not mean the states are not used; 
they are, but arithmetically they do not have any effect.
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Filter objects store the state values in the property States. The number of 
stored states depends on the filter implementation, since the states represent 
the delays in the filter implementation.

When you review the display for a filter object with fixed arithmetic, notice that 
the states return an embedded fi object, as you see here.

b = ellip(6,3,50,300/500);
hd=dfilt.dffir(b)
 
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'double'
               Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]

PersistentMemory: false
                  States: [6x1 double]

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 0.2938 0.0773]

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: 'on'           
                  Signed: 'on'           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
           CastBeforeSum: 'on'           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         
                                         
         InheritSettings: 'off' 

fi objects provide fixed-point support for the filters. To learn more about the 
details about fi objects, refer to your Fixed-Point Toolbox documentation.

The property States lets you use a fi object to define how the filter interprets 
the filter states. For example, you can create a fi object in MATLAB, then 
assign the object to States, as follows:
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statefi=fi([],16,12)
 
statefi =
 
[]
                 DataTypeMode = Fixed-point: binary point scaling
                       Signed = true
                   Wordlength = 16
               Fractionlength = 12

This fi object does not have a value associated (notice the [] input argument 
to fi for the value), and it has word length of 16 bits and fraction length of 12 
bit. Now you can apply statefi to the States property of the filter hd.

set(hd,'States',statefi);
Warning: The 'States' property will be reset to the value 
specified at construction before filtering.
Set the 'PersistentMemory' flag to 'True' to avoid changing this 
property value.
hd
 
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [0.0773 0.2938 0.5858 0.7239 0.5858 

0.2938 0.0773]
PersistentMemory: false

                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: 'on'           
                  Signed: 'on'           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
             ProductMode: 'FullPrecision'
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         AccumWordLength: 40             
           CastBeforeSum: 'on'           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap' 

StateWordLength
While all filters use states, some do not allow you to directly change the state 
representation—the word length and fraction lengths—independently. For the 
others, StateWordLength specifies the word length, in bits, the filter uses to 
represent the states. Filters that do not provide direct state word length control 
include:

• df1
• dfasymfir
• dffir
• dfsymfir

For these structures, the filter derives the state format from the input format 
you choose for the filter—except for the df1 IIR filter. In this case, the 
numerator state format comes from the input format and the denominator 
state format comes from the output format. All other filter structures provide 
control of the state format directly. 

TapSumFracLength
Direct-form FIR filter objects, both symmetric and antisymmetric, use this 
property. To set the fraction length for output from the sum operations that 
involve the filter tap weights, use the property value in TapSumFracLength. To 
enable this property, set the TapSumMode to SpecifyPrecision in your filter.

As you can see in this code example that creates a fixed-point asymmetric FIR 
filter, the TapSumFracLength property becomes available after you change the 
TapSumMode property value.

hd=dfilt.dfasymfir
 
hd =
 
         FilterStructure: 'Direct-Form Antisymmetric FIR'
              Arithmetic: 'double'
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               Numerator: 1
PersistentMemory: false

                  States: [0x1 double]

set(hd,'arithmetic','fixed');
hd
 
hd =
 
         FilterStructure: 'Direct-Form Antisymmetric FIR'
              Arithmetic: 'fixed'
               Numerator: 1

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
              TapSumMode: 'KeepMSB'      
        TapSumWordLength: 17             
                                         
             ProductMode: 'FullPrecision'

         AccumWordLength: 40             
                                         
           CastBeforeSum: true           
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

With the filter now in fixed-point mode, you can change the TapSumMode 
property value to SpecifyPrecision, which gives you access to the 
TapSumFracLength property.

set(hd,'TapSumMode','SpecifyPrecision');
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hd
 
hd =
 
         FilterStructure: 'Direct-Form Antisymmetric FIR'
              Arithmetic: 'fixed'
               Numerator: 1

PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16                
          CoeffAutoScale: true              
                  Signed: true              
                                            
         InputWordLength: 16                
         InputFracLength: 15                
                                            
        OutputWordLength: 16                
              OutputMode: 'AvoidOverflow'   
                                            
              TapSumMode: 'SpecifyPrecision'
        TapSumWordLength: 17                
        TapSumFracLength: 15                
                                            
             ProductMode: 'FullPrecision'   

         AccumWordLength: 40                
                                            
           CastBeforeSum: true              
               RoundMode: 'convergent'      
            OverflowMode: 'wrap' 

In combination with TapSumWordLength, TapSumFracLength fully determines 
how the filter interprets and uses the state values stored in the property 
States.

As with all fraction length properties, TapSumFracLength can be any integer, 
including integers larger than TapSumWordLength, and positive or negative 
integers. 15 bits is the default value when you create the filter object.
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TapSumMode
This property, available only after your filter is in fixed-point mode, specifies 
how the filter outputs the results of summation operations that involve the 
filter tap weights. Only symmetric (dfilt.dfsymfir) and antisymmetric 
(dfilt.dfasymfir) FIR filters use this property.

When available, you select from one of the following values:

• FullPrecision—means the filter automatically chooses the word length and 
fraction length to represent the results of the sum operation so they retain 
all of the precision provided by the inputs (addends). 

• KeepMSB—means you specify the word length for representing tap sum 
summation results to keep the higher order bits in the data. The filter sets 
the fraction length to discard the LSBs from the sum operation. This is the 
default property value.

• KeepLSB—means you specify the word length for representing tap sum 
summation results to keep the lower order bits in the data. The filter sets the 
fraction length to discard the MSBs from the sum operation. Compare to the 
KeepMSB option.

• SpecifyPrecision—means you specify the word and fraction lengths to 
apply to data output from the tap sum operations.

TapSumWordLength
Specifies the word length the filter uses to represent the output from tap sum 
operations. The default value is 17 bits. Only dfasymfir and dfsymfir filters 
include this property.
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Adaptive Filter Properties
The following table summarizes the adaptive filter properties and provides 
a brief description of each. Full descriptions of each property, in alphabetical 
order, follow the table.

Property Description

Algorithm Reports the algorithm the object 
uses for adaptation. When you 
construct your adaptive filter object, 
this property is set automatically by 
the constructor, such as 
adaptfilt.nlms creating an 
adaptive filter that uses the 
normalized LMS algorithm. You 
cannot change the value—it is read 
only.

AvgFactor Averaging factor used to compute 
the exponentially-windowed 
estimates of the powers in the 
transformed signal bins for the 
coefficient updates. AvgFactor 
should lie between zero and one. For 
default filter objects, AvgFactor 
equals (1 - step). lambda is the input 
argument that represents AvgFactor

BkwdPredErrorPower Returns the minimum 
mean-squared prediction error. Refer 
to [12] in the bibliography for details 
about linear prediction.

BkwdPrediction Returns the predicted samples 
generated during adaptation.Refer 
to [12] in the bibliography for details 
about linear prediction.
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Blocklength Block length for the coefficient 
updates. This must be a positive 
integer such that (l/blocklength) is 
also an integer. For faster execution, 
blocklength should be a power of 
two. blocklength defaults to two.

Coefficients Vector containing the initial filter 
coefficients. It must be a length l 
vector where l is the number of filter 
coefficients. coeffs defaults to 
length l vector of zeros when you do 
not provide the argument for input.

ConversionFactor Conversion factor defaults to the 
matrix [1 -1] that specifies 
soft-constrained initialization. This 
is the gamma input argument for 
some of the fast transversal 
algorithms.

Delay Update delay given in time samples. 
This scalar should be a positive 
integer—negative delays do not 
work. delay defaults to 1 for most 
algorithms.

DesiredSignalStates Desired signal states of the adaptive 
filter. dstates defaults to a zero 
vector with length equal to 
(blocklen - 1) or (swblocklen - 1) 
depending on the algorithm.

EpsilonStates Vector of the epsilon values of the 
adaptive filter. EpsilonStates 
defaults to a vector of zeros with 
(projectord - 1) elements.

Property (Continued) Description
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ErrorStates Vector of the adaptive filter error 
states. ErrorStates defaults to a 
zero vector with length equal to 
(projectord - 1).

FFTCoefficients Stores the discrete Fourier 
transform of the filter coefficients in 
coeffs.

FFTStates Stores the states of the FFT of the 
filter coefficients during adaptation.

FilteredInputStates Vector of filtered input states with 
length equal to l - 1.

FilterLength Contains the length of the filter. 
Note that this is not the filter order. 
Filter length is 1 greater than filter 
order. Thus a filter with length equal 
to 10 has filter order equal to 9.

ForgettingFactor Determines how the RLS adaptive 
filter uses past data in each 
iteration. You use the forgetting 
factor to specify whether old data 
carries the same weight in the 
algorithm as more recent data. 

FwdPredErrorPower Returns the minimum 
mean-squared prediction error in the 
forward direction. Refer to [12] in 
the bibliography for details about 
linear prediction.

FwdPrediction Contains the predicted values for 
samples during adaptation. 
Compare these to the actual samples 
to get the error and power.

Property (Continued) Description
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InitFactor Soft-constrained initialization factor. 
This scalar should be positive and 
sufficiently large to prevent an 
excessive number of Kalman gain 
rescues. Called delta as an input 
argument, this defaults to one.

InvCov Upper-triangular Cholesky (square 
root) factor of the input covariance 
matrix. Initialize this matrix with a 
positive definite upper triangular 
matrix. Dimensions are l-by-l, 
where l is the filter length.

KalmanGain Empty when you construct the 
object, this gets populated after you 
run the filter.

KalmanGainStates Contains the states of the Kalman 
gain updates during adaptation.

Leakage Contains the setting for leakage in 
the adaptive filter algorithm. Using 
a leakage factor that is not 1 forces 
the weights to adapt even when they 
have found the minimum error 
solution. Forcing the adaptation can 
improve the numerical performance 
of the LMS algorithm.

OffsetCov Contains the offset covariance 
matrix.

Property (Continued) Description
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Offset Specifies an optional offset for the 
denominator of the step size 
normalization term. You must 
specify offset to be a scalar greater 
than or equal to zero. Nonzero 
offsets can help avoid a 
divide-by-near-zero condition that 
causes errors.

Power A vector of 2*l elements, each 
initialized with the value delta from 
the input arguments. As you filter 
data, Power gets updated by the 
filter process.

ProjectionOrder Projection order of the affine 
projection algorithm. projectord 
defines the size of the input signal 
covariance matrix and defaults to 
two.

ReflectionCoeffs Coefficients determined for the 
reflection portion of the filter during 
adaptation.

ReflectionCoeffsStep Size of the steps used to determine 
the reflection coefficients.

PersistentMemory Specifies whether to reset the filter 
states and memory before each 
filtering operation. Lets you decide 
whether your filter retains states 
and coefficients from previous 
filtering runs.

Property (Continued) Description
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SecondaryPathCoeffs A vector that contains the coefficient 
values of your secondary path from 
the output actuator to the error 
sensor.

SecondaryPathEstimate An estimate of the secondary path 
filter model.

SecondaryPathStates The states of the secondary path 
filter, the unknown system.

SqrtCov Upper-triangular Cholesky (square 
root) factor of the input covariance 
matrix. Initialize this matrix with a 
positive definite upper triangular 
matrix.

SqrtlnvCov Square root of the inverse of the 
sliding window input signal 
covariance matrix. This square 
matrix should be full-ranked.

States Vector of the adaptive filter states. 
states defaults to a vector of zeros 
whose length depends on the chosen 
algorithm. Usually the length is a 
function of the filter length l and 
another input argument to the filter 
object, such as projectord.

Property (Continued) Description
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StepSize Reports the size of the step taken 
between iterations of the adaptive 
filter process. Each adaptfilt object 
has a default value that best meets 
the needs of the algorithm.

SwBlockLength Block length of the sliding window. 
This integer must be at least as 
large as the filter length. 
swblocklen defaults to 16.

Property (Continued) Description
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Like dfilt objects, adaptfilt objects have properties that govern their 
behavior and store some of the results of filtering operations. The following 
pages list, in alphabetical order, the name of every property associated with 
adaptfilt objects. Note that not all adaptfilt objects have all of these 
properties. To view the properties of a particular adaptive filter, such as an 
adaptfilt.bap filter, use get with the object handle, like this:

ha = adaptfilt.bap(32,0.5,4,1.0);
get(ha)

PersistentMemory: false
Algorithm: 'Block Affine Projection FIR Adaptive Filter'

FilterLength: 32
Coefficients: [1x32 double]

States: [35x1 double]
StepSize: 0.5000

ProjectionOrder: 4
OffsetCov: [4x4 double]

get shows you the properties for ha and the values for the properties. Entering 
the object handle returns the same values and properties without the 
formatting of the list and the more familiar property names.

Algorithm
Reports the algorithm the object uses for adaptation. When you construct you 
adaptive filter object, this property is set automatically. You cannot change the 
value—it is read only.

AvgFactor
Averaging factor used to compute the exponentially-windowed estimates of the 
powers in the transformed signal bins for the coefficient updates. AvgFactor 
should lie between zero and one. For default filter objects, AvgFactor equals (1 
- step). lambda is the input argument that represent AvgFactor

BkwdPredErrorPower

BkwdPrediction
When you use an adaptive filter that does backward prediction, such as 
adaptfilt.ftf, one property of the filter contains the backward prediction 
coefficients for the adapted filter. With these coefficient, the forward 
coefficients, and the system under test, you have the full set of knowledge of 
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how the adaptation occurred. Two values stored in properties compose the 
BkwdPrediction property:

• Coefficients, which contains the coefficients of the system under test, as 
determined using backward predictions process.

• Error, which is the difference between the filter coefficients determined by 
backward prediction and the actual coefficients of the sample filter. In this 
example, adaptfilt.ftf identifies the coefficients of an unknown FIR 
system.
x  = randn(1,500);     % Input to the filter
b  = fir1(31,0.5);     % FIR system to be identified
n  = 0.1*randn(1,500); % Observation noise signal
d  = filter(b,1,x)+n;  % Desired signal
N  = 31;               % Adaptive filter order
lam = 0.99;            % RLS forgetting factor
del = 0.1;             % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);

ha
 
ha =
 
               Algorithm: 'Fast Transversal Least-Squares Adaptive Filter'
            FilterLength: 32
            Coefficients: [1x32 double]
                  States: [31x1 double]
        ForgettingFactor: 0.9900
              InitFactor: 0.1000
           FwdPrediction: [1x1 struct]
          BkwdPrediction: [1x1 struct]
              KalmanGain: [32x1 double]
        ConversionFactor: 0.7338
        KalmanGainStates: [32x1 double]

PersistentMemory: false

ha.coefficients

ans =

  Columns 1 through 8 

   -0.0055    0.0048    0.0045    0.0146   -0.0009    0.0002   -0.0019    0.0008

  Columns 9 through 16 

   -0.0142   -0.0226    0.0234    0.0421   -0.0571   -0.0807    0.1434    0.4620

  Columns 17 through 24 

    0.4564    0.1532   -0.0879   -0.0501    0.0331    0.0361   -0.0266   -0.0220

  Columns 25 through 32 
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    0.0231    0.0026   -0.0063   -0.0079    0.0032    0.0082    0.0033    0.0065

ha.bkwdprediction

ans = 

    Coeffs: [1x32 double]
     Error: 82.3394

>> ha.bkwdprediction.coeffs

ans =

  Columns 1 through 8 

    0.0067    0.0186    0.1114   -0.0150   -0.0239   -0.0610   -0.1120   -0.1026

  Columns 9 through 16 

    0.0093   -0.0399   -0.0045    0.0622    0.0997    0.0778    0.0646   -0.0564

  Columns 17 through 24 

    0.0775    0.0814    0.0057    0.0078    0.1271   -0.0576    0.0037   -0.0200

  Columns 25 through 32 

   -0.0246    0.0180   -0.0033    0.1222    0.0302   -0.0197   -0.1162    0.0285

Blocklength
Block length for the coefficient updates. This must be a positive integer such 
that (l/blocklen) is also an integer. For faster execution, blocklen should be 
a power of two. blocklen   defaults to two.

Coefficients
Vector containing the initial filter coefficients. It must be a length l vector 
where l is the number of filter coefficients. coeffs defaults to length l vector 
of zeros when you do not provide the argument for input.

ConversionFactor
Conversion factor defaults to the matrix [1 -1] that specifies soft-constrained 
initialization. This is the gamma input argument for some of the fast transversal 
algorithms.

Delay
Update delay given in time samples. This scalar should be a positive integer—
negative delays do not work. delay defaults to 1 for most algorithms.
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DesiredSignalStates
Desired signal states of the adaptive filter. dstates defaults to a zero vector 
with length equal to (blocklen - 1) or (swblocklen - 1) depending on the 
algorithm.

EpsilonStates
Vector of the epsilon values of the adaptive filter. EpsilonStates defaults to a 
vector of zeros with (projectord - 1) elements.

ErrorStates
Vector of the adaptive filter error states. ErrorStates defaults to a zero vector 
with length equal to (projectord - 1).

FFTCoefficients
Stores the discrete Fourier transform of the filter coefficients in coeffs.

FFTStates
Stores the states of the FFT of the filter coefficients during adaptation.

FilteredInputStates
Vector of filtered input states with length equal to l - 1.

FilterLength
Contains the length of the filter. Note that this is not the filter order. Filter 
length is 1 greater than filter order. Thus a filter with length equal to 10 has 
filter order equal to 9.

ForgettingFactor
Determines how the RLS adaptive filter uses past data in each iteration. You 
use the forgetting factor to specify whether old data carries the same weight in 
the algorithm as more recent data. 

This is a scalar and should lie in the range (0, 1]. It defaults to 1.   Setting 
forgetting factor = 1 denotes infinite memory while adapting to find the 
new filter. Note that this is the lambda input argument.
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FwdPredErrorPower
Returns the minimum mean-squared prediction error in the forward direction. 
Refer to [12] in the bibliography for details about linear prediction.

FwdPrediction
Contains the predicted values for samples during adaptation. Compare these 
to the actual samples to get the error and power.

InitFactor
Returns the soft-constrained initialization factor. This scalar should be positive 
and sufficiently large to prevent an excessive number of Kalman gain rescues. 
delta defaults to one.

InvCov
Upper-triangular Cholesky (square root) factor of the input covariance matrix. 
Initialize this matrix with a positive definite upper triangular matrix. 
Dimensions are l-by-l, where l is the filter length.

KalmanGain
Empty when you construct the object, this gets populated after you run the 
filter.

KalmanGainStates
Contains the states of the Kalman gain updates during adaptation.

Leakage
Contains the setting for leakage in the adaptive filter algorithm. Using 
a leakage factor that is not 1 forces the weights to adapt even when they have 
found the minimum error solution. Forcing the adaptation can improve the 
numerical performance of the LMS algorithm.

OffsetCov
Contains the offset covariance matrix.

Offset
Specifies an optional offset for the denominator of the step size normalization 
term. You must specify offset to be a scalar greater than or equal to zero. 
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Nonzero offsets can help avoid a divide-by-near-zero condition that causes 
errors.

Use this to avoid dividing by zero or by very small numbers when input signal 
amplitude becomes very small, or dividing by very small numbers when any of 
the FFT input signal powers become very small. offset defaults to one.

Power
A vector of 2*l elements, each initialized with the value delta from the input 
arguments. As you filter data, Power gets updated by the filter process.

ProjectionOrder
Projection order of the affine projection algorithm. projectord defines the size 
of the input signal covariance matrix and defaults to two.

ReflectionCoeffs
For adaptive filters that use reflection coefficients, this property stores them.

ReflectionCoeffsStep
As the adaptive filter changes coefficient values during adaptation, the step 
size used between runs is stored here.

PersistentMemory
Determines whether the filter states and coefficients get restored to their 
starting values for each filtering operation. The starting values are the values 
in place when you create the filter.

PersistentMemory returns to zero any property value that the filter changes 
during processing. Property values that the filter does not change are not 
affected. Defaults to false.

SecondaryPathCoeffs
A vector that contains the coefficient values of your secondary path from the 
output actuator to the error sensor.

SecondaryPathEstimate
An estimate of the secondary path filter model.
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SecondaryPathStates
The states of the secondary path filter, the unknown system.

SqrtCov
Upper-triangular Cholesky (square root) factor of the input covariance matrix. 
Initialize this matrix with a positive definite upper triangular matrix.

SqrtInvCov
Square root of the inverse of the sliding window input signal covariance matrix. 
This square matrix should be full-ranked.

States
Vector of the adaptive filter states. states defaults to a vector of zeros whose 
length depends on the chosen algorithm. Usually the length is a function of the 
filter length l and another input argument to the filter object, such as 
projectord.

StepSize
Reports the size of the step taken between iterations of the adaptive filter 
process. Each adaptfilt object has a default value that best meets the needs 
of the algorithm.

SwBlockLength
Block length of the sliding window. This integer must be at least as large as the 
filter length. swblocklength defaults to 16.
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Multirate Filter Properties
The following table summarizes the multirate filter properties and provides 
a brief description of each. Full descriptions of each property follow in the next 
section.

Name Values Default Description

BlockLength Positive integers 100 Length of each block of data 
input to the FFT used in the 
filtering. fftfirinterp 
multirate filters include this 
property.

DecimationFactor Any positive 
integer

2 Amount to reduce the input 
sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay for the 
filter. Usually a value of one or 
two is appropriate.

FilterInternals FullPrecision, 
MinWordlengths, 
SpecifyWordLengths
SpecifyPrecision

FullPrecision Controls whether the filter sets 
the output word and fraction 
lengths, and the accumulator 
word and fraction lengths 
automatically to maintain the 
best precision results during 
filtering. The default value, 
FullPrecision, sets automatic 
word and fraction length 
determination by the filter. 
SpecifyPrecision exposes the 
output and accumulator related 
properties so you can set your 
own word and fraction lengths 
for them.
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FilterStructure mfilt structure 
string

None Describes the signal flow for the 
filter object, including all of the 
active elements that perform 
operations during filtering—
gains, delays, sums, products, 
and input/output. You cannot set 
this property—it is always read 
only and results from your 
choice of mfilt object.

InputOffset Integers 0 Contains the number of input 
data samples processed without 
generating an output sample.

InterpolationFactor Positive integers 2 Interpolation factor for the filter. 
l specifies the amount to 
increase the input sampling 
rate.

NumberOfSections Any positive 
integer

2 Number of sections used in the 
decimator, or in the comb and 
integrator portions of CIC filters.

Numerator Array of double 
values

No default 
values

Vector containing the 
coefficients of the FIR lowpass 
filter used for interpolation.

Name Values Default Description
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OverflowMode saturate, 
[wrap]

wrap Sets the mode used to respond to 
overflow conditions in 
fixed-point arithmetic. Choose 
from either saturate (limit the 
output to the largest positive or 
negative representable value) or 
wrap (set overflowing values to 
the nearest representable value 
using modular arithmetic. The 
choice you make affects only the 
accumulator and output 
arithmetic. Coefficient and input 
arithmetic always saturates. 
Finally, products never 
overflow—they maintain full 
precision.

PolyphaseAccum Values depend 
on filter type. 
Either double, 
single, or 
fixed-point 
object

0 Stores the value remaining in 
the accumulator after the filter 
processes the last input sample. 
The stored value for 
PolyphaseAccum affects the next 
output when PersistentMemory 
is true and InputOffset is not 
equal to 0. Always provides full 
precision values. Compare the 
AccumWordLength and 
AccumFracLength.

Name Values Default Description
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PersistentMemory false or true false Determines whether the filter 
states get restored to their 
starting values for each filtering 
operation. The starting values 
are the values in place when you 
create the filter if you have not 
changed the filter since you 
constructed it.

PersistentMemory returns to 
zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected.

RateChangeFactors [l,m] [2,3] or [3,2] Reports the decimation (m) and 
interpolation (l) factors for the 
filter object. Combining these 
factors results in the final rate 
change for the signal. The 
default changes depending on 
whether the filter decimates or 
interpolates.

States Any m+1-by-n 
matrix of double 
values

2-by-2 
matrix, 
int32

Stored conditions for the filter, 
including values for the 
integrator and comb sections. n 
is the number of filter sections 
and m is the differential delay. 
Stored in a filtstates object.

Name Values Default Description
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SectionWordLengthMode MinWordLengths or 
SpecifyWordLengths

MinWordLength Determines whether the filter 
object sets the section word 
lengths or you provide the word 
lengths explicitly. By default, the 
filter uses the input and output 
word lengths in the command to 
determine the proper word 
lengths for each section, 
according to the information in 
[1]. When you choose 
SpecifyWordLengths, you 
provide the word length for each 
section. In addition, choosing 
SpecifyWordLengths exposes 
the SectionWordLengths 
property for you to modify as 
needed.

SpecifyWordLengths Vector of 
integers

[16 16 16 
16] bits

WordLengthPerSection Any integer or a 
vector of length 
2*n

16 Defines the word length used in 
each section while accumulating 
the data in the integrator 
sections or while subtracting the 
data during the comb sections 
(using 'wrap' arithmetic). Enter 
WordLengthPerSection as a 
scalar or vector of length 2*n, 
where n is the number of 
sections. When 
WordLengthPerSection is 
a scalar, the scalar value is 
applied to each filter section. 
The default is 16 for each section 
in the decimator.

Name Values Default Description
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The following sections provide details about the properties that govern the way 
multirate filter work. Creating any multirate filter object puts in place 
a number of these properties. On the next pages, we list the mfilt object 
properties in alphabetical order.

BitsPerSection
Any integer or a vector of length 2*n.

Defines the bits per section used while accumulating the data in the integrator 
sections or while subtracting the data during the comb sections (using wrap 
arithmetic). Enter bps as a scalar or vector of length 2*n, where n is the number 
of sections. When bps is a scalar, the scalar value is applied to each filter 
section. The default is 16 for each section in the decimator.

BlockLength
Length of each block of input data used in the filtering.

mfilt.fftfirinterp objects process data in blocks whose length is determined 
by the value you set for the BlockLength property. By default the property 
value is 100. When you set the BlockLength value, try choosing a value so that 
[BlockLength + length(filter order)] is a power of two.

Larger block lengths generally reduce the computation time.

DecimationFactor
Decimation factor for the filter. m specifies the amount to reduce the sampling 
rate of the input signal. It must be an integer. You can enter any integer value. 
The default value is 2.

DifferentialDelay
Sets the differential delay for the filter. Usually a value of one or two is 
appropriate. While you can set any value, the default is one and the maximum 
is usually two.

FilterInternals
Similar to the FilterInternals pane in FDATool, this property controls whether 
the filter sets the output word and fraction lengths automatically, and the 
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accumulator word and fraction lengths automatically as well, to maintain the 
best precision results during filtering. The default value, FullPrecision, sets 
automatic word and fraction length determination by the filter. Setting 
FilterInternals to SpecifyPrecision exposes the output and accumulator 
related properties so you can set your own word and fraction lengths for them.

About FilterInternals Modes
There are four modes of usage for this which are set using the 
FilterInternals property in multirate filters.

• FullPrecision—All word and fraction lengths set to Bmax + 1, called Baccum 
by fred harris in [14]. Full Precision is the default setting.

• MinWordLengths—Minimum Word Lengths

• SpecifyWordLengths—Specify Word Lengths

• SpecifyPrecision—Specify Precision

Full Precision
In full precision mode, the word lengths of all sections and the output are set 
to Baccum as defined by

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the 
input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'FullPrecision'

Baccum ceil N ssec Log2 D M×( )( ) InputWordLength+( )=
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Minimum Word Lengths
In minimum word length mode, you control the output word length explicitly. 
When the output word length is less than Baccum, roundoff noise is introduced 
at the output of the filter. Hogenauer's bit pruning theory (refer to [15]) states 
that one valid design criterion is to make the word lengths of the different 
sections of the filter smaller than Baccum as well, so that the roundoff noise 
introduced by all sections does not exceed the roundoff noise introduced at the 
output.

In this mode, the design calculates the word lengths of each section to meet the 
Hogenauer criterion. The algorithm subtracts the number of bits computed 
using eq. 21 in Hogenauer's paper from Baccum to determine the word length 
each section.

To compute the fraction lengths of the different sections, the algorithm notes 
that the bits thrown out for this word length criterion are least significant bits 
(LSB), therefore each bit thrown out at a particular section decrements the 
fraction length of that section by one bit compared to the input fraction length. 
Setting the output word length for the filter automatically sets the output 
fraction length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'MinWordLengths'
                                          
OutputWordLength: 16  

Specify word lengths
In this mode, the design algorithm discards the LSBs, adjusting the fraction 
length so that unrecoverable overflow does not occur, always producing 
a reasonable output.
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You can specify the word lengths for all sections and the output, but you cannot 
control the fraction lengths for those quantities.

To specify the word lengths, you enter a vector of length 
2*(NumberOfSections), where each vector element represents the word length 
for a section. If you specify a scalar, such as Baccum, the full-precision output 
word length, the algorithm expands that scalar to a vector of the appropriate 
size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are 
monotonically decreasing. There are some cases where the word lengths are 
not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease monotonically 
across the sections.

Here is the display looks like for the SpecifyWordLengths mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'SpecifyWordLengths'
                                          
SectionWordLengths: [19 18 18 17]

OutputWordLength: 16  

Specify precision
In this mode, you have full control over the word length and fraction lengths of 
all sections and the filter output.
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When you elect the SpecifyPrecision mode, you must enter a vector of length 
2*(NumberOfSections) with elements that represent the word length for each 
section. When you enter a scalar such as Baccum, the CIC algorithm expands 
that scalar to a vector of the appropriate size and applies the scalar value to 
each section and the output. The design does not check that this vector is 
monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements 
that represent the fraction length for each section as well. When you enter 
a scalar such as Baccum, the design applies scalar expansion as done for the 
word lengths. 

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'SpecifyPrecision'
                                          
SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16  
OutputFracLength: 11 

FilterStructure
Reports the type of filter object, such as a decimator or fractional integrator. 
You cannot set this property—it is always read only and results from your 
choice of mfilt object. Because of the length of the names of multirate filters, 
FilterStructure often returns a vector specification for the string. For 
example, when you use mfilt.firfracinterp to design a filter, 
FilterStructure returns as [1x49 char].
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hm=mfilt.firfracinterp
 
hm =
 
         FilterStructure: [1x49 char]
               Numerator: [1x72 double]
       RateChangeFactors: [3 2]

PersistentMemory: false
                  States: [24x1 double]

InputOffset
When you decimate signals whose length is not a multiple of the decimation 
factor M, the last samples—(nM +1) to [(n+1)(M) -1], where n is an integer—
are processed and used to track where the filter stopped processing input data 
and when to expect the next output sample. If you think of the filtering process 
as generating an output for a block of input data, InputOffset contains a count 
of the number of samples in the last incomplete block of input data.

Note  InputOffset applies only when you set PersistentMemory to true. 
Otherwise, InputOffset is not available for you to use.

Two different cases can arise when you decimate a signal:

1 The input signal is a multiple of the filter decimation factor. In this case, the 
filter processes the input samples and generates output samples for all 
inputs as determined by the decimation factor. For example, processing 99 
input samples with a filter that decimates by three returns 33 output 
samples.

2 The input signal is not a multiple of the decimation factor. When this occurs, 
the filter processes all of the input samples, generates output samples as 
determined by the decimation factor, and has one or more input samples 
that were processed but did not generate an output sample.

For example, when you filter 100 input samples with a filter which has 
decimation factor of 3, you get 33 output samples, and 1 sample that did not 
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generate an output. In this case, InputOffset stores the value 1 after the 
filter run.

InputOffset equal to 1 indicates that, if you divide your input signal into 
blocks of data with length equal to your filter decimation factor, the filter 
processed one sample from a new (incomplete) block of data. Subsequent 
inputs to the filter are concatenated with this single sample to form the next 
block of length m.

One way to define the value stored in InputOffset is

InputOffset = mod(length(nx),m)

where nx is the number of input samples in the data set and m is the decimation 
factor.

Storing InputOffset in the filter allows you to stop filtering a signal at any 
point and start over from there, provided that the PersistentMemory property 
is set to true. Being able to resume filtering after stopping a signal lets you 
break large data sets in to smaller pieces for filtering. With PersistentMemory 
set to true and the InputOffset property in the filter, breaking a signal into 
sections of arbitrary length and filtering the sections is equivalent to filtering 
the entire signal at once.

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092
reset(hm1);  % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the 
entire signal filtered at once).
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InterpolationFactor
Amount to increase the sampling rate. Interpolation factor for the filter. It 
specifies the amount to increase the input sampling rate. It must be an integer. 
Two is the default value. You may use any positive value.

NumberOfSections
Number of sections used in the multirate filter. By default multirate filters use 
two sections, but any positive integer works.

OverflowMode
The OverflowMode property is specified as one of the following two strings 
indicating how to respond to overflows in fixed-point arithmetic:

• 'saturate'—saturate overflows. 

When the values of data to be quantized lie outside of the range of the largest 
and smallest representable numbers (as specified by the applicable word 
length and fraction length properties), these values are quantized to the 
value of either the largest or smallest representable value, depending on 
which is closest. 

• 'wrap'—wrap all overflows to the range of representable values.

When the values of data to be quantized lie outside of the range of the largest 
and smallest representable numbers (as specified by the data format 
properties), these values are wrapped back into that range using modular 
arithmetic relative to the smallest representable number. You can learn 
more about modular arithmetic in the Fixed-Point Toolbox documentation.

These rules apply to the OverflowMode property.

• Applies to the accumulator and output data only. 

• Does not apply to coefficients or input data. These always saturate the 
results.

• Does not apply to products. Products maintain full precision at all times. 
Your filters do not lose precision in the products.

Default value: 'saturate'
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Note  Numbers in floating-point filters that extend beyond the dynamic 
range overflow to ±inf.

PolyphaseAccum
The idea behind PolyphaseAccum and AccumWordLength/AccumFracLength is to 
distinguish between the adders that always work in full precision 
(PolyphaseAccum) from the others [the adders that are controlled by the user 
(through AccumWordLength and AccumFracLength) and that may introduce 
quantization effects when you set property FilterInternals to 
SpecifyPrecision].

Given a product format determined by the input word and fraction lengths, and 
the coefficients word and fraction lengths, doing full precision accumulation 
means allowing enough guard bits to avoid overflows and underflows.

Property PolyphaseAccum stores the value that was in the accumulator the last 
time your filter ran out of input samples to process. The default value for 
PolyphaseAccum affects the next output only if PersistentMemory is true and 
InputOffset is not equal to 0.

PolyphaseAccum stores data in the format for the filter arithmetic. 
Double-precision filters store doubles in PolyphaseAccum. Single-precision 
filter store singles in PolyphaseAccum. Fixed-point filters store fi objects in 
PolyphaseAccum.

PersistentMemory
Determine whether the filter states get restored to their starting values for 
each filtering operation. The starting values are the values in place when you 
create the filter if you have not changed the filter since you constructed it. 
PersistentMemory returns to zero any state that the filter changes during 
processing. States that the filter does not change are not affected.

Determine whether the filter states get restored to their starting values for 
each filtering operation. The starting values are the values in place when you 
create the filter object. PersistentMemory returns to zero any state that the 
filter changes during processing. States that the filter does not change are not 
affected. Defaults to true—the filter retains memory about filtering operations 
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from one to the next. Maintaining memory lets you filter large data sets as 
collections of smaller subsets and get the same result. 

xtot=[x,x];
ytot=filter(hm1,xtot)
ytot =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092
reset(hm1);  % Clear history of the filter
hm1.PersistentMemory='true';
ysec=[filter(hm1,x) filter(hm1,x)]

ysec =

         0   -0.0003    0.0005   -0.0014    0.0028   -0.0054    0.0092

This test verifies that ysec (the signal filtered by sections) is equal to ytot (the 
entire signal filtered at once).

RateChangeFactors
Reports the decimation (m) and interpolation (l) factors for the filter object 
when you create fractional integrators and decimators, although m and l are 
used as arguments to both decimators and integrators, applying the same 
meaning. Combining these factors as input arguments to the fractional 
decimator or integrator results in the final rate change for the signal.

For decimating filters, the default is [2,3]. For integrators, [3,2].

States
Stored conditions for the filter, including values for the integrator and comb 
sections. m is the differential delay and n is the number of sections in the filter.

About the States of Multirate Filters
In the states property you find the states for both the integrator and comb 
portions of the filter, stored in a filtstates object. states is a matrix of 
dimensions m+1-by-n, with the states in CIC filters apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the 
state matrix. 
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• States for the comb portion fill the remaining rows in the state matrix.

In the state matrix, state values are specified and stored in double format.

States stores conditions for the delays between each interpolator phase, the 
filter states, and the states at the output of each phase in the filter, including 
values for the interpolator and comb states.

The number of states is (lh-1)*m+(l-1)*(lo+mo) where lh is the length of each 
subfilter, and l and m are the interpolation and decimation factors. lo and mo, 
the input and output delays between each interpolation phase, are integers 
from Euclid's theorem such that lo*l-mo*m = -1 (refer to the reference for more 
details). Use euclidfactors to get lo and mo for an mfilt.firfracdecim 
object.

States defaults to a vector of zeros that has length equal to nstates(hm)



 

8

Function Reference

Functions — By Category (p. 8-2) Lists the functions in the toolbox, by category, such as 
object constructors or analysis functions

Adaptive Filter Constructors (p. 8-3) Lists all for the functions for designing adaptive filters

Discrete-Time Filter Constructors 
(p. 8-6)

Lists all of the functions for designing discrete-time 
filters

Multirate Filter Constructors (p. 8-10) Lists the multirate filter design functions

Filter Analysis Methods (p. 8-12) Lists the analysis functions provided for working with 
adaptive, discrete-time, and multirate filters
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Functions — By Category

Adaptive Filter Constructors 
(p. 8-3)

Functions for designing adaptive filters

Discrete-Time Filter 
Constructors (p. 8-6)

Functions for designing FIR and IIR 
discrete-time filter objects

Filter Specification Objects — 
Response Types (p. 8-8)

Methods for creating objects that specify 
filter responses, such as lowpass or 
bandstop

Filter Specification Objects — 
Design Methods (p. 8-9)

Methods for designing filter objects from 
specification objects

Multirate Filter Constructors 
(p. 8-10)

Functions for designing many types of 
multirate filter objects

Filter Analysis Methods (p. 8-12) Methods for analyzing filters and filter 
objects

Fixed-Point Filter Construction 
and Property Functions (p. 8-17)

Methods and functions for creating 
fixed-point filters

Quantized Filter Analysis 
Functions (p. 8-17)

Functions for analyzing fixed-point filters

SOS Conversion Functions 
(p. 8-19)

Functions for working with second-order 
section filters

Filter Design Functions (p. 8-19) Functions for designing filters (not 
object-based)

Filter Conversion Functions 
(p. 8-20)

Functions that let you transform filters to 
other forms, or use features in a filter to 
develop another filter



Functions — By Category

8-3

Adaptive Filter Constructors

Least Mean Squares (LMS) Based FIR Adaptive Filters

Least Mean Squares (LMS) Based FIR 
Adaptive Filters (p. 8-3)

Lists the filter functions that rely 
on the LMS technique

Recursive Least Squares (RLS) Based 
FIR Adaptive Filters (p. 8-4)

Lists the filter functions that rely 
on the RLS technique

Affine Projection (AP) FIR Adaptive 
Filters (p. 8-4)

Lists the filter functions that affine 
projection

FIR Adaptive Filters in the Frequency 
Domain (FD) (p. 8-4)

Lists the filter functions that work 
in the frequency domain

Lattice Based (L) FIR Adaptive Filters 
(p. 8-6)

Lists the filter functions that rely 
on lattice filters

adaptfilt.adjlms Adjoint least mean square (LMS) FIR adaptive 
filter that adapts using adjoint LMS algorithm

adaptfilt.blms Construct Block LMS (BLMS) FIR adaptive filter

adaptfilt.blmsfft Construct FFT-based block LMS FIR adaptive filter

adaptfilt.dlms Create delayed LMS FIR adaptive filter object

adaptfilt.filtxlms Create filtered-x LMS FIR adaptive filter

adaptfilt.lms Construct least-mean-square (LMS) FIR adaptive 
filter object

adaptfilt.nlms Construct normalized least mean squares (LMS) 
FIR adaptive filter object

adaptfilt.sd Construct FIR adaptive filter object that uses 
sign-data algorithm

adaptfilt.se Construct sign-error algorithm FIR adaptive filter 
object

adaptfilt.ss Construct adaptive FIR filter object that uses 
sign-sign algorithm
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Recursive Least Squares (RLS) Based FIR Adaptive Filters

Affine Projection (AP) FIR Adaptive Filters

FIR Adaptive Filters in the Frequency Domain (FD)

adaptfilt.ftf Construct fast transversal least squares adaptive 
filter object

adaptfilt.hrls Construct a householder recursive least squares 
(RLS) FIR adaptive filter object

adaptfilt.hswrls Construct householder sliding window recursive 
least squares (RLS) FIR adaptive filter

adaptfilt.qrdrls Create QR-decomposition-based recursive least 
squares (RLS) FIR adaptive filter object

adaptfilt.rls Construct direct form recursive least squares (RLS) 
FIR adaptive filter object

adaptfilt.swftf Construct sliding window fast transversal least 
squares adaptive filter object

adaptfilt.swrls Construct sliding window recursive least squares 
(RLS) FIR adaptive filter

adaptfilt.ap Construct affine projection FIR adaptive filter 
object that uses direct matrix inversion

adaptfilt.apru Affine projection FIR adaptive filter object that 
uses recursive matrix updating

adaptfilt.bap Block affine projection FIR adaptive filter object 

adaptfilt.fdaf Construct frequency-domain FIR adaptive filter 
with bin step size normalization

adaptfilt.pbfdaf Construct partitioned block frequency-domain 
(PBFDAF) FIR adaptive filter with bin step size 
normalization
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adaptfilt.pbufdaf Construct partitioned block unconstrained 
frequency-domain (PBUFDAF) FIR adaptive filter 
with bin step size normalization

adaptfilt.tdafdct Construct transform-domain (TDAFDCT) adaptive 
filter object that uses discrete cosine transform

adaptfilt.tdafdft Create transform-domain (TDAFDFT) adaptive 
filter object that uses discrete Fourier transform

adaptfilt.ufdaf Construct unconstrained frequency-domain 
(UFDAF) FIR adaptive filter with quantized step 
size normalization



8 Function Reference

8-6

Lattice Based (L) FIR Adaptive Filters

Discrete-Time Filter Constructors

adaptfilt.gal Construct gradient adaptive lattice FIR filter

adaptfilt.lsl Construct least squares lattice (LSL) adaptive filter

adaptfilt.qrdlsl QR-decomposition-based least squares lattice (LSL) 
adaptive filter object

dfilt.allpass Construct allpass filter object

dfilt.calattice Construct discrete-time, coupled-allpass, 
lattice filter object

dfilt.calatticepc Construct discrete-time, coupled-allpass, 
power-complementary lattice filter object

dfilt.cascade Construct cascade of discrete-time filter 
objects

dfilt.cascadeallpass Construct cascade of allpass discrete-time 
filter objects

dfilt.cascadewdfallpass Construct allpass wave digital filter (WDF) 
object by cascading allpass WDF filter objects

dfilt.df1 Construct discrete-time, direct-form I filter 
object

dfilt.df1sos Construct discrete-time, direct-form I filter 
object that uses second-order sections

dfilt.df1t Construct discrete-time, direct-form I 
transposed filter object

dfilt.df1tsos Construct discrete-time, second-order section, 
direct-form I transposed filter object

dfilt.df2 Construct discrete-time, direct-form II filter 
object

dfilt.df2sos Construct discrete-time, second-order section, 
direct-form II filter object
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dfilt.df2t Construct discrete-time, direct-form II 
transposed filter object

dfilt.df2tsos Construct discrete-time, second-order section 
direct-form II transposed filter object

dfilt.dfasymfir Construct discrete-time, direct-form 
antisymmetric FIR filter object

dfilt.dffir Construct discrete-time direct-form FIR filter 
object

dfilt.dffirt Construct discrete-time, direct-form FIR 
transposed filter object

dfilt.dfsymfir Construct discrete-time, direct-form 
symmetric FIR filter object 

dfilt.latticeallpass Construct discrete-time, lattice allpass filter 
object

dfilt.latticear Construct discrete-time, lattice, 
autoregressive filter object

dfilt.latticearma Construct discrete-time, lattice, 
autoregressive, moving-average filter object

dfilt.latticemamax Construct discrete-time, lattice, 
moving-average filter object with maximum 
phase

dfilt.latticemamin Construct discrete-time, lattice, 
moving-average filter object with minimum 
phase

dfilt.parallel Construct discrete-time, parallel structure 
filter object

dfilt.scalar Construct discrete-time, scalar filter object 

dfilt.wdfallpass Construct wave digital allpass filter object
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Filter Specification Objects — Response Types
fdesign.arbmag Construct filter specification object for 

designing arbitrary response magnitude 
filters

fdesign.arbmagnphase Design discrete-time filter specification object 
for arbitrary magnitude and phase response

fdesign.bandpass Construct bandpass filter specification object

fdesign.bandstop Construct bandstop filter specification object

fdesign.ciccomp Construct filter cascaded-integrator comb 
(CIC) compensator filter specification object 

fdesign.decimator Construct decimator filter specification object

fdesign.differentiator Construct differentiator filter specification 
object

fdesign.halfband Construct halfband filter specification object

fdesign.highpass Construct highpass filter specification object

fdesign.hilbert Construct Hilbert filter specification object

fdesign.interpolator Construct interpolator filter specification 
object

fdesign.isinclp Construct inverse-sinc filter specification 
object

fdesign.lowpass Construct lowpass filter specification object

fdesign.nyquist Construct Nyquist filter specification object

fdesign.rsrc Construct rational-factor sample-rate 
converter specifications object
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Filter Specification Objects — Design Methods
butter Design Butterworth IIR digital filter using 

the specifications in filter specification object

cheby1 Design Chebyshev Type I digital filter using 
filter specification object

cheby2 Design Chebyshev Type II digital filter using  
filter specification object

designmethods Design methods available for designing filter 
from filter specification object

designopts Input arguments and default values 
applicable to filter specification object and 
method

ellip Design elliptical or Cauer digital filter using 
filter specification object

equiripple Design equiripple single-rate or multirate 
FIR filter from filter specification object

firls Design filter from filter specification object 
and least-square minimization technique

ifir Use interpolated FIR method to design FIR 
filter from specification object

iirlinphase Design quasi-linear phase IIR filter from 
halfband filter specification object

kaiserwin Use Kaiser window to design filter from filter 
specification object

multistage Design multistage filter from filter 
specification object

window Use window design method to construct filter 
from specification object
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Multirate Filter Constructors
mfilt.cascade Cascade dfilt and mfilt object(s) 

into filter

mfilt.cicdecim Construct fixed-point cascaded 
integrator-comb (CIC) decimator 
filter object

mfilt.cicinterp Construct fixed-point cascaded 
integrator-comb (CIC) interpolator 
filter object

mfilt.fftfirinterp Construct overlap-add FIR 
polyphase interpolator filter object

mfilt.firdecim Construct direct-form FIR 
polyphase decimator filter

mfilt.firfracdecim Construct direct-form FIR 
polyphase fractional decimator filter 
object

mfilt.firfracinterp Construct direct-form FIR 
polyphase fractional interpolator 
filter object

mfilt.firinterp Construct FIR filter-based 
interpolator

mfilt.firsrc Construct direct-form FIR 
polyphase sample rate converters

mfilt.firtdecim Construct direct-form transposed 
FIR filter

mfilt.holdinterp Construct FIR hold interpolator

mfilt.iirdecim Construct IIR decimator filter object

mfilt.iirinterp Construct IIR interpolator filter 
object

mfilt.iirwdfdecim Construct IIR wave digital filter 
decimator object
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mfilt.iirwdfinterp Construct IIR wave digital 
interpolator filter

mfilt.linearinterp Construct linear interpolator filter
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Filter Analysis Methods
block Multirate (some) Generate a Signal Processing 

Blockset block from 
floating-point or fixed-point 
multirate (mfilt) filter objects. 
Works only when Signal 
Processing Blockset is installed. 

coefficients Multirate Filter coefficients for adaptive. 
discrete-time, and multirate 
filter.

cumsec Discrete-time filters Vector of filters for cumulative 
sections

denormalize Discrete-time filters Reverse filter coefficient and 
gain changes caused by function 
normalize

disp All filters Filter object with properties and 
values

double Fixed-point filters Cast fixed-point filter to filter 
that uses double-precision 
arithmetic

euclidfactors Multirate Use Euclid’s theorem to return 
integer factors for multirate 
filter

filter All filters Apply filter objects to data and 
access states and filtering 
information

filtmsb Multirate filters Bmax, most significant bit, of 
cascaded integrator-comb (CIC) 
filter

filtstates.cic CIC filters Object for storing states of 
cascaded-integrator comb (CIC) 
filters
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firtype Multirate filters Determine type of linear phase 
FIR filter, either discrete-time 
or multirate

freqsamp Discrete-time filters Design real or complex 
frequency-sampled FIR filter 
from filter specification object

freqz All filters Compute frequency response of 
discrete-time filters, adaptive 
filters, or multirate filters

fftcoeffs Single-rate and 
multirate filters

Frequency-domain coefficients 
used when filtering with 
discrete-time and adaptive filter 
object

grpdelay All filters Group delay for filter

help All filters Help text for design algorithm 
in Command Window

impz All filters Compute impulse response for 
filter

isfir All filters Determine whether filter is FIR 
filter

islinphase All filters Determine whether filter is 
linear phase

ismaxphase All filters Determine whether filter is 
maximum phase

isminphase All filters Determine whether filter is 
minimum phase

isreal All filters Determine whether filter is real

isstable All filters Determine whether filter is 
stable

limitcycle Discrete-time filters Explore steady-state response of 
single rate, fixed-point IIR filter 
to zero-valued input
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maxstep Adaptive filter Maximum step size that allows 
adaptive filter to converge

measure Adaptive and 
discrete-time filter 
objects

Magnitude response 
measurement for discrete-time 
or multirate filter created from 
filter specification object

msepred Adaptive filter Calculate predicted 
mean-squared error for selected 
adaptive filter

msesim Adaptive filter Calculate measured 
mean-squared error for 
adaptive filter

noisepsd Single-rate filter objects Compute power spectral 
density (PSD) of filter output 
caused by roundoff noise during 
quantization

noisepsdopts Single-rate objects Create object containing options 
for running output noise power 
spectral density (PSD) 
computation noisepsd on filter

norm All filter objects P-norm of adaptfilt, dfilt, and 
mfilt objects

normalize Discrete-time filters Normalize filter numerator or 
feed-forward coefficients to 
between -1 and 1

normalizefreq Single-rate and 
multirate filter 
specification objects

Normalize filter numerator or 
feed-forward coefficients to 
values between -1 and 1

nstates Single-rate and 
multirate filter objects

Number of filter states in 
discrete-time or multirate filter

order Fixed-point filters Order of quantized filter

phasedelay Single-rate and 
multirate filters

Phase delay of  discrete-time or 
multirate filter
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phasez All filters Unwrapped phase response for 
filter

polyphase Multirate filter Polyphase decomposition of 
multirate filter

qreport All fixed-point filters Results of most recent 
fixed-point filtering operation

realizemdl Fixed-point filters Realize Simulink subsystem 
block for quantized filter

reffilter Discrete-time filters Double-precision floating-point 
reference filter that corresponds 
to fixed-point or 
single-precision floating-point 
filter

reorder SOS discrete-time 
filters

Rearrange sections in 
second-order sections (SOS) 
filter

reset Adaptive and Multirate 
filters

Reset filter properties to initial 
conditions

scale SOS discrete-time 
filters

Scale the sections of an SOS 
filter

scalecheck SOS discrete-time 
filters

Check the scaling of an SOS 
filter

set2int Single-rate and 
multirate filters

Configure single-rate and 
multirate filters for integer 
filtering

setspecs fdesign objects Set specifications for filter 
specification object

specifyall Discrete-time filters Access fixed-point scaling 
modes and features in 
direct-form FIR filter object

stepz Adaptive and Multirate 
filters

Step response for filter
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To see the full listing of analysis methods that apply to the adaptfilt, dfilt, 
or mfilt objects, enter help adaptfilt, help dfilt, or help mfilt at the 
MATLAB prompt.

zerophase All filters Return the zerophase response 
for a filter

zplane All filters Return the pole-zero plot for a 
filter
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Fixed-Point Filter Construction and Property 
Functions

Quantized Filter Analysis Functions

cell2sos Convert a cell array to a second-order sections matrix

get Get properties of a quantized filter

isreal Test if filter coefficients are real

reset Reset the properties of a quantized filter to their initial 
values

scale Scale the sections of second-order section filters 

scalecheck Check the scaling of a second-order sections filter

scaleopts Create an object that contains scaling options for 
second-order section scaling

set Set properties of a quantized filter

sos Convert a quantized filter to second-order sections form, 
order, and scale

sos2cell Convert a second-order sections matrix to a cell array

freqz Compute the frequency response for a quantized filter

impz Compute the impulse response for a quantized filter

isallpass Test quantized filters to determine if they are allpass 
structures

isfir Test quantized filters to see if they are FIR filters

islinphase Test quantized filters to see if they are linear phase 

ismaxphase Test quantized filters to see if they are maximum phase 
filters

isminphase Test quantized filters to see if they are minimum phase 
filters

isreal Test quantized filters for purely real coefficients
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issos Test whether quantized filters are composed of 
second-order sections

isstable Test for stability of quantized filters

noisepsd Compute the power spectral density (PSD) of filter output 
caused by round-off noise during the quantization process

noisepsdopts Create an object that contains options for running the 
output noise PSD computation noisepsd on a filter

zplane Compute a pole-zero plot for a quantized filter
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SOS Conversion Functions

Filter Design Functions

cell2sos Convert a cell array to a second-order sections matrix

sos Convert a quantized filter to second-order sections form, 
order, and scale

sos2cell Convert a second-order sections matrix to a cell array

farrow Implement Farrow filter

fircband Perform constrained-band equiripple FIR filter design

fireqint Design equiripple FIR interpolators

firceqrip Design constrained, equiripple FIR filter

firgr Use Parks-McClellan technique to design digital FIR filter 

firhalfband Design halfband FIR filter

firlpnorm Least P-norm optimal FIR filter design

firminphase Compute minimum-phase FIR spectral factor

firnyquist Design lowpass Nyquist (Lth-band) FIR filter

ifir Design interpolated FIR filters

iircomb Design comb IIR filters with periodic frequency response

iirgrpdelay Design least-pth norm IIR filters with given group delay

iirlpnorm Design least-pth norm IIR filters

iirlpnormc Design constrained least-pth norm IIR filters

iirnotch Design notch IIR filters to attenuate a fixed frequency

iirpeak Design peaking IIR filters for boosting or cutting specific 
frequencies
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Filter Conversion Functions
ca2tf Convert coupled allpass filters to transfer function form

cl2tf Convert lattice coupled allpass filters to transfer function 
form

convert Convert dfilt objects from one structure to another

firlp2lp Transform lowpass FIR filters to lowpass filters with 
different passband specifications

firlp2hp Transform lowpass FIR filters to highpass FIR filters

iirlp2bp Transform lowpass IIR filters to bandpass filters

iirlp2bs Transform lowpass IIR filters to bandstop filters

iirlp2hp Transform lowpass IIR filters to highpass filters

iirlp2lp Transform lowpass IIR filters to lowpass filters

iirpowcomp Compute the power complementary IIR filter

set2int Scale the real filter coefficients to integer values for 
discrete-time and multirate filter objects

tf2ca Convert transfer function form to coupled allpass form

tf2cl Convert transfer function form to lattice coupled allpass 
form
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Functions — Alphabetical List 8

This following pages provide the reference information for each function in the 
toolbox, in alphabetical order by the name of the function.
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8adaptfiltPurpose Construct adaptive filter object

Syntax ha = adaptfilt.algorithm(input1,input2, )

Description ha = adaptfilt.algorithm('input1',input2, ) returns the adaptive filter 
object ha that uses the adaptive filtering technique specified by algorithm. 
When you construct an adaptive filter object, include an algorithm specifier to 
implement a specific adaptive filter. Note that you do not enclose the algorithm 
option in single quotation marks as you do for most strings. To construct an 
adaptive filter object you must supply an algorithm string—there is no default 
algorithm, although every constructor creates a default adaptive filter when 
you do not provide input arguments such as input1 or input2 in the calling 
syntax.

Algorithms
For adaptive filter (adaptfilt) objects, the algorithm string determines which 
adaptive filter algorithm your adaptfilt object implements. Each available 
algorithm entry appears in one of the tables along with a brief description of 
the algorithm. Click on the algorithm in the first column to get more 
information about the associated adaptive filter technique.

• LMS based adaptive filters

• RLS based adaptive filters

• Affine projection adaptive filters

• Adaptive filters in the frequency domain

• Lattice based adaptive filters
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Least Mean Squares (LMS) Based FIR Adaptive Filters

For further information about an adapting algorithm, refer to the reference 
page for the algorithm.

adaptfilt.algorithm 
String

Description of the Adapting Algorithm Used to 
Generate Filter Coefficients During Adaptation

adaptfilt.adjlms Use the Adjoint LMS FIR adaptive filter 
algorithm

adaptfilt.blms Use the Block LMS FIR adaptive filter algorithm

adaptfilt.blmsfft Use the FFT-based Block LMS FIR adaptive filter 
algorithm

adaptfilt.dlms Use the delayed LMS FIR adaptive filter 
algorithm

adaptfilt.filtxlms Use the filtered-x LMS FIR adaptive filter 
algorithm

adaptfilt.lms Use the LMS FIR adaptive filter algorithm

adaptfilt.nlms Use the normalized LMS FIR adaptive filter 
algorithm

adaptfilt.sd Use the sign-data LMS FIR adaptive filter 
algorithm

adaptfilt.se Use the sign-error LMS FIR adaptive filter 
algorithm

adaptfilt.ss Use the sign-sign LMS FIR adaptive filter 
algorithm



adaptfilt

8-24

Recursive Least Squares (RLS) Based FIR Adaptive Filters

For more complete information about an adapting algorithm, refer to the 
reference page for the algorithm.

adaptfilt.algorithm 
String

Description of the Adapting Algorithm Used to 
Generate Filter Coefficients During Adaptation

adaptfilt.ftf Use the fast transversal least squares adaptation 
algorithm

adaptfilt.qrdrls Use the QR-decomposition RLS adaptation 
algorithm

adaptfilt.hrls Use the householder RLS adaptation algorithm

adaptfilt.hswrls Use the householder SWRLS adaptation 
algorithm

adaptfilt.rls Use the recursive-least squares (RLS) adaptation 
algorithm

adaptfilt.swrls Use the sliding window (SW) RLS adaptation 
algorithm

adaptfilt.swftf Use the sliding window FTF adaptation 
algorithm
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Affine Projection (AP) FIR Adaptive Filters

To find more information about an adapting algorithm, refer to the reference 
page for the algorithm.

adaptfilt.algorithm 
String

Description of the Adapting Algorithm Used to 
Generate Filter Coefficients During Adaptation

adaptfilt.ap Use the affine projection algorithm that uses 
direct matrix inversion

adaptfilt.apru Use the affine projection algorithm that uses 
recursive matrix updating

adaptfilt.bap Use the block affine projection adaptation 
algorithm 
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FIR Adaptive Filters in the Frequency Domain (FD)

For more information about an adapting algorithm, refer to the reference page 
for the algorithm.

adaptfilt.algorithm 
String

Description of the Adapting Algorithm Used to 
Generate Filter Coefficients During Adaptation

adaptfilt.fdaf Use the frequency domain adaptation algorithm

adaptfilt.pbfdaf Use the partition block version of the FDAF 
algorithm

adaptfilt.pbufdaf Use the partition block unconstrained version of 
the FDAF algorithm

adaptfilt.tdafdct Use the transform domain adaptation algorithm 
using DCT

adaptfilt.tdafdft Use the transform domain adaptation algorithm 
using DFT

adaptfilt.ufdaf Use the unconstrained FDAF algorithm for 
adaptation
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Lattice Based (L) FIR Adaptive Filters

For more information about an adapting algorithm, refer to the reference page 
for the algorithm.

Properties for all Adaptive Filter Objects
Each reference page for an algorithm and adaptfilt.algorithm object 
specifies which properties apply to the adapting algorithm and how to use 
them.

Methods for Adaptive Filter Objects
As is true with all objects, methods enable you to perform various operations 
on adaptfilt objects. To use the methods, you apply them to the object handle 
that you assigned when you constructed the adaptfilt object.

Most of the analysis methods that apply to dfilt objects also work with 
adaptfilt objects. Methods like freqz rely on the filter coefficients in the 
adaptfilt object. Since the coefficients change each time the filter adapts to 
data, you should view the results of using a method as an analysis of the filter 
at a moment in time for the object. Use caution when you apply an analysis 
method to your adaptive filter objects—always check that your result 
approached your expectation.

In particular, the Filter Visualization Tool (FVTool) supports all of the 
adaptfilt objects. Analyzing and viewing your adaptfilt objects is 
straightforward—use the fvtool method with the name of your object

fvtool(objectname)

adaptfilt.algorithm 
String

Description of the Adapting Algorithm Used to 
Generate Filter Coefficients During Adaptation

adaptfilt.gal Use the gradient adaptive lattice filter 
adaptation algorithm

adaptfilt.lsl Use the least squares lattice adaptation 
algorithm

adaptfilt.qrdlsl Use the QR decomposition least squares lattice 
adaptation algorithm
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to launch FVTool and work with your object.

Some methods share their names with functions in the Signal Processing 
Toolbox, or even functions in this toolbox. Functions that share names with 
methods behave in a similar way. Using the same name for more than one 
function or method is called overloading and is common is many toolboxes.

Method Description

adaptfilt/coefficients Return the instantaneous adaptive filter 
coefficients

adaptfilt/filter Apply an adaptfilt object to your signal

adaptfilt/freqz Plot the instantaneous adaptive filter 
frequency response

adaptfilt/grpdelay Plot the instantaneous adaptive filter group 
delay

adaptfilt/impz Plot the instantaneous adaptive filter 
impulse response.

adaptfilt/info Return the adaptive filter information.

adaptfilt/isfir Test whether an adaptive filter is an finite 
impulse response (FIR) filters.

adaptfilt/islinphase Test whether an adaptive filter is linear 
phase 

adaptfilt/ismaxphase Test whether an adaptive filter is maximum 
phase

adaptfilt/isminphase Test whether an adaptive filter is minimum 
phase

adaptfilt/isreal True whether an adaptive filter has real 
coefficients

adaptfilt/isstable Test whether an adaptive filter is stable
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Working with Adaptive Filter Objects
The next sections cover viewing and changing the properties of adaptfilt 
objects. Generally, modifying the properties is the same for adaptfilt, dfilt, 
and mfilt objects and most of the same methods apply to all.

Viewing Object Properties
As with any object, you can use get to view a adaptfilt object’s properties. To 
see a specific property, use

 get(ha,'property') 

adaptfilt/maxstep Return the maximum step size for an 
adaptive filter

adaptfilt/msepred Return the predicted mean square error

adaptfilt/msesim Return the measured mean square error via 
simulation.

adaptfilt/phasez Plot the instantaneous adaptive filter phase 
response

adaptfilt/reset Reset an adaptive filter to initial conditions

adaptfilt/stepz Plot the instantaneous adaptive filter step 
response

adaptfilt/tf Return the instantaneous adaptive filter 
transfer function

adaptfilt/zerophase Plot the instantaneous adaptive filter 
zerophase response

adaptfilt/zpk Return a matrix containing the 
instantaneous adaptive filter zero, pole, and 
gain values

adaptfilt/zplane Plot the instantaneous adaptive filter in the 
Z-plane

Method Description
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To see all properties for an object, use

get(ha)

Changing Object Properties
To set specific properties, use

set(ha,'property1',value1,'property2',value2,...) 

You must use single quotation marks around the property name so MATLAB 
treats them as strings. 

Copying an Object
To create a copy of an object, use copy.

ha2 = copy(ha)

Note  Using the syntax ha2 = ha copies only the object handle and does not 
create a new object—ha and ha2 are not independent. When you change the 
characteristics of ha2, those of ha change as well.

Using Filter States
Two properties control your adaptive filter states.

• States—stores the current states of the filter. Before the filter is applied, the 
states correspond to the initial conditions and after the filter is applied, the 
states correspond to the final conditions.

• PersistentMemory—resets the filter before filtering. The default value is 
false which causes the properties that are modified by the filter, such as 
coefficients and states, to be reset to the value you specified when you 
constructed the object, before you use the object to filter data. Setting 
PersistentMemory to true allows the object to retain its current properties 
between filtering operations, rather than resetting the filter to its property 
values at construction.

Examples Construct an LMS adaptive filter object and use it to identify an unknown 
system. For this example, use 500 iteration of the adapting process to 
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determine the unknown filter coefficients. Using the LMS algorithm 
represents one of the most straightforward technique for adaptive filters.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
mu = 0.008;            % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Glancing at the figure shows you the coefficients after adapting closely match 
the desired unknown FIR filter.
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See Also dfilt, filter, mfilt
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8adaptfilt.adjlmsPurpose Adjoint least mean square (LMS) FIR adaptive filter that adapts using adjoint 
LMS algorithm

Syntax ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states)

Description ha = adaptfilt.adjlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states) constructs object ha, an FIR adjoint 
LMS adaptive filter. l is the adaptive filter length (the number of coefficients 
or taps) and must be a positive integer. l defaults to 10 when you omit the 
argument. step is the adjoint LMS step size. It must be a nonnegative scalar. 
When you omit the step argument, step defaults to 0.1.

leakage is the adjoint LMS leakage factor. It must be a scalar between 0 and 1. 
When leakage is less than one, you implement a leaky version of the adjlms 
algorithm to determine the filter coefficients. leakage defaults to 1 specifying 
no leakage in the algorithm.

pathcoeffs is the secondary path filter model. This vector should contain the 
coefficient values of the secondary path from the output actuator to the error 
sensor. 

pathest is the estimate of the secondary path filter model. pathest defaults to 
the values in pathcoeffs.

errstates is a vector of error states of the adaptive filter. It must have a length 
equal to the filter order of the secondary path model estimate. errstates 
defaults to a vector of zeros of appropriate length. pstates contains the 
secondary path FIR filter states. It must be a vector of length equal to the filter 
order of the secondary path model. pstates defaults to a vector of zeros of 
appropriate length. The initial filter coefficients for the secondary path filter 
compose vector coeffs. It must be a length l vector. coeffs defaults to a length 
l vector of zeros. states is a vector containing the initial filter states. It must 
be a vector of length l+ne-1, where ne is the length of errstates. When you 
omit states, it defaults to an appropriate length vector of zeros.
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Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object created. This table lists the properties for the adjoint 
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Specifies the adaptive 
filter algorithm the 
object uses during 
adaptation

Coefficients Length l vector 
with zeros for all 
elements

Adjoint LMS FIR filter 
coefficients. Should be 
initialized with the 
initial coefficients for 
the FIR filter prior to 
adapting. You need 
l entries in 
coefficients. Updated 
filter coefficients are 
returned in 
coefficients when 
you use s as an output 
argument.

ErrorStates [0,…,0] A vector of the error 
states for your adaptive 
filter, with length equal 
to the order of your 
secondary path filter

FilterLength 10 The number of 
coefficients in your 
adaptive filter
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Leakage 1 Specifies the leakage 
parameter. Allows you 
to implement a leaky 
algorithm. Including a 
leakage factor can 
improve the results of 
the algorithm by forcing 
the algorithm to 
continue to adapt even 
after it reaches a 
minimum value. 
Ranges between 0 
and 1.

SecondaryPathCoeffs No default A vector that contains 
the coefficient values of 
your secondary path 
from the output 
actuator to the error 
sensor

SecondaryPathEstimate pathcoeffs values An estimate of the 
secondary path filter 
model

SecondaryPathStates Length of the 
secondary path 
filter. All elements 
are zeros.

The states of the 
secondary path filter, 
the unknown system

Property Default Value Description
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States l+ne+1, where ne is 
length(errstates)

Contains the initial 
conditions for your 
adaptive filter and 
returns the states of the 
FIR filter after 
adaptation.If omitted, it 
defaults to a zero vector 
of length equal to 
l+ne+1. When you use 
adaptfilt.adjlms in 
a loop structure, use 
this element to specify 
the initial filter states 
for the adapting FIR 
filter.

Property Default Value Description
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 Example Demonstrate active noise control of a random noise signal that runs for 1000 
samples.

x = randn(1,1000);      % Noise source
g = fir1(47,0.4);       % FIR primary path system model
n = 0.1*randn(1,1000);  % Observation noise signal
d = filter(g,1,x)+n;    % Signal to be canceled (desired)
b = fir1(31,0.5);       % FIR secondary path system model 
mu = 0.008;              % Adjoint LMS step size

Stepsize 0.1 Sets the adjoint LMS 
algorithm step size 
used for each iteration 
of the adapting 
algorithm. Determines 
both how quickly and 
how closely the 
adaptive filter 
converges to the filter 
solution.

PersistentMemory false or true Determine whether the 
filter states get restored 
to their starting values 
for each filtering 
operation. The starting 
values are the values in 
place when you create 
the filter. 
PersistentMemory 
returns to zero any 
state that the filter 
changes during 
processing. States that 
the filter does not 
change are not affected. 
Defaults to false.

Property Default Value Description
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ha = adaptfilt.adjlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value');  grid on;

Reviewing the figure shows that the adaptive filter attenuates the original 
noise signal as you expect.

See Also adaptfilt.dlms, adaptfilt.filtxlms

References Wan, Eric., "Adjoint LMS: An Alternative to Filtered-X LMS and Multiple 
Error LMS," Proceedings of the International Conference on Acoustics, Speech, 
and Signal Processing (ICASSP), pp. 1841-1845, 1997
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8adaptfilt.apPurpose Construct affine projection FIR adaptive filter object that uses direct matrix 
inversion

Syntax ha = adaptfilt.ap(l,step,projectord,offset,coeffs,states,
errstates,epsstates)

Description ha = adaptfilt.ap(l,step,projectord,offset,coeffs,states,
errstates,epsstates) constructs an affine projection FIR adaptive filter ha 
using direct matrix inversion.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.ap.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a 
positive integer. l defaults to 10.

step Affine projection step size. This is a scalar 
that should be a value between zero and 
one. Setting step equal to one provides the 
fastest convergence during adaptation. step 
defaults to 1.

projectord Projection order of the affine projection 
algorithm. projectord defines the size of 
the input signal covariance matrix and 
defaults to two.

offset Offset for the input signal covariance 
matrix. You should initialize the covariance 
matrix to a diagonal matrix whose diagonal 
entries are equal to the offset you specify. 
offset should be positive. offset defaults 
to one.
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Properties Since your adaptfilt.ap filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.ap objects. To show you the properties that 
apply, this table lists and describes each property for the affine projection filter 
object.

coeffs Vector containing the initial filter 
coefficients. It must be a length l vector, the 
number of filter coefficients. coeffs 
defaults to length l vector of zeros when you 
do not provide the argument for input.

states Vector of the adaptive filter states. states 
defaults to a vector of zeros which has 
length equal to (l + projectord - 2).

errstates Vector of the adaptive filter error states. 
errstates defaults to a zero vector with 
length equal to (projectord - 1).

epsstates Vector of the epsilon values of the adaptive 
filter. epsstates defaults to a vector of zeros 
with (projectord - 1) elements.

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps
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ProjectionOrder 1 to as large 
as needed.

Projection order of the affine 
projection algorithm. 
ProjectionOrder defines the 
size of the input signal 
covariance matrix and defaults 
to two.

OffsetCov Matrix of 
values

Contains the offset covariance 
matrix

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector, the number of 
filter coefficients. coeffs 
defaults to length l vector of 
zeros when you do not provide 
the argument for input.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l + 
projectord - 2).

ErrorStates Vector of 
elements

Vector of the adaptive filter 
error states. errstates 
defaults to a zero vector with 
length equal to 
(projectord - 1).

EpsilonStates Vector of 
elements

Vector of the epsilon values of 
the adaptive filter. epsstates 
defaults to a vector of zeros 
with (projectord - 1) 
elements.

Name Range Description
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Example Quadrature phase shift keying (QPSK) adaptive equalization using a 
32-coefficient FIR filter. Run the adaptation for 1000 iterations.

D = 16;                     % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];   % Numerator coefficients of channel
a = [1 -0.7];               % Denominator coefficients of channel
ntr= 1000;                   % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));      % Noise signal
r = filter(b,a,s)+n;        % Received signal
x = r(1+D:ntr+D);    % Input signal (received signal)
d = s(1:ntr);        % Desired signal (delayed QPSK signal)
mu = 0.1;             % Step size
po = 4;               % Projection order
offset = 0.05;        % Offset for covariance matrix
ha = adaptfilt.ap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');

StepSize Any scalar 
from zero to 
one, inclusive

Specifies the step size taken 
between filter coefficient 
updates

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter. PersistentMemory 
returns to zero any state that 
the filter changes during 
processing. States that the 
filter does not change are not 
affected. Defaults to true.

Name Range Description
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legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

The four plots shown reveal the QPSK process at work.
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See also msesim

References [1] K. Ozeki and Umeda, T., “An Adaptive Filtering Algorithm Using an 
Orthogonal Projection to an Affine Subspace and Its Properties,” Electronics 
and Communications in Japan, vol.67-A, no. 5, pp. 19-27, May 1984

[2] Y. Maruyama, “A Fast Method of Projection Algorithm,” Proc. 1990 IEICE 
Spring Conf., B-744
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8adaptfilt.apruPurpose Affine projection FIR adaptive filter object that uses recursive matrix updating

Syntax ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states,
errstates,epsstates)

Description ha = adaptfilt.apru(l,step,projectord,offset,coeffs,states,
errstates,epsstates) constructs an affine projection FIR adaptive filter ha 
using recursive matrix updating.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.apru.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps). It must be a positive 
integer. l defaults to 10.

step Affine projection step size. This is a scalar 
that should be a value between zero and 
one. Setting step equal to one provides the 
fastest convergence during adaptation. step 
defaults to 1.

projectord Projection order of the affine projection 
algorithm. projectord defines the size of 
the input signal covariance matrix and 
defaults to two.

offset Offset for the input signal covariance 
matrix. You should initialize the covariance 
matrix to a diagonal matrix whose diagonal 
entries are equal to the offset you specify. 
offset should be positive. offset defaults 
to one.
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Properties Since your adaptfilt.apru filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.apru objects. To show you the properties 
that apply, this table lists and describes each property for the affine projection 
filter object.

coeffs Vector containing the initial filter 
coefficients. It must be a length l vector, the 
number of filter coefficients. coeffs 
defaults to length l vector of zeros when you 
do not provide the argument for input.

states Vector of the adaptive filter states. states 
defaults to a vector of zeros which has 
length equal to (l + projectord - 2).

errstates Vector of the adaptive filter error states. 
errstates defaults to a zero vector with 
length equal to (projectord - 1).

epsstates Vector of the epsilon values of the adaptive 
filter. epsstates defaults to a vector of zeros 
with (projectord - 1) elements.

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps
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ProjectionOrder 1 to as large 
as needed.

Projection order of the affine 
projection algorithm. 
ProjectionOrder defines the 
size of the input signal 
covariance matrix and defaults 
to two.

OffsetCov Matrix of 
values

Contains the offset covariance 
matrix

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector, the number of 
filter coefficients. coeffs 
defaults to length l vector of 
zeros when you do not provide 
the argument for input.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l + 
projectord - 2).

ErrorStates Vector of 
elements

Vector of the adaptive filter 
error states. errstates 
defaults to a zero vector with 
length equal to (projectord - 
1).

EpsilonStates Vector of 
elements

Vector of the epsilon values of 
the adaptive filter. epsstates 
defaults to a vector of zeros 
with (projectord - 1) 
elements.

Name Range Description
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Example Demonstrate quadrature phase shift keying (QPSK) adaptive equalization 
using a 32-coefficient FIR filter. In this example we run the adaptation for 1000 
iterations.

D = 16;                        % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];      % Numerator coefficients of channel
a = [1 -0.7];                  % Denominator coefficients of channel
ntr= 1000;                      % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband 

% QPSK sig
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));  % Noise signal
r = filter(b,a,s)+n;          % Received signal
x = r(1+D:ntr+D);             % Input signal (received signal)
d = s(1:ntr);                  % Desired signal (delayed QPSK signal)
mu = 0.1;                      % Step size
po = 4;                        % Projection order
del = 0.05;                    % Offset
ha = adaptfilt.apru(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));

StepSize Any scalar 
from zero to 
one, inclusive

Specifies the step size taken 
between filter coefficient 
updates

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter. PersistentMemory 
returns to zero any state that 
the filter changes during 
processing. States that the 
filter does not change are not 
affected. Defaults to true.

Name Range Description
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title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

In the component and scatter plots below, you see the results of QPSK 
equalization.
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See Also adaptfilt, adaptfilt.ap, adaptfilt.bap

References [1] K. Ozeki, Omeda, T, “An Adaptive Filtering Algorithm Using an Orthogonal 
Projection to an Affine Subspace and Its Properties,”, Electronics and 
Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984

[2] Y. Maruyama, “A Fast Method of Projection Algorithm,” Proceedings 1990 
IEICE Spring Conference, B-744
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8adaptfilt.bapPurpose Block affine projection FIR adaptive filter object

Syntax ha = adaptfilt.bap(l,step,projectord,offset,coeffs,states)

Description ha = adaptfilt.bap(l,step,projectord,offset,coeffs,states)
constructs a block affine projection FIR adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.bap.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a 
positive integer. l defaults to 10.

step Affine projection step size. This is a scalar 
that should be a value between zero and 
one. Setting step equal to one provides the 
fastest convergence during adaptation. step 
defaults to 1.

projectord Projection order of the affine projection 
algorithm. projectord defines the size of 
the input signal covariance matrix and 
defaults to two.

offset Offset for the input signal covariance 
matrix. You should initialize the covariance 
matrix to a diagonal matrix whose diagonal 
entries are equal to the offset you specify. 
offset should be positive. offset defaults 
to one.
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Properties Since your adaptfilt.bap filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.bap objects. To show you the properties that 
apply, this table lists and describes each property for the affine projection filter 
object.

coeffs Vector containing the initial filter 
coefficients. It must be a length l vector, the 
number of filter coefficients. coeffs 
defaults to length l vector of zeros when you 
do not provide the argument for input.

states Vector of the adaptive filter states. states 
defaults to a vector of zeros which has 
length equal to (l + projectord - 2).

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps

ProjectionOrder 1 to as large 
as needed.

Projection order of the affine 
projection algorithm. 
ProjectionOrder defines the 
size of the input signal 
covariance matrix and defaults 
to two.

OffsetCov Matrix of 
values

Contains the offset covariance 
matrix
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Example Show an example of quadrature phase shift keying (QPSK) adaptive 
equalization using a 32-coefficient FIR filter.

D = 16;                             % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];           % Numerator coefficients of 

% channel

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector, the number of 
filter coefficients. coeffs 
defaults to length l vector of 
zeros when you do not provide 
the argument for input.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l + 
projectord - 2).

StepSize Any scalar 
from zero to 
one, inclusive

Specifies the step size taken 
between filter coefficient 
updates

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter. PersistentMemory 
returns to zero any state that 
the filter changes during 
processing. States that the 
filter does not change are not 
affected. Defaults to true.

Name Range Description
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a = [1 -0.7];                       % Denominator coefficients 
% of channel

ntr= 1000;                           % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));  % Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));        % Noise signal
r = filter(b,a,s)+n;                % Received signal
x = r(1+D:ntr+D);                   % Input signal (received signal)
d = s(1:ntr);                       % Desired signal (delayed 

% QPSK signal)
mu = 0.5;                            % Step size
po = 4;                              % Projection order
offset = 1.0;                       % Offset for covariance matrix
ha = adaptfilt.bap(32,mu,po,offset);
[y,e] = filter(ha,x,d);
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
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Using the block affine projection object in QPSK results in the plots shown 
here.

See Also adaptfilt, adaptfilt.ap, adaptfilt.apru

References [1] K. Ozeki, Omeda, T, “An Adaptive Filtering Algorithm Using an Orthogonal 
Projection to an Affine Subspace and Its Properties,” Electronics and 
Communications in Japan, vol. 67-A, no. 5, pp. 19-27, May 1984

[2] M. Montazeri, M, Duhamel, P, “A Set of Algorithms Linking NLMS and 
Block RLS Algorithms,” IEEE Transactions Signal Processing, vol. 43, no. 2, 
pp, 444-453, February 1995
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8adaptfilt.blmsPurpose Construct Block LMS (BLMS) FIR adaptive filter

Syntax ha = adaptfilt.blms(l,step,leakage,blocklen,coeffs,states)

Description ha = adaptfilt.blms(l,step,leakage,blocklen,coeffs,states)  
constructs an FIR block LMS adaptive filter ha, where l is the adaptive filter 
length (the number of coefficients or taps) and must be a positive integer. 
l defaults to 10.

step is the block LMS step size. You must set step to a nonnegative scalar. You 
can use function maxstep to determine a reasonable range of step size values 
for the signals being processed. When unspecified, step defaults to 0.

leakage is the block LMS leakage factor. It must be a scalar between 0 and 1. 
If you set leakage to be less than one, you implement the leaky block LMS 
algorithm. leakage defaults to 1 specifying no leakage in the adapting 
algorithm.

blocklen is the block length used. It must be a positive integer and the signal 
vectors d and x should be divisible by blocklen. Larger block lengths result in 
faster per-sample execution times but with poor adaptation characteristics. 
When you choose blocklen such that blocklen + length(coeffs) is a power 
of 2, use adaptfilt.blmsfft. blocklen defaults to l.

coeffs is a vector of initial filter coefficients. it must be a length l vector. 
coeffs defaults to length l vector of zeros.

states contains a vector of your initial filter states. It must be a length l vector 
and defaults to a length l vector of zeros when you do not include it in your 
calling function.
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Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object created. This table lists the properties for the adjoint 
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Defines the adaptive 
filter algorithm the 
object uses during 
adaptation

FilterLength Any positive integer Reports the length of 
the filter, the number of 
coefficients or taps

Coefficients Vector of elements Vector containing the 
initial filter coefficients. 
It must be a length l 
vector where l is the 
number of filter 
coefficients. coeffs 
defaults to length l 
vector of zeros when 
you do not provide the 
argument for input.

States Vector of elements Vector of the adaptive 
filter states. states 
defaults to a vector of 
zeros which has length 
equal to l
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Leakage Specifies the leakage 
parameter. Allows you 
to implement a leaky 
algorithm. Including a 
leakage factor can 
improve the results of 
the algorithm by 
forcing the algorithm to 
continue to adapt even 
after it reaches a 
minimum value. 
Ranges between 0 
and 1. 

BlockLength Vector of length l Size of the blocks of 
data processed in each 
iteration

Property Default Value Description
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 Example Use an adaptive filter to identify an unknown 32nd-order FIR filter. In this 
example we input 500 samples to result in 500 iterations of the adaptation 
process. You see in the plot that follows the example code that the adaptive 
filter has determined the coefficients of the unknown system under test.

x = randn(1,500);              % Input to the filter

StepSize 0.1 Sets the block LMS 
algorithm step size 
used for each iteration 
of the adapting 
algorithm. Determines 
both how quickly and 
how closely the 
adaptive filter 
converges to the filter 
solution. Use maxstep 
to determine the 
maximum usable step 
size.

PersistentMemory false or true Determine whether the 
filter states get 
restored to their 
starting values for each 
filtering operation. The 
starting values are the 
values in place when 
you create the filter. 
PersistentMemory 
returns to zero any 
state that the filter 
changes during 
processing. States that 
the filter does not 
change are not affected. 
Defaults to false.

Property Default Value Description
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b = fir1(31,0.5);              % FIR system to be identified
no = 0.1*randn(1,500);         % Observation noise signal
d = filter(b,1,x)+no;          % Desired signal
mu = 0.008;                     % Block LMS step size
n = 5;                         % Block length
ha = adaptfilt.blms(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Based on looking at the figures here, the adaptive filter correctly identified the 
unknown system after 500 iterations, or fewer. In the lower plot, you see the 
comparison between the actual filter coefficients and those determined by the 
adaptation process.
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See Also adaptfilt.blmsfft, adaptfilt.fdaf, adaptfilt.lms

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE 
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.
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8adaptfilt.blmsfftPurpose Construct FFT-based block LMS FIR adaptive filter

Syntax ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,states)

Description ha = adaptfilt.blmsfft(l,step,leakage,blocklen,coeffs,states)  
constructs an FIR block LMS adaptive filter object ha where l is the adaptive 
filter length (the number of coefficients or taps) and must be a positive integer. 
l defaults to 10. step is the block LMS step size. It must be a nonnegative 
scalar. The function maxstep may be helpful to determine a reasonable range 
of step size values for the signals you are processing. step defaults to 0.

leakage is the block LMS leakage factor. It must also be a scalar between 
0 and 1. When leakage is less than one, the adaptfilt.blmsfft implements 
a leaky block LMS algorithm. leakage defaults to 1 (no leakage). blocklen is 
the block length used. It must be a positive integer such that

 blocklen + length(coeffs)

is a power of two; otherwise, an adaptfilt.blms algorithm is used for 
adapting. Larger block lengths result in faster execution times, with poor 
adaptation characteristics as the cost of the speed gained. blocklen defaults 
to l. Enter your initial filter coefficients in coeffs, a vector of length l. When 
omitted, coeffs defaults to a length l vector of all zeros. states contains 
a vector of initial filter states; it must be a length l vector. states defaults to 
a length l vector of all zeros when you omit the states argument in the calling 
syntax.
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Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object you create. This table lists the properties for the block 
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Defines the adaptive 
filter algorithm the 
object uses during 
adaptation

FilterLength Any positive integer Reports the length of 
the filter, the number of 
coefficients or taps

Coefficients Vector of elements Vector containing the 
initial filter coefficients. 
It must be a length l 
vector where l is the 
number of filter 
coefficients. 
coefficients defaults 
to length l vector of 
zeros when you do not 
provide the argument 
for input.

States Vector of elements of 
length l

Vector of the adaptive 
filter states. states 
defaults to a vector of 
zeros which has length 
equal to l
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Leakage 1 Specifies the leakage 
parameter. Allows you 
to implement a leaky 
algorithm. Including a 
leakage factor can 
improve the results of 
the algorithm by 
forcing the algorithm to 
continue to adapt even 
after it reaches a 
minimum value. 
Ranges between 0 
and 1. 

BlockLength Vector of length l Size of the blocks of 
data processed in each 
iteration

Property Default Value Description
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Example Identify an unknown FIR filter with 32 coefficients using 512 iterations of the 
adapting algorithm.

x = randn(1,512);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
no = 0.1*randn(1,512); % Observation noise signal

StepSize 0.1 Sets the block LMS 
algorithm step size 
used for each iteration 
of the adapting 
algorithm. Determines 
both how quickly and 
how closely the 
adaptive filter 
converges to the filter 
solution. Use maxstep 
to determine the 
maximum usable step 
size.

PersistentMemory false or true Determine whether the 
filter states get 
restored to their 
starting values for each 
filtering operation. The 
starting values are the 
values in place when 
you create the filter. 
PersistentMemory 
returns to zero any 
state that the filter 
changes during 
processing. States that 
the filter does not 
change are not affected. 
Defaults to false.

Property Default Value Description
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d = filter(b,1,x)+no; % Desired signal
mu = 0.008;            % Step size
n = 16;               % Block length
ha = adaptfilt.blmsfft(32,mu,1,n);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d(1:500);y(1:500);e(1:500)]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('actual','estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;
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As a result of running the adaptation process, filter object ha now matches the 
unknown system FIR filter b, based on comparing the filter coefficients derived 
during adaptation.

See Also adaptfilt.blms, adaptfilt.fdaf, adaptfilt.lms, filter

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE 
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.
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8adaptfilt.dlmsPurpose Create delayed LMS FIR adaptive filter object

Syntax ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
states)

Description ha = adaptfilt.dlms(l,step,leakage,delay,errstates,coeffs,
states) constructs an FIR delayed LMS adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.dlms.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step LMS step size. It must be a nonnegative 
scalar. You can use maxstep to determine 
a reasonable range of step size values for the 
signals being processed. step defaults to 0.

leakage Your LMS leakage factor. It must be a scalar 
between 0 and 1. When leakage is less than 
one, adaptfilt.lms implements a leaky LMS 
algorithm. When you omit the leakage 
property in the calling syntax, it defaults to 1 
providing no leakage in the adapting 
algorithm.

delay Update delay given in time samples. This 
scalar should be a positive integer—negative 
delays do not work. delay defaults to 1.
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errstates Vector of the error states of your adaptive 
filter. It must have a length equal to the 
update delay (delay) in samples. errstates 
defaults to an appropriate length vector of 
zeros.

coeffs Vector of initial filter coefficients. it must be a 
length l vector. coeffs defaults to length l 
vector with elements equal to zero.

states Vector of initial filter states for the adaptive 
filter. It must be a length l-1 vector. states 
defaults to a length l-1 vector of zeros.

Input Argument Description
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Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object you create. This table lists the properties for the block 
LMS object, their default values, and a brief description of the property.

Property Default Value Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients Vector of elements Vector containing the 
initial filter coefficients. It 
must be a length l vector 
where l is the number of 
filter coefficients. coeffs 
defaults to length l vector 
of zeros when you do not 
provide the argument for 
input. LMS FIR filter 
coefficients. Should be 
initialized with the initial 
coefficients for the FIR 
filter prior to adapting. 
You need l entries in 
coeffs.

Delay 1 Specifies the update delay 
for the adaptive 
algorithm.

ErrorStates Vector of zeros with 
the number of 
elements equal to 
delay

A vector comprising the 
error states for the 
adaptive filter.

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps.
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Leakage 1 Specifies the leakage 
parameter. Allows you to 
implement a leaky 
algorithm. Including a 
leakage factor can 
improve the results of the 
algorithm by forcing the 
algorithm to continue to 
adapt even after it reaches 
a minimum value. Ranges 
between 0 and 1. 

PersistentMemory false or true Determine whether the 
filter states get restored to 
their starting values for 
each filtering operation. 
The starting values are 
the values in place when 
you create the filter if you 
have not changed the 
filter since you 
constructed it. 
PersistentMemory 
returns to zero any state 
that the filter changes 
during processing. States 
that the filter does not 
change are not affected. 
Defaults to false.

Property Default Value Description
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Example System identification of a 32-coefficient FIR filter. Refer to the figure that 
follows to see the results of the adapting filter process.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
mu = 0.008;            % LMS step size.
delay = 1;             % Update delay
ha = adaptfilt.dlms(32,mu,1,delay);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Using a delayed LMS adaptive filter in the process to identify an unknown 
filter appears to work as planned, as shown in this figure.

StepSize 0.1 Sets the LMS algorithm 
step size used for each 
iteration of the adapting 
algorithm. Determines 
both how quickly and how 
closely the adaptive filter 
converges to the filter 
solution.

States Vector of elements, 
data type double

Vector of the adaptive 
filter states. states 
defaults to a vector of 
zeros which has length 
equal to (l + projectord - 
2).

Property Default Value Description
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See Also adaptfilt.adjlms, adaptfilt.filtxlms, adaptfilt.lms

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE 
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.
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8adaptfilt.fdafPurpose Construct frequency-domain FIR adaptive filter with bin step size 
normalization

Syntax ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states) 

Description ha = adaptfilt.fdaf(l,step,leakage,delta,lambda,blocklen,offset,
coeffs,states) constructs a frequency-domain FIR adaptive filter ha with bin 
step size normalization. If you omit all the input arguments you create a 
default object with l = 10 and step = 1. 

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.fdaf.

Input Argument Description

l Adaptive filter length (the number of coefficients 
or taps). l must be a positive integer; it defaults 
to 10 when you omit the argument.

step Step size of the adaptive filter. This is a scalar 
and should lie in the range (0,1]. step defaults to 
1.

leakage Leakage parameter of the adaptive filter. If this 
parameter is set to a value between zero and one, 
you implement a leaky FDAF algorithm. 
leakage defaults to 1—no leakage provided in 
the algorithm.

delta Initial common value of all of the FFT input 
signal powers. Its initial value should be 
positive. delta defaults to 1.

lambda Specifies the averaging factor used to compute 
the exponentially-windowed FFT input signal 
powers for the coefficient updates. lambda should 
lie in the range (0,1]. lambda defaults to 0.9.
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Properties Since your adaptfilt.fdaf filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.fdaf objects. To show you the properties 

blocklen Block length for the coefficient updates. This 
must be a positive integer. For faster execution, 
(blocklen + l) should be a power of two. 
blocklen defaults to l. 

offset Offset for the normalization terms in the 
coefficient updates. Use this to avoid divide by 
zeros or by very small numbers when any of the 
FFT input signal powers become very small. 
offset defaults to zero.

coeffs Initial time-domain coefficients of the adaptive 
filter. coeff should be a length l vector. The 
adaptive filter object uses these coefficients to 
compute the initial frequency-domain filter 
coefficients via an FFT computed after 
zero-padding the time-domain vector by the 
blocklen.

states The adaptive filter states. states defaults to 
a zero vector that has length equal to l.

Input Argument Description
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that apply, this table lists and describes each property for the adaptfilt.fdaf 
filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation.

AvgFactor (0, 1] Specifies the averaging factor 
used to compute the 
exponentially-windowed FFT 
input signal powers for the 
coefficient updates. Same as 
the input argument lambda.

BlockLength Any integer Block length for the coefficient 
updates. This must be a 
positive integer. For faster 
execution, (blocklen + l) 
should be a power of two. 
blocklen defaults to l. 

FFTCoefficients Stores the discrete Fourier 
transform of the filter 
coefficients in coeffs.

FFTStates States for the FFT operation.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps.
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Leakage Leakage parameter of the 
adaptive filter. if this 
parameter is set to a value 
between zero and one, you 
implement a leaky FDAF 
algorithm. leakage defaults to 
1—no leakage provided in the 
algorithm.

Offset Any positive 
real value

Offset for the normalization 
terms in the coefficient 
updates. Use this to avoid 
dividing by zero or by very 
small numbers when any of the 
FFT input signal powers 
become very small. offset 
defaults to zero.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter. PersistentMemory 
returns to zero any state that 
the filter changes during 
processing. States that the 
filter does not change are not 
affected. Defaults to false.

Name Range Description
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Examples Quadrature Phase Shift Keying (QPSK) adaptive equalization using 1024 
iterations of a 32-coefficient FIR filter. After this example code, a figure 
demonstrates the equalization results.

D = 16;                         % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];      % Numerator coefficients of channel
a = [1 -0.7];                   % Denominator coefficients of channel
ntr= 1024;                      % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));  % Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));        % Noise signal
r = filter(b,a,s)+n;            % Received signal
x = r(1+D:ntr+D);               % Input signal (received signal)
d = s(1:ntr);                   % Desired signal (delayed QPSK 

% signal)
del = 1;                         % Initial FFT input powers
mu = 0.1;                       % Step size
lam = 0.9;                       % Averaging factor
ha = adaptfilt.fdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');

Power A vector of 2*l elements, each 
initialized with the value delta 
from the input arguments. As 
you filter data, Power gets 
updated by the filter process.

StepSize Any scalar 
from zero to 
one, inclusive

Specifies the step size taken 
between filter coefficient 
updates

Name Range Description
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subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

See Also adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blms, adaptfilt.blmsfft

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE 
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992
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8adaptfilt.filtxlmsPurpose Create filtered-x LMS FIR adaptive filter

Syntax ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states)

Description ha = adaptfilt.filtxlms(l,step,leakage,pathcoeffs,pathest,
errstates,pstates,coeffs,states) constructs an filtered-x LMS adaptive 
filter ha. 

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.filtxlms. 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step Filtered LMS step size. it must be a 
nonnegative scalar. step defaults to 0.1.

leakage  is the filtered-x LMS leakage factor. it must 
be a scalar between 0 and 1. If it is less than 
one, a leaky version of adaptfilt.filtxlms is 
implemented. leakage defaults to 1 (no 
leakage).

pathcoeffs  is the secondary path filter model. this vector 
should contain the coefficient values of the 
secondary path from the output actuator to 
the error sensor.

pathest  is the estimate of the secondary path filter 
model. pathest defaults to the values in 
pathcoeffs.

fstates  is a vector of filtered input states of the 
adaptive filter. fstates defaults to a zero 
vector of length equal to (l - 1).
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Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object created. This table lists the properties for the adjoint 
LMS object, their default values, and a brief description of the property.

pstates  are the secondary path FIR filter states. it 
must be a vector of length equal to the 
(length(pathcoeffs) - 1). pstates defaults to 
a vector of zeros of appropriate length.

coeffs  is a vector of initial filter coefficients. it must 
be a length l vector. coeffs defaults to length 
l vector of zeros.

states Vector of initial filter states. states defaults 
to a zero vector of length equal to the larger of 
(length(pathcoeffs) - 1) and 
(length(pathest) - 1).

Input Argument Description

Property Default Value Description

Algorithm None Defines the adaptive 
filter algorithm the 
object uses during 
adaptation

Coefficients Vector of elements Vector containing the 
initial filter coefficients. 
It must be a length l 
vector where l is the 
number of filter 
coefficients. coeffs 
defaults to length l 
vector of zeros when 
you do not provide the 
argument for input.
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FilteredInputStates l-1 Vector of filtered input 
states with length 
equal to l - 1.

FilterLength Any positive integer Reports the length of 
the filter, the number of 
coefficients or taps

States Vector of elements Vector of the adaptive 
filter states. states 
defaults to a vector of 
zeros which has length 
equal to 
(l + projectord - 2)

SecondaryPathCoeffs No default A vector that contains 
the coefficient values of 
your secondary path 
from the output 
actuator to the error 
sensor

SecondaryPathEstimate pathcoeffs values An estimate of the 
secondary path filter 
model

Property Default Value Description
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Example Demonstrate active noise control of a random noise signal over 1000 iterations.

As the figure that follows this code demonstrates, the filtered-x LMS filter 
successfully controls random noise in this context.

x = randn(1,1000);    % Noise source
g = fir1(47,0.4);     % FIR primary path system model
n = 0.1*randn(1,1000); % Observation noise signal
d = filter(g,1,x)+n;  % Signal to be cancelled (desired)
b = fir1(31,0.5);     % FIR secondary path system model 
mu = 0.008;            % Filtered-X LMS step size
ha = adaptfilt.filtxlms(32,mu,1,b);
[y,e] = filter(ha,x,d);
plot(1:1000,d,'b',1:1000,e,'r');
title('Active Noise Control of a Random Noise Signal');
legend('Original','Attenuated');
xlabel('Time Index'); ylabel('Signal Value');  grid on;

SecondaryPathStates Vector of size 
(length(pathcoeffs)-1) 
with all elements 
equal to zero.

The states of the 
secondary path FIR 
filter—the unknown 
system

StepSize 0.1 Sets the filtered-x 
algorithm step size 
used for each iteration 
of the adapting 
algorithm. Determines 
both how quickly and 
how closely the 
adaptive filter 
converges to the filter 
solution.

Property Default Value Description
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See also adaptfilt.dlms, adaptfilt.lms

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE 
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3
Active Noise Control of a Random Noise Signal

Time Index

S
ig

na
l V

al
ue

Original
Attenuated



adaptfilt.ftf

8-85

8adaptfilt.ftfPurpose Construct fast transversal least squares adaptive filter object

Syntax ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)

Description ha = adaptfilt.ftf(l,lambda,delta,gamma,gstates,coeffs,states)
constructs a fast transversal least squares adaptive filter object ha.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.ftf.

Properties Since your adaptfilt.ftf filter is an object, it has properties that define its 
operating behavior. Note that many of the properties are also input arguments 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

lambda RLS forgetting factor. This is a scalar that 
should lie in the range (1-0.5/l, 1]. lambda 
defaults to 1.

delta Soft-constrained initialization factor. This 
scalar should be positive and sufficiently large 
to prevent an excessive number of Kalman 
gain rescues. delta defaults to one.

gamma Conversion factor. gamma defaults to one 
specifying soft-constrained initialization.

gstates States of the Kalman gain updates. gstates 
defaults to a zero vector of length l.

coeffs Length l vector of initial filter coefficients. 
coeffs defaults to a length l vector of zeros.

states Vector of initial filter States. states defaults 
to a zero vector of length (l-1).
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for creating adaptfilt.ftf objects. To show you the properties that apply, this 
table lists and describes each property for the fast transversal least squares 
filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

BkwdPrediction Returns the predicted samples 
generated during 
adaptation.Refer to [12] in the 
bibliography for details about 
linear prediction.

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do not 
provide the argument for 
input.

ConversionFactor Conversion factor. Called 
gamma when it is an input 
argument, it defaults to the 
matrix [1 -1] that specifies 
soft-constrained initialization.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps

ForgettingFactor RLS forgetting factor. This is a 
scalar that should lie in the 
range (1-0.5/l, 1]. lambda 
defaults to 1.
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FwdPrediction Contains the predicted values 
for samples during adaptation. 
Compare these to the actual 
samples to get the error and 
power.

InitFactor Soft-constrained initialization 
factor. This scalar should be 
positive and sufficiently large 
to prevent an excessive 
number of Kalman gain 
rescues. delta defaults to one.

KalmanGain Empty when you construct the 
object, this gets populated after 
you run the filter.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter if you have not changed 
the filter since you constructed 
it. PersistentMemory returns 
to zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected. 
Defaults to false.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l + 
projectord - 2).

Name Range Description
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Examples System Identification of a 32-coefficient FIR filter by running the identification 
process for 500 iterations.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
N = 31;               % Adaptive filter order
lam = 0.99;            % RLS forgetting factor
del = 0.1;             % Soft-constrained initialization factor
ha = adaptfilt.ftf(32,lam,del);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('signal value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated'); 
xlabel('coefficient #'); ylabel('Coefficient Value'); grid on;

For this example of identifying an unknown system, the figure shows that the 
adaptation process identifies the filter coefficients for the unknown FIR filter 
within the first 150 iterations.
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See Also adaptfilt.swftf, adaptfilt.rls, adaptfilt.lsl

Reference D.T.M. Slock and Kailath, T., “Numerically Stable Fast Transversal Filters for 
Recursive Least Squares Adaptive Filtering,” IEEE Trans. Signal Processing, 
vol. 38, no. 1, pp. 92-114.
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8adaptfilt.galPurpose Construct gradient adaptive lattice FIR filter

Syntax ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda,
rcoeffs,coeffs,states) 

Description ha = adaptfilt.gal(l,step,leakage,offset,rstep,delta,lambda,
rcoeffs,coeffs,states) constructs a gradient adaptive lattice FIR filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.gal.

Input Argument Description

l Length of the joint process filter coefficients. It 
must be a positive integer and must be equal 
to the length of the reflection coefficients plus 
one. l defaults to 10.

step Joint process step size of the adaptive filter. 
This scalar should be a value between zero 
and one. step defaults to 0.

leakage Leakage factor of the adaptive filter. It must 
be a   scalar between 0 and 1. Setting leakage 
less than one implements a leaky algorithm to 
estimate both the reflection and the joint   
process coefficients. leakage defaults to 1 (no 
leakage).

offset Specifies an optional offset for the 
denominator of the step size normalization 
term. It must be a scalar greater or equal to 
zero.   A non-zero offset is useful to avoid 
divide-by-near-zero conditions when the input   
signal amplitude becomes very small. offset 
defaults to 1.
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Properties Since your adaptfilt.gal filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.gal objects. To show you the properties that 

rstep Reflection process step size of the adaptive 
filter. This scalar should be a value between 
zero and one. rstep defaults to step.

delta Initial common value of the forward and 
backward prediction error powers. It should be 
a positive value. 0.1 is the default value for 
delta.

lambda Specifies the averaging factor used to compute 
the exponentially windowed forward and 
backward prediction error powers for the   
coefficient updates. lambda should lie in the 
range (0, 1]. lambda defaults to the value 
(1 - step).

rcoeffs Vector of initial reflection coefficients. It 
should be a length (l-1) vector. rcoeffs 
defaults to a zero vector of length (l-1).

coeffs Vector of initial joint process filter coefficients.   
It must be a length l vector. coeffs defaults to 
a length l vector of zeros.

states Vector of the backward prediction error states 
of the adaptive filter. states defaults to a zero 
vector of length (l-1).

Input Argument Description
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apply, this table lists and describes each property for the affine projection filter 
object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

AvgFactor Specifies the averaging factor 
used to compute the 
exponentially-windowed 
forward and backward 
prediction error powers for the 
coefficient updates. Same as 
the input argument lambda.

BkwdPredErrorPower Returns the minimum 
mean-squared prediction error. 
Refer to [12] in the 
bibliography for details about 
linear prediction

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do not 
provide the argument for 
input.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps
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FwdPredErrorPower Returns the minimum 
mean-squared prediction error 
in the forward direction. Refer 
to [12] in the bibliography for 
details about linear prediction.

Leakage 0 to 1 Leakage parameter of the 
adaptive filter. If this 
parameter is set to a value 
between zero and one, you 
implement a leaky GAL 
algorithm. leakage defaults to 
1—no leakage provided in the 
algorithm.

Offset Offset for the normalization 
terms in the coefficient 
updates. Use this to avoid 
dividing by zero or by very 
small numbers when input 
signal amplitude becomes very 
small. offset defaults to one.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter if you have not changed 
the filter since you constructed 
it. PersistentMemory returns 
to zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected. 
Defaults to false.

Name Range Description
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Examples Perform a Quadrature Phase Shift Keying (QPSK) adaptive equalization using 
a 32-coefficient adaptive filter over 1000 iterations. 

D = 16;                        % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];      % Numerator coefficients of channel
a = [1 -0.7];                   % Denominator coefficients of channel
ntr= 1000;                      % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));        % Noise signal
r = filter(b,a,s)+n;           % Received signal
x = r(1+D:ntr+D);             % Input signal (received signal)
d = s(1:ntr);                 % Desired signal (delayed QPSK signal)
L = 32;                        % filter length
mu = 0.007;                    % Step size
ha = adaptfilt.gal(L,mu);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');

ReflectionCoeffs Coefficients determined for the 
reflection portion of the filter 
during adaptation.

ReflectionCoeffsStep Size of the steps used to 
determine the reflection 
coefficients.

States Vector of 
elements

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to 
(l + projectord - 2).

StepSize 0 to 1 Specifies the step size taken 
between filter coefficient 
updates

Name Range Description
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xlabel('Time Index'); ylabel('signal value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

To see the results, look at this figure.

See Also adaptfilt.qrdlsl, adaptfilt.lsl, adaptfilt.tdafdft
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References L.J. Griffiths, “A Continuously Adaptive Filter Implemented as a Lattice 
Structure,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 
Hartford, CT, pp. 683-686, 1977

S. Haykin, Adaptive Filter Theory, 3rd Ed., Upper Saddle River, NJ, Prentice 
Hall, 1996
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8adaptfilt.hrlsPurpose Construct a householder recursive least squares (RLS) FIR adaptive filter 
object

Syntax ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states)

Description ha = adaptfilt.hrls(l,lambda,sqrtinvcov,coeffs,states) constructs an 
FIR householder RLS adaptive filter ha. 

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.hrls.

Properties Since your adaptfilt.hrls filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.hrls objects. To show you the properties 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

lambda RLS forgetting factor. This is a scalar and 
should lie in the range (0, 1]. lambda defaults 
to 1 meaning the adaptation process retains 
infinite memory.

sqrtinvcov Square-root of the inverse of the sliding 
window input signal covariance matrix. This 
square matrix should be full-ranked.

coeffs Vector of initial filter coefficients. It must be a 
length l vector. coeffs defaults to being 
a length l vector of zeros.

states Vector of initial filter states. It must be 
a length l-1 vector. states defaults to a length 
l-1 vector of zeros.
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that apply, this table lists and describes each property for the affine projection 
filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be 
a length l vector where l is 
the number of filter 
coefficients. coeffs defaults 
to length l vector of zeros 
when you do not provide the 
argument for input.

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps

ForgettingFactor Scalar RLS forgetting factor. This 
is a scalar and should lie in 
the range (0, 1]. Same as 
input argument lambda. It 
defaults to 1 meaning the 
adaptation process retains 
infinite memory.

KalmanGain Vector of size 
(l,1)

Empty when you construct 
the object, this gets 
populated after you run the 
filter. 
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Examples Use 500 iterations of an adaptive filter object to identify a 32-coefficient FIR 
filter system. Both the example code and the resulting figure show the 
successful filter identification through adaptive filter processing.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
G0 = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99;            % RLS forgetting factor
ha = adaptfilt.hrls(32,lam,G0);

PersistentMemory false or true Determine whether the 
filter states get restored to 
their starting values for 
each filtering operation. The 
starting values are the 
values in place when you 
create the filter if you have 
not changed the filter since 
you constructed it. 
PersistentMemory returns 
to zero any state that the 
filter changes during 
processing. Defaults to 
false.

SqrtInvCov Matrix of 
doubles

Square root of the inverse of 
the sliding window input 
signal covariance matrix. 
This square matrix should 
be full-ranked.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l - 1).

Name Range Description
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[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls
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8adaptfilt.hswrlsPurpose Construct householder sliding window recursive least squares (RLS) FIR 
adaptive filter

Syntax ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen,
dstates, coeffs, states)

Description ha = adaptfilt.hswrls(l, lambda, sqrtinvcov, swblocklen, dstates, 
coeffs, states) constructs an FIR householder sliding window 
recursive-least-square adaptive filter ha. 

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.hswrls.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

lambda Recursive least square (RLS) forgetting factor. 
This is a scalar and should lie in the range (0, 
1]. lambda defaults to 1 meaning the 
adaptation process retains infinite memory.

sqrtinvcov Square-root of the inverse of the sliding 
window input signal covariance matrix. This 
square matrix should be full-ranked.

swblocklen Block length of the sliding window. This 
integer must be at least as large as the filter 
length. swblocklen defaults to 16.

dstates Desired signal states of the adaptive filter. 
dstates defaults to a zero vector with length 
equal to (swblocklen - 1).
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Properties Since your adaptfilt.hswrls filter is an object, it has properties that define 
its behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.hswrls objects. To show you the properties 
that apply, this table lists and describes each property for the affine projection 
filter object.

coeffs Vector of initial filter coefficients. It must be a 
length l vector. coeffs defaults to being 
a length l vector of zeros.

states Vector of initial filter states. It must be 
a length (l + swblocklen -2) vector. states 
defaults to a length (l + swblocklen -2) 
vector of zeros.

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients Vector of 
elements

Vector containing the 
initial filter coefficients. It 
must be a length l vector 
where l is the number of 
filter coefficients. coeffs 
defaults to length l vector 
of zeros when you do not 
provide the argument for 
input.

DesiredSignalStates Vector Desired signal states of the 
adaptive filter. dstates 
defaults to a zero vector 
with length equal to 
(swblocklen - 1).
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FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps

ForgettingFactor Scalar Root-least-square (RLS) 
forgetting factor. This is a 
scalar and should lie in the 
range (0, 1]. Same as input 
argument lambda. It 
defaults to 1 meaning the 
adaptation process retains 
infinite memory.

KalmanGain (l,1) vector Empty when you construct 
the object, this gets 
populated after you run the 
filter. 

PersistentMemory false or true Determine whether the 
filter states get restored to 
their starting values for 
each filtering operation. 
The starting values are the 
values in place when you 
create the filter if you have 
not changed the filter since 
you constructed it. 
PersistentMemory returns 
to zero any state that the 
filter changes during 
processing. Defaults to 
false.

Name Range Description
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 Examples System Identification of a 32-coefficient FIR filter.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
G0 = sqrt(10)*eye(32); % Initial sqrt correlation matrix inverse
lam = 0.99;            % RLS forgetting factor
N = 64;               % block length
ha = adaptfilt.hswrls(32,lam,G0,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

SqrtInvCov l-by-l Matrix Square-root of the inverse 
of the sliding window input 
signal covariance matrix. 
This square matrix should 
be full-ranked.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l + 
projectord - 2).

SwBlockLength Integer Block length of the sliding 
window. This integer must 
be at least as large as the 
filter length. swblocklen 
defaults to 16.

Name Range Description



adaptfilt.hswrls

8-105

In the pair of plots shown in the figure you see the comparison of the desired 
and actual output for the adapting filter and the coefficients of both filters, the 
unknown and the adapted.

See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hrls
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8adaptfilt.lmsPurpose Construct least-mean-square (LMS) FIR adaptive filter object

Syntax ha = adaptfilt.lms(l,step,leakage,coeffs,states)

Description ha = adaptfilt.lms(l,step,leakage,coeffs,states) constructs an FIR 
LMS adaptive filter object ha. 

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.lms.

Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object created. This table lists the properties for the 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step LMS step size. It must be a nonnegative 
scalar. You can use maxstep to determine 
a reasonable range of step size values for the 
signals being processed. step defaults to 0.1.

leakage Your LMS leakage factor. It must be a scalar 
between 0 and 1. When leakage is less than 
one, adaptfilt.lms implements a leaky LMS 
algorithm. When you omit the leakage 
property in the calling syntax, it defaults to 1 
providing no leakage in the adapting 
algorithm.

coeffs Vector of initial filter coefficients. it must be a 
length l vector. coeffs defaults to length l 
vector with elements equal to zero.

states Vector of initial filter states for the adaptive 
filter. It must be a length l-1 vector. states 
defaults to a length l-1 vector of zeros.
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adaptfilt.lms object, their default values, and a brief description of the 
property. 

Property Range Property Description

Algorithm None Reports the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be 
a length l vector where l is 
the number of filter 
coefficients. coeffs defaults 
to a length l vector of zeros 
when you do not provide the 
vector as an input argument.

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps

Leakage 0 to 1 LMS leakage factor. It must 
be a scalar between zero and 
one. When it is less than one, 
a leaky NLMS algorithm 
results. leakage defaults 
to 1 (no leakage).
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 Example Use 500 iterations of an adapting filter system to identify and unknown 
32nd-order FIR filter.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
mu = 0.008;            % LMS step size.
ha = adaptfilt.lms(32,mu);
[y,e] = filter(ha,x,d);

PersistentMemory false or true Determine whether the filter 
states and coefficients get 
restored to their starting 
values for each filtering 
operation. The starting 
values are the values in 
place when you create the 
filter. PersistentMemory 
returns to zero any property 
value that the filter changes 
during processing. Property 
values that the filter does 
not change are not affected. 
Defaults to false.

States Vector of 
elements, data 
type double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l - 1).

StepSize 0 to 1 LMS step size. It must be a 
scalar between zero and one. 
Setting this step size value 
to one provides the fastest 
convergence. step defaults to 
0.1.

Property Range Property Description
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subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.coefficients.']);
legend('Actual','Estimated');
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Using LMS filters in an adaptive filter architecture is a time honored means 
for identifying an unknown filter. By running the example code provided you 
can demonstrate one process to identify an unknown FIR filter.
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See Also adaptfilt.blms, adaptfilt.blmsfft, adaptfilt.dlms, adaptfilt.nlms, 
adaptfilt.tdafdft, adaptfilt.sd, adaptfilt.se, adaptfilt.ss

Reference J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filtering,” IEEE 
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992.
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8adaptfilt.lslPurpose Construct least squares lattice (LSL) adaptive filter

Syntax ha = adaptfilt.lsl(l,lambda,delta,coeffs,states) 

Description ha = adaptfilt.lsl(l,lambda,delta,coeffs,states) constructs a least 
squares lattice adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.lsl.

Properties Since your adaptfilt.lsl filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 

Input Argument Description

l Length of the joint process filter coefficients. It 
must be   a positive integer and must be equal 
to the length of the prediction coefficients plus 
one. L defaults to 10.

lambda Forgetting factor of the adaptive filter. This is 
a scalar and should lie in the range (0, 1]. 
lambda defaults to 1.   lambda = 1 denotes 
infinite memory while adapting to find the 
new filter.

delta Soft-constrained initialization factor in the 
least squares lattice algorithm. It should be 
positive. delta defaults to 1.

coeffs Vector of initial joint process filter coefficients.   
It must be a length l vector. coeffs defaults to 
a length l vector of all zeros.

states Vector of the backward prediction error states 
of the   adaptive filter. states defaults to 
a length l vector of all zeros, specifying 
soft-constrained initialization for the 
algorithm.
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arguments for creating adaptfilt.lsl objects. To show you the properties that 
apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

BkwdPrediction Returns the predicted 
samples generated during 
adaptation.Refer to [12] in 
the bibliography for details 
about linear prediction.

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do 
not provide the argument for 
input.

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps

ForgettingFactor Forgetting factor of the 
adaptive filter. This is a 
scalar and should lie in the 
range (0, 1]. It defaults to 1.   
Setting forgetting 
factor = 1 denotes infinite 
memory while adapting to 
find the new filter. Note that 
this is the lambda input 
argument.
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Examples Demonstrate Quadrature Phase Shift Keying (QPSK) adaptive equalization 
using a 32-coefficient adaptive filter running for 1000 iterations. After you 

FwdPrediction Contains the predicted values 
for samples during 
adaptation. Compare these to 
the actual samples to get the 
error and power.

InitFactor Soft-constrained 
initialization factor. This 
scalar should be positive and 
sufficiently large to prevent 
an excessive number of 
Kalman gain rescues. delta 
defaults to one.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter if you have not changed 
the filter since you 
constructed it. 
PersistentMemory returns to 
zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected. 
Defaults to false.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to l

Name Range Description
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review the example code, the figure shows the results of running the example 
to use QPSK adaptive equalization with a 32nd-order FIR filter. Notice that 
the error between the in-phase and quadrature components, as shown by the 
errors plotted in the upper plots, falls to near zero. Also, the equalized signal 
shows the clear quadrature nature.

D = 16;                      % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];    % Numerator coefficients of channel
a = [1 -0.7];                % Denominator coefficients of channel
ntr= 1000;                    % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));      % Noise signal
r = filter(b,a,s)+n;         % Received signal
x = r(1+D:ntr+D);            % Input signal (received signal)
d = s(1:ntr);                     % Desired signal (delayed QPSK 

% signal)
lam = 0.995;                       % Forgetting factor
del = 1;                             % Soft-constrained initialization 
factor
ha = adaptfilt.lsl(32,lam,del);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
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See Also adaptfilt.qrdlsl, adaptfilt.gal, adaptfilt.ftf, adaptfilt.rls

References S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991
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8adaptfilt.nlmsPurpose Construct normalized least mean squares (LMS) FIR adaptive filter object

Syntax ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states)

Description ha = adaptfilt.nlms(l,step,leakage,offset,coeffs,states) constructs 
a normalized least-mean squares (NLMS) FIR adaptive filter object named ha.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.nlms.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step NLMS step size. It must be a scalar between 0 
and 2. Setting this step size value to one 
provides the fastest convergence. step 
defaults to 1.

leakage NLMS leakage factor. It must be a scalar 
between zero and one. When it is less than 
one, a leaky NLMS algorithm results. leakage 
defaults to 1 (no leakage).

offset Specifies an optional offset for the 
denominator of the step size normalization 
term. You must specify offset to be a scalar 
greater than or equal to zero. Nonzero offsets 
can help avoid a divide-by-near-zero condition 
that causes errors. Use this to avoid dividing 
by zero (or by very small numbers) when the 
square of the input data norm becomes very 
small (when the input signal amplitude 
becomes very small). When you omit it, offset 
defaults to zero.
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Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object you create. This table lists the properties for normalized 
LMS objects, their default values, and a brief description of the property. 

coeffs Vector composed of your initial filter 
coefficients. Enter a length l vector. coeffs 
defaults to a vector of zeros with length equal 
to the filter order.

states Your initial adaptive filter states appear in the 
states vector. It must be a vector of length 
l-1. states defaults to a length l-1 vector with 
zeros for all of the elements.

Input Argument Description

Property Range Property Description

Algorithm None Reports the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be 
a length l vector where l is 
the number of filter 
coefficients. coeffs defaults 
to length l vector of zeros 
when you do not provide the 
argument for input.

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps
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Leakage 0 to 1 NLMS leakage factor. It 
must be a scalar between 
zero and one. When it is less 
than one, a leaky NLMS 
algorithm results. leakage 
defaults to 1 (no leakage).

Offset 0 or greater Specifies an optional offset 
for the denominator of the 
step size normalization term. 
You must specify offset to be 
a scalar greater than or 
equal to zero. Nonzero 
offsets can help avoid a 
divide-by-near-zero condition 
that causes errors. Use this 
to avoid dividing by zero (or 
by very small numbers) 
when the square of the input 
data norm becomes very 
small (when the input signal 
amplitude becomes very 
small). When you omit it, 
offset defaults to zero.

Property Range Property Description
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 Example To help you compare this algorithm’s performance to other LMS-based 
algorithms, such as BLMS or LMS, this example demonstrates the NLMS 
adaptive filter in use to identify the coefficients of an unknown FIR filter of 
order equal to 32—an example used in other adaptive filter examples. 

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
mu = 1;                % NLMS step size

PersistentMemory false or true Determine whether the filter 
states and coefficients get 
restored to their starting 
values for each filtering 
operation. The starting 
values are the values in 
place when you create the 
filter. PersistentMemory 
returns to zero any property 
value that the filter changes 
during processing. Property 
values that the filter does 
not change are not affected. 
Defaults to false.

States Vector of 
elements, data 
type double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l - 1).

StepSize 0 to 1 NLMS step size. It must be a 
scalar between zero and one. 
Setting this step size value 
to one provides the fastest 
convergence. step defaults to 
one.

Property Range Property Description
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offset = 50;           % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);

As you see from the figure, the nlms variant again closely matches the actual 
filter coefficients in the unknown FIR filter.

See Also adaptfilt.ap, adaptfilt.apru, adaptfilt.lms, adaptfilt.rls, 
adaptfilt.swrls
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8adaptfilt.pbfdafPurpose Construct partitioned block frequency-domain (PBFDAF) FIR adaptive filter 
with bin step size normalization

Syntax ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,offset,   
coeffs,states)

Description ha = adaptfilt.pbfdaf(l,step,leakage,delta,lambda,blocklen,offset,   
coeffs,states) constructs a partitioned block frequency-domain FIR   
adaptive filter ha that uses bin step size normalization during adaptation.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.pbfdaf.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps)   and it must be a positive 
integer. L defaults to 10.

step Step size of the adaptive filter. This is a scalar 
and should lie in the range (0,1]. step defaults 
to 1.

leakage Leakage parameter of the adaptive filter. 
When you set this   argument to a value 
between zero and one, a leaky version of the 
PBFDAF   algorithm is implemented. leakage 
defaults to 1— no leakage.

delta Initial common value of all of the FFT input 
signal powers. Its initial value should be 
positive. delta defaults to 1.

lambda Averaging factor used to compute the 
exponentially windowed FFT input signal 
powers for the coefficient updates. lambda 
should lie in the range (0,1]. lambda defaults to 
0.9.
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Properties Since your adaptfilt.pbfdaf filter is an object, it has properties that define 
its behavior in operation. Note that many of the properties are also input 

blocklen Block length for the coefficient updates. This 
must be a positive integer such that 
(l/blocklen) is also an integer. For faster 
execution, blocklen should be a power of two. 
blocklen defaults to two.

offset Offset for the normalization terms in the 
coefficient   updates. This can be useful to 
avoid divide by zeros conditions, or dividing by 
very small   numbers, if any of the FFT input 
signal powers become very small.   offset 
defaults to zero.

coeffs Initial time-domain coefficients of the 
adaptive filter.   It should be a vector of 
length l. The PBFDAF algorithm uses these 
coefficients to compute the initial 
frequency-domain filter coefficient matrix via 
FFTs.

states Specifies the filter initial conditions. states 
defaults to a   zero vector of length l.

Input Argument Description
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arguments for creating adaptfilt.pbfdaf objects. To show you the properties 
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

AvgFactor Averaging factor used to 
compute the exponentially 
windowed FFT input signal 
powers for the coefficient 
updates. AvgFactor should lie 
in the range (0,1]. AvgFactor 
defaults to 0.9. Called lambda 
as an input argument.

BlockLength Block length for the coefficient 
updates. This must be a 
positive integer such that 
(l/blocklen) is also an 
integer. For faster execution, 
blocklen should be a power of 
two. blocklen   defaults to 
two.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps

FFTCoefficients Stores the discrete Fourier 
transform of the filter 
coefficients in coeffs.

FFTStates States for the FFT operation.
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Leakage 0 to 1 Leakage parameter of the 
adaptive filter. When you set 
this   argument to a value 
between zero and one, a leaky 
version of the PBFDAF   
algorithm is implemented. 
leakage defaults to 1— no 
leakage.

Offset Offset for the normalization 
terms in the coefficient   
updates. This can be useful to 
avoid divide by zeros 
conditions, or dividing by very 
small   numbers, if any of the 
FFT input signal powers 
become very small.   offset 
defaults to zero.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter. PersistentMemory 
returns to zero any state that 
the filter changes during 
processing. States that the 
filter does not change are not 
affected. Defaults to false.

Name Range Description
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Examples An example of Quadrature Phase Shift Keying (QPSK) adaptive equalization 
using a 32-coefficient FIR filter. 

D = 16;                       % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];     % Numerator coefficients of channel
a = [1 -0.7];                 % Denominator coefficients of channel
ntr = 1000;                    % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
      r = filter(b,a,s)+n; % Received signal
x = r(1+D:ntr+D); % Input signal (received signal)
d = s(1:ntr);                  % Desired signal (delayed QPSK signal)
del = 1;                        % Initial FFT input powers
mu = 0.1;                      % Step size
lam = 0.9;                      % Averaging factor
N  = 8;                        % Block size
ha = adaptfilt.pbfdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');

Power A vector of 2*l elements, each 
initialized with the value 
delta from the input 
arguments. As you filter data, 
Power gets updated by the 
filter process.

StepSize 0 to 1 Step size of the adaptive filter. 
This is a scalar and should lie 
in the range (0,1]. step 
defaults to 1.

Name Range Description
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xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

In the figure shown, the four subplots provide the details of the results of the 
QPSK process used in the equalization for this example.

See Also adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blmsfft
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8adaptfilt.pbufdafPurpose Construct partitioned block unconstrained frequency-domain (PBUFDAF) FIR 
adaptive filter with bin step size normalization

Syntax ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states)(

Description ha = adaptfilt.pbufdaf(l,step,leakage,delta,lambda,blocklen,
offset,coeffs,states) constructs a partitioned block unconstrained 
frequency-domain FIR adaptive filter ha with bin step size normalization.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.pbufdaf.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps)   and it must be a positive 
integer. L defaults to 10.

step Step size of the adaptive filter. This is a scalar 
and should lie in the range (0,1]. step defaults 
to 1.

leakage Leakage parameter of the adaptive filter. 
When you set this   argument to a value 
between zero and one, a leaky version of the 
PBFDAF   algorithm is implemented. leakage 
defaults to 1— no leakage.

delta Initial common value of all of the FFT input 
signal powers. Its initial value should be 
positive. delta defaults to 1.

lambda Averaging factor used to compute the 
exponentially windowed FFT input signal 
powers for the coefficient updates. lambda 
should lie in the range (0,1]. lambda defaults 
to 0.9.
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Properties Since your adaptfilt.pbufdaf filter is an object, it has properties that define 
its behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.pbufdaf objects. To show you the 

blocklen Block length for the coefficient updates. This 
must   be a positive integer such that 
(l/blocklen) is also an integer. For faster 
execution, blocklen should be a power of two. 
blocklen   defaults to two.

offset Offset for the normalization terms in the 
coefficient   updates. This can be useful to 
avoid divide by zeros conditions, or dividing by 
very small   numbers, if any of the FFT input 
signal powers become very small.   offset 
defaults to zero.

coeffs Initial time-domain coefficients of the 
adaptive filter.   It should be a vector of 
length l. The PBFDAF algorithm uses these 
coefficients to compute the initial 
frequency-domain filter coefficient matrix via 
FFTs.

states Specifies the filter initial conditions. states 
defaults to a   zero vector of length l.

Input Argument Description
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properties that apply, this table lists and describes each property for the filter 
object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

AvgFactor Averaging factor used to 
compute the exponentially 
windowed FFT input signal 
powers for the coefficient 
updates. AvgFactor should lie 
in the range (0,1]. AvgFactor 
defaults to 0.9. Called lambda 
as an input argument.

BlockLength Block length for the coefficient 
updates. This must   be a 
positive integer such that 
(l/blocklen) is also an 
integer. For faster execution, 
blocklen should be a power of 
two. blocklen   defaults to 
two.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps

FFTCoefficients Stores the discrete Fourier 
transform of the filter 
coefficients in coeffs.

FFTStates States for the FFT operation.
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Leakage 0 to 1 Leakage parameter of the 
adaptive filter. When you set 
this   argument to a value 
between zero and one, a leaky 
version of the PBFDAF   
algorithm is implemented. 
leakage defaults to 1— no 
leakage.

Offset Offset for the normalization 
terms in the coefficient   
updates. This can be useful to 
avoid divide by zeros 
conditions, or dividing by very 
small numbers, if any of the 
FFT input signal powers 
become very small.   offset 
defaults to zero.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter. PersistentMemory 
returns to zero any state that 
the filter changes during 
processing. States that the 
filter does not change are not 
affected. Defaults to false.

Name Range Description
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Examples Demonstrating Quadrature Phase Shift Keying (QPSK) adaptive equalization 
using a 32-coefficient FIR filter. To perform the equalization, this example runs 
for 1000 iterations.

D = 16;                       % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];     % Numerator coefficients of channel
a = [1 -0.7];                 % Denominator coefficients of channel
ntr= 1000;                     % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband QPSK 

% signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n;          % Received signal
x = r(1+D:ntr+D);             % Input signal (received signal)
d = s(1:ntr);                 % Desired signal (delayed QPSK signal)
del = 1;                       % Initial FFT input powers
mu = 0.1;                     % Step size
lam = 0.9;                     % Averaging factor
N  = 8;                       % Block size
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,N);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');

Power 2*l element 
vector

A vector of 2*l elements, each 
initialized with the value 
delta from the input 
arguments. As you filter data, 
Power gets updated by the 
filter process.

StepSize 0 to 1 Step size of the adaptive filter. 
This is a scalar and should lie 
in the range (0,1]. step 
defaults to 1.

Name Range Description
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legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

To allow you to compare this algorithm to another, such as the pbfdaf version, 
we use the same example of QPSK adaptation. The figure shows the results.

See Also adaptfilt.ufdaf, adaptfilt.pbfdaf, adaptfilt.blmsfft

0 200 400 600 800 1000
−2

−1

0

1

2

3
In−Phase Components

Time Index

S
ig

na
l V

al
ue

0 200 400 600 800 1000
−2

−1

0

1

2

3
Quadrature Components

Time Index

S
ig

na
l V

al
ue

−2 0 2
−3

−2

−1

0

1

2

3
Received Signal Scatter Plot

Real[x]

Im
ag

[x
]

−2 0 2
−3

−2

−1

0

1

2

3
Equalized Signal Scatter Plot

Real[y]

Im
ag

[y
]

Desired

Output

Error

Desired

Output

Error



adaptfilt.pbufdaf

8-134

References J.S. So and K.K. Pang, “Multidelay Block Frequency Domain Adaptive Filter,” 
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 38, no. 2, pp. 
373-376, February 1990

J.M. Paez Borrallo and M.G. Otero, “On The Implementation of a Partitioned 
Block Frequency Domain Adaptive Filter (PBFDAF) for Long Acoustic Echo 
Cancellation,” Signal Processing, vol. 27, no. 3, pp. 301-315, June 1992



adaptfilt.qrdlsl

8-135

8adaptfilt.qrdlslPurpose QR-decomposition-based least squares lattice (LSL) adaptive filter object

Syntax ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states)

Description ha = adaptfilt.qrdlsl(l,lambda,delta,coeffs,states) returns a 
QR-decomposition-based least squares lattice adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.qrdlsl.

Properties Since your adaptfilt.qrdlsl filter is an object, it has properties that define 
its behavior in operation. Note that many of the properties are also input 

Input Argument Description

l Length of the joint process filter coefficients. It 
must be   a positive integer and must be equal 
to the length of the prediction   coefficients 
plus one. L defaults to 10.

lambda Forgetting factor of the adaptive filter. This is 
a   scalar and should lie in the range (0, 1]. 
lambda defaults to 1.   lambda = 1 denotes 
infinite memory while adapting to find the 
new filter.

delta Soft-constrained initialization factor in the 
least squares lattice algorithm. It should be 
positive. delta defaults to 1.

coeffs Vector of initial joint process filter coefficients.   
It must be a length l vector. coeffs defaults to 
a length l vector of all zeros.

states Vector of the angle normalized backward 
prediction error states of the adaptive filter
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arguments for creating adaptfilt.qrdlsl objects. To show you the properties 
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

BkwdPrediction Returns the predicted samples 
generated during 
adaptation.Refer to [12] in the 
bibliography for details about 
linear prediction.

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do 
not provide the argument for 
input.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps

ForgettingFactor Forgetting factor of the 
adaptive filter. This is a   
scalar and should lie in the 
range (0, 1]. It defaults to 1.   
Setting forgetting 
factor = 1 denotes infinite 
memory while adapting to find 
the new filter. Note that this is 
the lambda input argument.
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Examples Implement Quadrature Phase Shift Keying (QPSK) adaptive equalization 
using a 32-coefficient adaptive filter. To see the results of the equalization 
process in this example, look at the figure that follows the example code.

FwdPrediction Returns the predicted samples 
generated during adaptation 
in the forward direction.Refer 
to [12] in the bibliography for 
details about linear 
prediction.

InitFactor Soft-constrained initialization 
factor. This scalar should be 
positive and sufficiently large 
to prevent an excessive 
number of Kalman gain 
rescues. delta defaults to one.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter if you have not changed 
the filter since you constructed 
it. PersistentMemory returns 
to zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected. 
Defaults to false.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to l -1

Name Range Description
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D = 16;                       % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];     % Numerator coefficients of channel
a = [1 -0.7];                 % Denominator coefficients of channel
ntr= 1000;                     % Number of iterations
s = sign(randn(1,ntr+D))+j*sign(randn(1,ntr+D)); % Baseband 
QPSK  % signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));   % Noise signal
r = filter(b,a,s)+n;          % Received signal
x = r(1+D:ntr+D);             % Input signal (received signal)
d = s(1:ntr);                 % Desired signal (delayed QPSK signal)
lam = 0.995;                  % Forgetting factor
del = 1;                       % Soft-constrained initialization 
factor
ha = adaptfilt.qrdlsl(32,lam,del);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
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See Also adaptfilt.qrdrls, adaptfilt.gal, adaptfilt.ftf, adaptfilt.lsl

References S. Haykin, Adaptive Filter Theory, 2nd Edition, Prentice Hall, N.J., 1991
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8adaptfilt.qrdrlsPurpose Create QR-decomposition-based recursive least squares (RLS) FIR adaptive 
filter object

Syntax ha = adaptfilt.qrdrls(l,lambda,sqrtcov,coeffs,states)

Description ha = adaptfilt.qrdrls(l,lambda,sqrtcov,coeffs,states) constructs an 
FIR   QR-decomposition-based recursive-least squares (RLS) adaptive filter 
object ha.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.qrdrls.

Properties Since your adaptfilt.qrdrls filter is an object, it has properties that define 
its behavior in operation. Note that many of the properties are also input 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps)   and it must be a positive 
integer.l defaults to 10.

lambda RLS forgetting factor. This is a scalar and 
should lie within the range (0, 1]. lambda 
defaults to 1.

sqrtcov Upper-triangular Cholesky (square root) 
factor of the input covariance matrix. 
Initialize this matrix with a positive definite 
upper triangular matrix.

coeffs Vector of initial filter coefficients. It must be a 
length l vector. coeffs defaults to length l 
vector whose elements are zeros.

states Vector of initial filter states. It must be 
a length l-1 vector. states defaults to a length 
l-1 vector of zeros.
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arguments for creating adaptfilt.qrdrls objects. To show you the properties 
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients Vector of 
length l

Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do 
not provide the argument for 
input.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps

ForgettingFactor Scalar Forgetting factor of the 
adaptive filter. This is a   
scalar and should lie in the 
range (0, 1]. It defaults to 1.   
Setting forgetting 
factor = 1 denotes infinite 
memory while adapting to find 
the new filter. Note that this is 
the lambda input argument.
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Examples System Identification of a 32-coefficient FIR filter (500 iterations). 

x = randn(1,500);       % Input to the filter      
b = fir1(31,0.5);       % FIR system to be identified      
n = 0.1*randn(1,500);   % Observation noise signal
d = filter(b,1,x)+n;    % Desired signal
G0 = sqrt(.1)*eye(32);   % Initial sqrt correlation matrix 
lam = 0.99;              % RLS forgetting factor
ha = adaptfilt.qrdrls(32,lam,G0);

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter if you have not changed 
the filter since you constructed 
it. PersistentMemory returns 
to zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected. 
Defaults to false.

SqrtCov Square 
matrix with 
each 
dimension 
equal to the 
filter length l

Upper-triangular Cholesky 
(square root) factor of the 
input covariance matrix. 
Initialize this matrix with a 
positive definite upper 
triangular matrix.

States Vector of 
elements

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to 
(l + projectord - 2).

Name Range Description
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[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Using this variant of the RLS algorithm successfully identifies the unknown 
FIR filter, as shown here.

See Also adaptfilt.rls, adaptfilt.hrls, adaptfilt.hswrls, adaptfilt.swrls
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8adaptfilt.rlsPurpose Construct direct form recursive least squares (RLS) FIR adaptive filter object

Syntax ha = adaptfilt.rls(l,lambda,invcov,coeffs,states)

Description ha = adaptfilt.rls(l,lambda,invcov,coeffs,states) constructs an FIR 
direct form RLS adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.rls.

Input Argument Description

l Adaptive filter length (the 
number of coefficients or taps) 
and it must be a positive 
integer. l defaults to 10.

lambda RLS forgetting factor. This is 
a scalar and should lie in the 
range (0, 1]. lambda defaults 
to 1.

invcov Inverse of the input signal 
covariance matrix. For best 
performance, you should 
initialize this matrix to be 
a positive definite matrix.

coeffs Vector of initial filter 
coefficients. it must be a length 
l vector. coeffs defaults to 
length l vector with elements 
equal to zero.

states Vector of initial filter states for 
the adaptive filter. It must be a 
length l-1 vector. states 
defaults to a length l-1 vector 
of zeros.
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Properties Since your adaptfilt.rls filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.rls objects. To show you the properties that 
apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation.

Coefficients Vector 
containing l 
elements

Vector containing the initial 
filter coefficients. It must be 
a length l vector where l is 
the number of filter 
coefficients. coeffs defaults to 
length l vector of zeros when 
you do not provide the 
argument for input.

FilterLength Any positive 
integer

Reports the length of the filter, 
the number of coefficients or 
taps. Remember that filter 
length is filter order + 1.

ForgettingFactor Scalar Forgetting factor of the 
adaptive filter. This is a   
scalar and should lie in the 
range (0, 1]. It defaults to 1.   
Setting forgetting 
factor = 1 denotes infinite 
memory while adapting to find 
the new filter. Note that this is 
the lambda input argument.
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Examples System Identification of a 32-coefficient FIR filter over 500 adaptation 
iterations.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
P0 = 10*eye(32); % Initial sqrt correlation matrix inverse

InvCov Matrix of size 
l-by-l

Upper-triangular Cholesky 
(square root) factor of the 
input covariance matrix. 
Initialize this matrix with a 
positive definite upper 
triangular matrix.

KalmanGain Vector of size 
(l,1)

Empty when you construct the 
object, this gets populated 
after you run the filter. 

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter if you have not changed 
the filter since you constructed 
it. PersistentMemory returns 
to zero any state that the filter 
changes during processing. 
Defaults to false.

States Double array Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to 
(l + projectord - 2).

Name Range Description
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lam = 0.99;            % RLS forgetting factor
ha = adaptfilt.rls(32,lam,P0);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient valUe'); grid on;

In this example of adaptive filtering using the RLS algorithm to update the 
filter coefficients for each iteration, the figure shown reveals the fidelity of the 
derived filter after adaptation.
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See Also adaptfilt.hrls,adaptfilt.hswrls, adaptfilt.qrdrls
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8adaptfilt.sdPurpose Construct FIR adaptive filter object that uses sign-data algorithm

Syntax ha = adaptfilt.sd(l,step,leakage,coeffs,states)

Description ha = adaptfilt.sd(l,step,leakage,coeffs,states) constructs an FIR 
sign-data adaptive filter object ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.sd. 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step SD step size. It must be a nonnegative scalar. 
step defaults to 0.1

leakage Your SD leakage factor. It must be a scalar 
between 0 and 1. When leakage is less than 
one, adaptfilt.sd implements a leaky SD 
algorithm. When you omit the leakage 
property in the calling syntax, it defaults to 1 
providing no leakage in the adapting 
algorithm.

coeffs Vector of initial filter coefficients. it must be a 
length l vector. coeffs defaults to length l 
vector with elements equal to zero.

states Vector of initial filter states for the adaptive 
filter. It must be a length l-1 vector. states 
defaults to a length l-1 vector of zeros.
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Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object you create. This table lists the properties for sign-data 
objects, their default values, and a brief description of the property.

Property Default Value Description

Algorithm Sign-data Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients zeros(1,l) Vector containing the 
initial filter coefficients. It 
must be a length l vector 
where l is the number of 
filter coefficients. coeffs 
defaults to length l vector 
of zeros when you do not 
provide the argument for 
input. Should be 
initialized with the initial 
coefficients for the FIR 
filter prior to adapting. 
You need l entries in 
coefficients. 

FilterLength 10 Reports the length of the 
filter, the number of 
coefficients or taps
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Leakage 0 Specifies the leakage 
parameter. Allows you to 
implement a leaky 
algorithm. Including a 
leakage factor can 
improve the results of the 
algorithm by forcing the 
algorithm to continue to 
adapt even after it 
reaches a minimum value. 
Ranges between 0 and 1. 
Defaults to 0

PersistentMemory false or true Determine whether the 
filter states and 
coefficients get restored to 
their starting values for 
each filtering operation. 
The starting values are 
the values in place when 
you create the filter. 
PersistentMemory 
returns to zero any 
property value that the 
filter changes during 
processing. Property 
values that the filter does 
not change are not 
affected. Defaults to 
false.

Property Default Value Description
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Example Adaptive line enhancement using a 32-coefficient FIR filter to perform the 
enhancement. This example runs for 5000 iterations, as you see in property 
iter.

d = 1;                              % Number of samples of delay
ntr= 5000;                           % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]);       % Sinusoidal signal
n = randn(1,ntr+d);                 % Noise signal
x = v(1:ntr)+n(1:ntr);              % Input signal (delayed desired 

% signal)
d = v(1+d:ntr+d)+n(1+d:ntr+d);      % Desired signal
mu = 0.0001;                         % Sign-data step size.
ha = adaptfilt.sd(32,mu);
[y,e] = filter(ha,x,d); 
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));  
subplot(2,1,2); 
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));

States zeros(l-1,1) Vector of the adaptive 
filter states. states 
defaults to a vector of 
zeros which has length 
equal to (l - 1).

StepSize 0.1 Sets the SD algorithm 
step size used for each 
iteration of the adapting 
algorithm. Determines 
both how quickly and how 
closely the adaptive filter 
converges to the filter 
solution.

Property Default Value Description
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axis([0 1 -60 20]);
legend('Observed','Enhanced'); 
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

Each of the variants—sign-data, sign-error, and sign-sign—uses the same 
example. You can compare the results by viewing the figure shown for each 
adaptive filter method—adaptfilt.sd, adaptfilt.se, and adaptfilt.ss.

See Also adaptfilt.lms, adaptfilt.se, adaptfilt.ss
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References Moschner, J.L., “Adaptive Filter with Clipped Input Data,” Ph.D. thesis, 
Stanford Univ., Stanford, CA, June 1970.

Hayes, M., Statistical Digital Signal Processing and Modeling, New York 
Wiley, 1996.
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8adaptfilt.sePurpose Construct sign-error algorithm FIR adaptive filter object

Syntax ha = adaptfilt.se(l,step,leakage,coeffs,states) 

Description ha = adaptfilt.se(l,step,leakage,coeffs,states) constructs an FIR 
sign-error adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.se.

Properties In the syntax for creating the adaptfilt object, the input options are 
properties of the object you create. This table lists the properties for the 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step SE step size. It must be a nonnegative scalar. 
You can use maxstep to determine 
a reasonable range of step size values for the 
signals being processed. step defaults to 0.1

leakage Your SE leakage factor. It must be a scalar 
between 0 and 1. When leakage is less than 
one, adaptfilt.se implements a leaky SE 
algorithm. When you omit the leakage 
property in the calling syntax, it defaults to 1 
providing no leakage in the adapting 
algorithm.

coeffs Vector of initial filter coefficients. it must be a 
length l vector. coeffs defaults to length l 
vector with elements equal to zero.

states Vector of initial filter states for the adaptive 
filter. It must be a length l-1 vector. states 
defaults to a length l-1 vector of zeros.
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sign-error SD object, their default values, and a brief description of the 
property.

Property Default Value Description

Algorithm Sign-error Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients zeros(1,l) Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do 
not provide the argument for 
input. Should be initialized 
with the initial coefficients for 
the FIR filter prior to 
adapting.

FilterLength 10 Reports the length of the 
filter, the number of 
coefficients or taps

Leakage 1 Specifies the leakage 
parameter. Allows you to 
implement a leaky algorithm. 
Including a leakage factor can 
improve the results of the 
algorithm by forcing the 
algorithm to continue to 
adapt even after it reaches a 
minimum value. Ranges 
between 0 and 1. Defaults to 
one if omitted.
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Use inspect(ha) to view or change the object properties graphically using the 
MATLAB Property Inspector.

Examples Adaptive line enhancement using a 32-coefficient FIR filter running over 5000 
iterations. 

d = 1;                          % Number of samples of delay
ntr= 5000;                       % Number of iterations
v = sin(2*pi*0.05*[1:ntr+d]);    % Sinusoidal signal
n = randn(1,ntr+d);              % Noise signal

PersistentMemory false or true Determine whether the filter 
states and coefficients get 
restored to their starting 
values for each filtering 
operation. The starting values 
are the values in place when 
you create the filter. 
PersistentMemory returns to 
zero any property value that 
the filter changes during 
processing. Property values 
that the filter does not change 
are not affected. Defaults to 
false.

States zeros(l-1,1) Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l -1).

StepSize 0.1 Sets the SE algorithm step 
size used for each iteration of 
the adapting algorithm. 
Determines both how quickly 
and how closely the adaptive 
filter converges to the filter 
solution.

Property Default Value Description
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x = v(1:ntr)+n(1:ntr);        % Input signal (delayed desired
% signal)

d = v(1+d:ntr+d)+n(1+d:ntr+d);   % Desired signal
mu = 0.0001;                     % Sign-error step size
ha = adaptfilt.se(32,mu);
[y,e] = filter(ha,x,d); 
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));  
subplot(2,1,2); 
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced'); 
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

Compare the figure shown here to the ones for adaptfilt.sd and 
adaptfilt.ss to see how the variants perform on the same example.
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See Also adaptfilt.sd, adaptfilt.ss, adaptfilt.lms

References Gersho, A, “Adaptive Filtering With Binary Reinforcement,” IEEE Trans. 
Information Theory, vol. IT-30, pp. 191-199, March 1984.

Hayes, M, Statistical Digital Signal Processing and Modeling, New York, 
Wiley, 1996.
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8adaptfilt.ssPurpose Construct adaptive FIR filter object that uses sign-sign algorithm

Syntax ha = adaptfilt.ss(l,step,leakage,coeffs,states)

Description ha = adaptfilt.ss(l,step,leakage,coeffs,states) constructs an FIR 
sign-error adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for adaptfilt.ss. 

adaptfilt.ss can be called for a block of data, when x and d are vectors, or in 
“sample by sample mode” using a For-loop with the method filter:

for n = 1:length(x)
ha = adaptfilt.ss(25,0.9);

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step SS step size. It must be a nonnegative scalar. 
step defaults to 0.1.

leakage Your SS leakage factor. It must be a scalar 
between 0 and 1. When leakage is less than 
one, adaptfilt.lms implements a leaky SS 
algorithm. When you omit the leakage 
property in the calling syntax, it defaults to 1 
providing no leakage in the adapting 
algorithm.

coeffs Vector of initial filter coefficients. it must be a 
length l vector. coeffs defaults to length l 
vector with elements equal to zero.

states Vector of initial filter states for the adaptive 
filter. It must be a length l-1 vector. states 
defaults to a length l-1 vector of zeros.
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[y(n),e(n)] = filter(ha,(x(n),d(n),s));
% The property values of ha may be modified here.
end

Properties In the syntax for creating the adaptfilt object, most of the input options are 
properties of the object you create. This table lists the properties for sign-sign 
objects, their default values, and a brief description of the property.

Property Default Value Description

Algorithm Sign-sign Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients zeros(1,l) Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do 
not provide the argument for 
input. Should be initialized 
with the initial coefficients for 
the FIR filter prior to 
adapting.

FilterLength 10 Reports the length of the 
filter, the number of 
coefficients or taps
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Leakage 1 Specifies the leakage 
parameter. Allows you to 
implement a leaky algorithm. 
Including a leakage factor can 
improve the results of the 
algorithm by forcing the 
algorithm to continue to 
adapt even after it reaches a 
minimum value. Ranges 
between 0 and 1. 1 is the 
default value.

PersistentMemory false or true Determine whether the filter 
states and coefficients get 
restored to their starting 
values for each filtering 
operation. The starting values 
are the values in place when 
you create the filter. 
PersistentMemory returns to 
zero any property value that 
the filter changes during 
processing. Property values 
that the filter does not change 
are not affected. Defaults to 
false.

Property Default Value Description
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Examples Demonstrating adaptive line enhancement using a 32-coefficient FIR filter 
provides a good introduction to the sign-sign algorithm.

d = 1;                            % number of samples of delay
ntr= 5000;                        % number of iterations
v = sin(2*pi*0.05*[1:ntr+d]);     % sinusoidal signal
n = randn(1,ntr+d);               % noise signal
x = v(1:ntr)+n(1:ntr);            % Delayed input signal
d = v(1+d:ntr+d)+n(1+d:ntr+d);    % desired signal
mu = 0.0001;                      % sign-sign step size
ha = adaptfilt.ss(32,mu);
[y,e] = filter(ha,x,d); 
subplot(2,1,1); plot(1:ntr,[d;y;v(1+d:ntr+d)]);
axis([ntr-100 ntr -3 3]);
title('Adaptive Line Enhancement of a Noisy Sinusoidal Signal');
legend('Observed','Enhanced','Original');
xlabel('Time Index'); ylabel('Signal Value');
[pxx,om] = pwelch(x(ntr-1000:ntr));
pyy = pwelch(y(ntr-1000:ntr));  
subplot(2,1,2); 
plot(om/pi,10*log10([pxx/max(pxx),pyy/max(pyy)]));
axis([0 1 -60 20]);
legend('Observed','Enhanced'); 
xlabel('Normalized Frequency (\times \pi rad/sample)');
ylabel('Power Spectral Density'); grid on;

States zeros(l-1,1) Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l -1).

StepSize 0.1 Sets the SE algorithm step 
size used for each iteration of 
the adapting algorithm. 
Determines both how quickly 
and how closely the adaptive 
filter converges to the filter 
solution.

Property Default Value Description
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This example is the same as the ones used for the sign-data and sign-error 
examples. Comparing the figures shown for each of the others lets you assess 
the performance of each for the same task.

See Also adaptfilt.se, adaptfilt.sd, adaptfilt.lms

References Lucky, R.W, “Techniques For Adaptive Equalization of Digital Communication 
Systems,” Bell Systems Technical Journal, vol. 45, pp. 255-286, Feb. 1966

Hayes, M., Statistical Digital Signal Processing and Modeling, New York, 
Wiley, 1996.
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8adaptfilt.swftfPurpose Construct sliding window fast transversal least squares adaptive filter object

Syntax ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates,coeffs
,  states)

Description ha = adaptfilt.swftf(l,delta,blocklen,gamma,gstates,dstates,
coeffs,states) constructs a sliding window fast transversal least squares 
adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.swftf.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

delta Soft-constrained initialization factor. This 
scalar should be positive and sufficiently large 
to maintain stability. delta defaults to 1.

blocklen Block length of the sliding window. This must 
be an integer at least as large as the filter 
length l, which is the default value.

gamma Conversion factor. gamma defaults to the 
matrix [1 -1] that specifies soft-constrained 
initialization.

gstates States of the kalman gain updates. gstates 
defaults to a zero vector of length 
(l + blocklen - 1).

dstates Desired signal states of the adaptive filter. 
dstates defaults to a zero vector of length 
equal to (blocklen - 1). For a default object, 
dstates is (l-1).
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Properties Since your adaptfilt.swftf filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.swftf objects. To show you the properties 
that apply, this table lists and describes each property for the filter object.

coeffs Vector of initial filter coefficients. It must be 
a length l vector. coeffs defaults to length l 
vector of all zeros.

states Vector of initial filter states. states defaults 
to a zero vector of length equal to 
(l + blocklen - 2).

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

BkwdPredictions Returns the predicted 
samples generated during 
adaptation.Refer to [12] 
in the bibliography for 
details about linear 
prediction.

BlockLength Block length of the sliding 
window. This must be an 
integer at least as large 
as the filter length l, 
which is the default 
value.
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Coefficients Vector of 
elements

Vector containing the 
initial filter coefficients. It 
must be a length l vector 
where l is the number of 
filter coefficients. coeffs 
defaults to length l vector 
of zeros when you do not 
provide the argument for 
input.

ConversionFactor Conversion factor. Called 
gamma when it is an input 
argument, it defaults to 
the matrix [1 -1] that 
specifies soft-constrained 
initialization.

DesiredSignalStates Desired signal states of 
the adaptive filter. 
dstates defaults to a zero 
vector with length equal 
to (blocklen - 1).

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps

FwdPrediction Contains the predicted 
values for samples during 
adaptation. Compare 
these to the actual 
samples to get the error 
and power.

Name Range Description
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InitFactor Soft-constrained 
initialization factor. This 
scalar should be positive 
and sufficiently large to 
prevent an excessive 
number of Kalman gain 
rescues. delta defaults to 
one.

KalmanGain Empty when you 
construct the object, this 
gets populated after you 
run the filter.

KalmanGainStates Contains the states of the 
Kalman gains for the 
adaptive algorithm. 
Initialized to a vector of 
double data type entries.

Name Range Description
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Examples Over 500 iterations, perform a system identification of a 32-coefficient FIR 
filter.

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
L = 32;               % Adaptive filter length
del = 0.1;             % Soft-constrained initialization factor
N = 64;               % block length
ha = adaptfilt.swftf(L,del,N);
[y,e] = filter(ha,x,d);

PersistentMemory false or true Determine whether the 
filter states get restored 
to their starting values 
for each filtering 
operation. The starting 
values are the values in 
place when you create the 
filter if you have not 
changed the filter since 
you constructed it. 
PersistentMemory 
returns to zero any state 
that the filter changes 
during processing. States 
that the filter does not 
change are not affected. 
Defaults to false.

States Vector of 
elements, 
data type 
double

Vector of the adaptive 
filter states. states 
defaults to a vector of 
zeros which has length 
equal to (l + projectord - 
2).

Name Range Description
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subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

Review the figure for the results of the example. When you evaluate the 
example you should get the same results, within the differences in the random 
noise signal you use.

See Also adaptfilt.ftf, adaptfilt.swrls, adaptfilt.ap, adaptfilt.apru
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References D.T.M. Slock and Kailath, T., “A Modular Prewindowing Framework for 
Covariance FTF RLS Algorithms,” Signal Processing, vol. 28, pp. 47-61, 1992

D.T.M. Slock and Kailath, T., “A Modular Multichannel Multi-Experiment 
Fast Transversal Filter RLS Algorithm,” Signal Processing, vol. 28, pp. 25-45, 
1992
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8adaptfilt.swrlsPurpose Construct sliding window recursive least squares (RLS) FIR adaptive filter

Syntax ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates,
coeffs,states)

Description ha = adaptfilt.swrls(l,lambda,invcov,swblocklen,dstates,
coeffs,states)  constructs an FIR sliding window RLS adaptive filter ha.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.swrls.

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps). It must be a positive 
integer. l defaults to 10.

lambda RLS forgetting factor. This is a scalar and 
should lie within the range (0, 1]. lambda 
defaults to 1.

invcov Inverse of the input signal covariance matrix. 
You should initialize invcov to a positive 
definite matrix.

swblocklen Block length of the sliding window. This 
integer must be at least as large as the filter 
length. swblocklen defaults to 16.

dstates Desired signal states of the adaptive filter. 
dstates defaults to a zero vector with length 
equal to (swblocklen - 1).
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Properties Since your adaptfilt.swrls filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.swrls objects. To show you the properties 
that apply, this table lists and describes each property for the filter object.

coeffs Vector of initial filter coefficients. It must be 
a length l vector. coeffs defaults to length l 
vector of all zeros.

states Vector of initial filter states. states defaults 
to a zero vector of length equal to 
(l + swblocklen - 2).

Input Argument Description

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

Coefficients Any vector of 
l elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do 
not provide the argument for 
input.

DesiredSignalStates Vector Desired signal states of the 
adaptive filter. dstates 
defaults to a zero vector with 
length equal to 
(swblocklen - 1).

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps
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ForgettingFactor Scalar Forgetting factor of the 
adaptive filter. This is a   
scalar and should lie in the 
range (0, 1]. It defaults to 1.   
Setting forgetting 
factor = 1 denotes infinite 
memory while adapting to 
find the new filter. Note that 
this is the lambda input 
argument.

InvCov Matrix Square matrix with each 
dimension equal to the filter 
length l.

KalmanGain Vector with 
dimensions 
(l,1)

Empty when you construct 
the object, this gets populated 
after you run the filter. 

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter if you have not changed 
the filter since you 
constructed it. 
PersistentMemory returns to 
zero any state that the filter 
changes during processing. 
Defaults to false.

Name Range Description
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Examples System Identification of a 32-coefficient FIR filter. Use 500 iterations to adapt 
to the unknown filter. After the example code, you see a figure that plots the 
results of the running the code. 

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
P0 = 10*eye(32);       % Initial correlation matrix inverse
lam = 0.99;            % RLS forgetting factor
N = 64;               % Block length
ha = adaptfilt.swrls(32,lam,P0,N);
[y,e] = filter(ha,x,d);
subplot(2,1,1); plot(1:500,[d;y;e]);
title('System Identification of an FIR Filter');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,1,2); stem([b.',ha.Coefficients.']);
legend('Actual','Estimated'); 
xlabel('Coefficient #'); ylabel('Coefficient Value'); grid on;

In the figure you see clearly that the adaptive filter process successfully 
identified the coefficients of the unknown FIR filter. But then you knew it had 
to or many things we take for granted, such as modems on computers, would 
not work.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to 
(l + swblocklen - 2)

SwBlockLength Integer Block length of the sliding 
window. This integer must be 
at least as large as the filter 
length. swblocklen defaults 
to 16.

Name Range Description
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See Also adaptfilt.rls, adaptfilt.qrdrls, adaptfilt.hswrls
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8adaptfilt.tdafdctPurpose Construct transform-domain (TDAFDCT) adaptive filter object that uses 
discrete cosine transform

Syntax ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,coeffs, 
states)

Description ha = adaptfilt.tdafdct(l,step,leakage,offset,delta,lambda,coeffs, 
states)  constructs a transform-domain adaptive filter ha object that uses the   
discrete cosine transform to perform filter adaptation.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.tdafdct. 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step Adaptive filter step size. It must be a 
nonnegative scalar. You can use maxstep to 
determine a reasonable range of step size 
values for the signals being processed. step 
defaults to 0.

leakage Leakage parameter of the adaptive filter. 
When you set this argument to a value 
between zero and one, you are implementing 
a leaky version of the TDAFDCT algorithm. 
leakage defaults to 1—no leakage.

offset Offset for the normalization terms in the 
coefficient updates. You can use this argument 
to avoid dividing by zero or by very small 
numbers when any of the FFT input signal 
powers become very small. offset defaults to 
zero.
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Properties Since your adaptfilt.tdafdct filter is an object, it has properties that define 
its behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.tdafdct objects. To show you the properties 

delta Initial common value of all of the transform 
domain powers. Its initial value should be 
positive. delta defaults to 5.

lambda Averaging factor used to compute the 
exponentially-windowed estimates of the 
powers in the transformed signal bins for the 
coefficient updates. lambda should lie between 
zero and one. For default filter objects, lambda 
equals (1 - step).

coeffs Initial time domain coefficients of the adaptive 
filter. Set it to be a length l vector. coeffs 
defaults to a zero vector of length l.

states Initial conditions of the adaptive filter. states 
defaults to a zero vector with length equal to 
(l - 1).

Input Argument Description
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that apply, this table lists and describes each property for the transform 
domain filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

AvgFactor Averaging factor used to 
compute the 
exponentially-windowed 
estimates of the powers in 
the transformed signal 
bins for the coefficient 
updates. AvgFactor 
should lie between zero 
and one. For default filter 
objects, AvgFactor equals 
(1 - step). lambda is the 
input argument that 
represent AvgFactor.

Coefficients Vector of 
elements

Vector containing the 
initial filter coefficients. It 
must be a length l vector 
where l is the number of 
filter coefficients. coeffs 
defaults to length l vector 
of zeros when you do not 
provide the argument for 
input.

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps
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Leakage 0 to 1 Leakage parameter of the 
adaptive filter. When you 
set this   argument to a 
value between zero and 
one, you are 
implementing a leaky 
version of the TDAFDFT 
algorithm. leakage 
defaults to 1—no leakage.

Offset Offset for the 
normalization terms in 
the coefficient updates. 
You can use this 
argument to avoid 
dividing by zeros or by 
very small numbers when 
any of the FFT input 
signal powers become 
very small. offset 
defaults to zero.

PersistentMemory false or true Determine whether the 
filter states get restored 
to their starting values 
for each filtering 
operation. The starting 
values are the values in 
place when you create the 
filter. PersistentMemory 
returns to zero any state 
that the filter changes 
during processing. States 
that the filter does not 
change are not affected. 
Defaults to false.

Name Range Description
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For checking the values of properties for an adaptive filter object, use get(ha) 
or enter the object name, without a trailing semicolon, at the MATLAB prompt.

Examples Using 1000 iterations, perform a Quadrature Phase Shift Keying (QPSK) 
adaptive equalization using a 32-coefficient FIR filter.

D = 16;                        % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];      % Numerator coefficients of channel
a = [1 -0.7];                  % Denominator coefficients of channel
ntr= 1000;                      % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband 

% QPSK signal

Power 2*l element 
vector

A vector of 2*l elements, 
each initialized with the 
value delta from the 
input arguments. As you 
filter data, Power gets 
updated by the filter 
process.

States Vector of 
elements, 
data type 
double

Vector of the adaptive 
filter states. states 
defaults to a vector of 
zeros which has length 
equal to 
(l + projectord - 2).

StepSize 0 to 1 Step size. It must be a 
nonnegative scalar, 
greater than zero and less 
than or equal to 1. You 
can use maxstep to 
determine a reasonable 
range of step size values 
for the signals being 
processed. step defaults 
to 0.

Name Range Description
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n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D)); % Noise signal
r = filter(b,a,s)+n;           % Received signal
x = r(1+D:ntr+D);              % Input signal (received signal)
d = s(1:ntr);                  % Desired signal (delayed QPSK signal)
L = 32;                        % filter length
mu = 0.01;                      % Step size
ha = adaptfilt.tdafdct(L,mu);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

Compare the plots shown in this figure to those in the other time domain filter 
variations. The comparison should help you select and understand how the 
variants differ.
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See Also adaptfilt.tdafdft, adaptfilt.fdaf, adaptfilt.blms

References S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996.
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8adaptfilt.tdafdftPurpose Create transform-domain (TDAFDFT) adaptive filter object that uses discrete 
Fourier transform

Syntax ha = adaptfilt.tdafdft(l,step,leakage,offset,delta,lambda,
coeffs,states)

Description ha = adaptfilt.tdafdft(l,step,leakage,offset,delta,lambda,
coeffs,states) constructs a transform-domain adaptive filter object ha using 
a discrete Fourier transform.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.tdafdft. 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step Adaptive filter step size. It must be a 
nonnegative scalar. You can use maxstep to 
determine a reasonable range of step size 
values for the signals being processed. step 
defaults to 0.

leakage Leakage parameter of the adaptive filter. 
When you set this   argument to a value 
between zero and one, you are implementing 
a leaky version of the TDAFDFT algorithm. 
leakage defaults to 1—no leakage.

offset Offset for the normalization terms in the 
coefficient updates. YOu can use this 
argument to avoid dividing by zeros or by very 
small numbers when any of the FFT input 
signal powers become very small. offset 
defaults to zero.
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Properties Since your adaptfilt.tdafdft filter is an object, it has properties that define 
its behavior in operation. Note that many of the properties are also input 
arguments for creating adaptfilt.tdafdft objects. To show you the properties 

delta Initial common value of all of the transform 
domain powers. Its initial value should be 
positive. delta defaults to 5.

lambda Averaging factor used to compute the 
exponentially-windowed estimates of the 
powers in the transformed signal bins for the 
coefficient updates. lambda should lie between 
zero and one. For default filter objects, 
LAMBDA equals (1 - step).

coeffs Initial time domain coefficients of the 
adaptive filter. Set it to be a length l vector. 
coeffs defaults to a zero vector of length l.

states Initial conditions of the adaptive filter. states 
defaults to a zero vector with length equal to 
(l - 1).

Input Argument Description
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that apply, this table lists and describes each property for the transform 
domain filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

AvgFactor Averaging factor used to 
compute the 
exponentially-windowed 
estimates of the powers in 
the transformed signal bins 
for the coefficient updates. 
AvgFactor should lie between 
zero and one. For default 
filter objects, AvgFactor 
equals (1 - step). lambda is 
the input argument that 
represent AvgFactor.

Coefficients Vector of 
elements

Vector containing the initial 
filter coefficients. It must be a 
length l vector where l is the 
number of filter coefficients. 
coeffs defaults to length l 
vector of zeros when you do 
not provide the argument for 
input.

FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps
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Leakage 0 to 1 Leakage parameter of the 
adaptive filter. When you set 
this   argument to a value 
between zero and one, you 
are implementing a leaky 
version of the TDAFDFT 
algorithm. leakage defaults 
to 1—no leakage.

Offset Offset for the normalization 
terms in the coefficient 
updates. You can use this 
argument to avoid dividing 
by zeros or by very small 
numbers when any of the 
FFT input signal powers 
become very small. offset 
defaults to zero.

PersistentMemory false or true Determines whether the 
filter states get restored to 
their starting values for each 
filtering operation. The 
starting values are the values 
in place when you create the 
filter. PersistentMemory 
returns to zero any state that 
the filter changes during 
processing. States that the 
filter does not change are not 
affected. Defaults to false.

Name Range Description
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Examples Quadrature Phase Shift Keying (QPSK) adaptive equalization using 
a 32-coefficient FIR filter    (1000 iterations).

D = 16;                       % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];     % Numerator coefficients of channel
a = [1 -0.7];                 % Denominator coefficients of channel
ntr= 1000;                     % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D));% Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));      % Noise signal
r = filter(b,a,s)+n;           % Received signal
x = r(1+D:ntr+D);              % Input signal (received signal)
d = s(1:ntr);                  % Desired signal (delayed QPSK signal)
L = 32;                       % filter length
mu = 0.01;                     % Step size
ha = adaptfilt.tdafdft(L,mu);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); plot(1:ntr,real([d;y;e]));
title('In-Phase Components');
legend('Desired','Output','Error');

Power 2*l element 
vector

A vector of 2*l elements, 
each initialized with the 
value delta from the input 
arguments. As you filter 
data, Power gets updated by 
the filter process.

States Vector of 
elements, 
data type 
double

Vector of the adaptive filter 
states. states defaults to a 
vector of zeros which has 
length equal to (l + 
projectord - 2).

StepSize 0 to 1 Step size. It must be a 
nonnegative scalar, greater 
than zero and less than or 
equal to 1. step defaults to 0.

Name Range Description
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xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;

All of the time domain adaptive filter reference pages use this QPSK example. 
By comparing the results for each variation you get an idea of the differences 
in the way each one performs.

This figure demonstrates the results of running the example code shown.
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See Also adaptfilt.tdafdct, adaptfilt.fdaf, adaptfilt.blms

References S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, N.J., 1996
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8adaptfilt.ufdafPurpose Construct unconstrained frequency-domain (UFDAF) FIR adaptive filter with 
quantized step size normalization

Syntax ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,offset,c
oeffs,states)  

Description ha = adaptfilt.ufdaf(l,step,leakage,delta,lambda,blocklen,offset,c
oeffs,states)  constructs an unconstrained frequency-domain FIR adaptive 
filter ha with quantized step size normalization.

Input Arguments
Entries in the following table describe the input arguments for 
adaptfilt.ufdaf. 

Input Argument Description

l Adaptive filter length (the number of 
coefficients or taps) and it must be a positive 
integer. l defaults to 10.

step Adaptive filter step size. It must be a 
nonnegative scalar. step defaults to 0.

leakage Leakage parameter of the adaptive filter. 
When you set this argument to a value 
between zero and one, you are implementing 
a leaky version of the UFDAF algorithm. 
leakage defaults to 1—no leakage.

delta Initial common value of all of the FFT input 
signal powers. the initial value of delta should 
should be positive, and it defaults to 1.

lambda Specifies the averaging factor used to compute 
the exponentially-windowed FFT input signal 
powers for the coefficient updates. lambda 
should lie in the range (0,1]. For default 
UFDAF filter objects, lambda defaults to 0.9.
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Properties Since your adaptfilt.ufdaf filter is an object, it has properties that define its 
behavior in operation. Note that many of the properties are also input 

blocklen Block length for the coefficient updates. This 
must be a positive integer. For faster 
execution, (blocklen + l) should be a power of 
two. blocklen defaults to l.

offset Offset for the normalization terms in the 
coefficient updates. This can help you avoid 
divide by zero conditions, or divide by very 
small numbers conditions, when any of the 
FFT input signal powers become very small. 
Default value is zero.

coeffs Initial time-domain coefficients of the 
adaptive filter. It should be a length l vector. 
The filter object uses these coefficients to 
compute the initial frequency-domain filter 
coefficients via an FFT computed after 
zero-padding the time-domain vector by 
blocklen.

states Adaptive filter states. states defaults to 
a zero vector with length equal to l.

Input Argument Description
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arguments for creating adaptfilt.ufdaf objects. To show you the properties 
that apply, this table lists and describes each property for the filter object.

Name Range Description

Algorithm None Defines the adaptive filter 
algorithm the object uses 
during adaptation

AvgFactor Specifies the averaging factor 
used to compute the 
exponentially-windowed FFT 
input signal powers for the 
coefficient updates. 
AvgFactor should lie in the 
range (0,1]. For default 
UFDAF filter objects, 
AvgFactor defaults to 0.9. 
Note that AvgFactor and 
lambda are the same thing—
lambda is an input argument 
and AvgFactor a property of 
the object.

BlockLength Block length for the 
coefficient updates. This 
must be a positive integer. 
For faster execution, 
(blocklen + l) should be a 
power of two. blocklen 
defaults to l.

FFTCoefficients Stores the discrete Fourier 
transform of the filter 
coefficients in coeffs.

FFTStates States for the FFT operation.
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FilterLength Any positive 
integer

Reports the length of the 
filter, the number of 
coefficients or taps

Leakage 0 to 1 Leakage parameter of the 
adaptive filter. When you set 
this argument to a value 
between zero and one, you 
are implementing a leaky 
version of the UFDAF 
algorithm. leakage defaults 
to 1—no leakage.

Offset Offset for the normalization 
terms in the coefficient 
updates. This can help you 
avoid divide by zero 
conditions, or divide by very 
small numbers conditions, 
when any of the FFT input 
signal powers become very 
small. Default value is zero.

PersistentMemory false or true Determine whether the filter 
states get restored to their 
starting values for each 
filtering operation. The 
starting values are the 
values in place when you 
create the filter. 
PersistentMemory returns to 
zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected. 
Defaults to false.

Name Range Description
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Examples Show an example of Quadrature Phase Shift Keying (QPSK) adaptive 
equalization using a 32-coefficient adaptive filter. For fidelity, use 1024 
iterations. The figure that follows the code provides the information you need 
to assess the performance of the equalization process.

D = 16;                       % Number of samples of delay
b = exp(j*pi/4)*[-0.7 1];     % Numerator coefficients of channel
a = [1 -0.7];                 % Denominator coefficients of channel
ntr= 1024;                     % Number of iterations
s = sign(randn(1,ntr+D)) + j*sign(randn(1,ntr+D)); % Baseband 

% QPSK signal
n = 0.1*(randn(1,ntr+D) + j*randn(1,ntr+D));  % Noise signal
r = filter(b,a,s)+n;          % Received signal
x = r(1+D:ntr+D);             % Input signal (received signal)
d = s(1:ntr);                 % Desired signal (delayed QPSK signal)
del = 1;                       % Initial FFT input powers
mu = 0.1;                     % Step size
lam = 0.9;                     % Averaging factor
ha = adaptfilt.ufdaf(32,mu,1,del,lam);
[y,e] = filter(ha,x,d); 
subplot(2,2,1); 
plot(1:1000,real([d(1:1000);y(1:1000);e(1:1000)]));

Power 2*l element 
vector

A vector of 2*l elements, 
each initialized with the 
value delta from the input 
arguments. As you filter 
data, Power gets updated by 
the filter process.

StepSize 0 to 1 Adaptive filter step size. It 
must be a nonnegative scalar. 
You can use maxstep to 
determine a reasonable 
range of step size values for 
the signals being processed. 
step defaults to 0.

Name Range Description
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title('In-Phase Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,2); plot(1:ntr,imag([d;y;e]));
title('Quadrature Components');
legend('Desired','Output','Error');
xlabel('Time Index'); ylabel('Signal Value');
subplot(2,2,3); plot(x(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Received Signal Scatter Plot'); axis('square'); 
xlabel('Real[x]'); ylabel('Imag[x]'); grid on;
subplot(2,2,4); plot(y(ntr-100:ntr),'.'); axis([-3 3 -3 3]);
title('Equalized Signal Scatter Plot'); axis('square');
xlabel('Real[y]'); ylabel('Imag[y]'); grid on;
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See Also adaptfilt.fdaf, adaptfilt.pbufdaf, adaptfilt.blms, adaptfilt.blmsfft

References J.J. Shynk, “Frequency-domain and Multirate Adaptive Filtering,” IEEE 
Signal Processing Magazine, vol. 9, no. 1, pp. 14-37, Jan. 1992
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8allpassbpc2bpcPurpose Allpass filter for complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassbpc2bpc(Wo,Wt)  returns the 
numerator, AllpassNum, and the denominator, AllpassDen, of the first-order 
allpass mapping filter for performing a complex bandpass to complex bandpass 
frequency transformation. This transformation effectively places two features 
of an original filter, located at frequencies Wo1 and Wo2, at the required target 
frequency locations Wt1 and Wt2. It is assumed that Wt2 is greater than Wt1. In 
most of the cases the features selected for the transformation are the band 
edges of the filter passbands. In general it is possible to select any feature; e.g., 
the stopband edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., complex notch filters or resonators can be repositioned at two distinct 
desired frequencies at any place around the unit circle. This is very attractive 
for adaptive systems.

Examples Design the allpass filter changing the complex bandpass filter with the band 
edges originally at Wo1=0.2 and Wo2=0.4 to the new band edges of Wt1=0.3 and 
Wt2=0.6 precisely defined:

Wo = [0.2, 0.4];
Wt = [0.3, 0.6];
[AllpassNum, AllpassDen] = allpassbpc2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[ha, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi,angle(ha)/pi, Wt, Wo, 'ro');
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title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

To demonstrate, the following figure shows the mapping function between old 
and new frequencies.

Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter
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AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirbpc2bpc, zpkbpc2bpc
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8allpasslp2bpPurpose Allpass filter for lowpass to bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bp(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the second-order allpass 
mapping filter for performing a real lowpass to real bandpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2. 
It is assumed that Wt2 is greater than Wt1. This transformation implements the 
“DC mobility,” which means that the Nyquist feature stays at Nyquist, but the 
DC feature moves to a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and 
repositioned at two distinct desired frequencies.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at 
Wo=0.5 to the real bandpass filter with cutoff frequencies at Wt1=0.25 and 
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

Shown in the figure, with the x-axis as the new frequency, you see the mapping 
filter for the example.

Arguments Wo
Frequency value to be transformed from the prototype filter
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Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2bp, zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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8allpasslp2bpcPurpose Allpass filter for lowpass to complex bandpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bpc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to complex bandpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2. 
It is assumed that Wt2 is greater than Wt1.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and 
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandpass filters for radio receivers from the high-quality 
prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a complex bandpass filter with band edges of Wt1=0.2 
and Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bpc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[-1,1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

The figure shown here details the mapping filter provided by the function.

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
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Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bpc, zpklp2bpc
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8allpasslp2bsPurpose Allpass filter for lowpass to bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bs(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the second-order allpass 
mapping filter for performing a real lowpass to real bandstop frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2. 
It is assumed that Wt2 is greater than Wt1. This transformation implements the 
“Nyquist Mobility,” which means that the DC feature stays at DC, but the 
Nyquist feature moves to a location dependent on the selection of Wo and Wt.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Examples Design the allpass filter changing the lowpass filter with cutoff frequency at 
Wo=0.5 to the real bandstop filter with cutoff frequencies at Wt1=0.25 and 
Wt2=0.375:

Wo = 0.5;
Wt = [0.25, 0.375];
[AllpassNum, AllpassDen] = allpasslp2bs(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:
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plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

In the figure, you find the mapping filter function as determined by the 
example. Note the response is normalized to π, as mentioned earlier.

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter
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AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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8allpasslp2bscPurpose Allpass filter for lowpass to complex bandstop transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2bsc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to complex bandstop frequency 
transformation. This transformation effectively places one feature of an 
original filter, located at frequency -Wo, at the required target frequency 
location, Wt1, and the second feature, originally at +Wo, at the new location, Wt2. 
It is assumed that Wt2 is greater than Wt1. Additionally the transformation 
swaps passbands with stopbands in the target filter. 

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and 
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandstop filters for band attenuation or frequency 
equalizers, from the high-quality prototype lowpass filter.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a complex bandstop filter with band edges of Wt1=0.2 
and Wt2=0.4 precisely defined:

Wo = 0.5;
Wt = [0.2,0.4];
[AllpassNum, AllpassDen] = allpasslp2bsc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:
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[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo.*[1,-1], 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

We plot the resulting allpass mapping function response in this figure.

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
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Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2bsc, zpklp2bsc
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8allpasslp2hpPurpose Allpass filter for lowpass to highpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2hp(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to real highpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located originally at frequency, Wo, at the required target 
frequency location, Wt, at the same time rotating the whole frequency response 
by half of the sampling frequency. Result is that the DC and Nyquist features 
swap places.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband.

Lowpass to highpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way by using the lowpass to highpass transformation.

Examples Design the allpass filter changing the lowpass filter to the highpass filter with 
its cutoff frequency moved from Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2hp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

For transforming your lowpass filter to an highpass variation, the mapping 
function shown in this figure does the job.

Arguments Wo
Frequency value to be transformed from the prototype filter
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Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2hp, zpklp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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8allpasslp2lpPurpose Allpass filter for lowpass to lowpass transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2lp(Wo,Wt) returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the first-order allpass 
mapping filter for performing a real lowpass to real lowpass frequency 
transformation. This transformation effectively places one feature of an 
original filter, located originally at frequency Wo, at the required target 
frequency location, Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband and so on.

Lowpass to lowpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way by applying the lowpass to lowpass transformation.

Examples Design the allpass filter changing the lowpass filter cutoff frequency originally 
at Wo=0.5 to Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpasslp2lp(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
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title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

As shown in the figure, allpasslp2lp generates a mapping function that 
converts your prototype lowpass filter to a target lowpass filter with different 
passband specifications.

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter
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AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2lp, zpklp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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8allpasslp2mbPurpose Allpass filter for lowpass to M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2mb(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass 
mapping filter for performing a real lowpass to real multipassband frequency 
transformation. Parameter M is the number of times an original feature is 
replicated in the target filter. This transformation effectively places one 
feature of an original filter, located at frequency Wo, at the required target 
frequency locations, Wt1,...,WtM. By default the DC feature is kept at its original 
location.

[AllpassNum,AllpassDen]=allpasslp2mb(Wo,Wt,Pass)  allows you to specify 
an additional parameter, Pass, which chooses between using the “DC Mobility” 
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its 
original location and the DC feature is free to move. In the second case the DC 
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations without redesigning them. A good application would be an 
adaptive tone cancellation circuit reacting to the changing number and location 
of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a real multiband filter with band edges of 
Wt=[1:2:9]/10 precisely defined:
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Wo = 0.5;
Wt = [1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mb(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

As the figure shows, the mapping function, or mapping filter, creates more 
than one band from your prototype.
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Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter
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Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation 
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering, 
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and 
frequency transformation problem,” Proceedings 20th Asilomar Conference on 
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, 
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, 
Reading, Massachusetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm 
for frequency transformations, Linear Circuits, Systems and Signal Processing: 
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.
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8allpasslp2mbcPurpose Allpass filter for lowpass to complex M-band transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2mbc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Mth-order allpass 
mapping filter for performing a real lowpass to complex multipassband 
frequency transformation. Parameter M is the number of times an original 
feature is replicated in the target filter. This transformation effectively places 
one feature of an original filter, located at frequency Wo, at the required target 
frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations without the need to design them again. A good application 
would be an adaptive tone cancellation circuit reacting to the changing number 
and location of tones.

Examples Design the allpass filter changing the real lowpass filter with the cutoff 
frequency of Wo=0.5 into a complex multiband filter with band edges of 
Wt=[-3+1:2:9]/10 precisely defined:

Wo = 0.5;
Wt = [-3+1:2:9]/10;
[AllpassNum, AllpassDen] = allpasslp2mbc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

In this example, the resulting mapping function converts real filters to 
multiband complex filters.

Arguments Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.
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Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirlp2mbc, zpklp2mbc



allpasslp2xc

8-226

8allpasslp2xcPurpose Allpass filter for lowpass to complex N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpasslp2xc(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass 
mapping filter, where N is the allpass filter order, for performing a real lowpass 
to complex multipoint frequency transformation. Parameter N also specifies the 
number of replicas of the prototype filter created around the unit circle after 
the transformation. This transformation effectively places N features of the, 
original filter located at frequencies Wo1,...,WoN, at the required target frequency 
locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones. The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design the allpass filter moving four features of an original complex filter given 
in Wo to the new independent frequency locations Wt. Please note that the 
transformation creates N replicas of an original filter around the unit circle, 
where N is the order of the allpass mapping filter:

Wo = [-0.2, 0.3, -0.7, 0.4];
Wt = [0.3, 0.5, 0.7, 0.9];
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[AllpassNum, AllpassDen] = allpasslp2xc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

As shown, the mapping function copies four features of interest in your 
prototype to multiple, independent locations in your target filter.
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Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2xc, zpklp2xc
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8allpasslp2xnPurpose Allpass filter for lowpass to N-point transformation

Syntax [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)
[AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt,Pass)

Description [AllpassNum,AllpassDen] = allpasslp2xn(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass 
mapping filter, where N is the allpass filter order, for performing a real lowpass 
to real multipoint frequency transformation. Parameter N also specifies the 
number of replicas of the prototype filter created around the unit circle after 
the transformation. This transformation effectively places N features of an 
original filter, located at frequencies Wo1,...,WoN, at the required target frequency 
locations, Wt1,...,WtM. By default the DC feature is kept at its original location.

[AllpassNum,AllpassDen]=allpasslp2xn(Wo,Wt,Pass)  allows you to specify 
an additional parameter, Pass, which chooses between using the “DC Mobility” 
and the “Nyquist Mobility”. In the first case the Nyquist feature stays at its 
original location and the DC feature is free to move. In the second case the DC 
feature is kept at an original frequency and the Nyquist feature is movable.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones. The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations without the need of designing them again. A good 
application would be an adaptive tone cancellation circuit reacting to the 
changing number and location of tones.
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Arguments Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirlp2xn, zpklp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for 
Flexible IIR Filter Design,” VII European Signal Processing Conference 
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order 
frequency transformations for IIR filters,” 38th Midwest Symposium on 
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
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8allpassrateupPurpose Allpass filter for integer upsample transformation

Syntax [AllpassNum,AllpassDen] = allpassrateup(N)

Description [AllpassNum,AllpassDen] = allpassrateup(N)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the Nth-order allpass 
mapping filter for performing the rateup frequency transformation, which 
creates N equal replicas of the prototype filter frequency response.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Examples Design the allpass filter creating the effect of upsampling the digital filter four 
times:

N = 4;

Choose any feature from an original filter, say at Wo=0.2:

Wo = 0.2;
Wt = Wo/N + 2*[0:N-1]/N;
[AllpassNum, AllpassDen] = allpassrateup(N);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

While this creates the effect of upsampling your prototype filter, compare the 
results to cicinterp for another approach to upsampling.
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Arguments N
Frequency replication ratio (upsampling ratio)

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirrateup, zpkrateup
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8allpassshiftPurpose Allpass filter for real shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshift(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshift(Wo,Wt)  returns the numerator, 
AllpassNum, and the denominator, AllpassDen, of the second-order allpass 
mapping filter for performing a real frequency shift transformation. This 
transformation places one selected feature of an original filter, located at 
frequency Wo, at the required target frequency location, Wt. This transformation 
implements the “DC mobility,” which means that the Nyquist feature stays at 
Nyquist, but the DC feature moves to a location dependent on the selection of 
Wo and Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to 
the cutoff frequency of an original lowpass filter. In general it is possible to 
select any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be moved to a different frequency by 
applying a shift transformation. In such a way you can avoid designing the 
filter from the beginning.

Examples Design the allpass filter precisely shifting one feature of the lowpass filter 
originally at Wo=0.5 to the new frequencies of Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshift(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');
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Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt). Please note that the transformation works in the same way for 
both positive and negative frequencies:

plot(f/pi, abs(angle(h))/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter
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AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirshift, zpkshift
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8allpassshiftcPurpose Allpass filter for complex shift transformation

Syntax [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)

Description [AllpassNum,AllpassDen] = allpassshiftc(Wo,Wt)  returns the numerator, 
AllpassNum, and denominator, AllpassDen, vectors of the allpass mapping 
filter for performing a complex frequency shift of the frequency response of the 
digital filter by an arbitrary amount.

[AllpassNum,AllpassDen]=allpassshiftc(0,0.5)  calculates the allpass 
filter for doing the Hilbert transformation, i.e. a 90 degree counterclockwise 
rotation of an original filter in the frequency domain.

[AllpassNum,AllpassDen]=allpassshiftc(0,-0.5)  calculates the allpass 
filter for doing an inverse Hilbert transformation, i.e. a 90 degree clockwise 
rotation of an original filter in the frequency domain.

Examples Design the allpass filter precisely rotating the whole filter by the amount 
defined by the location of the selected feature from an original filter, Wo=0.5, 
and its required position in the target filter, Wt=0.25:

Wo = 0.5;
Wt = 0.25;
[AllpassNum, AllpassDen] = allpassshiftc(Wo, Wt);

Calculate the frequency response of the mapping filter in the full range:

[h, f] = freqz(AllpassNum, AllpassDen, 'whole');

Plot the phase response normalized to π, which is in effect the mapping 
function Wo(Wt):

plot(f/pi, angle(h)/pi, Wt, Wo, 'ro');
title('Mapping Function Wo(Wt)');
xlabel('New Frequency, Wt');
ylabel('Old Frequency, Wo');

The figure shows you that the transformation by the mapping filter does 
exactly what you intend.
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Arguments Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirshiftc, zpkshiftc
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References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal 
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On Digital Differentiators, Hilbert 
Transformers, and Half-band Low-pass Filters,” IEEE Transactions on 
Education, vol. 32, pp. 314-318, August 1989.
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8blockPurpose Generate Signal Processing Blockset block from floating-point or fixed-point 
multirate (mfilt) filter objects

Syntax block(hm)
block(hm,'propertyname1',propertyvalue1,'propertyname2',...

propertyvalue2,...)

Description block(hm) generates a Signal Processing Blockset block equivalent to hm.

block(hm,'propertyname1',propertyvalue1,'propertyname2',...
propertyvalue2,...) generates a Signal Processing Blockset block using the 
options specified in the property name/property value pairs. The valid 
properties and their values are

Property Name Description and Values

Destination Determines which Simulink model gets the 
block. Choose either current or new. Specifying 
new opens a new Simulink model and adds the 
block. Current adds the block to your current 
Simulink model. Current is the default setting.

Blockname Specifies the name of the generated block. The 
name appears below the block in the model. 
When you do not specify a block name, the 
default is filter.
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Using block to Realize Fixed-Point Multirate Filters
When the source filter hm is fixed-point, such as an FIR decimator with 
fixed-point arithmetic, block maps the fixed-point properties for hm to the new 
block according to a set of rules:

• The input word and fraction lengths for the block are derived from the block 
input signal. The realization process ignores the input word and input 
fraction lengths that are part of the source filter object, choosing to inherit 
the settings from the input data. You see a warning message in MATLAB 
that points this out.

• Rounding modes that the block does not support—fix, ceil, and 
convergent—convert to nearest in the filter block. Supported rounding 
modes do not change. MATLAB warns you about this change.

Other fixed-point properties map directly to settings for word and fraction 
length in the realized block.

 Examples Two examples of using block demonstrate the syntax capabilities. Both 
examples start from an mfilt object with interpolation factor of three. In the 
first example, use block with the default syntax, letting the function determine 
the block name and configuration.

OverwriteBlock Tells block whether to overwrite an existing 
block of the same name, or create a new block. 
Off is the default setting—block does not 
overwrite existing blocks with matching names. 
Switching from off to on directs block to 
overwrite existing blocks.

MapStates Specifies whether to apply the current filter 
states to the new block. This lets you save states 
from a filter object you may have used or 
configured in a specific way. The default setting 
of off means the states are not transferred to 
the block. Choosing on preserves the current 
filter states in the block. 

Property Name Description and Values
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l = 3; % Interpolation factor
hm = mfilt.firdecim(l);

Now use the default syntax to create a block.

block(hm);

In this second example, define the block name to meet your needs by using  the 
property name/property value pair input arguments.

block(hm, 'blockname', 'firdecim');

The figure below shows the blocks in a Simulink model. When you try these 
examples, you see that the second block writes over the first block location. You 
can avoid this by moving the first block before you generate the second, always 
naming your block with the blockname property, or setting the Destination 
property to new which puts the filter block in a new Simulink model.

See Also Refer to the Realize Model option in FDATool, and realizemdl

x[3n]

firdecim

x[3n]

Filter
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8butterPurpose Design Butterworth IIR digital filter using the specifications in filter 
specification object

Syntax hd = design(d,'butter')
hd = design(d,'butter',designoption,value,designoption,value,...)

Description hd = design(d,'butter') designs a Butterworth IIR digital filter using the 
specifications supplied in the object d.

hd = design(d,'butter',designoption,value) returns a Butterworth IIR 
filter where  you specify a design option and value.

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using butter, refer to the command line help system. 
For example, to get specific information about using butter with d, the 
specification object, enter the following at the MATLAB prompt.

help(d,'butter')

Examples The first example constructs a default lowpass filter specification object and 
uses it to design a Butterworth filter.

d = fdesign.lowpass;
designopts(d,'butter')

ans = 

    FilterStructure: 'df2sos'
       MatchExactly: 'stopband'
hd = design(d,'butter','matchexactly','stopband');

Example 2 constructs a highpass filter specification object with order (n) and 
cutoff frequency (fc) specifications, and then designs a Butterworth filter from 
the object.

d = fdesign.highpass('n,fc',8,.6);
design(d,'butter');
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See Also cheby1, cheby2, ellip

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−700

−600

−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)



ca2tf

8-244

8ca2tfPurpose Convert coupled allpass filter form to transfer function forms

Syntax [b,a] = ca2tf(d1,d2)
[b,a] = ca2tf(d1,d2,beta)
[b,a,bp] = ca2tf(d1,d2)
[b,a,bp] = ca2tf(d1,d2,beta)

Description [b,a]=ca2tf(d1,d2) returns the vector of coefficients b and the vector of 
coefficients a corresponding to the numerator and the denominator of the 
transfer function

d1 and d2 are real vectors corresponding to the denominators of the allpass 
filters H1(z) and H2(z).

[b,a]=ca2tf(d1,d2,beta) where d1, d2 and beta are complex, returns the 
vector of coefficients b and the vector of coefficients a corresponding to the 
numerator and the denominator of the transfer function

[b,a,bp]=ca2tf(d1,d2), where d1 and d2 are real, returns the vector bp of real 
coefficients corresponding to the numerator of the power complementary filter 
G(z)

[b,a,bp]=ca2tf(d1,d2,beta), where d1, d2 and beta are complex, returns the 
vector of coefficients bp of real or complex coefficients that correspond to the 
numerator of the power complementary filter G(z)

H z( ) B z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )+[ ]= =

H z( ) B z( ) A z( )⁄ 1
2
--- β( )– H1 z( )• β H2 z( )•+[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )–[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2j
----- β( )– H1 z( )• β H2 z( )•+[ ]= =
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Examples Create a filter, convert the filter to coupled allpass form, and convert the result 
back to the original structure (create the power complementary filter as well).

See Also cl2tf, iirpowcomp, tf2ca, tf2cl

[b,a]=cheby1(10,.5,.4);
[d1,d2,beta]=tf2ca(b,a); % tf2ca returns the 

% denominators of the 
% allpasses.

[num,den,numpc]=ca2tf(d1,d2,beta); % Reconstruct the original 
% filter plus the power 
% complementary one.

[h,w,s]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
freqzplot([h hpc],w,s); % Plot the mag response of the 

% original filter and the 
% power complementary one.
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8cheby1Purpose Design Chebyshev Type I digital filter using filter specification object

Syntax hd = design(d,'cheby1')
hd = design(d,'cheby1',designoption,value,designoption,value,...)

Description hd = design(d,'cheby1') designs a Chebyshev I IIR digital filter using the 
specifications supplied in the object d.

hd = design(d,'cheby1',designoption,value,designoption,value,...)
returns a Chebyshev I IIR filter where you specify design options as input 
arguments. 

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using cheby1, refer to the command line help system. 
For example, to get specific information about using cheby1 with d, the 
specification object, enter the following at the MATLAB prompt.

help(d,'cheby1')

Examples These examples use filter specification objects to construct Chebyshev type I 
filters. In the first example, you use the matchexactly option to ensure the 
performance of the filter in the passband.

d = fdesign.lowpass
designopts(d,'cheby1')
ans = 

    FilterStructure: 'df2sos'
       MatchExactly: 'passband'

hd = design(d,'cheby1','matchexactly','passband')

d =
 
               Response: 'Lowpass'      
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
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    NormalizedFrequency: true           
                  Fpass: 0.45           
                  Fstop: 0.55           
                  Apass: 1              
                  Astop: 60             

hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [5x6 double]                           
             ScaleValues: [6x1 double]                           
        PersistentMemory: false                                  

cheby1 also design highpass filters, among others. Specify the filter order, 
passband edge frequency. and the passband ripple to get the filter exactly as 
required.

d = fdesign.highpass('n,fp,ap',7,20,.4,50)
hd = design(d,'cheby1')
 
d =
 
               Response: 'Highpass'
          Specification: 'N,Fp,Ap' 
            Description: {3x1 cell}
    NormalizedFrequency: false     
                     Fs: 50        
            FilterOrder: 7         
                  Fpass: 20        
                  Apass: 0.4       

hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [4x6 double]                           
             ScaleValues: [5x1 double]                           
        PersistentMemory: false                                  
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Use fvtool to view the resulting filter.

fvtool(hd)

By design, cheby1 returns filters that use second-order sections. For many 
applications, and for most fixed-point applications, SOS filters are particularly 
well-suited.

See Also butter, cheby2, ellip
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8cheby2Purpose Design Chebyshev Type II digital filter using  filter specification object

Syntax hd = design(d,'cheby2')
hd = design(d,'cheby2',designoption,value,designoption,value,...)

Description hd = design(d,'cheby2') designs a Chebyshev II IIR digital filter using the 
specifications supplied in the object d.

hd = design(d,'cheby2',designoption,value,designoption,value,...)
returns a Chebyshev II IIR filter where you specify design options as input 
arguments. 

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using cheby1, refer to the command line help system. 
For example, to get specific information about using cheby2 with d, the 
specification object, enter the following at the MATLAB prompt.

help(d,'cheby2')

Examples These examples use filter specification objects to construct Chebyshev type I 
filters. In the first example, you use the matchexactly option to ensure the 
performance of the filter in the passband.

d = fdesign.lowpass;
hd = design(d,'cheby2','matchexactly','passband')

hd =

         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [5x6 double]
             ScaleValues: [6x1 double]

PersistentMemory: false
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cheby2 also design highpass, bandpass, and bandstop filters. Here is a 
highpass filter where you specify the filter order, the stopband edge frequency. 
and the stopband attenuation to get the filter exactly as required.

d = fdesign.highpass('n,fst,ast',5,20,55,50)

d =
 
               Response: 'Highpass' 
          Specification: 'N,Fst,Ast'
            Description: {3x1 cell} 
    NormalizedFrequency: false      
                     Fs: 50         
            FilterOrder: 5          
                  Fstop: 20         
                  Astop: 55         

hd=design(d,'cheby2')
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'                   
              Arithmetic: 'double'                                                  
               sosMatrix: [3x6 double]                                              
           ScaleValues: [0.199517233712056;0.0879972176933622;0.145046319812257;1]
      PersistentMemory: false                                                 

The Filter Visualization Tool shows the highpass filter meets the 
specifications.

fvtool(hd)
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By design, cheby2 returns filters that use second-order sections. For many 
applications, and for most fixed-point applications, SOS filters are particularly 
well-suited for use.

See Also butter, cheby1, ellip
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8cl2tfPurpose Convert coupled allpass lattice to transfer function form

Syntax [b,a] = cl2tf(k1,k2)
[b,a] = cl2tf(k1,k2,beta)
[b,a,bp] = cl2tf(k1,k2) 
[b,a,bp] = cl2tf(k1,k2,beta)

Description [b,a] = cl2tf(k1,k2) returns the numerator and denominator vectors of 
coefficients b and a corresponding to the transfer function

where H1(z) and H2(z) are the transfer functions of the allpass filters 
determined by k1 and k2, and k1 and k2 are real vectors of reflection 
coefficients corresponding to allpass lattice structures.

[b,a] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns the 
numerator and denominator vectors of coefficients b and a corresponding to the 
transfer function

[b,a,bp] = cl2tf(k1,k2) where k1 and k2 are real, returns the vector bp of 
real coefficients corresponding to the numerator of the power complementary 
filter G(z)

[b,a,bp] = cl2tf(k1,k2,beta) where k1, k2 and beta are complex, returns 
the vector of coefficients bp of possibly complex coefficients corresponding to 
the numerator of the power complementary filter G(z)

Examples [b,a]=cheby1(10,.5,.4);
[k1,k2,beta]=tf2cl(b,a); %TF2CL returns the reflection coeffs

H z( ) B z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )+[ ]= =

H z( ) B z( ) A z( )⁄ 1
2
--- β( )– H1 z( )• β H2 z( )•+[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2
--- H1 z( ) H2 z( )–[ ]= =

G z( ) Bp z( ) A z( )⁄ 1
2j
----- β( )– H1 z( )• β H2 z( )•+[ ]= =
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% Reconstruct the original filter
% plus the power complementary one.
[num,den,numpc]=cl2tf(k1,k2,beta); 
[h,w,s1]=freqz(num,den);
hpc = freqz(numpc,den);
s.plot = 'mag';
s.yunits = 'sq';
% Plot the mag response of the original filter and the power 
% complementary one.
freqzplot([h hpc],w,s1); 

See Also tf2cl, tf2ca, ca2tf, tf2latc, latc2tf, iirpowcomp
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8coefficientsPurpose Filter coefficients for adaptive filters, discrete-time filters, and multirate filters

Syntax c = coefficients(ha)
coefficients(ha)
c = coefficients(hd)
coefficients(hd)
c = coefficients(hm)
coefficients(hm)

Description The next sections describe common coefficients operation with adaptive, 
discrete-time, and multirate filters.

Adaptive Filters

c = coefficients(ha) returns a cell array c containing  the coefficients of 
adaptive filter ha. These are the instantaneous filter coefficients available at 
the time you use the function.

coefficients(ha) without an output argument opens FVTool in the 
coefficients analysis mode displaying the filter coefficients.

Discrete-Time Filters

c = coefficients(hd) returns a cell array c that contains the coefficients of 
discrete-time filter hd.

coefficients(hd) without an output argument opens FVTool in the 
coefficients analysis mode displaying the filter coefficients.

Multirate Filters

c = coefficients(hm) returns c, a cell array containing the coefficients of 
discrete-time filter hm. CIC-based filters do not have coefficients and this 
function does not work with constructors like mfilt.cicdecim.

coefficients(hm) with no output argument opens FVTool in the coefficients 
analysis mode displaying the filter coefficients.
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Examples coefficients works the same way for all filters. This example uses a multirate 
filter hm to demonstrate the function.

hm=mfilt.firdecim(3)
 
hm =
 
         FilterStructure: 'Direct-Form FIR Polyphase Decimator'
               Numerator: [1x72 double]
        DecimationFactor: 3

PersistentMemory: false
                  States: [69x1 double]

c=coefficients(hm)

c =

    [1x72 double]

c{1}

ans =

  Columns 1 through 8 

         0   -0.0000   -0.0001         0    0.0002    0.0003         0   -0.0005

  Columns 9 through 16 

   -0.0007         0    0.0011    0.0014         0   -0.0022   -0.0028         0

  Columns 17 through 24 

    0.0040    0.0048         0   -0.0068   -0.0080         0    0.0111    0.0129

  Columns 25 through 32 

         0   -0.0177   -0.0207         0    0.0287    0.0342         0   -0.0513

  Columns 33 through 40 

   -0.0659         0    0.1363    0.2749    0.3333    0.2749    0.1363         0

  Columns 41 through 48 

   -0.0659   -0.0513         0    0.0342    0.0287         0   -0.0207   -0.0177

  Columns 49 through 56 

         0    0.0129    0.0111         0   -0.0080   -0.0068         0    0.0048

  Columns 57 through 64 
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    0.0040         0   -0.0028   -0.0022         0    0.0014    0.0011         0

  Columns 65 through 72 

   -0.0007   -0.0005         0    0.0003    0.0002         0   -0.0001   -0.0000

coefficients(hm)



coefficients

8-257

See Also adaptfilt, freqz, grpdelay, impz, info, phasez, stepz, zerophase, zplane
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8coereadPurpose Read Xilinx CORE Generator™ coefficient (.COE) file

Syntax hd = coeread('filename')

Description hd = coeread(filename) extracts the Distributed Arithmetic FIR filter 
coefficients defined in the XILINX CORE Generator .COE file specified by 
filename. It returns a dfilt object, the fixed-point filter hd. If you do not 
provide the file type extension .coe with the filename, the function assumes 
the .coe extension.

See Also coewrite, dfilt, dfilt.dffir
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8coewritePurpose Write Xilinx CORE Generator™ coefficient (.COE) file

Syntax coewrite(hd)
coewrite(hd,radix)
coewrite(...,filename)

Description coewrite(hd) writes a XILINX Distributed Arithmetic FIR filter coefficient 
.COE file which can be loaded into the XILINX CORE Generator. The 
coefficients are extracted from the fixed-point dfilt object hd. Your fixed-point 
filter must be a direct form FIR structure dfilt object with one section and 
whose Arithmetic property is set to fixed. You cannot export single-precision, 
double-precision, or floating-point filters as .coe files, nor multiple-section 
filters. To enable you to provide a name for the file, coewrite displays a dialog 
where you fill in the file name. If you do not specify the name of the output file, 
the default file name is untitled.coe. 

coewrite(hd,radix) indicates the radix (number base) used to specify the FIR 
filter coefficients. Valid radix values are 2 for binary, 10 for decimal, and 16 for 
hexadecimal (default).

coewrite(...,filename) writes a XILINX.COE file to filename. If you omit 
the file extension, coewrite adds the .coe extension to the name of the file.

Examples coewrite generates an ASCII text file that contains the filter coefficients in 
a format the XILINX CORE Generator can read and load. In this example, you 
create a 30th-order fixed-point filter and generate the .coe file that include the 
filter coefficients as well as associated information about the filter.

b = firceqrip(30,0.4,[0.05 0.03]);
hq = dfilt.dffir(b);
set(hq,'arithmetic','fixed');
coewrite(hq,10,'mycoefile');

When you look at mycoefile.coe, you see the following:

;
; XILINX CORE Generator(tm) Distributed Arithmetic FIR filter 
coefficient (.COE) File
; Generated by MATLAB(tm) and the Filter Design Toolbox.
;
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; Generated on: 4-Dec-2003 13:47:15
;
Radix = 10; 
Coefficient_Width = 16; 
CoefData =   -41,
 -851,
 -366,
  308,
  651,
   22,
 -873,
 -658,
  749,
 1504,
   21,
-2367,
-2012,
 3014,
 9900,
....

coewrite puts the filter coefficients in column-major order and reports the 
radix, the coefficient width, and the coefficients. These represent the minimum 
set of data needed in a .coe file.

See Also coeread, dfilt, dfilt.dffir
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8convertPurpose Convert filter structures of discrete-time and multirate filters

Syntax hq = convert(hq,newstruct)
hm = convert(hm,newstruct)

Description Discrete-Time Filters
hq = convert(hq,newstruct) returns a quantized filter whose structure has 
been transformed to the filter structure specified by string newstruct. You can 
enter any one of the following quantized filter structures:

• 'antisymmetricfir': Antisymmetric finite impulse response (FIR).

• 'df1': Direct form I.

• 'df1t': Direct form I transposed.

• 'df2': Direct form II.

• 'df2t': Direct form II transposed. Default filter structure.

• 'dffir': FIR.

• 'dffirt': Direct form FIR transposed.

• 'latcallpass': Lattice allpass.

• 'latticeca': Lattice coupled-allpass.

• 'latticecapc': Lattice coupled-allpass power-complementary.

• 'latticear': Lattice autoregressive (AR).

• 'latticema': Lattice moving average (MA) minimum phase.

• 'latcmax': Lattice moving average (MA) maximum phase.

• 'latticearma': Lattice ARMA.

• 'statespace': Single-input/single-output state-space.

• 'symmetricfir': Symmetric FIR. Even and odd forms.

All filters can be converted to the following structures:

• df1
• df1t
• df2
• df2t
• statespace
• latticearma
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For the following filter classes, you can specify other conversions as well:

• Minimum phase FIR filters can be converted to latticema

• Maximum phase FIR filters can be converted to latcmax

• Allpass filters can be converted to latcallpass

convert generates an error when you specify a conversion that is not possible.

Multirate Filters

hm = convert(hm,newstruct) returns a multirate filter whose structure has 
been transformed to the filter structure specified by string newstruct. You can 
enter any one of the following multirate filter structures, defined by the strings 
shown, for newstruct:

Cascaded Integrator-Comb Structures

• cicdecim—CIC-based decimator

• cicdecimzerolat—CIC-based decimator that exhibits no latency

• cicinterp—CIC-based interpolator

• cicinterpzerolat—CIC-based interpolater that does not induce latency

FIR Structures

• firdecim—FIR decimator

• firtdecim—transposed FIR decimator

• firfracdecim—FIR fractional decimator

• firinterp—FIR interpolator

• firfracinterp—FIR fractional interpolator

• firsrc—FIR sample rate change filter

• firholdinterp—FIR interpolator that uses hold interpolation between 
input samples

• firlinearinterp—FIR interpolator that uses linear interpolation between 
input samples

• fftfirinterp—FFT-based FIR interpolator

You cannot convert between the FIR and CIC structures.
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Examples [b,a]=ellip(5,3,40,.7);
hq = dfilt.df2t(b,a);
hq2 = convert(hq,'df1')
hq2 =
 
         FilterStructure: 'Direct-Form I'
              Arithmetic: 'double'
               Numerator: [0.1980 0.7886 1.4236 1.4236 0.7886 0.1980]
             Denominator: [1 1.4339 1.8021 0.6139 0.2047 -0.2342]

PersistentMemory: false
                  States: Numerator:  [5x1 double]
                          Denominator:[5x1 double]

For an example of changing the structure of a multirate filter, try the following 
conversion from a CIC interpolator to a CIC interpolator with zero latency.

hm = mfilt.cicinterp(2,2,3,8,8)

hm =
 
         FilterStructure: 'Cascaded Integrator-Comb Interpolator'
              Arithmetic: 'int'
       DifferentialDelay: 2
        NumberOfSections: 3
     InterpolationFactor: 2
               RoundMode: 'floor'

PersistentMemory: false
                  States: Integrator: [3x1 States]
                                Comb: [3x1 States]

         InputWordLength: 8               
                                          
   SectionWordLengthMode: 'MinWordLengths'
                                          
        OutputWordLength: 8               

hm2=convert(hm,'cicinterpzerolat')
 
hm2 =
 
         FilterStructure: 'Zero-Latency Cascaded Integrator-Comb Interpolator'
              Arithmetic: 'int'
       DifferentialDelay: 2
        NumberOfSections: 3
     InterpolationFactor: 2
               RoundMode: 'floor'

PersistentMemory: false

                  States: Integrator: [3x1 States]
                                Comb: [3x1 States]
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         InputWordLength: 8               
                                          
   SectionWordLengthMode: 'MinWordLengths'
                                          
        OutputWordLength: 8               

See Also mfilt

dfilt in the Signal Processing Toolbox documentation
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8costPurpose Estimate cost of using discrete-time or multirate filter

Syntax c = cost(hd)
c = cost(hm)

Description c = cost(hd) and c = cost(hm) return a cost estimate c for the filter hd or hm. 
The returned cost estimate contains the following fields.

Examples These examples show you the cost method applied to dfilt and mfilt objects.

hd = design(fdesign.lowpass);
c = cost(hd)
c =
 

Estimated Value Property Description

Number of 
Multiplications

nmult Number of 
multiplications 
during the filter run. 
nmult ignores 
multiplications by -1, 
0, and 1 in the total 
multiple.

Number of Additions nadd Number of additions 
during the filter run.

Number of States nstates Number of states the 
filter uses.

MultPerInputSample multperinputsample Number of 
multiplication 
operations performed 
for each input sample

AddPerInputSample addperinputsample Number of addition 
operations performed 
for each input sample
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Number of Multipliers : 43
Number of Adders      : 42
Number of States      : 42
MultPerInputSample    : 43
AddPerInputSample     : 42
hd
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x43 double]    
    PersistentMemory: false            

When you are using a multirate filter object, cost works the same way.

d = fdesign.decimator(4,'cic');
hm = design(d,'multisection')
 
hm =
 
          FilterStructure: 'Cascaded Integrator-Comb Decimator'
               Arithmetic: 'fixed'
        DifferentialDelay: 1
         NumberOfSections: 2
         DecimationFactor: 4
         PersistentMemory: false
 
    InputWordLength: 16             
    InputFracLength: 15             
                                    
    FilterInternals: 'FullPrecision'
                                    
c=cost(hm)
 
c =
 
Number of Multipliers : 0  
Number of Adders      : 4  
Number of States      : 4  
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MultPerInputSample    : 0  
AddPerInputSample     : 2.5

See Also report
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8cumsecPurpose Vector of filters for cumulative sections

Syntax h = cumsec(hd)
h = cumsec(hd,indices)
h = cumsec(hd,indices,secondary)
cumsec(hd)

Description h = cumsec(hd) returns a vector h of SOS filter objects with the cumulative 
sections. Each element in h is a filter with the structure of the original filter. 
The first element is the first filter section of hd. The second element of h is 
a filter that represents the combination of the first and second sections of hd. 
The third element of h is a filter which combines sections 1, 2, and 3 of hd. this 
pattern continues until the final element of h contains all the sections of hd and 
should be identical to hd.

h = cumsec(hd,indices) returns a vector h of SOS filter objects whose indices 
into the original filter are in the vector indices. Now you can specify the filter 
sections cumsec uses to compute the cumulative responses.

h = cumsec(hd,indices,secondary) when secondary is true, cumsec uses 
the secondary scaling points in the sections to determine where the sections 
should be split. This option applies only when hd is a df2sos and df1tsos filter. 
For these second-order section structures, the secondary scaling points refer to 
the scaling locations between the recursive and the nonrecursive parts of the 
section (the “middle” of the section). Argument secondary accepts either true 
or false. By default, secondary is false.

cumsec(hd,...) without an output arguments uses FVTool to plot the 
magnitude response of the cumulative sections.

 Examples To demonstrate how cumsec works, this example plots the relative responses of 
the sections of a sixth-order filter SOS filter with three sections. Each curve 
adds one more section to form the filter response.

hs = fdesign.lowpass('n,fc',6,.4);
hd = butter(hs);
h = cumsec(hd);
hfvt = fvtool(h);
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legend(hfvt,'First Section','First Two Sections','Overall 
Filter');

See Also scale, scalecheck
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8denormalizePurpose Undo filter coefficient and gain changes caused by normalize

Syntax denormalize(hq)

Description denormalize(hq) reverses the coefficient changes you make when you use 
normalize with hq. The filter coefficients do not change if you call 
denormalize(hq) before you use normalize(hq). Calling denormalize more 
than once on a filter does not change the coefficients after the first 
denormalize call.

Examples Make a quantized filter hq and normalize the filter coefficients. After 
normalizing the coefficients, restore them to their original values by reversing 
the effects of the normalize function.

d=fdesign.highpass('n,fc',14,0.45)
 
d =
 
               Response: 'Highpass'                         
          Specification: 'N,Fc'                             
            Description: {'Filter Order';'Cutoff Frequency'}
    NormalizedFrequency: true                               
            FilterOrder: 14                                 
                Fcutoff: 0.45                               

hd = butter(d)
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [7x6 double]                           
             ScaleValues: [8x1 double]                           
        PersistentMemory: false                                  

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
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              Arithmetic: 'fixed'
               sosMatrix: [7x6 double]
             ScaleValues: [8x1 double]
        PersistentMemory: false

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
    StageInputWordLength: 16             
     StageInputAutoScale: true           
                                         
   StageOutputWordLength: 16             
    StageOutputAutoScale: true           
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

hq=hd;
g=normalize(hq)'

g =

     2     2     2     2     2     2     2
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hq.SosMatrix

ans =

    0.5000   -1.0000    0.5000    1.0000   -0.2817    0.8008
    0.5000   -1.0000    0.5000    1.0000   -0.2359    0.5081
    0.5000   -1.0000    0.5000    1.0000   -0.2051    0.3110
    0.5000   -1.0000    0.5000    1.0000   -0.1842    0.1776
    0.5000   -1.0000    0.5000    1.0000   -0.1704    0.0892
    0.5000   -1.0000    0.5000    1.0000   -0.1619    0.0350
    0.5000   -1.0000    0.5000    1.0000   -0.1579    0.0093

denormalize(hq)
hq.SosMatrix

ans =

    1.0000   -2.0000    1.0000    1.0000   -0.2817    0.8008
    1.0000   -2.0000    1.0000    1.0000   -0.2359    0.5081
    1.0000   -2.0000    1.0000    1.0000   -0.2051    0.3110
    1.0000   -2.0000    1.0000    1.0000   -0.1842    0.1776
    1.0000   -2.0000    1.0000    1.0000   -0.1704    0.0892
    1.0000   -2.0000    1.0000    1.0000   -0.1619    0.0350
    1.0000   -2.0000    1.0000    1.0000   -0.1579    0.0093

See Also normalize
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8designPurpose Implement FIR or IIR filter from discrete-time or multirate filter specification 
object

Syntax h = design(d)
h = design(d,designmethod)
h = design(d,designmethod,specname,specvalue,...)

Description h = design(d) uses specifications object d to generate a filter h. When you do 
not provide a design method as an input argument, design chooses the design 
method to use by following these rules in the order listed.

1 Use equiripple if it applies to the object d.

2 When equiripple does not apply to d, use another FIR design method, such 
as firls.

3 If FIR design methods do not apply to d, use ellip.

4 When ellip does not apply to d, use another IIR design method, such as 
butter or cheby2, that applies to the object d.

More rules apply.

• design uses an FIR filter design method before using an IIR design method.

• fdesign.nyquist specifications objects use the kaiserwin design method as 
the first design choice, rather than equiripple, because kaiserwin produces 
better filters than equiripple.

• For decimators, interpolators, and rational sample rate changers that use 
fdesign.nyquist objects, the default design method is kaiserwin. 
Otherwise, those objects use the equiripple design method by default.

For more guidance about using design to design filters, refer to “Designing 
Fixed-Point Filters” on page 2-3 of the Filter Design Toolbox User’s Guide. In 
this section you find some examples that use design to design filters and use 
methods in the toolbox to analyze them.

h = design(d,designmethod) lets you specify a valid design method to design 
the filter as an input string. Note that the filter returned by design changes 
depending on the design method you choose. For more information about the 
filter that a design method returns, refer to the help for the design method.
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The design method you provide as the designmethod input argument must be 
one of the methods returned by

designmethods(d)

for the specifications object d.

Valid entries depend on d. This is the complete set of design methods. The 
methods that apply to a specific specifications object usually represent a subset 
of this list.

• butter

• cheby1

• cheby2

• ciccomp

• ellip

• equiripple

• firls

• ifir
• iirhilbert
• iirlinphase

• isinclp

• kaiserwin

• multistage

• window

To help you design filters more quickly, the input argument designmethod 
accepts a variety of special keywords that force design to behave in different 
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ways. The following table presents the keywords you can use for designmethod 
and how design responds to the keyword.

Keywords are not case sensitive and must be enclosed in single quotation 
marks like any string input.

When design returns multiple filters in the output object, use indexing to see 
the individual filters. For example, to see the third filter in h, enter

h(3)

Designmethod Keyword Description of the design Response

fir Forces design to produce an FIR filter. When 
no FIR design method exists for object d, 
design returns an error.

iir Forces design to produce an IIR filter. When 
no IIR design method exists for object d, 
design returns an error.

allfir Produces filters from every applicable FIR 
design method for the specifications in d, one 
filter for each design method. As a result, 
design returns multiple filters in the output 
object.

alliir Produces filters from every applicable IIR 
design method for the specifications in d, one 
filter for each design method. As a result, 
design returns multiple filters in the output 
object.

all Designs filters using all applicable design 
methods for the specifications object d. As a 
result, design returns multiple filters, one for 
each design method. design uses the design 
methods in the order that designmethods(d) 
returns them. Refer to Examples to see this in 
use. 
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at the MATLAB prompt.

h = design(d,designmethod,specname,specvalue,...) with this syntax 
you can specify not only the designmethod but also values for the filter 
specifications in the method. Provide the specifications in the order of the name 
of the specification, such as the FilterOrder, followed by the value to assign to 
the specification. Enter as many specname/specvalue pairs as you need to 
define your filter. Any specification you do not define uses the default 
specification value. To use the specname/specvalue syntax, you must provide 
the design method to use in designmethod.

Examples To demonstrate some of the design options, these examples use a few different 
input arguments and output arguments. For the first example, use design to 
return the default filter based on the default design method equiripple. 

d = fdesign.lowpass(.2,.22);
hd = design(d) % Uses the default equiripple method.

hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x202 double]   
    PersistentMemory: false            

In this example, use the allfir keyword with design to return an FIR filter 
for each valid design method for the specifications in specifications object d.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
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multistage

hallfir=design(d,'allfir')
 
hallfir =
 

dfilt.basefilter: 1-by-4    

hallfir contains filters designed using the ellip, equiripple, ifir, and 
multistage design methods, in the order shown by designmethods(d). The 
first filter in hallfir comes from the ellip design method; the second from the 
equiripple method; the third from using ifir to design the filter; and the 
fourth from using multistage.

To see an individual filter, use an index with the filter object. For example, to 
see the second filter in hallfir, enter hallfir(2)

hallfir(2)
 
ans =
 
     FilterStructure: Cascade
            Stage(1): Direct-Form FIR
            Stage(2): Direct-Form FIR
    PersistentMemory: false

Here is the multistage filter hallfir(4)

hallfir(4)
 
ans =
 
     FilterStructure: Cascade
            Stage(1): Direct-Form FIR Polyphase Decimator
            Stage(2): Direct-Form FIR Polyphase Decimator
            Stage(3): Direct-Form FIR Polyphase Decimator
            Stage(4): Direct-Form FIR Polyphase Interpolator
            Stage(5): Direct-Form FIR Polyphase Interpolator
            Stage(6): Direct-Form FIR Polyphase Interpolator
    PersistentMemory: false
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This final example uses equiripple to design an FIR filter with the density 
factor set to 20 by using the specname/specvalue syntax. 

[hd,res,err] = design(d,'equiripple','densityfactor',20);
hd
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x202 double]   
    PersistentMemory: false            
res

res =

    0.9903

err

err =

         order: 201
         fgrid: [2060x1 double]
             H: [2060x1 double]
         error: [2060x1 double]
           des: [2060x1 double]
            wt: [2060x1 double]
         iextr: [102x1 double]
         fextr: [102x1 double]
    iterations: 12
         evals: 12905
     edgeCheck: [4x1 double]
    returnCode: 0

res and err are optional output arguments that design returns when you 
specify the density factor with the equiripple design method.

See Also designmethods, butter, cheby1, cheby2, ellip, equiripple, firls, 
fdesign.halfband, kaiserwin, fdesign.nyquist, fdesign.rsrc



designmethods

8-279

8designmethodsPurpose Design methods available for designing filter from filter specification object

Syntax m = designmethods(d)
m = designmethods(d,'default')
m = designmethods(d,type)
m = designmethods(d,'full')

Description m = designmethods(d) returns a list of the design methods available for the 
filter specification object d with its Specification. When you change the 
Specification for a filter specification object, the methods available to design 
filters from the object change.

Here are all the design methods and the filters they produce.

Design Method Filter Result

butter IIR

cheby1 IIR

cheby2 IIR

ellip IIR

equiripple FIR

firls FIR

ifir Interpolated FIR

iirhilbert IIR Hilbert filter

iirlinphase IIR filter with linear phase

iirlpnorm IIR filter from an arbitrary magnitude 
specifications object. Compare to iirls.

iirls IIR filter from an arbitrary magnitude 
and phase specifications object. Compare 
to iirlpnorm.

kaiserwin FIR with Kaiser window



designmethods

8-280

m = designmethods(d,'default') returns the default design method for the 
filter specification object d and its current Specification. 

m = designmethods(d,type) returns either the FIR or IIR design methods 
that apply to d, as specified by the type string, either fir or iir.  By default, 
designmethods returns all the valid design methods when you omit the type 
string.

m = designmethods(d,'full') returns the full name for each of the available 
design methods. For example, designmethods with the full argument returns 
Butterworth for the butter method.

Examples Construct a lowpass filter specification object and determine the design 
methods available to design a filter from the object.

d=fdesign.lowpass('n,fc',10,12000,48000)
 
d =
 
               Response: 'Lowpass'                          
          Specification: 'N,Fc'                             
            Description: {'Filter Order';'Cutoff Frequency'}
    NormalizedFrequency: false                              
                     Fs: 48000                              
            FilterOrder: 10                                 
                Fcutoff: 12000                              

designmethods(d)

Design Methods for class fdesign.lowpass (N,Fc):

multistage Multistage filter that cascades multiple 
filters

window FIR with windowed impulse response

Design Method Filter Result
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window

hd=window(d)
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x11 double]    
    PersistentMemory: false 

Now change the Specification string for d to 'fp,fst,ap,ast' and 
determine the design methods that apply to your modified specifications object.

set(d,'specification','fp,fst,ap,ast');
d
 
d =
 
               Response: 'Lowpass'      
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
    NormalizedFrequency: false          
                     Fs: 48000          
                  Fpass: 10800          
                  Fstop: 13200          
                  Apass: 1              
              Astop: 60
                                               
m2 = designmethods(d)
m3 = designmethods(d, 'iir')
m4 = designmethods(d, 'iir', 'full')

m2 =

    'butter'
    'cheby1'
    'cheby2'
    'ellip'
    'equiripple'
    'ifir'
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    'kaiserwin'
    'multistage'

m3 =

    'butter'
    'cheby1'
    'cheby2'
    'ellip'

m4 =

    'Butterworth'
    'Chebyshev Type I'
    'Chebyshev Type II'
    'Elliptic'

Now you can get specific help on a particular design method for the 
specifications object. This example returns the help for the first design method 
for the m2 set of methods—butter.

help(d,m2{1})

This is the same as help(d,'butter').

See Also butter, cheby1, cheby2, designopts, ellip, equiripple, kaiserwin, 
multistage
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8designoptsPurpose Input arguments and default values applicable to filter specification object and 
method

Syntax options = designopts(d,'designmethod')

Description options = designopts(d,'designmethod') returns the structure options 
with the default design parameters used by the design method designmethod, 
specific to the response you defined for d. Replace designmethod with one of the 
strings returned by designmethods. 

Use help(d,designmethod) to get a description of the design parameters. For 
example, to see the help for designing a highpass Chebyshev II filter from 
a specifications object d, enter

help(d,'cheby2')

at the prompt. MATLAB responds with help for Chebyshev II filter designs 
that use the specification Fst,Fp,Ast,Ap, as shown here.

help(d,'cheby2') % Get the help for design Chebyshev II filters.

DESIGN Design a Chebyshev Type II iir filter.
HD = DESIGN(D, 'cheby2') designs a Chebyshev Type II filter 
specified by the FDESIGN object H.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter 
with the structure STRUCTURE.  STRUCTURE is 'df2sos' by default 
and can be any of the following.

'df1sos'
'df2sos'
'df1tsos'
'df2tsos'
 
HD = DESIGN(..., 'MatchExactly', MATCH) designs a Chebyshev Type 
II filter and matches the frequency and magnitude specification 
for the band MATCH exactly.  The other band will exceed the 
specification.  MATCH can be 'stopband' or 'passband' and is 
'passband' by default.
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Examples Design a minimum order, lowpass Butterworth filter. Use designmethods to 
determine the appropriate input arguments. Start by creating a lowpass filter 
specification object d.

d = fdesign.lowpass;

Because you want information about the input arguments for designing a filter 
using a design method, use designmethods(d) to get the list of valid methods.

designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

Pick one method and determine the design options for that method.

options = designopts(d,'butter')

options =

    FilterStructure: 'df2sos'
       MatchExactly: 'stopband'

In this example, the filter structure is Direct-Form II with second-order 
sections, and the design seeks to match the desired stopband performance 
exactly. As you see by reading the help, FilterStructure and MatchExactly 
are input arguments for designing the Butterworth filter. 

Get help for designing a filter from d using the butter design method to see the 
arguments.

help(d,'butter')

 DESIGN Design a Butterworth IIR filter.
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 HD = DESIGN(D, 'butter') designs a Butterworth filter specified by the
 FDESIGN object H.
 
HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with the
structure STRUCTURE.  STRUCTURE is 'df2sos' by default and can be any of
the following.

    'df1sos'
    'df2sos'
    'df1tsos'
    'df2tsos'
 
 HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth filter
 and matches the frequency and magnitude specification for the band
 MATCH exactly.  The other band will exceed the specification.  MATCH
 can be 'stopband' or 'passband' and is 'stopband' by default.

See Also design, designmethods, fdesign
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8dfiltPurpose Discrete-time filters    

Syntax hd = dfilt.structure(input1,...)
hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]
hd = design(d,'designmethod')

Description hd = dfilt.structure(input1,...) returns a discrete-time filter, hd, of type 
structure. Each structure takes one or more inputs. When you specify 
a dfilt.structure with no inputs, a default filter is created.

Note  You must use a structure with dfilt. 

hd = [dfilt.structure(input1,...),dfilt.structure(input1,...),...]  
returns a vector containing dfilt filters.

Structures
Structures for dfilt.structure specify the type of filter structure. Available 
types of  structures for dfilt are shown below. 

dfilt.structure Description

dfilt.allpass Allpass filter

dfilt.cascadeallpass Cascade of allpass filter sections

dfilt.cascadewdfallpass Cascade of allpass wave digital filters

dfilt.delay Delay

dfilt.df1 Direct-form I

dfilt.df1sos Direct-form I, second-order sections

dfilt.df1t Direct-form I transposed

dfilt.df1tsos Direct-form I transposed, second-order sections

dfilt.df2 Direct-form II
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dfilt.df2sos Direct-form II, second-order sections

dfilt.df2t Direct-form II transposed

dfilt.df2tsos Direct-form II transposed, second-order sections

dfilt.dffir Direct-form FIR

dfilt.dffirt Direct-form FIR transposed

dfilt.dfsymfir Direct-form symmetric FIR 

dfilt.dfasymfir Direct-form antisymmetric FIR

dfilt.fftfir Overlap-add FIR

dfilt.latticeallpass Lattice allpass

dfilt.latticear Lattice autoregressive (AR)

dfilt.latticearma Lattice autoregressive moving- average (ARMA)

dfilt.latticemamax Lattice moving-average (MA) for maximum phase

dfilt.latticemamin Lattice moving-average (MA) for minimum phase

dfilt.calattice Coupled, allpass lattice

dfilt.calatticepc Coupled, allpass lattice with power complementary output

dfilt.statespace State-space

dfilt.scalar Scalar gain object

dfilt.wdfallpass Allpass wave digital filter object

dfilt.structure Description
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For more information on each structure, refer to its reference page.

hd = design(d,'designmethod') returns the dfilt object hd resulting from 
the filter specification object d and the design method you specify in 
designmethod. When you omit the designmethod argument, design uses the 
default design method to construct a filter from the object d.

With this syntax, you design filters by

1 Specifying the filter specifications, such as the response shape (perhaps 
highpass) and details (passband edges and attenuation).

2 Selecting a method (such as equiripple) to design the filter.

3 Applying the method to the specifications object with 
design(d,'designmethod).

Using the specification-based technique can be more effective than the 
coefficient-based filter design techniques.

Design Methods for design Syntax
When you use the hd = design(d,'designmethod') syntax, you have a range 
of design methods available depending on d, the filter specification object. The 
table below lists all of the design methods in the toolbox.

dfilt.cascade Filters arranged in series

dfilt.parallel Filters arranged in parallel

dfilt.structure Description

Design Method String Filter Design Result

butter Butterworth IIR

cheby1 Chebyshev Type I IIR 

cheby2 Chebyshev Type II IIR

ellip Elliptic IIR
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As specifications object d changes, the methods that apply for designing filters 
from d change. For instance, if d is a lowpass filter, these are the applicable 
methods:

d=fdesign.lowpass % Create an object to design a lowpass filter.
 
d =
 
               Response: 'Lowpass'      
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fpass: 0.45           
                  Fstop: 0.55           
                  Apass: 1              
                  Astop: 60             
                                        
designmethods(d) % What design methods apply to object d?

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

equiripple Equiripple with the same ripple in the pass 
and stopbands

firls Least-squares FIR

freqsamp Frequency-Sampled FIR

ifir Interpolated FIR

iirlpnorm Least Pth norm IIR 

iirls Least-Squares IIR 

kaiserwin Kaiser-windowed FIR

multistage Multistage FIR

window Windowed FIR

Design Method String Filter Design Result
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butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

When d is a bandstop filter, the design methods change.

d=fdesign.bandstop % Create a default bandstop specifications 
object.
 
d =
 
               Response: 'Bandstop'                     
          Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
            Description: {7x1 cell}                     
    NormalizedFrequency: true                           
                 Fpass1: 0.35                           
                 Fstop1: 0.45                           
                 Fstop2: 0.55                           
                 Fpass2: 0.65                           
                 Apass1: 1                              
                  Astop: 60                             
                 Apass2: 1                              
                                                        
designmethods(d) % Find out which design methods apply to d.

Design Methods for class fdesign.bandstop 
(Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2):

butter
cheby1
cheby2
ellip
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equiripple
kaiserwin

Notice that ifir and multistage design methods do not apply to this bandstop 
specifications object d.

Analysis Methods
Methods provide ways of performing functions directly on your dfilt object 
without having to specify the filter parameters again. You can apply these 
methods directly on the variable you assigned to your dfilt object. 

For example, if you create a dfilt object, hd, you can check whether it has 
linear phase with islinphase(hd), view its frequency response plot with 
fvtool(hd), or obtain its frequency response values with h = freqz(hd). You 
can use all of the methods below in this way. 

Note  If your variable hd is a 1-D array of dfilt filters, the method is applied 
to each object in the array. Only freqz, grpdelay, impz, is*, order, and stepz 
methods can be applied to arrays. The zplane method can be applied to an 
array only if zplane is used without outputs.



dfilt

8-292

Some of the methods listed below have the same name as functions in the 
Signal Processing or Filter Design Toolboxes. They behave similarly.

Method Description

addstage Adds a stage to a cascade or parallel object, 
where a stage is a separate, modular filter. Refer to 
dfilt.cascade and dfilt.parallel.

block (Available only with the Signal Processing 
Blockset)  

block(hd) creates a Signal Processing Blockset 
block of the dfilt object. The block method can 
specify these properties/values:

'Destination' indicates where to place the block. 
'Current' places the block in the current 
Simulink model. 'New' creates a new model. 
Default value is 'Current'.

'Blockname' assigns the entered string to the 
block name.  Default name is 'Filter'.

'OverwriteBlock'indicates whether to  overwrite 
the block generated by the block method ('on') 
and defined by Blockame. Default is 'off'.

'MapStates' specifies initial conditions in the block 
('on'). Default is 'off'. Refer to “Using Filter 
States” in the Signal Processing Toolbox 
documentation.

cascade Returns the series combination of two dfilt 
objects. Refer to dfilt.cascade.

coeffs Returns the filter coefficients in a structure 
containing fields that use the same property 
names as those in the original dfilt.

convert Converts a dfilt object from one filter structure,  
to another filter structure
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fcfwrite Writes a filter coefficient ASCII file. The file can 
contain a single filter or a vector of objects.  If the 
Filter Design Toolbox is installed, the file can 
contain multirate filters (mfilt) or adaptive filters 
(adaptfilt).  Default filename is untitled.fcf.

fcfwrite(hd,filename) writes to a disk file 
named filename in the current working directory.  
The .fcf extension is added automatically.

fcfwrite(...,fmt) writes the coefficients in the 
format fmt, where valid fmt strings are:
'hex' for hexadecimal
'dec' for decimal
'bin' for binary representation.

fftcoeffs Returns the frequency-domain coefficients used 
when filtering with a dfilt.fftfir

filter Performs filtering using the dfilt object

firtype Returns the type (1-4) of a linear phase FIR filter

freqz Plots the frequency response in fvtool. Note that 
unlike the freqz function, this dfilt freqz 
method has a default length of 8192.

grpdelay Plots the group delay in fvtool

impz Plots the impulse response in fvtool

impzlength Returns the length of the impulse response

info Displays dfilt information, such as filter 
structure, length, stability,  linear phase, and, 
when appropriate, lattice and ladder length. 

isallpass Returns a logical 1 (i.e., true) if the dfilt object in 
an allpass filter or a logical 0 (i.e., false) if it is not

Method Description
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iscascade Returns a logical 1 if the dfilt object is cascaded 
or a logical 0 if it is not

isfir Returns a logical 1 if the dfilt object has finite 
impulse response (FIR) or a logical 0 if it does not

islinphase Returns a logical 1 if the dfilt object is linear 
phase or a logical 0 if it is not

ismaxphase Returns a logical 1 if the dfilt object is 
maximum-phase or a logical 0 if it is not

isminphase Returns a logical 1 if the dfilt object is 
minimum-phase or a logical 0 if it is not

isparallel Returns a logical 1 if the dfilt object has parallel 
stages or a logical 0 if it does not

isreal Returns a logical 1 if the dfilt object has 
real-valued coefficients or a logical 0 if it does not

isscalar Returns a logical 1 if the dfilt object is a scalar or 
a logical 0 if it is not scalar

issos Returns a logical 1 if the dfilt object has 
second-order sections or a logical 0 if it does not

isstable Returns a logical 1 if the dfilt object is stable or a 
logical 0 if it are not

nsections Returns the number of sections in a second-order 
sections filter. If a multistage filter contains 
stages with multiple sections, using nsections 
returns the total number of sections in all the 
stages (a stage with a single section returns 1). 

nstages Returns the number of stages of the filter, where a 
stage is a separate, modular filter

nstates Returns the number of states for an object

Method Description
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order Returns the filter order. If hd is a single-stage 
filter, the order is given by the number of delays 
needed for a minimum realization of the filter. If 
hd has multiple stages, the order is given by the 
number of delays needed for a minimum 
realization of the overall filter.

parallel Returns the parallel combination of two dfilt 
filters. Refer to dfilt.parallel.

phasez Plots the phase response in fvtool

Method Description
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realizemdl (Available only with Simulink ) 

realizemdl(hd)  creates a Simulink model 
containing a subsystem block realization of your 
dfilt. 

realizemdl(hd,p1,v1,p2,v2,...) creates the  
block using the properties p1, p2,... and values v1,  
v2,... specified.

 The following properties are available:

'Blockname'  specifies the name of the block.  The 
default value is  'Filter'.

'Destination' specifies whether to add the block 
to a current Simulink model or create a new model. 
Valid values are 'Current' and 'New'.

'OverwriteBlock' specifies whether to overwrite 
an existing block that was created by realizemdl 
or create a new block. Valid values are 'on' and 
'off'. Note that only blocks created by 
realizemdl are overwritten.

The following properties optimize the block 
structure.  Specifying 'on' turns the optimization 
on and 'off' creates the block without 
optimization. The default for each block is 'off'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks with a 
direct connection.

'OptimizeNegOnes' replaces negative unity-gain 
blocks with a sign change at the nearest 
summation block.

'OptimizeDelayChains' replaces cascaded chains 
of delay block with a single integer delay block set 
to the appropriate delay.

Method Description
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removestage Removes a stage from a cascade or parallel dfilt. 
Refer to dfilt.cascade and dfilt.parallel.

setstage Overwrites a stage of a cascade or parallel dfilt. 
Refer to dfilt.cascade and dfilt.parallel.

sos Converts the dfilt to a second-order sections 
dfilt. If hd has a single section, the returned 
filter has the same class.

sos(hd,flag) specifies the ordering of the 
second-order sections. If flag='UP', the first row 
contains the poles closest to the origin, and the 
last row contains the poles closest to the unit 
circle. If flag='down', the sections are ordered in 
the opposite direction. The zeros are always 
paired with the poles closest to them.
 
sos(hd,flag,scale) specifies  the scaling of the 
gain and the numerator coefficients of all 
second-order sections. scale can be 'none', 'inf' 
(infinity-norm) or 'two' (2-norm). Using 
infinity-norm scaling with up ordering minimizes 
the probability of overflow in the realization. 
Using 2-norm scaling with down ordering 
minimizes the peak roundoff noise. 

ss Converts the dfilt to state-space.  To see the 
separate A,B,C,D matrices for the state-space 
model, use [A,B,C,D]=ss(hd).

Method Description
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Viewing Properties
As with any object, use get to view a dfilt properties. To see a specific 
property, use

 get(hd,'property') 

To see all properties for an object, use

get(hd)

Note  If you have the Filter Design Toolbox, dfilt objects include an 
arithmetic property.  You can change the internal arithmetic of the filter from 
double- precision to single-precision using:
hd.arithmetic = 'single'

If you have both the Filter Design Toolbox and the Fixed-Point Toolbox, you 
can change the arithmetic property to fixed-point using:
hd.arithmetic = 'fixed'

stepz Plots the step response in fvtool

stepz(hd,n) computes the first n samples of the 
step response.

stepz(hd,n,Fs) separates the time samples by 
T = 1/Fs, where Fs is assumed to be in Hz.

tf Converts the dfilt to a transfer function

zerophase Plots the zero-phase response in fvtool

zpk Converts the dfilt to zeros-pole-gain form

zplane Plots  a pole-zero plot in fvtool

Method Description
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Changing Properties
To set specific properties, use

set(hd,'property1',value,'property2',value,...) 

Note that you must use single quotation marks around the property name.  Use 
single quotation marks around the value argument when the value is a string, 
such as specifyall or fixed.

Copying an Object
To create a copy of an object, use the copy method.

h2 = copy(hd)

Note  Using the syntax H2 = hd copies only the object handle and does not 
create a new, independent object.

Converting Between Filter Structures
To change the filter structure of a dfilt object hd, use

hd2 = convert(hd,'structure_string');

where structure_string is any valid structure name in single quotation 
marks. If hd is a cascade or parallel structure, each stage is converted to the 
new structure.

Using Filter States
Two properties control the filter states:

• states—stores the current states of the filter. Before the filter is applied, the 
states correspond to the initial conditions and after the filter is applied, the 
states correspond to the final conditions. For df1, df1t, df1sos and df1tsos 
structures, states returns a filtstates object.

• PersistentMemory—controls whether filter states are saved. The default 
value is 'false', which causes the initial conditions to be reset to zero before 
filtering and turns off the display of states information.   Setting 
PersistentMemory to 'true' allows the filter to use your initial conditions 
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or to reuse the final conditions from a previous filtering operation as the 
initial conditions of the next filtering operation.  The true setting also 
displays information about the filter states.

Note  If you set the states and want to use them for filtering, you must set 
PersistentMemory to 'true' before you use the filter.

Examples Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
hd = dfilt.df1(b,a)
 
hd =
         FilterStructure: 'Direct-Form I'
               Numerator: [1x9 double]
             Denominator: [1x9 double]
        PersistentMemory: false
    
isstable(hd)
ans =
     1

If a dfilt’s numerator values do not fit on a single line, a description of the 
vector is displayed.  To see the specific numerator values for this example, use

get(hd,'numerator')

ans =
Columns 1 through 6 
    0.0001    0.0009    0.0030    0.0060    0.0076    0.0060
  Columns 7 through 9 
    0.0030    0.0009    0.0001

Create an array containing two dfilt objects, apply a method and verify that 
the method acts on both objects, and use a method to test whether the objects 
are FIR objects.

b = fir1(5,.5);
hd = dfilt.dffir(b); % create an FIR object
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[b,a] = butter(5,.5);
hd(2) = dfilt.df2t(b,a); % Create a DF2T object and place

% it in the second column of hd.

[h,w] = freqz(hd);
size(h) % Verify that resulting h is
ans = % 2 columns.
        8192           2
size(w) % Verify that resulting w is
ans = % 1 column.
        8192           1

test_fir = isfir(hd)
test_fir =
     1     0 % hd(1) is FIR and hd(2) is not.

Refer to the reference pages for each structure for more examples.

See Also dfilt, design, fdesign, realizemdl, sos, stepz

dfilt.cascade, dfilt.df1, dfilt.df1t, dfilt.df2,  dfilt.df2t, 
dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir, 
dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma,  
dfilt.latticemamax, dfilt.latticemamin, dfilt.parallel, 
dfilt.statespace, filter, freqz, grpdelay, impz, zplane in the Signal 
Processing Toolbox documentation
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8dfilt.allpassPurpose Construct allpass filter object

Syntax hd = dfilt.allpass(c)

Description hd = dfilt.allpass(c) constructs an allpass filter with the minimum 
number of multipliers from the elements in vector c. To be valid, c must contain 
one, two, three, or four real elements. The number of elements in c determines 
the order of the filter. For example, c with two elements creates a second-order 
filter and c with four elements creates a fourth-order filter.

The transfer function for the allpass filter is defined by

given the coefficients in c.

To construct a cascade of allpass filter objects, use dfilt.cascadeallpass. For 
more information about creating cascades of allpass filters, refer to 
dfilt.cascadeallpass.

Properties The following table provides a list of all the properties associated with an 
allpass dfilt object.

H z( ) c n( ) c n 1–( )z 1– … z n–+ + +

1 c 1( )z 1– … c n( )z n–+ + +
--------------------------------------------------------------------------=

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass filter 
object

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.
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Examples This example constructs and displays the information about a second-order 
allpass filter that uses the minimum number of multipliers.

c = [1.5, 0.7];
hd = dfilt.allpass(c) % Creates a second-order dfilt object.
hd =
 
        FilterStructure: 'Minimum-Multiplier Allpass'
    AllpassCoefficients: [1.5 0.7]                   
       PersistentMemory: false                       
                 States: [0;0;0;0]                   

info(hd) % Gets information about the filter.
Discrete-Time IIR Filter (real)                    
-------------------------------                    
Filter Structure       : Minimum-Multiplier Allpass
Number of Multipliers  : 2                         
Stable                 : Yes                       
Linear Phase           : No                        
                                                   
Implementation Cost                                
Number of Multipliers : 2                          
Number of Adders      : 4                          

PersistentMemory Specifies whether to reset the filter states and 
memory before each filtering operation. Lets 
you decide whether your filter retains states 
from previous filtering runs. False is the 
default setting.

States This property contains the filter states before, 
during, and after filter operations. States act 
as filter memory between filtering runs or 
sessions. They also provide linkage between 
the sections of a multisection filter, such as a 
cascade filter. For details, refer to filtstates 
in your Signal Processing Toolbox 
documentation or in the Help system.

Property Name Brief Description
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Number of States      : 4                          
MultPerInputSample    : 2                          
AddPerInputSample     : 4                          

See Also dfilt, dfilt.cascadeallpass, dfilt.cascadewdfallpass, 
dfilt.latticeallpass, mfilt.iirdecim, mfilt.iirinterp
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8dfilt.calatticePurpose Construct discrete-time, coupled-allpass, lattice filter object

Syntax hd = dfilt.calattice(k1,k2,beta)
hd = dfilt.calattice

Description hd = dfilt.calattice(k1,k2,beta) returns a discrete-time, coupled-allpass, 
lattice filter object hd, which is two allpass, lattice filter structures coupled 
together. The lattice coefficients for each structure are vectors k1 and k2. Input 
argument beta is shown in the diagram below.

hd = dfilt.calattice returns a default, discrete-time coupled-allpass, 
lattice filter object, hd. The default values are k1 = k2 = [], which is the default 
value for dfilt.latticeallpass, and beta = 1. This filter passes the input 
through to the output unchanged.
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Example Specify a third-order lattice coupled-allpass filter structure for a dfilt filter, 
hd with the following code. 

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calattice(k1,k2,beta)

k1 =

   0.9511 + 0.3088i
   0.7511 + 0.1158i

calattice
(Coupled−Allpass Lattice)

1
y

z

1

z (6)

z

1

z (5)

z

1

z (4)

z

1

z (3)

z

1

z (2)

z

1

z (1)

H2(z)

H1(z)

conj(k2(2)) conj(k2(2))

k1(1)k1(2)k1(3)

conj(k1(3))

0.5

conj(k1(2))

beta

−K−

k2(1)k2(2)k2(3)

conj(k2(3))

conj(k1(1))

1
x



dfilt.calattice

8-307

k2 =

   0.7502 - 0.1218i

beta =

   0.1385 + 0.9904i

 
hd =
 
         FilterStructure: 'Coupled-Allpass Lattice'
                Allpass1: [2x1 double]
                Allpass2: 0.7502- 0.1218i
                    Beta: 0.1385+ 0.9904i
        PersistentMemory: false
                  States: [3x1 double]

Notice that the Allpass1 and Allpass2 properties store vectors of coefficients.

hd.Allpass1

ans =

   0.9511 + 0.3088i
   0.7511 + 0.1158i

See Also dfilt.calatticepc

dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox 
documentation
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8dfilt.calatticepcPurpose Construct discrete-time, coupled-allpass, power-complementary lattice filter 
object

Syntax hd = dfilt.calatticepc(k1,k2,beta)
hd = dfilt.calatticepc

Description hd = dfilt.calatticepc(k1,k2) returns a discrete-time, coupled-allpass, 
lattice filter object hd, with power-complementary output. This object is two 
allpass lattice filter structures coupled together to produce complementary 
output. The lattice coefficients for each structure are vectors, k1 and k2, 
respectively. beta is shown in the diagram below

hd = dfilt.calatticepc returns a default, discrete-time, coupled-allpass, 
lattice filter object hd, with power-complementary output. The default values 
are k1=k2=[], which is the default value for the dfilt.latticeallpass. The 
default for beta=1. This filter passes the input through to the output 
unchanged.
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Example Specify a third-order lattice coupled-allpass power complementary filter 
structure for a filter hd with the following code. You see from the returned 
properties that Allpass1 and Allpass2 contain vectors of coefficients for the 
constituent filters.

k1 = [0.9511 + 0.3088i; 0.7511 + 0.1158i]
k2 = 0.7502 - 0.1218i
beta = 0.1385 + 0.9904i
hd = dfilt.calatticepc(k1,k2,beta)
k1 =

   0.9511 + 0.3088i
   0.7511 + 0.1158i
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k2 =

   0.7502 - 0.1218i

beta =

   0.1385 + 0.9904i

 
hd =
 
         FilterStructure: 'Coupled-Allpass Lattice, Power 
Complementary Output'
                Allpass1: [2x1 double]
                Allpass2: 0.7502- 0.1218i
                    Beta: 0.1385+ 0.9904i
        PersistentMemory: false
                  States: [3x1 double]

To see the coefficients for Allpass1, check the property values.

get(hd,'Allpass1')

ans =

   0.9511 + 0.3088i
   0.7511 + 0.1158i

See Also dfilt.calattice

dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamax, dfilt.latticemamin in your Signal Processing Toolbox 
documentation
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8dfilt.cascadePurpose Construct cascade of discrete-time filter objects

Syntax Refer to dfilt.cascade in the Signal Processing Toolbox for more information.

Description hd = dfilt.cascade(filterobject1,filterobject2,...) returns a 
discrete-time filter object hd of type cascade, which is a serial interconnection 
of two or more filter objects filterobject1, filterobject2, and so on. 
dfilt.cascade accepts any combination of dfilt objects (discrete time filters),  
to cascade.

You can use the standard notation to cascade one or more filters:

cascade(hd1,hd2,...)

where hd1, hd2, and so on can be mixed types, such as dfilt objects and mfilt 
objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the cascade must be 
the same arithmetic format—double, single, or fixed. hd, the filter object 
returned, inherits the format of the cascaded filters. 

Examples Cascade a lowpass filter and a highpass filter to produce a bandpass filter.

[b1,a1]=butter(8,0.6); % Lowpass
[b2,a2]=butter(8,0.4,'high'); % Highpass
h1=dfilt.df2t(b1,a1);
h2=dfilt.df2t(b2,a2);
hcas=dfilt.cascade(h1,h2) % Bandpass with passband 0.4-0.6

hcas =
         Filterstructure: Cascade
              Section(1): Direct Form II Transposed
              Section(2): Direct Form II Transposed
        PersistentMemory: false

X(z) Y(z)hd1(z) hd2(z)

hd

 . . .
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To view the details of one filter section, use

hcas.section(1)
 ans =
          FilterStructure: 'Direct Form II Transposed'
              Arithmetic: 'double'
               Numerator: [1x9 double]
             Denominator: [1x9 double]
        PersistentMemory: false
                  States: [8x1 double]

See Also dfilt, dfilt.parallel, dfilt.scalar
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8dfilt.cascadeallpassPurpose Construct cascade of allpass discrete-time filter objects

Syntax hd = dfilt.cascadeallpass(c1,c2,...)

Description hd = dfilt.cascadeallpass(c1,c2,...) constructs a cascade of allpass 
filters, each of which uses the minimum number of multipliers, given the filter 
coefficients provided in c1, c2, and so on.

Each vector c represents one section in the cascade filter. c vectors must 
contain one, two, three, or four elements as the filter coefficients for each 
section. As a result of the design algorithm, each section is a dfilt.allpass 
structure whose coefficients are given in the matching c vector, such as the c1 
vector contains the coefficients for the first stage.

States for each section are shared between sections.

Vectors c do not have to be the same length. You can combine various length 
vectors in the input arguments. For example, you can cascade fourth-order 
sections with second-order sections, or first-order sections.

For more information about the vectors ci and about the transfer function of 
each section, refer to dfilt.allpass.

Generally, you do not construct these allpass cascade filters directly. Instead, 
they result from the design process for an IIR filter. Refer to the first example 
in Examples for more about using dfilt.cascadeallpass to design an IIR 
filter.

Properties In the next table, the row entries are the filter properties and a brief 
description of each property.

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass filter 
object

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.
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Examples Two examples show how dfilt.cascadeallpass works in very different 
applications—designing a halfband IIR filter and constructing an allpass 
cascade of dfilt objects.

First, design the IIR halfband filter using cascaded allpass filters. Each branch 
of the parallel cascade construction is a cascadeallpas filter object.

tw = 100;  % Transition width of filter to be designed, 100 Hz.
ast = 80;  % Stopband attenuation of filter to be designed, 80dB.
fs = 2000; % Sampling frequency of signal to be filtered.
% Store halfband design specs in the specifications object d.
d = fdesign.halfband('tw,ast',tw,ast,fs); 

Now perform the actual filter design. hd contains two dfilt.cascadeallpass 
objects.

hd = design(d,'ellip','filterstructure','cascadeallpass'); 
% Get summary information about one dfilt.cascadeallpass stage.
hd.Stage(2).Stage(1) 
ans =
 
        FilterStructure: 'Cascade Minimum-Multiplier Allpass'                                                                                                                
    AllpassCoefficients: Section1: [0 0.0602973909571244]
                         Section2: [0 0.412590720361056] 
                         Section3: [0 0.772715653742923] 

PersistentMemory Specifies whether to reset the filter states and 
memory before each filtering operation. Lets 
you decide whether your filter retains states 
from previous filtering runs. False is the 
default setting.

States This property contains the filter states before, 
during, and after filter operations. States act 
as filter memory between filtering runs or 
sessions. They also provide linkage between 
the sections of a multisection filter, such as a 
cascade filter. For details, refer to filtstates 
in your Signal Processing Toolbox 
documentation or in the Help system.

Property Name Brief Description
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       PersistentMemory: false                                                                                                                                               
                 States: [0;0;0;0;0;0;0;0]                                                                                                                                   
    NumSamplesProcessed: 0                                                                                                                                                   
                                                                                                                                                                             
hd
 
hd =
 
     FilterStructure: Cascade
            Stage(1): Scalar
            Stage(2): Parallel
                      Stage(1): Cascade Minimum-Multiplier Allpass
                      Stage(2): Cascade
                            Stage(1): Delay
                            Stage(2): Cascade Minimum-Multiplier Allpass
    PersistentMemory: false

This second example constructs a dfilt.cascadeallpass filter object directly 
given allpass coefficients for the input vectors.

section1 = 0.8;
section2 = [1.2,0.7];
section3 = [1.3,0.9];
hd = dfilt.cascadeallpass(section1,section2,section3);
info(hd)    % Get information about the filter.
fvtool(hd)  % Visualize the filter.

hd looks like this, showing both the magnitude and phase responses in FVTool. 
Note the units for the magnitude response on the left y-axis. Clearly this is an 
allpass filter.
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See Also dfilt, dfilt.allpass, dfilt.cascadewdfallpass, mfilt.iirdecim, 
mfilt.iirinterp
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8dfilt.cascadewdfallpassPurpose Construct allpass wave digital filter (WDF) object by cascading allpass WDF 
filter objects

Syntax hd = dfilt.cascadewdfallpass(c1,c2,...)

Description hd = dfilt.cascadewdfallpass(c1,c2,...) constructs a cascade of allpass 
wave digital filters given the allpass coefficients in the vectors c1, c2, and so on.

Each c vector contains the coefficients for one section of the cascaded filter. C 
vectors must have one, two, or four elements (coefficients). Three element 
vectors are not supported.

When the c vector has four elements, the first and third elements of the vector 
must be 0. Each section of the cascade is an allpass wave digital filter, from 
dfilt.wdfallpass, with the coefficients given by the corresponding c vector. 
That is, the first section has coefficients from vector c1, the second section 
coefficients come from c2, and on until all of the c vectors are used.

You can mix the lengths of the c vectors. They do not need to be the same 
length. For example, you can cascade several fourth-order sections 
(length(c) = 4) with first or second-order sections.

Wave digital filters are usually used to create other filters. This toolbox uses 
them to implement halfband filters, which the first example in Examples 
demonstrates. They are most often building blocks for filters.

Generally, you do not construct these WDF allpass cascade filters directly. 
Instead, they result from the design process for an IIR filter. Refer to the first 
example in Examples for more about using dfilt.cascadewdfallpass to 
design an IIR filter.

For more information about the c vectors and the transfer function for the 
allpass filters, refer to dfilt.wdfallpass.
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Properties In the next table, the row entries are the filter properties and a brief 
description of each property.

Examples To demonstrate two approaches to using dfilt.cascadewdfallpass to design 
a filter, these examples show both direct construction and construction as part 
of another filter.

The first design shown creates an IIR halfband filter that uses lattice wave 
digital filters. Each branch of the parallel connetion in the lattice is an allpass 
cascade wave digital filter.

tw = 100;  % Transition width of filter to designe, 100 Hz.
ast = 80;  % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
d = fdesign.halfband('tw,ast',tw,ast,fs); % Store halfband specs.

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass wave 
digital filter object

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states and 
memory before each filtering operation. Lets 
you decide whether your filter retains states 
from previous filtering runs. False is the 
default setting.

States This property contains the filter states before, 
during, and after filter operations. States act 
as filter memory between filtering runs or 
sessions. They also provide linkage between 
the sections of a multisection filter, such as a 
cascade filter. For details, refer to filtstates 
in your Signal Processing Toolbox 
documentation or in the Help system.
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Now perform the actual halfband design process. hd contains two 
dfilt.cascadewdfallpass filters.

hd = design(f,'ellip','filterstructure','cascadewdfallpass'); 

hd.stage(2).stage(1) % Summary info on dfilt.cascadewdfallpass.
realizemdl(hd.stage(2).stage(1)) % Requires Simulink to realize model.

This example demonstrates direct construction of a dfilt.cascadewdfallpass 
filter with allpass coefficients.

section1 = 0.8;
section2 = [1.5,0.7];
section3 = [1.8,0.9];
hd = dfilt.cascadewdfallpass(section1,section2,section3);
info(hd)   % Show information about the filter.
fvtool(hd) % Visualize the filter. 

Using FVTool lets you view the filter response.
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See Also dfilt, dfilt.wdfallpass
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8dfilt.df1Purpose Construct discrete-time, direct-form I filter object

Syntax Refer to dfilt.df1 in the Signal Processing Toolbox.

Description hd = dfilt.df1 returns a default discrete-time, direct-form I filter object that 
uses double-precision arithmetic. By default, the numerator and denominator 
coefficients b and a are set to 1. With these coefficients the filter passes the 
input to the output without changes.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

Note  a(1), the leading denominator coefficient, cannot be 0. To allow you to 
change the arithmetic setting to fixed or single, a(1) must be equal to 1.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the direct-form I filter implemented 
by dfilt.df1. To help you see how the filter processes the coefficients, input, 
output, and states of the filter, as well as numerical operations, the figure 
includes the locations of the arithmetic and data type format elements within 
the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 

InputFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

NumFormat

NumFormat

DenProdFormat

DenFormat

NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenAccumFormatDenAccumFormatNumAccumFormat DenAccumFormatNumAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1z

−1

z
−1

z
−1

1
input



dfilt.df1

8-323

the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 
include denominator coefficients. From reviewing the table, you see that the 
DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Properties In this table you see the properties associated with df1 implementations of 
dfilt objects.

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, 
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, 
Signed, Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, 
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, 
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode
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Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs stored 
values. Choose from full precision 
(FullPrecision), or whether to keep the most 
significant bits (KeepMSB) or least significant bits 
(KeepLSB) when output results need shorter 
word length than the accumulator supports. To 
let you set the word length and the precision (the 
fraction length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in the 
accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives you 
the options double, single, and fixed. In short, 
this property defines the operating mode for 
your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown in 
the signal flow diagrams) before performing sum 
operations.
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CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength and 
DenFracLength properties to specify the 
precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length the filter algorithm 
uses to interpret the results of product 
operations involving denominator coefficients. 
You can change the value for this property when 
you set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

Denominator Stores the denominator coefficients for the IIR 
filter.

DenProdFracLength Specifies how the filter algorithm interprets the 
results of product operations involving 
denominator coefficients. You can change this 
property value when you set ProductMode to 
SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that perform 
operations during filtering—gains, delays, sums, 
products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

Property Name Brief Description
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InputWordLength Specifies the word length applied to interpret 
input data.

NumAccumFracLength Specifies how the filter algorithm interprets the 
results of addition operations involving 
numerator coefficients. You can change the value 
of this property after you set AccumMode to 
SpecifyPrecision.

Numerator Holds the numerator coefficient values for the 
filter.

NumFracLength Sets the fraction length used to interpret the 
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets the 
results of product operations involving 
numerator coefficients. Available to be changed 
when you set ProductMode to 
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set OutputMode to 
SpecifyPrecision.

OutputWordLength Determines the word length used for the output 
data.

Property Name Brief Description
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OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic). 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

ProductMode Determines how the filter handles the output of 
product operations. Choose from full precision 
(FullPrecision), or whether to keep the most 
significant bit (KeepMSB) or least significant bit 
(KeepLSB) in the result when you need to shorten 
the data words. For you to be able to set the 
precision (the fraction length) used by the output 
from the multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This property 
becomes writable (you can change the value) 
when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states and 
memory before each filtering operation. Lets you 
decide whether your filter retains states from 
previous filtering runs. False is the default 
setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always round. Finally, 
products never overflow—they maintain full 
precision.

Property Name Brief Description
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Examples Specify a second-order direct-form I structure for a dfilt object, hd, with the 
following code: 

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1(b,a)
hd =
 
         FilterStructure: 'Direct-Form I'
              Arithmetic: 'double'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: Numerator:  [2x1 double]
                          Denominator:[2x1 double]

Now convert hd to a fixed-point filter:

set(hd,'arithmetic','fixed')
hd
 
hd =
 
         FilterStructure: 'Direct-Form I'
              Arithmetic: 'fixed'

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States This property contains the filter states before, 
during, and after filter operations. States act as 
filter memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to filtstates in your Signal 
Processing Toolbox documentation or in the Help 
system.

Property Name Brief Description
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               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: Numerator:  [2x1 fi]
                          Denominator:[2x1 fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
        OutputFracLength: 15             
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

See Also dfilt, dfilt.df1t, dfilt.df2, dfilt.df2t
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8dfilt.df1sosPurpose Construct discrete-time, direct-form I filter object that uses second-order 
sections

Syntax Refer to dfilt.df1sos in the Signal Processing Toolbox.

Description hd = dfilt.df1sos(s) returns a discrete-time, second-order section, 
direct-form I filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.df1sos(b1,a1,b2,a2,...) returns a discrete-time, second-order 
section, direct-form I filter object hd, with coefficients for the first section given 
in the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, 
and so on.

hd = dfilt.df1sos(...,g) includes a gain vector g. The elements of g are the 
gains for each section. The maximum length of g is the number of sections plus 
one. When you do not specify g, all gains default to one.

hd = dfilt.df1sos returns a default, discrete-time, second-order section, 
direct-form I filter object, hd. This filter passes the input through to the output 
unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. To allow 
you to change the arithmetic setting to fixed or single, a(1) must be equal 
to 1.
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Fixed-Point 
Filter Structure

The figure below shows the signal flow for the direct-form I filter implemented 
in second-order sections by dfilt.df1sos. To help you see how the filter 
processes the coefficients, input, and states of the filter, as well as numerical 
operations, the figure includes the locations of the formatting objects within 
the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
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the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 
include denominator coefficients. From reviewing the table, you see that the 

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, 
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, 
Signed, Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength

DenStateFormat DenStateWordLength DenStateFracLength CastBeforeSum, 
States

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, 
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, 
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

NumStateFormat NumStateWordLength NumStateFracLength States

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale, 
ScaleValues
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DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Properties In this table you see the properties associated with SOS implementation of 
direct-form I dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.
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Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length used to 
interpret data in the accumulator used to 
hold the results of sum operations. You can 
change the value for this property when you 
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

DenProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
denominator coefficients. You can change 
this property value when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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DenStateFracLength Specifies the fraction length used to 
interpret the states associated with 
denominator coefficients in the filter.

DenStateWordLength Specifies the word length used to represent 
the states associated with denominator 
coefficients in the filter.

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets 
the results of addition operations involving 
numerator coefficients. You can change the 
value of this property after you set 
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the 
value of numerator coefficients.

NumStateFracLength Specifies the fraction length used to 
interpret the states associated with 
numerator coefficient operations in the filter.

NumWordFracLength Specifies the word length used to interpret 
the states associated with numerator 
coefficient operations in the filter.

Property Name Brief Description
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OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length applied for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting 
this property controls how your filter 
interprets the scale values by setting the 
fraction length. Only available when you 
disable AutoScaleMode by setting it to false.

ScaleValues Scaling for the filter objects in SOS filters. 

Property Name Brief Description
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Examples Specify a fixed-point, second-order section, direct-form I dfilt object with the 
following code: 

b=[0.3 0.6 0.3];
a=[1 0 0.2];
hd=dfilt.df1sos(b,a)
 
hd =
 
         FilterStructure: 'Direct-Form I, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
             ScaleValues: [2x1 double]

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property 
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a 
filter with 6 coefficients per section and 15 
sections, using data type double to represent 
the coefficients.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description



dfilt.df1sos

8-341

        PersistentMemory: false
                  States: Numerator:  [2x1 double]
                          Denominator:[2x1 double]

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form I, Second-Order Sections'
             ScaleValues: [2x1 double]
              Arithmetic: 'fixed'
               sosMatrix: [0.3000 0.6000 0.3000 1 0 0.2000]
        PersistentMemory: false
                  States: Numerator:  [2x1 fi]
                          Denominator:[2x1 fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
      NumStateWordLength: 16             
      NumStateFracLength: 15             
                                         
      DenStateWordLength: 16             
      DenStateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         
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See Also dfilt, dfilt.df2tsos
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8dfilt.df1tPurpose Construct discrete-time, direct-form I transposed filter object

Syntax Refer to dfilt.df1t in the Signal Processing Toolbox.

Description hd = dfilt.df1t(b,a) returns a discrete-time, direct-form I transposed filter 
object hd, with numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.df1t returns a default, discrete-time, direct-form I transposed 
filter object hd, with b=1 and a=1. This filter passes the input through to the 
output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. To allow 
you to change the arithmetic setting to fixed or single, a(1) must be equal 
to 1.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the transposed direct-form I filter 
implemented by dfilt.df1t. To help you see how the filter processes the 
coefficients, input, and states of the filter, as well as numerical operations, the 
figure includes the locations of the formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
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the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 
include denominator coefficients. From reviewing the table, you see that the 
DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed, 
Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength

DenStateFormat DenStateWordLength DenStateFracLength CastBeforeSum, States

InputFormat InputWordLength InputFracLength

MultiplicandFormat MultiplicandWordLength MultiplicandFracLength CastBeforeSum

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed, 
Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

NumStateFormat NumStateWordLength NumStateFracLength States

OutputFormat OutputWordLength OutputFracLength OutputMode



dfilt.df1t

8-346

Properties In this table you see the properties associated with df1t implementation of 
dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.
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CastBeforeSum Specifies whether to cast numeric data to 
the appropriate accumulator format (as 
shown in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length used to 
interpret data in the accumulator used to 
hold the results of sum operations. You can 
change the value for this property when you 
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

Denominator Holds the denominator coefficients for the 
filter.

DenProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
denominator coefficients. You can change 
this property value when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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DenStateFracLength Specifies the fraction length used to 
interpret the states associated with 
denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

MultiplicandFracLength Sets the fraction length for values 
(multiplicands) used in multiply operations 
in the filter.

MultiplicandWordLength Sets the word length applied to the values 
input to a multiply operation (the 
multiplicands).

NumAccumFracLength Specifies how the filter algorithm interprets 
the results of addition operations involving 
numerator coefficients. You can change the 
value of this property after you set 
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for 
the filter.

NumFracLength Sets the fraction length used to interpret the 
value of numerator coefficients.

Property Name Brief Description
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NumProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
numerator coefficients. Available to be 
changed when you set ProductMode to 
SpecifyPrecision.

NumStateFracLength For IIR filters, this defines the binary point 
location applied to the numerator states of 
the filter. Specifies the fraction length used 
to interpret the states associated with 
numerator coefficient operations in the filter.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

Property Name Brief Description
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OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if 
the least significant bit (after rounding) 
would be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

Property Name Brief Description
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Examples Specify a second-order direct-form I transposed filter structure for a dfilt 
object, hd, with the following code: 

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)
 
hd =
 
         FilterStructure: 'Direct-Form I Transposed'
              Arithmetic: 'double'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: Numerator:  [2x1 double]
                          Denominator:[2x1 double]

Now convert the filter to single-precision filtering arithmetic.

set(hd,'arithmetic','single')
hd
hd =
 
         FilterStructure: 'Direct-Form I Transposed'

StateAutoScale Setting autoscaling for filter states to true 
reduces the possibility of overflows occurring 
during fixed-point operations. Set to false, 
StateAutoScale lets the filter select the 
fraction length to limit the overflow 
potential.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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              Arithmetic: 'fixed'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: Numerator:  [2x1 fi]
                          Denominator:[2x1 fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
  MultiplicandWordLength: 16             
  MultiplicandFracLength: 15             
                                         
         StateWordLength: 16             
          StateAutoScale: true           
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

See Also dfilt, dfilt.df1, dfilt.df2, dfilt.df2t
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8dfilt.df1tsosPurpose Construct discrete-time, second-order section, direct-form I transposed filter 
object

Syntax Refer to dfilt.df1tsos in the Signal Processing Toolbox.

Description hd = dfilt.df1tsos(s) returns a discrete-time, second-order section, 
direct-form I, transposed filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.df1tsos(b1,a1,b2,a2,...) returns a discrete-time, 
second-order section, direct-form I, transposed filter object hd, with coefficients 
for the first section given in the b1 and a1 vectors, for the second section given 
in the b2 and a2 vectors, etc.

hd = dfilt.df1tsos(...,g) includes a gain vector g. The elements of g are 
the gains for each section. The maximum length of g is the number of sections 
plus one. If g is not specified, all gains default to one.

hd = dfilt.df1tsos returns a default, discrete-time, second-order section, 
direct-form I, transposed filter object, hd. This filter passes the input through 
to the output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. To allow 
you to change the arithmetic setting to fixed or single, a(1) must be equal 
to 1.
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Fixed-Point 
Filter Structure

The figure below shows the signal flow for the direct-form I transposed filter 
implemented using second-order sections by dfilt.df1tsos. To help you see 
how the filter processes the coefficients, input, and states of the filter, as well 
as numerical operations, the figure includes the locations of the formatting 
objects within the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
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length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed, 
Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength

DenStateFormat DenStateWordLength DenStateFracLength CastBeforeSum, States

InputFormat InputWordLength InputFracLength

MultiplicandFormat MultiplicandWordLength MultiplicandFracLength CastBeforeSum

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed, 
Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

NumStateFormat NumStateWordLength NumStateFracLength States

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale, ScaleValues

StageInputFormat StageInputWordLength StageInputFracLength StageInputAutoScale

StageOutputFormat StageOutputWordLength StageOutputFracLength StageOutputAutoScale
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include denominator coefficients. From reviewing the table, you see that the 
DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Properties In this table you see the properties associated with SOS implementation of 
transposed direct-form I dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.
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Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to 
the appropriate accumulator format (as 
shown in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length used to 
interpret data in the accumulator used to 
hold the results of sum operations. You can 
change the value for this property when you 
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

DenProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
denominator coefficients. You can change 
this property value when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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DenStateFracLength Specifies the fraction length used to 
interpret the states associated with 
denominator coefficients in the filter.

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

MultiplicandFracLength Sets the fraction length for values 
(multiplicands) used in multiply operations 
in the filter.

MultiplicandWordLength Sets the word length applied to the values 
input to a multiply operation (the 
multiplicands)

NumAccumFracLength Specifies how the filter algorithm interprets 
the results of addition operations involving 
numerator coefficients. You can change the 
value of this property after you set 
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for 
the filter.

NumProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
numerator coefficients. Available to be 
changed when you set ProductMode to 
SpecifyPrecision.

Property Name Brief Description
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NumStateFracLength For IIR filters, this defines the binary point 
location applied to the numerator states of 
the filter. Specifies the fraction length used 
to interpret the states associated with 
numerator coefficient operations in the filter.

NumStateWordLength For IIR filters, this defines the word length 
applied to the numerator states of the filter. 
Specifies the word length used to interpret 
the states associated with numerator 
coefficient operations in the filter.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

Property Name Brief Description
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OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if 
the least significant bit (after rounding) 
would be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting 
this property controls how your filter 
interprets the scale values by setting the 
fraction length. Only available when you 
disable AutoScaleMode by setting it to 
false.

Property Name Brief Description
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ScaleValues Scaling for the filter objects in SOS filters. 

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property 
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a 
filter with 6 coefficients per section and 15 
sections, using data type double to represent 
the coefficients.

StageInputAutoScale Tells the filter whether to set the stage input 
data format to minimize the occurrence of 
overflow conditions.

StageInputFracLength Lets you set the fraction length for stage 
inputs in SOS filters, if you set 
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for stage inputs 
in SOS filters, if you set 
StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage 
output data format to minimize the 
occurrence of overflow conditions.

StageOutputFracLength Lets you set the fraction length for stage 
outputs in SOS filters, if you set 
StageOutputAutoScale to false.

StageOutputWordLength Lets you set the word length for stage 
outputs in SOS filters, if you set 
StageOutputAutoScale to false.

Property Name Brief Description
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Examples With the following code, this example specifies a second-order section, 
direct-form I transposed dfilt object for a filter. Then we convert the filter to 
fixed-point operation. 

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df1t(b,a)
 
hd =
 
         FilterStructure: 'Direct-Form I Transposed'
              Arithmetic: 'double'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: Numerator:  [2x1 double]
                          Denominator:[2x1 double]

set(hd,'arithmetic','fixed')
hd
 
hd =

StateAutoScale Setting autoscaling for filter states to true 
reduces the possibility of overflows occurring 
during fixed-point operations. Set to false, 
StateAutoScale lets the filter select the 
fraction length to limit the overflow 
potential.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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         FilterStructure: 'Direct-Form I Transposed'
              Arithmetic: 'fixed'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: Numerator:  [2x1 fi]
                          Denominator:[2x1 fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         

  MultiplicandWordLength: 16             
  MultiplicandFracLength: 15             
                                         
         StateWordLength: 16             
          StateAutoScale: true           
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'        

See Also dfilt, dfilt.df1sos, dfilt.df2sos, dfilt.df2tsos
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8dfilt.df2Purpose Construct discrete-time, direct-form II filter object

Syntax Refer to dfilt.df2 in the Signal Processing Toolbox.

Description hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter object hd, 
with numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.df2 returns a default, discrete-time, direct-form II filter object hd, 
with b=1 and a=1. This filter passes the input through to the output 
unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. To allow 
you to change the arithmetic setting to fixed or single, a(1) must be equal 
to 1.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the direct-form II filter implemented 
by dfilt.df2. To help you see how the filter processes the coefficients, input, 
and states of the filter, as well as numerical operations, the figure includes the 
locations of the formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

StateFormatInputFormat DenAccumFormat

NumFormat

NumProdFormat NumAccumFormat OutputFormat

DenProdFormat

DenFormat

DenFormat

DenProdFormat

NumFormat

NumFormat

NumProdFormat

DenAccumFormat

NumProdFormat

NumAccumFormatDenAccumFormat

1
output

b3

b2

b1

a3

a2

Cast CastCast

z
−1

z
−1

1
input

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, 
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, 
Signed, Denominator
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Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 
include denominator coefficients. From reviewing the table, you see that the 
DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Properties In this table you see the properties associated with the df2 implementation of 
dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, 
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, 
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties
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To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to 
the appropriate accumulator format (as 
shown in the signal flow diagrams) before 
performing sum operations.
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CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length used to 
interpret data in the accumulator used to 
hold the results of sum operations. You can 
change the value for this property when you 
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

Denominator Holds the denominator coefficients for IIR 
filters.

DenProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
denominator coefficients. You can change 
this property value when you set 
ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

Property Name Brief Description
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InputWordLength Specifies the word length applied to 
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets 
the results of addition operations involving 
numerator coefficients. You can change the 
value of this property after you set 
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for 
the filter.

NumFracLength Sets the fraction length used to interpret the 
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
numerator coefficients. Available to be 
changed when you set ProductMode to 
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description



dfilt.df2

8-373

ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if 
the least significant bit (after rounding) 
would be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

Property Name Brief Description
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Examples Specify a second-order direct-form II filter structure for a dfilt object, hd, with 
the following code:

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2(b,a)

hd =
             FilterStructure: 'Direct Form II'
                   Numerator: [0.3000 0.6000 0.3000]
                 Denominator: [1 0 0.2000]
    NumberOfSamplesProcessed: 0
                 ResetStates: 'on'
                      States: [2x1 double]

To convert the filter to fixed-point arithmetic, change the value of the 
Arithmetic property

set(hd,'arithmetic','fixed')

to specify the fixed-point option.

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2t

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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8dfilt.df2sosPurpose Construct discrete-time, second-order section, direct-form II filter object

Syntax Refer to dfilt.df2sos in the Signal Processing Toolbox.

Description hd = dfilt.df2sos(s) returns a discrete-time, second-order section, 
direct-form II filter object hd, with coefficients given in the s matrix.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.df2sos(b1,a1,b2,a2,...) returns a discrete-time, second-order 
section, direct-form II object, hd, with coefficients for the first section given in 
the b1 and a1 vectors, for the second section given in the b2 and a2 vectors, etc.

hd = dfilt.df2sos(...,g) includes a gain vector g. The elements of g are the 
gains for each section. The maximum length of g is the number of sections plus 
one. If g is not specified, all gains default to one.

hd = dfilt.df2sos returns a default, discrete-time, second-order section, 
direct-form II filter object, hd. This filter passes the input through to the output 
unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. To allow 
you to change the arithmetic setting to fixed or single, a(1) must be equal 
to 1.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the direct-form II filter implemented 
with second-order sections by dfilt.df2sos. To help you see how the filter 
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processes the coefficients, input, and states of the filter, as well as numerical 
operations, the figure includes the locations of the formatting objects within 
the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
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the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 
include denominator coefficients. From reviewing the table, you see that the 
DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed, 
sosMatrix

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength, 
sosMatrix

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed, 
sosMatrix

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale, ScaleValues

StageInputFormat StageInputWordLength StageInputFracLength StageInputAutoScale

StageOutputFormat StageOutputWordLength StageOutputFracLength StageOutputAutoScale

StateFormat StateWordLength StateFracLength CastBeforeSum, States
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Properties In this table you see the properties associated with second-order section 
implementation of direct-form II dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.
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CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length used to 
interpret data in the accumulator used to 
hold the results of sum operations. You can 
change the value for this property when you 
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

DenProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
denominator coefficients. You can change 
this property value when you set 
ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

Property Name Brief Description
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InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets 
the results of addition operations involving 
numerator coefficients. You can change the 
value of this property after you set 
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the 
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
numerator coefficients. Available to be 
changed when you set ProductMode to 
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects only 
the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description



dfilt.df2sos

8-384

RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting 
this property controls how your filter 
interprets the scale values by setting the 
fraction length. Only available when you 
disable AutoScaleMode by setting it to false.

ScaleValues Scaling for the filter objects in SOS filters. 

Property Name Brief Description
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Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property 
values. Displays the matrix in the format
[sections x coefficients/section datatype].
A [15x6 double] SOS matrix represents a 
filter with 6 coefficients per section and 15 
sections, using data type double to represent 
the coefficients.

StageInputAutoScale Tells the filter whether to set the stage input 
data format to minimize the occurrence of 
overflow conditions.

StageInputFracLength Lets you set the fraction length for stage 
inputs in SOS filters, if you set 
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for stage inputs 
in SOS filters, if you set 
StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage 
output data format to minimize the 
occurrence of overflow conditions.

StageOutputFracLength Lets you set the fraction length for stage 
outputs in SOS filters, if you set 
StageOutputAutoScale to false.

StageOutputWordLength Lets you set the word length for stage 
outputs in SOS filters, if you set 
StageOutputAutoScale to false.

Property Name Brief Description
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Examples Specify a second-order section, direct-form II dfilt object for a Butterworth 
filter converted to second-order sections, with the following code: 

[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(s,g)
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [15x6 double]
             ScaleValues: [16x1 double]
        PersistentMemory: false
                  States: [2x15 double]

With the SOS filter constructed, now change the filter operation to 
single-precision filtering, and then to fixed-point filtering.

set(hd,'arithmetic','single')
hd
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'single'

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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               sosMatrix: [15x6 double]
             ScaleValues: [16x1 double]
        PersistentMemory: false
                  States: [2x15 single]

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'fixed'
               sosMatrix: [15x6 double]
             ScaleValues: [16x1 double]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
    StageInputWordLength: 16             
     StageInputAutoScale: true           
                                         
   StageOutputWordLength: 16             
    StageOutputAutoScale: true           
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
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               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2tsos
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8dfilt.df2tPurpose Construct discrete-time, direct-form II transposed filter object

Syntax Refer to dfilt.df2t in the Signal Processing Toolbox.

Description hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed 
filter object hd, with numerator coefficients b and denominator coefficients a.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed 
filter object hd, with b=1 and a=1. This filter passes the input through to the 
output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. To allow 
you to change the arithmetic setting to fixed or single, a(1) must be equal 
to 1.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the direct-form II transposed filter 
implemented by dfilt.df2t. To help you see how the filter processes the 
coefficients, input, and states of the filter, as well as numerical operations, the 
figure includes the locations of the formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.
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For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 
include denominator coefficients. From reviewing the table, you see that the 

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, 
CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, 
Signed, Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, 
CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, 
Signed, Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

StateFormat StateWordLength StateFracLength States
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DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Properties In this table you see the properties associated with df2t implementation of 
dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.
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Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length used to 
interpret data in the accumulator used to 
hold the results of sum operations. You can 
change the value for this property when you 
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

Denominator Holds the denominator coefficients for IIR 
filters.

Property Name Brief Description
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DenProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
denominator coefficients. You can change 
this property value when you set 
ProductMode to SpecifyPrecision.

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets 
the results of addition operations involving 
numerator coefficients. You can change the 
value of this property after you set 
AccumMode to SpecifyPrecision.

Numerator Holds the numerator coefficient values for 
the filter.

NumFracLength Sets the fraction length used to interpret the 
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
numerator coefficients. Available to be 
changed when you set ProductMode to 
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

Property Name Brief Description
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Examples Create a fixed-point filter by specifying a second-order direct-form II 
transposed filter structure for a dfilt object, and then converting the 
double-precision arithmetic setting to fixed-point.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd = dfilt.df2t(b,a)
 
hd =
 
         FilterStructure: 'Direct-Form II Transposed'
              Arithmetic: 'double'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: [2x1 double]

set(hd,'arithmetic','fixed')

StateAutoScale Setting autoscaling for filter states to true 
reduces the possibility of overflows occurring 
during fixed-point operations. Set to false, 
StateAutoScale lets the filter select the 
fraction length to limit the overflow 
potential.

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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hd
 
hd =
 
         FilterStructure: 'Direct-Form II Transposed'
              Arithmetic: 'fixed'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
        OutputFracLength: 15             
                                         
         StateWordLength: 16             
          StateAutoScale: true           
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

See Also dfilt, dfilt.df1, dfilt.df1t, dfilt.df2
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8dfilt.df2tsosPurpose Construct discrete-time, second-order section direct-form II transposed filter 
object

Syntax Refer to dfilt.df2tsos in the Signal Processing Toolbox.

Description hd = dfilt.df2sos(s) returns a discrete-time, second-order section, 
direct-form II, transposed filter object hd, with coefficients given in the matrix 
s.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.df2tsos(b1,a1,b2,a2,...) returns a discrete-time, 
second-order section, direct-form II, transposed filter object hd, with 
coefficients for the first section given in the b1 and a1 vectors, for the second 
section given in the b2 and a2 vectors, etc.

hd = dfilt.df2tsos(...,g) includes a gain vector g. The elements of g are 
the gains for each section. The maximum length of g is the number of sections 
plus one. If g is not specified, all gains default to one.

hd = dfilt.df2tsos returns a default, discrete-time, second-order section, 
direct-form II, transposed filter object, hd. This filter passes the input through 
to the output unchanged.

Note  The leading coefficient of the denominator a(1) cannot be 0. To allow 
you to change the arithmetic setting to fixed or single, a(1) must be equal 
to 1.



dfilt.df2tsos

8-401

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the second-order section transposed 
direct-form II filter implemented by dfilt.dftsos. To help you see how the 
filter processes the coefficients, input, and states of the filter, as well as 
numerical operations, the figure includes the locations of the formatting objects 
within the signal flow.

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

NumAccumFormat

StateFormat

StateFormat

InputFormat

ScaleValueFormat

NumFormat

NumFormat

NumProdFormat

NumProdFormat

NumProdFormat

DenFormat

DenFormat

DenProdFormat

DenProdFormat

DenAccFormat

NumAccumFormat

NumFormat

NumAccumFormat

StageOutputFormatStageInputFormat

OutputFormat
InputFormat

ScaleValueFormat ScaleValueFormat ScaleValueFormat ScaleValueFormat

StageInputFormat StageOutputFormat StageInputFormat StageOutputFormat StageInputFormat StageOutputFormat

2

output2

1

output

b3

−K−−K− −K−

−K−

−K−

b2

b1

a3

a2

Cast

Section 1

Cast

Cast

Section n

Cast

Section 2

[Sect1] [Sect1]

z
−1

z
−1

2

input1

1

input



dfilt.df2tsos

8-402

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label DenProdFormat, which always follows 
a denominator coefficient multiplication element in the signal flow. The label 
indicates that denominator coefficients leave the multiplication element with 
the word length and fraction length associated with product operations that 

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

DenAccumFormat AccumWordLength DenAccumFracLength AccumMode, CastBeforeSum

DenFormat CoeffWordLength DenFracLength CoeffAutoScale, Signed, 
Denominator

DenProdFormat CoeffWordLength DenProdFracLength ProductMode, 
ProductWordLength

InputFormat InputWordLength InputFracLength

NumAccumFormat AccumWordLength NumAccumFracLength AccumMode, CastBeforeSum

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed, 
Numerator

NumProdFormat CoeffWordLength NumProdFracLength ProductWordLength, 
ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

ScaleValueFormat CoeffWordLength ScaleValueFracLength CoeffAutoScale, 
ScaleValues

StageInputFormat StageInputWordLength StageInputFracLength StageInputAutoScale

StageOutputFormat StageOutputWordLength StageOutputFracLength StageOutputAutoScale

StateFormat StateWordLength StateFracLength States
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include denominator coefficients. From reviewing the table, you see that the 
DenProdFormat refers to the properties ProdWordLength, ProductMode and 
DenProdFracLength that fully define the denominator format after multiply (or 
product) operations.

Properties In this table you see the properties associated with second-order section 
implementation of transposed direct-form II dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.
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Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to 
the appropriate accumulator format (as 
shown in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength and DenFracLength 
properties to specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

DenAccumFracLength Specifies the fraction length used to 
interpret data in the accumulator used to 
hold the results of sum operations. You can 
change the value for this property when you 
set AccumMode to SpecifyPrecision.

DenFracLength Set the fraction length the filter uses to 
interpret denominator coefficients. 
DenFracLength is always available, but it is 
read-only until you set CoeffAutoScale to 
false.

DenProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
denominator coefficients. You can change 
this property value when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

NumAccumFracLength Specifies how the filter algorithm interprets 
the results of addition operations involving 
numerator coefficients. You can change the 
value of this property after you set 
AccumMode to SpecifyPrecision.

NumFracLength Sets the fraction length used to interpret the 
value of numerator coefficients.

NumProdFracLength Specifies how the filter algorithm interprets 
the results of product operations involving 
numerator coefficients. Available to be 
changed when you set ProductMode to 
SpecifyPrecision.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if 
the least significant bit (after rounding) 
would be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

ScaleValueFracLength Scale values work with SOS filters. Setting 
this property controls how your filter 
interprets the scale values by setting the 
fraction length. Only available when you 
disable AutoScaleMode by setting it to 
false.

Property Name Brief Description
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ScaleValues Scaling for the filter objects in SOS filters. 

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

SosMatrix Holds the filter coefficients as property 
values—you use set and get to modify 
them. Displays the matrix in the format
[sections x coefficients/section data type].
A [15x6 double] SOS matrix represents 
a filter with 6 coefficients per section and 15 
sections, using data type double to represent 
the coefficients.

StageInputFracLength Lets you set the fraction length for stage 
inputs in SOS filters, if you set 
StageInputAutoScale to false.

StageInputWordLength Lets you set the word length for stage inputs 
in SOS filters, if you set 
StageInputAutoScale to false.

StageOutputAutoScale Tells the filter whether to set the stage 
output data format to minimize the 
occurrence of overflow conditions.

StageOutputFracLength Lets you set the fraction length for stage 
outputs in SOS filters, if you set 
StageOutputAutoScale to off.

StageOutputWordLength Lets you set the word length for stage 
outputs in SOS filters, if you set 
StageOutputAutoScale to false.

Property Name Brief Description
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Examples Construct a second-order section Butterworth filter for fixed-point filtering. 
Start by specifying a Butterworth filter, and then convert the filter to 
second-order sections, with the following code: 

[z,p,k] = butter(30,0.5);
[s,g] = zp2sos(z,p,k);
hd = dfilt.df2tsos(s,g)
 
hd =
 
         FilterStructure: [1x48 char]
              Arithmetic: 'double'
               sosMatrix: [15x6 double]
             ScaleValues: [16x1 double]
        PersistentMemory: false
                  States: [2x15 double]

StateAutoScale Setting autoscaling for filter states to true 
reduces the possibility of overflows occurring 
during fixed-point operations. Set to false, 
StateAutoScale lets the filter select the 
fraction length to limit the overflow 
potential.

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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Now change the setting of the property Arithmetic to convert the filter to 
fixed-point operation.

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: [1x48 char]
              Arithmetic: 'fixed'
               sosMatrix: [15x6 double]
             ScaleValues: [16x1 double]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
    StageInputWordLength: 16             
    StageInputFracLength: 15             
                                         
   StageOutputWordLength: 16             
   StageOutputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
          StateAutoScale: true           
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   



dfilt.df2tsos

8-412

            OverflowMode: 'wrap'        

See Also dfilt, dfilt.df1sos, dfilt.df1tsos, dfilt.df2sos
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8dfilt.dfasymfirPurpose Construct discrete-time, direct-form antisymmetric FIR filter object

Syntax Refer to dfilt.dfasymfir in the Signal Processing Toolbox.

Description hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form, 
antisymmetric FIR filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, 
antisymmetric FIR filter object hd, with b=1. This filter passes the input 
through to the output unchanged.

Note  Only the coefficients in the first half of vector b are used because 
dfilt.dfasymfir assumes the coefficients in the second half are 
antisymmetric to those in the first half. For example, in the figure coefficients, 
b(4) = -b(3), b(5) = -b(2), and b(6) = -b(1).

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the odd-order antisymmetric FIR 
filter implemented by dfilt.dfasymfir. The even-order filter uses similar 
flow. To help you see how the filter processes the coefficients, input, and states 
of the filter, as well as numerical operations, the figure includes the locations 
of the formatting objects within the signal flow.



dfilt.dfasymfir

8-414

Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
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the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength and ProductWordLength that fully define the coefficient 
format after multiply (or product) operations.

Properties In this table you see the properties associated with an antisymmetric FIR 
implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, 
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength

TapSumFormat InputWordLength InputFracLength InputFormat
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where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits 
[27]

Specifies the fraction length used to interpret 
data output by the accumulator.

AccumWordLength Any integer 
number of bits[33]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data. Also controls  
TapSumFracLength.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data. Also determines TapSumWordLength.

NumFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[29]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[33]

Determines the word length used for the output 
data. You make this property editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic). 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

ProductFracLength Any positive or 
negative integer 
number of bits [27]

Specifies the fraction length to use for 
multiplication operation results. This property 
becomes writable (you can change the value) 
when you set ProductMode to SpecifyPrecision.

ProductWordLength Any integer 
number of bits 
[33]

Specifies the word length to use for 
multiplication operation results. This property 
becomes writable (you can change the value) 
when you set ProductMode to SpecifyPrecision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description
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Examples Odd Order
Specify a fifth-order direct-form antisymmetric FIR filter structure for a dfilt 
object, hd, with the following code:

b = [-0.008 0.06 -0.44 0.44 -0.06 0.008];
hd = dfilt.dfasymfir(b)
 
hd =
 
     FilterStructure: 'Direct-Form Antisymmetric FIR'
          Arithmetic: 'double'
           Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]
    PersistentMemory: false

set(hd,'arithmetic','fixed')
hd =
 
     FilterStructure: 'Direct-Form Antisymmetric FIR'
          Arithmetic: 'fixed'
           Numerator: [-0.0080 0.0600 -0.4400 0.4400 -0.0600 0.0080]
    PersistentMemory: false
 
     CoeffWordLength: 16             
      CoeffAutoScale: true           
              Signed: true           

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object to match 
the filter 
arithmetic setting

Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. 

Name Values Description
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     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'

Now look at the coefficients after converting hd to fixed-point format.

get(hd,'numerator')

ans =

   -0.0080    0.0600   -0.4400    0.4400   -0.0600    0.0080

Even Order
Specify a fourth-order direct-form antisymmetric FIR filter structure for dfilt 
object hd, with the following code:

b = [-0.01 0.1 0.0 -0.1 0.01];
hd = dfilt.dfasymfir(b)
 
hd =
 
     FilterStructure: 'Direct-Form Antisymmetric FIR'
          Arithmetic: 'double'
           Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
    PersistentMemory: false
 
hd.arithmetic='fixed'
 
hd =
 
     FilterStructure: 'Direct-Form Antisymmetric FIR'
          Arithmetic: 'fixed'
           Numerator: [-0.0100 0.1000 0 -0.1000 0.0100]
    PersistentMemory: false
 
     CoeffWordLength: 16             
      CoeffAutoScale: true           
              Signed: true           
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     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'
                                     
get(hd,'numerator')

ans =

   -0.0100    0.1000         0   -0.1000    0.0100

See Also dfilt, dfilt.dffir, dfilt.dffirt, dfilt.dfsymfir
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8dfilt.dffirPurpose Construct discrete-time direct-form FIR filter object

Syntax Refer to dfilt.dffir in the Signal Processing Toolbox.

Description hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse 
response (FIR) filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter 
object hd, with b=1. This filter passes the input through to the output 
unchanged.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the direct-form FIR filter 
implemented by dfilt.dffir. To help you see how the filter processes the 
coefficients, input, and states of the filter, as well as numerical operations, the 
figure includes the locations of the formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
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the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength and ProductWordLength that fully define the coefficient 
format after multiply (or product) operations.

Properties In this table you see the properties associated with direct-form FIR 
implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, 
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength
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where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits 
[30]

Specifies the fraction length used to interpret 
data output by the accumulator. 

AccumWordLength Any integer 
number of bits[34]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths  to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data.

NumFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[32]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[39]

Determines the word length used for the output 
data. You make this property  editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic). 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

ProductFracLength Any positive or 
negative integer 
number of bits [30]

Specifies the fraction length to use for 
multiplication operation results. This property 
becomes writable (you can change the value) 
when you set ProductMode to SpecifyPrecision.

ProductWordLength Any integer 
number of bits 
[32]

Specifies the word length to use for 
multiplication operation results. This property 
becomes writable (you can change the value) 
when you set ProductMode to SpecifyPrecision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description



dfilt.dffir

8-430

Examples Specify a second-order direct-form FIR filter structure for a dfilt object hd, 
with the following code that constructs the filter in double-precision format and 
then converts the filter to fixed-point operation:

b = [0.05 0.9 0.05];
hd = dfilt.dffir(b)
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'
           Numerator: [0.0500 0.9000 0.0500]
    PersistentMemory: false
 
hd.arithmetic='fixed'
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'fixed'
           Numerator: [0.0500 0.9000 0.0500]
    PersistentMemory: false
 
     CoeffWordLength: 16             
      CoeffAutoScale: true           

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object to match 
the filter 
arithmetic setting

Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. 

Name Values Description
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              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'
                                     
hd.filterInternals='specifyPrecision'
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'fixed'
           Numerator: [0.0500 0.9000 0.0500]
    PersistentMemory: false
 
     CoeffWordLength: 16                
      CoeffAutoScale: true              
              Signed: true              
                                        
     InputWordLength: 16                
     InputFracLength: 15                
                                        
     FilterInternals: 'SpecifyPrecision'
                                        
    OutputWordLength: 34                
    OutputFracLength: 30                
                                        
   ProductWordLength: 32                
   ProductFracLength: 30                
                                        
     AccumWordLength: 34                
     AccumFracLength: 30                
                                        
           RoundMode: 'convergent'      
        OverflowMode: 'wrap'   

See Also dfilt, dfilt.dfasymfir, dfilt.dffirt, dfilt.dfsymfir
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8dfilt.dffirtPurpose Construct discrete-time, direct-form FIR transposed filter object

Syntax Refer to dfilt.dffirt in the Signal Processing Toolbox.

Description hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed 
filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR 
transposed filter object hd, with b=1. This filter passes the input through to the 
output unchanged.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the transposed direct-form FIR filter 
implemented by dfilt.dffirt. To help you see how the filter processes the 
coefficients, input, and states of the filter, as well as numerical operations, the 
figure includes the locations of the formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 
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You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength and ProductWordLength that fully define the coefficient 
format after multiply (or product) operations.

Properties In this table you see the properties associated with the transposed direct-form 
FIR implementation of dfilt objects.

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, Signed, 
Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength
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Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits 
[30]

Specifies the fraction length used to interpret 
data output by the accumulator. 

AccumWordLength Any integer 
number of bits[34]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths  to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data.

NumFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[30]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[34]

Determines the word length used for the output 
data. You make this property  editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic). 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description
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Examples Specify a second-order direct-form FIR transposed filter structure for a dfilt 
object, hd, with the following code:

b = [0.05 0.9 0.05];
hd = dfilt.dffirt(b)
 
hd =
 
     FilterStructure: 'Direct-Form FIR Transposed'
          Arithmetic: 'double'
           Numerator: [0.0500 0.9000 0.0500]
    PersistentMemory: false

Now use the filter property Arithmetic to change the filter to fixed-point 
format.

set(hd,'arithmetic','fixed')
hd
 
hd =
 
     FilterStructure: 'Direct-Form FIR Transposed'
          Arithmetic: 'fixed'
           Numerator: [0.0500 0.9000 0.0500]
    PersistentMemory: false

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object to match 
the filter 
arithmetic setting

Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. 

Name Values Description
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     CoeffWordLength: 16             
      CoeffAutoScale: true           
              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'
                                     
hd.filterInternals='specifyPrecision'
 
hd =
 
     FilterStructure: 'Direct-Form FIR Transposed'
          Arithmetic: 'fixed'
           Numerator: [0.0500 0.9000 0.0500]
    PersistentMemory: false
 
     CoeffWordLength: 16                
      CoeffAutoScale: true              
              Signed: true              
                                        
     InputWordLength: 16                
     InputFracLength: 15                
                                        
     FilterInternals: 'SpecifyPrecision'
                                        
    OutputWordLength: 34                
    OutputFracLength: 30                
                                        
   ProductWordLength: 32                
   ProductFracLength: 30                
                                        
     AccumWordLength: 34                
     AccumFracLength: 30                
                                        
           RoundMode: 'convergent'      
        OverflowMode: 'wrap'            
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See Also dfilt, dfilt.dffir, dfilt.dfasymfir, dfilt.dfsymfir
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8dfilt.dfsymfirPurpose Construct discrete-time, direct-form symmetric FIR filter object 

Syntax Refer to dfilt.dfsymfir in the Signal Processing Toolbox.

Description hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR 
filter object hd, with numerator coefficients b.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric 
FIR filter object hd, with b=1. This filter passes the input through to the output 
unchanged.

Note  Only the coefficients in the first half of vector b are used because 
dfilt.dfsymfir assumes the coefficients in the second half are symmetric to 
those in the first half. In the figure below, for example, b(3) = 0, b(4) = b(2) and 
b(5) = b(1).

Fixed-Point 
Filter Structure

In the following figure you see the signal flow diagram for the symmetric FIR 
filter that dfilt.dfsymfir implements.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
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the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength and ProductWordLength that fully define the coefficient 
format after multiply (or product) operations.

Properties In this table you see the properties associated with the symmetric FIR 
implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength

InputFormat InputWordLength InputFracLength

NumFormat CoeffWordLength NumFracLength CoeffAutoScale, 
Signed, Numerator

OutputFormat OutputWordLength OutputFracLength

ProductFormat ProductWordLength ProductFracLength

TapSumFormat InputWordLength InputFracLength
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where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3..

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits 
[27]

Specifies the fraction length used to interpret 
data output by the accumulator.

AccumWordLength Any integer 
number of bits[33]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths  to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data.

NumFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[29]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilerInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[33]

Determines the word length used for the output 
data. You make this property  editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic). 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

ProductFracLength Any positive or 
negative integer 
number of bits [29]

Specifies the fraction length to use for 
multiplication operation results. This property 
becomes writable (you can change the value) 
when you set ProductMode to SpecifyPrecision.

ProductWordLength Any integer 
number of bits 
[33]

Specifies the word length to use for 
multiplication operation results. This property 
becomes writable (you can change the value) 
when you set ProductMode to SpecifyPrecision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description
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Examples Odd Order
Specify a fifth-order direct-form symmetric FIR filter structure for a dfilt 
object hd, with the following code:

b = [-0.008 0.06 0.44 0.44 0.06 -0.008];
hd = dfilt.dfsymfir(b)
 
hd =
 
     FilterStructure: 'Direct-Form Symmetric FIR'
          Arithmetic: 'double'
           Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
    PersistentMemory: false
 
set(hd,'arithmetic','fixed')
hd
 
hd =
 
     FilterStructure: 'Direct-Form Symmetric FIR'
          Arithmetic: 'fixed'
           Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
    PersistentMemory: false
 

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object to match 
the filter 
arithmetic setting

Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. 

Name Values Description
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     CoeffWordLength: 16             
      CoeffAutoScale: true           
              Signed: true           
                                     
     InputWordLength: 16             
     InputFracLength: 15             
                                     
     FilterInternals: 'FullPrecision'
                                     
hd.filterinternals='specifyPrecision'
 
hd =
 
     FilterStructure: 'Direct-Form Symmetric FIR'
          Arithmetic: 'fixed'
           Numerator: [-0.0080 0.0600 0.4400 0.4400 0.0600 -0.0080]
    PersistentMemory: false
 
     CoeffWordLength: 16                
      CoeffAutoScale: true              
              Signed: true              
                                        
     InputWordLength: 16                
     InputFracLength: 15                
                                        
     FilterInternals: 'SpecifyPrecision'
                                        
    OutputWordLength: 36                
    OutputFracLength: 31                
                                        
   ProductWordLength: 33                
   ProductFracLength: 31                
                                        
     AccumWordLength: 36                
     AccumFracLength: 31                
                                        
           RoundMode: 'convergent'      
        OverflowMode: 'wrap'     
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To use hd for fixed-point filtering,  change the value of the property Arithmetic 
to fixed with the following command:

hd.arithmetic = 'fixed'

Even Order
Specify a fourth-order, fixed-point, direct-form symmetric FIR filter structure 
for a dfilt object hd, with the following code:

b = [-0.01 0.1 0.8 0.1 -0.01];
hd = dfilt.dfsymfir(b)

 

hd =

 

     FilterStructure: 'Direct-Form Symmetric FIR'

          Arithmetic: 'double'

           Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

    PersistentMemory: false

 

set(hd,'arithmetic','fixed')

hd

 

hd =

 

     FilterStructure: 'Direct-Form Symmetric FIR'

          Arithmetic: 'fixed'

           Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

    PersistentMemory: false

 

     CoeffWordLength: 16             

      CoeffAutoScale: true           

              Signed: true           

                                     

     InputWordLength: 16             

     InputFracLength: 15             

                                     

     FilterInternals: 'FullPrecision'

                                     

hd.filterinternals='specifyPrecision'
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hd =

 

     FilterStructure: 'Direct-Form Symmetric FIR'

          Arithmetic: 'fixed'

           Numerator: [-0.0100 0.1000 0.8000 0.1000 -0.0100]

    PersistentMemory: false

 

     CoeffWordLength: 16                

      CoeffAutoScale: true              

              Signed: true              

                                        

     InputWordLength: 16                

     InputFracLength: 15                

                                        

     FilterInternals: 'SpecifyPrecision'

                                        

    OutputWordLength: 36                

    OutputFracLength: 30                

                                        

   ProductWordLength: 33                

   ProductFracLength: 30                

                                        

     AccumWordLength: 36                

     AccumFracLength: 30                

                                        
           RoundMode: 'convergent'     

OverflowMode: 'wrap'

See Also dfilt, dfilt.dfasymfir, dfilt.dffir, dfilt.dffirt
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8dfilt.latticeallpassPurpose Construct discrete-time, lattice allpass filter object

Syntax Refer to dfilt.latticeallpass in the Signal Processing Toolbox.

Description hd = dfilt.latticeallpass(k) returns a discrete-time, lattice allpass filter 
object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass 
filter object hd, with k=[ ]. This filter passes the input through to the output 
unchanged.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the allpass lattice filter implemented 
by dfilt.latticeallpass. To help you see how the filter processes the 
coefficients, input, and states of the filter, as well as numerical operations, the 
figure includes the locations of the formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

LatticeFormat

InputFormat

OutputFormat

AccumFormat

StateFormat

LatticeFormat LatticeFormat

LatticeFormat

ProductFormat

ProductFormat

AccumFormat

ProductFormat

ProductFormat

StateFormat

StateFormat

StateFormat

StateFormat

AccumFormat AccumFormat

StateFormat

1
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Cast

CastCast

Cast

Cast

Cast

k2 K1

−K− −K−

z
−1

z
−1

1
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Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength



dfilt.latticeallpass

8-455

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength, ProductWordLength, and ProductMode that fully define 
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the allpass lattice 
implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties
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For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to 
interpret data output by the accumulator. 
This is a property of FIR filters and lattice 
filters. IIR filters have two similar 
properties—DenAccumFracLength and 
NumAccumFracLength—that let you set the 
precision for numerator and denominator 
operations separately.

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.
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CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
LatticeFracLength property value to 
specify the precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

Lattice Any lattice structure coefficients. No default 
value.

LatticeFracLength Sets the fraction length applied to the lattice 
coefficients.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this 
sets the fraction length used to interpret the 
data. This property becomes writable (you 
can change the value) when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description



dfilt.latticeallpass

8-460

RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

Property Name Brief Description
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Examples Specify a third-order lattice allpass filter structure for a dfilt object hd, with 
the following code:

k = [.66 .7 .44];
hd=dfilt.latticeallpass(k);

Now convert hd to fixed-point arithmetic form.

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Lattice Allpass'
              Arithmetic: 'fixed'
                 Lattice: [0.6600 0.7000 0.4400]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         

See Also dfilt, dfilt.latticear, dfilt.latticearma, dfilt.latticemamax, 
dfilt.latticemamin
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8dfilt.latticearPurpose Construct discrete-time, lattice, autoregressive filter object

Syntax Refer to dfilt.latticear in the Signal Processing Toolbox.

Description hd = dfilt.latticear(k) returns a discrete-time, lattice autoregressive 
filter object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive 
filter object hd, with k=[ ]. This filter passes the input through to the output 
unchanged.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the autoregressive lattice filter 
implemented by dfilt.latticear. To help you see how the filter processes the 
coefficients, input, and states of the filter, as well as numerical operations, the 
figure includes the locations of the formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.
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AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength
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Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength, ProductWordLength, and ProductMode that fully define 
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the autoregressive lattice 
implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties
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For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to 
interpret data output by the accumulator. 
This is a property of FIR filters and lattice 
filters. IIR filters have two similar 
properties—DenAccumFracLength and 
NumAccumFracLength—that let you set the 
precision for numerator and denominator 
operations separately.

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.
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CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
LatticeFracLength to specify the precision 
used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice 
coefficients.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this 
sets the fraction length used to interpret the 
data. This property becomes writable (you 
can change the value) when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

Property Name Brief Description
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Examples Specify a third-order lattice autoregressive filter structure for a dfilt object, 
hd, with the following code that creates a fixed-point filter.

k = [.66 .7 .44];
hd1=dfilt.latticear(k)
 
hd1 =
 
         FilterStructure: 'Lattice Autoregressive (AR)'
              Arithmetic: 'double'
                 Lattice: [0.6600 0.7000 0.4400]
        PersistentMemory: false
                  States: [3x1 double]

hd1.arithmetic='fixed'
 
hd1 =
 
         FilterStructure: 'Lattice Autoregressive (AR)'
              Arithmetic: 'fixed'

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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                 Lattice: [0.6600 0.7000 0.4400]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'        

specifyall(hd1)
hd1
 
hd1 =
 
         FilterStructure: 'Lattice Autoregressive (AR)'
              Arithmetic: 'fixed'
                 Lattice: [0.6600 0.7000 0.4400]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16                
          CoeffAutoScale: false             
       LatticeFracLength: 15                
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                  Signed: true              
                                            
         InputWordLength: 16                
         InputFracLength: 15                
                                            
        OutputWordLength: 16                
              OutputMode: 'SpecifyPrecision'
        OutputFracLength: 12                
                                            
         StateWordLength: 16                
         StateFracLength: 15                
                                            
             ProductMode: 'SpecifyPrecision'
       ProductWordLength: 32                
       ProductFracLength: 30                
                                            
               AccumMode: 'SpecifyPrecision'
         AccumWordLength: 40                
         AccumFracLength: 30                
           CastBeforeSum: true              
                                            
               RoundMode: 'convergent'      
            OverflowMode: 'wrap'            

See Also dfilt, dfilt.latticeallpass, dfilt.latticearma, dfilt.latticemamax, 
dfilt.latticemamin
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8dfilt.latticearmaPurpose Construct discrete-time, lattice, autoregressive, moving-average filter object

Syntax Refer to dfilt.latticearma in the Signal Processing Toolbox.

Description hd = dfilt.latticearma(k) returns a discrete-time, lattice moving-average 
autoregressive filter object hd, with lattice coefficients, k.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

hd = dfilt.latticearma returns a default, discrete-time, lattice 
moving-average, autoregressive filter object hd, with k=[ ]. This filter passes 
the input through to the output unchanged.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the autoregressive lattice filter 
implemented by dfilt.latticearma. To help you see how the filter processes 
the coefficients, input, and states of the filter, as well as numerical operations, 
the figure includes the locations of the formatting objects within the signal 
flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
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the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.

Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label LatticeProdFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
lattice coefficients leave the multiplication element with the word length and 
fraction length associated with product operations that include coefficients. 
From reviewing the table, you see that the LatticeProdFormat refers to the 
properties ProductWordLength, LatticeProdFracLength, and ProductMode 
that fully define the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the autoregressive 
moving-average lattice implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

Signal Flow Label Word Length 
Property

Fraction Length Property Related Properties

InputFormat InputWordLength InputFracLength

LadderAccumFormat AccumWordLength LadderAccumFracLength AccumMode

LadderFormat CoeffWordLength LadderFracLength CoeffAutoScale

LadderProdFormat ProductWordLength LadderProdFracLength ProductMode

LatticeAccumFormat AccumWordLength LatticeAccumFracLength AccumMode

LatticeFormat CoeffWordLength LatticeFracLength CoeffAutoScale

LatticeProdFormat ProductWordLength LatticeProdFracLength ProductMode

OutputFormat OutputWordLength OutputFracLength OutputMode

StateFormat StateWordLength StateFracLength States
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To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to 
interpret data output by the accumulator. 
This is a property of FIR filters and lattice 
filters. IIR filters have two similar 
properties—DenAccumFracLength and 
NumAccumFracLength—that let you set the 
precision for numerator and denominator 
operations separately.

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.
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Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
LatticeFracLength property to specify the 
precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

Ladder Stores the ladder coefficients for lattice 
ARMA (dfilt.latticearma) filters.

Property Name Brief Description
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LadderAccumFracLength Sets the fraction length used to interpret the 
output from sum operations that include the 
ladder coefficients. You can change this 
property value after you set AccumMode to 
SpecifyPrecision.

LadderFracLength Determines the precision used to represent 
the ladder coefficients in ARMA lattice 
filters.

Lattice Stores the lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice 
coefficients.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

Property Name Brief Description
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OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this 
sets the fraction length used to interpret the 
data. This property becomes writable (you 
can change the value) when you set 
ProductMode to SpecifyPrecision.

ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

Property Name Brief Description
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PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description
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See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticemamin, 
dfilt.latticemamin

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description



dfilt.latticemamax

8-483

8dfilt.latticemamaxPurpose Construct discrete-time, lattice, moving-average filter object with maximum 
phase

Syntax Refer to dfilt.latticemamax in the Signal Processing Toolbox.

Description hd = dfilt.latticemamax(k) returns a discrete-time, lattice, 
moving-average filter object hd, with lattice coefficients k.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

Note  When the k coefficients define a maximum phase filter, the resulting 
filter in this structure is maximum phase. When your coefficients do not 
define a maximum phase filter, placing them in this structure does not 
produce a maximum phase filter.

hd = dfilt.latticemamax returns a default discrete-time, lattice, 
moving-average filter object hd, with k=[ ]. This filter passes the input through 
to the output unchanged.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the maximum phase implementation 
of a moving-average lattice filter implemented by dfilt.latticemamax. To 
help you see how the filter processes the coefficients, input, and states of the 
filter, as well as numerical operations, the figure includes the locations of the 
formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.
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Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength, ProductWordLength, and ProductMode that fully define 
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the maximum phase, 
moving average lattice implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties
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For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to 
interpret data output by the accumulator. 
This is a property of FIR filters and lattice 
filters. IIR filters have two similar 
properties—DenAccumFracLength and 
NumAccumFracLength—that let you set the 
precision for numerator and denominator 
operations separately.

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.
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CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
LatticeFracLength property to specify the 
precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice 
coefficients.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this 
sets the fraction length used to interpret the 
data. This property becomes writable (you 
can change the value) when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

Property Name Brief Description
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Examples Specify a fourth-order lattice, moving-average, maximum phase filter 
structure for a dfilt object, hd, with the following code:

k = [.66 .7 .44 .33];
hd = dfilt.latticemamax(k)

hd =
             FilterStructure: 'Lattice maximum phase'
                     Lattice: [1x4 double]
    NumberOfSamplesProcessed: 0
                 ResetStates: 'on'
                      States: [4x1 double]

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamin

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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8dfilt.latticemaminPurpose Construct discrete-time, lattice, moving-average filter object with minimum 
phase

Syntax Refer to dfilt.latticemamin in the Signal Processing Toolbox.

Description hd = dfilt.latticemamin(k) returns a discrete-time, lattice, 
moving-average, minimum phase, filter object hd, with lattice coefficients k.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

Note  When the k coefficients define a minimum phase filter, the resulting 
filter in this structure is minimum phase. When your coefficients do not define 
a minimum phase filter, placing them in this structure does not produce 
a minimum phase filter.

hd = dfilt.latticemamin returns a default discrete-time, lattice, 
moving-average, minimum phase, filter object hd, with k=[ ]. This filter passes 
the input through to the output unchanged.

Fixed-Point 
Filter Structure

The figure below shows the signal flow for the minimum phase implementation 
of a moving-average lattice filter implemented by dfilt.latticemamin. To 
help you see how the filter processes the coefficients, input, and states of the 
filter, as well as numerical operations, the figure includes the locations of the 
formatting objects within the signal flow.
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Notes About the Signal Flow Diagram
To help you understand where and how the filter performs fixed-point 
arithmetic during filtering, the figure shows various labels associated with 
data flow and functional elements in the filter. The following table describes 
each label in the signal flow and relates the label to the filter properties that 
are associated with it. 

You see that the labels use a common format—a prefix followed by the word 
“format.” In this use, “format” means the word length and fraction length 
associated with the filter part referred to by the prefix.

For example, the InputFormat label refers to the word length and fraction 
length used to interpret the data input to the filter. The format properties 
InputWordLength and InputFracLength (as shown in the table) store the word 
length and the fraction length in bits. Or consider NumFormat, which refers to 
the word and fraction lengths (CoeffWordLength, NumFracLength) associated 
with representing filter numerator coefficients.
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AccumFormat OutputFormat
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Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties

AccumFormat AccumWordLength AccumFracLength AccumMode

InputFormat InputWordLength InputFracLength

LatticeFormat
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Most important is the label position in the diagram, which identifies where the 
format applies.

As one example, look at the label ProductFormat, which always follows 
a coefficient multiplication element in the signal flow. The label indicates that 
coefficients leave the multiplication element with the word length and fraction 
length associated with product operations that include coefficients. From 
reviewing the table, you see that the ProductFormat refers to the properties 
ProductFracLength, ProductWordLength, and ProductMode that fully define 
the coefficient format after multiply (or product) operations.

Properties In this table you see the properties associated with the minimum phase, 
moving average lattice implementation of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.

OutputFormat OutputWordLength OutputFracLength OutputMode

ProductFormat ProductWordLength ProductFracLength ProductMode

StateFormat StateWordLength StateFracLength States

Signal Flow Label Word Length 
Property

Fraction Length 
Property

Related Properties
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For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

AccumFracLength Specifies the fraction length used to 
interpret data output by the accumulator. 
This is a property of FIR filters and lattice 
filters. IIR filters have two similar 
properties—DenAccumFracLength and 
NumAccumFracLength—that let you set the 
precision for numerator and denominator 
operations separately.

AccumMode Determines how the accumulator outputs 
stored values. Choose from full precision 
(FullPrecision), or whether to keep the 
most significant bits (KeepMSB) or least 
significant bits (KeepLSB) when output 
results need shorter word length than the 
accumulator supports. To let you set the 
word length and the precision (the fraction 
length) used by the output from the 
accumulator, set AccumMode to 
SpecifyPrecision.

AccumWordLength Sets the word length used to store data in 
the accumulator/buffer.

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to the 
appropriate accumulator format (as shown 
in the signal flow diagrams) before 
performing sum operations.
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CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
LatticeFracLength property to specify the 
precision used.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

Lattice Any lattice structure coefficients.

LatticeFracLength Sets the fraction length applied to the lattice 
coefficients.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

Property Name Brief Description
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OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

ProductFracLength For the output from a product operation, this 
sets the fraction length used to interpret the 
data. This property becomes writable (you 
can change the value) when you set 
ProductMode to SpecifyPrecision.

Property Name Brief Description
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ProductMode Determines how the filter handles the 
output of product operations. Choose from 
full precision (FullPrecision), or whether to 
keep the most significant bit (KeepMSB) or 
least significant bit (KeepLSB) in the result 
when you need to shorten the data words. 
For you to be able to set the precision (the 
fraction length) used by the output from the 
multiplies, you set ProductMode to 
SpecifyPrecision.

ProductWordLength Specifies the word length to use for 
multiplication operation results. This 
property becomes writable (you can change 
the value) when you set ProductMode to 
SpecifyPrecision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would 
be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

Property Name Brief Description
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Examples Specify a third-order lattice, moving-average, minimum phase, filter structure 
for a dfilt object, hd, with the following code:

k = [.66 .7 .44];
hd = dfilt.latticemamin(k)
 
hd =
 
         FilterStructure: 'Lattice Moving-Average (MA) For Minimum 
Phase'
              Arithmetic: 'double'
                 Lattice: [0.6600 0.7000 0.4400]
        PersistentMemory: false
                  States: [3x1 double]

set(hd,'arithmetic','fixed')
specifyall(hd)
hd
 
hd =

StateFracLength When you set StateAutoScale to false, you 
enable the StateFracLength property that 
lets you set the fraction length applied to 
interpret the filter states.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

StateWordLength Sets the word length used to represent the 
filter states.

Property Name Brief Description
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         FilterStructure: 'Lattice Moving-Average (MA) For Minimum 
Phase'
              Arithmetic: 'fixed'
                 Lattice: [0.6600 0.7000 0.4400]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16                
          CoeffAutoScale: false             
       LatticeFracLength: 15                
                  Signed: true              
                                            
         InputWordLength: 16                
         InputFracLength: 15                
                                            
        OutputWordLength: 16                
              OutputMode: 'SpecifyPrecision'
        OutputFracLength: 12                
                                            
         StateWordLength: 16                
         StateFracLength: 15                
                                            
             ProductMode: 'SpecifyPrecision'
       ProductWordLength: 32                
       ProductFracLength: 30                
                                            
               AccumMode: 'SpecifyPrecision'
         AccumWordLength: 40                
         AccumFracLength: 30                
           CastBeforeSum: true              
                                            
               RoundMode: 'convergent'      
            OverflowMode: 'wrap'            

See Also dfilt, dfilt.latticeallpass, dfilt.latticear, dfilt.latticearma, 
dfilt.latticemamax
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8dfilt.parallelPurpose Construct discrete-time, parallel structure filter object

Syntax Refer to dfilt.parallel in the Signal Processing Toolbox.

Description hd = dfilt.parallel(hd1,hd2,...) returns a discrete-time filter object hd, 
which is a structure of two or more dfilt filter objects, hd1, hd2, and so on 
arranged in parallel.

You can also use the standard notation to combine filters into a parallel 
structure.

parallel(hd1,hd2,...)

In this syntax, hd1, hd2, and so on can be a mix of dfilt objects, mfilt objects, 
and adaptfilt objects.

hd1, hd2, and so on can be fixed-point filters. All filters in the parallel structure 
must be the same arithmetic format—double, single, or fixed. hd, the filter 
returned, inherits the format of the individual filters.

See Also dfilt, dfilt.cascade

dfilt.cascade, dfilt.parallel in your Signal Processing Toolbox 
documentation

X(z)

Y(z)

hd1((z))

hd2((z)) +

hd

 .
 .
 .
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8dfilt.scalarPurpose Construct discrete-time, scalar filter object 

Syntax Refer to dfilt.scalar in the Signal Processing Toolbox.

Description dfilt.scalar(g) returns a discrete-time, scalar filter object with gain g, 
where g is a scalar.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hd as follows:

• To change to single-precision filtering, enter
set(hd,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hd,'arithmetic','fixed');

For more information about the property Arithmetic, refer to “Arithmetic” on 
page 7-20.

dfilt.scalar returns a default, discrete-time scalar gain filter object hd, with 
gain 1.

Properties In this table you see the properties associated with the scalar implementation 
of dfilt objects.

Note  The table lists all the properties that a filter can have. Many of the 
properties are dynamic, meaning they exist only in response to the settings of 
other properties. You might not see all of the listed properties all the time.

To view all the properties for a filter at any time, use
get(hd)

where hd is a filter.
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For further information about the properties of this filter or any dfilt object, 
refer to “Fixed-Point Filter Properties” on page 7-3.

Property Name Brief Description

Arithmetic Defines the arithmetic the filter uses. Gives 
you the options double, single, and fixed. 
In short, this property defines the operating 
mode for your filter.

CastBeforeSum Specifies whether to cast numeric data to 
the appropriate accumulator format (as 
shown in the signal flow diagrams) before 
performing sum operations.

CoeffAutoScale Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
CoeffFracLength property to specify the 
precision used.

CoeffFracLength Set the fraction length the filter uses to 
interpret coefficients. CoeffFracLength is 
always available, but it is read-only until 
you set CoeffAutoScale to false.

CoeffWordLength Specifies the word length to apply to filter 
coefficients. 

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

Gain Returns the gain for the scalar filter. Scalar 
filters do not alter the input data except by 
adding gain.
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InputFracLength Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Specifies the word length applied to 
interpret input data.

OutputFracLength Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
OutputMode to SpecifyPrecision.

OutputMode Sets the mode the filter uses to scale the 
filtered data for output. You have the 
following choices:

- AvoidOverflow—directs the filter to set 
the output data word length and fraction 
length to avoid causing the data to 
overflow.

- BestPrecision—directs the filter to set 
the output data word length and fraction 
length to maximize the precision in the 
output data.

- SpecifyPrecision—lets you set the 
word and fraction lengths used by the 
output data from filtering.

OutputWordLength Determines the word length used for the 
output data.

Property Name Brief Description
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OverflowMode Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic). The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

PersistentMemory Specifies whether to reset the filter states 
and memory before each filtering operation. 
Lets you decide whether your filter retains 
states from previous filtering runs. False is 
the default setting.

Property Name Brief Description
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RoundMode Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if 
the least significant bit (after rounding) 
would be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Property Name Brief Description
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Example Create a direct-form I filter object hd_filt and a scalar object with a gain of 3 
hd_gain and cascade them together.

b = [0.3 0.6 0.3];
a = [1 0 0.2];
hd_filt = dfilt.df1(b,a)
hd_gain = dfilt.scalar(3)
hd=cascade(hd_gain,hd_filt)
fvtool(hd_filt,hd_gain,hd)

hd_filt =
         FilterStructure: 'direct-form I'
              Arithmetic: 'double'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: [4x1 double]

hd_gain =
         FilterStructure: 'Scalar'
              Arithmetic: 'double'
                    Gain: 3
        PersistentMemory: false
                  States: []

Signed Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
filtstates in your Signal Processing 
Toolbox documentation or in the Help 
system.

Property Name Brief Description
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hd =
         FilterStructure: Cascade
              Section(1): Scalar
              Section(2): Direct Form I
        PersistentMemory: false

To view the sections of the cascaded filter, use

hd.section(1)
 
ans =
         FilterStructure: 'Scalar'
              Arithmetic: 'double'



dfilt.scalar

8-510

                    Gain: 3
        PersistentMemory: false
                  States: []

and

hd.section(2)
 
ans =
         FilterStructure: 'Direct Form I'
              Arithmetic: 'double'
               Numerator: [0.3000 0.6000 0.3000]
             Denominator: [1 0 0.2000]
        PersistentMemory: false
                  States: [4x1 double]

See Also dfilt, dfilt.cascade
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8dfilt.wdfallpassPurpose Construct wave digital allpass filter object

Syntax hd = dfilt.wdfallpass(c)

Description hd = dfilt.wdfallpass(c) constructs an allpass wave digital filter structure 
given the allpass coefficients in vector c.

Vector c must have, one, two, or four elements (filter coefficients). Filters with 
three coefficients are not supported. When you use c with four coefficients, the 
first and third coefficients must be 0.

Given the coefficients in c, the transfer function for the wave digital allpass 
filter is defined by

Internally, the allpass coefficients are converted to wave digital filters for 
filtering. Note that dfilt.wdfallpass allows only stable filters. Also note that 
the leading  coefficient in the denominator, a 1, does not need to be included in  
vector c.

Use the constructor dfilt.cascadewdfallpass to cascade wdfallpass filters.

To compare these filters to other similar filters, dfilt.wdfallpass and 
dfilt.cascadewdfallpass filters have the same number of multipliers as the 
non-wave digital filters dfilt.allpass and dfilt.cascadeallpass. However, 
the wave digital filters use fewer states and they may require more adders in 
the filter structure.

Wave digital filters are usually used to create other filters. This toolbox uses 
them to implement halfband filters, which the first example in Examples 
demonstrates. They are most often building blocks for filters.

H z( ) c n( ) c n 1–( )z 1– … z n–+ + +

1 c 1( )z 1– … c n( )z n–+ + +
--------------------------------------------------------------------------=
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Properties In the next table, the row entries are the filter properties and a brief 
description of each property.

Filter Structure When you change the order of the wave digital filters in the cascade, the filter 
structure changes as well. 

As shown in this example, realizemdl lets you see the filter structure used for 
your filter, if you have Simulink installed.

section11=0.8;
section12=[1.5,0.7];
section13=[1.8,0.9];
hd1=dfilt.cascadewdfallpass(section11,section12,section13);
realizemdl(hd1)

Property Name Brief Description

AllpassCoefficients Contains the coefficients for the allpass wave 
digital filter object

FilterStructure Describes the signal flow for the filter object, 
including all of the active elements that 
perform operations during filtering—gains, 
delays, sums, products, and input/output.

PersistentMemory Specifies whether to reset the filter states and 
memory before each filtering operation. Lets 
you decide whether your filter retains states 
from previous filtering runs. False is the 
default setting.

States This property contains the filter states before, 
during, and after filter operations. States act 
as filter memory between filtering runs or 
sessions. They also provide linkage between 
the sections of a multisection filter, such as a 
cascade filter. For details, refer to filtstates 
in your Signal Processing Toolbox 
documentation or in the Help system.
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section21=[0.8,0.4];
section22=[0,1.5,0,0.7];
section23=[0,1.8,0,0.9];
hd2=dfilt.cascadewdfallpass(section21,section22,section23);
realizemdl(hd2)

hd1 has this filter structure with three sections.
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The filter structure for hd2 is somewhat different, with the different orders and 
interconnections between the three sections.

Examples Construct a second-order wave digital allpass filter with two coefficients.

c = [1.5,0.7];
hd = dfilt.wdfallpass(c);
info(hd)

1

output

−K−

gain(3)(3)

−K−

gain(3)(2)

−K−

gain(2)(1)

−K−

gain(1)(3)

−K−

gain(1)(2)

−K−

gain(1)(1)

z
−2

z
−2

z
−2

z
−2

z
−1

z
−1

1

input



dfilt.wdfallpass

8-515

Discrete-Time IIR Filter (real)                     
-------------------------------                     
Filter Structure       : Wave Digital Filter Allpass
Number of Multipliers  : 2                          
Stable                 : Yes                        
Linear Phase           : No                         
                                                    
Implementation Cost                                 
Number of Multipliers : 2                           
Number of Adders      : 6                           
Number of States      : 2                           
MultPerInputSample    : 2                           
AddPerInputSample     : 6                           

realizemdl(hd) % Requires Simulink to build the filter model.

With Simulink installed, realizemdl returns this structure for hd.

See Also dfilt, dfilt.allpass, dfilt.latticeallpass, dfilt.cascadewdfallpass, 
dfilt.cascadeallpass, mfilt.iirdecim, mfilt.iirinterp
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8dispPurpose Filter object with properties and values

Syntax disp(hd)
disp(ha)
disp(hm)

Description Similar to omitting the closing semicolon from an expression on the command 
line, except that disp does not display the variable name. disp lists the 
property names and property values for any filter object, such as a dfilt object 
or adaptfilt object.

The following examples illustrate the default display for an adaptive filter ha 
and a multirate filter hm.

ha=adaptfilt.rls
 
ha =
 
               Algorithm: 'Direct Form FIR RLS Adaptive Filter'
            FilterLength: 10
            Coefficients: [0 0 0 0 0 0 0 0 0 0]
                  States: [9x1 double]
        ForgettingFactor: 1
              KalmanGain: []
                  InvCov: [10x10 double]
        PersistentMemory: false

disp(ha)
               Algorithm: 'Direct-Form FIR RLS Adaptive Filter'
            FilterLength: 10
            Coefficients: [0 0 0 0 0 0 0 0 0 0]
                  States: [9x1 double]
        ForgettingFactor: 1
              KalmanGain: []
                  InvCov: [10x10 double]
        PersistentMemory: false

hm=mfilt.cicdecim(6)
 
hm =
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          FilterStructure: 'Cascaded Integrator-Comb Decimator'
               Arithmetic: 'fixed'
        DifferentialDelay: 1
         NumberOfSections: 2
         DecimationFactor: 6
         PersistentMemory: false
 
          InputWordLength: 16              
          InputFracLength: 15              
                                           
    SectionWordLengthMode: 'MinWordLengths'
                                           
         OutputWordLength: 16              

disp(hm)

FilterStructure: 'Cascaded Integrator-Comb Decimator'
               Arithmetic: 'fixed'
        DifferentialDelay: 1
         NumberOfSections: 2
         DecimationFactor: 6
         PersistentMemory: false
 
          InputWordLength: 16              
          InputFracLength: 15              
                                           
    SectionWordLengthMode: 'MinWordLengths'
                                           
         OutputWordLength: 16              

See Also set
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8doublePurpose Cast fixed-point filter to filter that uses double-precision arithmetic

Syntax hd = double(h)

Description hd = double(h) returns a new filter hd that has the same structure and 
coefficients as h, but whose arithmetic property is set to double to use 
double-precision arithmetic for filtering. double(h) is not the same as the 
reffilter(h) function:

• hd, the filter returned by double has the quantized coefficients of h 
represented in double-precision floating-point format

• The reference filter returned by reffilter has double-precision, 
floating-point coefficients that have not been quantized.

You might find double(h) useful to isolate the effects of quantizing the 
coefficients of a filter by using double to create a filter hd that operates in 
double-precision but uses the quantized filter coefficients.

Examples Use the same filter, once with fixed-point arithmetic and once with 
floating-point, to compare fixed-point filtering with double-precision 
floating-point filtering.

h = dfilt.dffir(firgr(27,[0 .4 .6 1],
[1 1 0 0])); % Lowpass filter.
h.arithmetic = 'fixed'; % Set h to use fixed-point arithmetic 

% to filter. Quantize the coeffs.
hd = double(h);         % Cast h to double-precision 

% floating-point coefficients.
n = 0:99; x = sin(0.7*pi*n(:)); % Set up an input signal.
y = filter(h,x);   % Fixed-point output.
yd = filter(hd,x); % Floating-point output.
norm(yd-double(y),inf)
ans =

  9.2014e-004

norm shows that the largest difference (maximum error) between the output 
values from the fixed versus floating filtering comparison is about 0.0009—
either good or less good depending on your application.
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See Also reffilter
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8ellipPurpose Design elliptical or Cauer digital filter using filter specification object

Syntax hd = design(d,'ellip')
hd = design(d,'ellip',designoption,value,designoption,value,...)

Description hd = design(d,'ellip') designs an elliptical IIR digital filter using the 
specifications supplied in the object h.

hd = design(d,'ellip',designoption,value,designoption,...
value,...) returns an eliptical or Cauer FIR filter where you specify design 
options as input arguments. 

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using ellip, refer to the command line help system. 
For example, to get specific information about using ellip with d, the 
specification object, enter the following at the MATLAB prompt.

help(d,'ellip')

Examples These example demonstrate using ellip to design filters based on filter 
specification objects.

Example 1—construct the default bandpass filter specification object and 
design an elliptic filter.

d = fdesign.bandpass;
designopts(d,'ellip')

ans = 

    FilterStructure: 'df2sos'
       MatchExactly: 'both'

hd = design(d,'ellip','matchexactly','both');

hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
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              Arithmetic: 'double'
               sosMatrix: [4x6 double]
             ScaleValues: [5x1 double]
        PersistentMemory: false

Example 2—construct a lowpass object with order, passband-edge frequency, 
stopband-edge frequency, and passband ripple specifications, and then design 
an elliptic filter.

d = fdesign.lowpass('n,fp,fst,ap',6,20,25,.8,80);
design(d,'ellip'); % Starts FVtool to display the filter.

Example 3—construct a lowpass object with filter order, passband edge 
frequency, passband ripple, and stopband attenuation specifications, and then 
design an elliptic filter.
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d = fdesign.lowpass('n,fp,ap,ast',6,20,.8,60,80);
design(d,'ellip'); % Starts FVTool to display the filter.

See Also butter, cheby1, cheby2
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8euclidfactorsPurpose Use Euclid’s theorem to return integer factors for multirate filter

Syntax [lo,mo] = euclidfactors(hm)

Description [lo,mo] = euclidfactors(hm) returns integer factors lo and mo such that 
(lo*L)-(mo*M) = -1. L and M are relatively prime and represent the 
interpolation and decimation factors of the multirate filter hm.

euclidfactors works with multirate filters that have both decimation and 
interpolation factors, such as mfilt.firfracdecim, mfilt.firfracinterp, or 
mfilt.firsrc. You cannot return the factors for plain decimators or 
interpolators

Examples Use an FIR fractional decimator, with L = 5 and M = 7, to show what 
euclidfactors does. 

hm=mfilt.firfracdecim(5,7)
 
hm =
 
         FilterStructure: 'Direct-Form FIR Polyphase Fractional Decimator'
               Numerator: [1x168 double]
       RateChangeFactors: [5 7]
        PersistentMemory: false
                  States: [62x1 double]

[lo,mo]=euclidfactors(hm)

lo =

     4

mo =

     3

Indeed, (lo*L)-(mo*M) = (4*5)-(3*7) = -1.

See Also polyphase, nstates
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8equiripplePurpose Design equiripple single-rate or multirate FIR filter from filter specification 
object

Syntax hd = design(d,'equiripple')
hd = design(d,'equiripple',designoption,value,designoption,...

value,...)

=Description hd = design(d,'equiripple') designs an equiripple FIR digital filter or 
multirate filter using the specifications supplied in the object d. Equiripple 
filter designs minimize the maximum ripple in the pass- and stopbands.

hd is either a dfilt object (a single-rate digital filter) or an mfilt object 
(a multirate digital filter) depending on the Specification property of the 
filter specification object d and the specifications object type—halfband or 
interpolator.

When you use equiripple with Nyquist filter specification objects, you might 
encounter design cases where the filter design does not converge. Convergence 
errors occur mostly at large filter orders, or small transition widths, or large 
stopband attenuations. These specifications, alone or combined, can cause 
design failures. For more information, refer to fdesign.nyquist in the online 
Help system.

hd = design(d,'equiripple',designoption,value,designoption,...
value,...) returns an equiripple FIR filter where you specify design options 
as input arguments. 

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using equiripple, refer to the command line help 
system. For example, to get specific information about using equiripple with 
d, the specification object, enter the following at the MATLAB prompt.

help(d,'equiripple')

Examples Here is an example of designing a single-rate equiripple filter from a halfband 
filter specification object.

d = fdesign.halfband
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designopts(d,'equiripple')

ans = 

    FilterStructure: 'dffir'
           MinPhase: 0
      StopbandShape: 'flat'
      StopbandDecay: 0
hd = design(d,'equiripple','stopbandshape','flat');
fvtool(hd);

Displaying the filter in FVTool shows the equiripple nature of the filter.

equiripple also designs multirate filters. This example generates a halfband 
interpolator filter.
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d = fdesign.interpolator(2);
hd = design(d,'equiripple');

hd
 
hd =
 
        FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
             Arithmetic: 'double'                                
              Numerator: [1x95 double]                           
    InterpolationFactor: 2                                       
       PersistentMemory: false                                   

This final example designs an equiripple filter with a direct-form structure by 
specifying the filterstructure argument.

d = fdesign.lowpass('fp,fst,ap,ast');
designopts(d,'equiripple')

ans = 

    FilterStructure: 'dffir'
      DensityFactor: 16
           MinPhase: 0
           MinOrder: 'any'
      StopbandShape: 'flat'
      StopbandDecay: 0

hd = design(d,'equiripple','filterstructure','dffir');
hd
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'                    
           Numerator: [1x43 double]               
    PersistentMemory: false                       

See Also fdesign.nyquist, firls, kaiserwin
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8farrowPurpose Implement Farrow filter

Syntax hd = farrow.structure(delay,...)

Description hd = farrow.structure(delay,...) returns a Farrow filter hd that  
associates delay, the fractional delay, with a filter structure specified by 
structure.

More information about Farrow filters is available in References.

In contrast to most single-rate filters, Farrow filters use two inputs—the input 
data and the fractional delay. You can change the fractional delay input value 
as you filter by assigning a new value to delay before you filter with hd. Thus 
Farrow filters provide delay tunability when your input signals have 
time-varying delays.

Digital fractional delay filters are useful tools for fine-tuning the sampling 
instants of signals, such as implementing the required bandlimited 
interpolation. They can be found in the synchronization of digital modems 
where the delay parameter varies over time, or in wireless communications 
systems where the signal delay changes with location and distance from the 
transmitter. Farrow filters are one such fractional delay filter that allows the 
user to vary the delay.

Provide the fractional delay as a decimal part of an input sample, such as 0.2. 
delay must be positive and between 0 and 1.

structure accepts the following strings that describe the filter structure to 
use:

In the farrow.fd syntax

hd = farrow.fd(delay,...)

structure String Description

fd Generic fractional delay Farrow filter

linearfd Linear fractional delay Farrow filter
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you must specify the coefficients as input arguments. Start with basic 
coefficients from Lagrange polynomials (also called interpolation polynomials). 
for more information about the coefficients, refer to References.

Farrow filters support numerous functions for analyzing and simulating the 
filter, and for generating code from the filter. To learn about the functions you 
use with Farrow filters, enter

help farrow/functions

at the Command prompt to see the complete list of functions. 

The functions that you use most often with digital filters are

Examples Construct a filter with linear fractional delay of 0.4 samples. Use linearfd for 
the structure and set delay equal to 0.4.

delay = 0.4;
hd = farrow.linearfd(delay);
fvtool(hd) % Analyze the filter.

realizemdl produces this model from basic Signal Processing blockset blocks.

Function Description

cost Estimate the hardware 
implementation cost in terms of 
mathematical operations like add 
and multiply

filter Execute the filter by using it to 
filter data

fvtool Display and analyze the filter

freqz Compute the instantaneous 
frequency response of the filter

realizemdl Generate a Simulink subsystem 
model of the filter as a  block   
(Requires Simulink) 



farrow

8-529

References [1] Erup, L., Floyd M. Gardner, and Robert A. Harris, “Interpolation in Digital 
Modems-Part II: Implementation and Performance,” IEEE Transactions on 
Communications, vol. 41, No. 6, June 1993, pp. 998-1008.

[2] Marvasti, F., Nonuniform Sampling—Theory and Practice, Kluwer 
Academic/Plenum Publishers, New York, 2001.

See Also adaptfilt, dfilt, fdesign, mfilt
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8fcfwritePurpose Write file containing filter coefficients for multirate, adaptive, or discrete-time 
filter objects

Syntax fcfwrite(h)
fcfwrite(h,filename)
fcfwrite(...,'fmt')

Description fcfwrite(h) writes a filter coefficient ASCII file to a directory you choose, or 
your current MATLAB working directory. h can be a single filter object or a 
vector of filter objects. On execution, fcfwrite opens the Export Filter 
Coefficients to .FCF File dialog to let you assign a file name for the output file. 
You can choose the destination directory within this dialog as well.

The default file name is untitled.fcf. When you have the Filter Design 
Toolbox, you can use fcfwrite(h) to write filter coefficient files for multirate 
filters,  adaptive filters, and discrete-time filters. 

fcfwrite(h,filename) writes the filter coefficients and general information to 
a text file called filename in your present MATLAB working directory and 
opens the file in the MATLAB editor for you to review or modify.

If you do not include a file extension in filename, fcfwrite adds the extension 
fcf to filename.

fcfwrite(...,'fmt')  writes the filter coefficients in the format specified by the input 
argument fmt. Valid fmt values are hex for hexadecimal, dec for decimal, or bin 
for binary representation of the filter coefficients.

Examples To demonstrate fcfwrite, create a fixed-point IIR filter at the command line, 
and then write the filter coefficients to a file named iirfilter.fcf.

d=fdesign.lowpass
 
d =
 
               Response: 'Lowpass'      
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fpass: 0.45           
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                  Fstop: 0.55           
                  Apass: 1              
                  Astop: 60             

hd=butter(d)
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [13x6 double]                          
             ScaleValues: [14x1 double]                          
        PersistentMemory: false                                  

set(hd,'arithmetic','fixed');

fcfwrite(hd,'iirfilter.fcf');

Here is the output from fcfwrite as it appears in the MATLAB editor. Not 
shown here is the filename—iirfilter.fcf as specified and some comments 
at the top of the file.

%
%
% Coefficient Format: Decimal
%
% Discrete-Time IIR Filter (real)                            
% -------------------------------                            
% Filter Structure    : Direct-Form II, Second-Order Sections
% Number of Sections  : 13                                   
% Stable              : Yes                                  
% Linear Phase        : No                                   
% Arithmetic          : fixed                                
% Numerator           : s16,13 -> [-4 4)                     
% Denominator         : s16,14 -> [-2 2)                     
% Scale Values        : s16,14 -> [-2 2)                     
% Input               : s16,15 -> [-1 1)                     
% Section Input       : s16,8 -> [-128 128)                  
% Section Output      : s16,10 -> [-32 32)                   
% Output              : s16,10 -> [-32 32)                   
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% State               : s16,15 -> [-1 1)                     
% Numerator Prod      : s32,28 -> [-8 8)                     
% Denominator Prod    : s32,29 -> [-4 4)                     
% Numerator Accum     : s40,28 -> [-2048 2048)               
% Denominator Accum   : s40,29 -> [-1024 1024)               
% Round Mode          : convergent                           
% Overflow Mode       : wrap                                 
% Cast Before Sum     : true                                 
 
                                                            
SOS matrix:                                                  
1  2  1  1  -0.22222900390625  0.88262939453125              
1  2  1  1  -0.19903564453125  0.68621826171875              
1  2  1  1  -0.18060302734375  0.5303955078125               
1  2  1  1  -0.1658935546875   0.40570068359375              
1  2  1  1  -0.154052734375    0.305419921875                
1  2  1  1  -0.14453125        0.22479248046875              
1  2  1  1  -0.136962890625    0.16015625                    
1  2  1  1  -0.13092041015625  0.10906982421875              
1  2  1  1  -0.126220703125    0.06939697265625              
1  2  1  1  -0.12274169921875  0.0399169921875               
1  2  1  1  -0.12030029296875  0.01947021484375              
1  2  1  1  -0.118896484375    0.0074462890625               
1  1  0  1  -0.0592041015625   0                             
                                                             
Scale Values:                                                
0.41510009765625                                             
0.371826171875                                               
0.33746337890625                                             
0.3099365234375                                              
0.287841796875                                               
0.27008056640625                                             
0.25579833984375                                             
0.2445068359375                                              
0.23577880859375                                             
0.22930908203125                                             
0.22479248046875                                             
0.22216796875                                                
0.47039794921875                                             
1                                                            
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To write two or more filters out to one file, provide the filters as a vector to 
fcfwrite:

fcfwrite([hd hd1 hd2])

See Also adaptfilt, mfilt

dfilt in the Signal Processing Toolbox documentation
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8fdatoolPurpose Open Filter Design and Analysis Tool

Syntax fdatool

Description fdatool opens the Filter Design and Analysis Tool (FDATool). Use this tool to:

• Design filters

• Quantize filters (with Filter Design Toolbox installed)

• Analyze filters

• Modify existing filter designs

• Create multirate filters (with Filter Design Toolbox installed)

• Realize Simulink models of quantized, direct-form, FIR filters (with Filter 
Design Toolbox installed)

• Import filters into FDATool

• Perform digital frequency transformations of filters (with Filter Design 
Toolbox installed)

Refer to “Using FDATool with the Filter Design Toolbox” for more information 
about using the analysis, design, and quantization features of FDATool. For 
general information about using FDATool, refer to “Filter Design and Analysis 
Tool” in your Signal Processing Toolbox documentation.

When you open FDATool and you have Filter Design Toolbox installed, 
FDATool incorporates features that are added by Filter Design Toolbox. With 
Filter Design Toolbox installed, FDATool lets you design and analyze 
quantized filters, as well as convert quantized filters to various filter 
structures, transform filters, design multirate filters, and realize models of 
filters.
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Use the buttons on the sidebar to configure the design area to use various tools 
in FDATool.

Set Quantization Parameters—provides access to the properties of the 
quantizers that compose a quantized filter. When you click Set Quantization 
Parameters, you see FDATool displaying the quantization options at the 
bottom of the dialog (the design area), as shown in the figure.
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Transform Filter—clicking this button opens the Frequency 
Transformations pane so you can use digital frequency transformations to 
change the magnitude response of your filter.

Create a multirate filter—clicking this button switches FDATool to multirate 
filter design mode so you can design interpolators, decimators, and fractional 
rate change filters.

Realize Model—starting from your quantized, direct-form, FIR filter, clicking 
this button creates a Simulink model of your filter structure in new model 
window.

Other options in the menu bar let you convert the filter structure to a new 
structure, change the order of second-order sections in a filter, or change the 
scaling applied to the filter, among many possibilities.
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Remarks By incorporating many advanced filter design methods from Filter Design 
Toolbox, FDATool provides more design methods than the SPTool Filter 
Designer.

See Also fdatool, fvtool, sptool in your Signal Processing Toolbox documentation
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8fdesignPurpose Create filter specification object

Syntax d = fdesign.response
d = fdesign.response(spec)
d = fdesign.response(spec,specvalue1,specvalue2,...)
d = fdesign.response(...,fs)
d = fdesign.response(...,magunits)

Description Filter Specification Objects

d = fdesign.response returns a filter specification object d, of filter response 
response. To create filters from d, use one of the design methods listed in 
“Using Filter Design Methods With Specification Objects” on page 8-544.

Here is how you design filters using fdesign.

1 Use fdesign.response to construct a filter specification object.

2 Use designmethods to determine which filter design methods work for your 
new filter specification object.

3 Use design to apply your filter design method from step 2 to your filter 
specification object to construct a filter object.

4 Use FVTool to inspect and analyze your filter object.

Note  fdesign does not create filters. fdesign returns a filter specification 
object that contains the specifications for a filter, such as the passband cutoff 
or attenuation in the stopband.

To design a filter hd from a filter specification object d, use d with a filter 
design method such as butter—hd = design(d,'butter').

For more guidance about using fdesign to design filters, refer to “Designing 
Fixed-Point Filters” on page 2-3 of the Filter Design Toolbox User’s Guide. This 
section provides examples that use fdesign to design filters and that use 
methods in the toolbox to analyze them.
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reponse can be one of the entries in the following table that specify the filter 
response desired, such as a bandstop filter or an interpolator.

fdesign Response String Description

arbmag fdesign.arbmag creates an object to 
design IIR filters that have arbitrary 
magnitude responses defined by the input 
arguments.

arbmagnphase fdesign.arbmagnphase creates an object 
to design IIR filters that have arbitrary 
magnitude and phase responses defined 
by the input arguments.

bandpass fdesign.bandpass creates an object to 
design bandpass filters.

bandstop fdesign.bandstop creates an object to 
design bandstop filters. 

ciccomp fdesign.ciccomp creates an object to 
design filters that compensate for the CIC 
decimator or interpolator response 
curves.

decimator fdesign.decimator creates an object to 
design decimators.

differentiator fdesign.differentiator creates an 
object to design differentiators.

halfband fdesign.halfband creates an object to 
design halfband filters. 

highpass fdesign.highpass creates an object to 
design highpass filters. 

hilbert fdesign.hilbert creates an object to 
design Hilbert filters. 
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Use the doc fdesign.response syntax at the MATLAB prompt to get help on 
a specific structure. Using doc in a syntax like

doc fdesign.lowpass
doc fdesign.bandstop

gets more information about the lowpass or bandstop structure objects.

Each response has a property Specification that defines the specifications to 
use to design your filter. You can use defaults or specify the Specification 
property when you construct the specifications object.

With the strings for the  Specification property, you provide filter constraints 
such as the filter order or the passband attenuation to use when you construct 
your filter from the specification object.

interpolator fdesign.interpolator creates an object 
to design interpolators. 

isinclp fdesign.isinclp creates an object to 
design lowpass filters that use 
inverse-sinc form.

lowpass fdesign.lowpass creates an object to 
design lowpass filters. 

nyquist fdesign.nyquist creates an object to 
design nyquist filters. 

rsrc fdesign.rsrc creates an object to design 
rational-factor sample-rate convertors.

fdesign Response String Description
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Properties fdesign returns a filter specification object. Every filter specification object 
has the following properties.

Property Name Default Value Description

Response Depends on the chosen 
type

Defines the type of 
filter to design, such 
as an interpolator or 
bandpass filter. This is 
a read-only value.

Specification Depends on the chosen 
type

Defines the filter 
characteristics used to 
define the desired 
filter performance, 
such as the cutoff 
frequency Fstop or the 
filter order N. 

Description Depends on the filter 
type you choose

Contains descriptions 
of the filter 
specifications used to 
define the object, and 
the filter specifications 
you use when you 
create a filter from the 
object. This is a 
read-only value.

NormalizedFrequency Logical true Determines whether 
the filter calculation 
uses normalized 
frequency from 0 to 1, 
or the frequency band 
from 0 to Fs/2, the 
sampling frequency. 
Accepts either true or 
false without single 
quotation marks.
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In addition to these properties, filter specification objects may have other 
properties as well, depending on whether they design dfilt objects or mfilt 
objects.

d = fdesign.type(spec) In spec, you specify the variables to use that define 
your filter design, such as the passband frequency or the stopband attenuation. 
These variables are applied to the filter design method you choose to design 
your filter. 

For example, when you create a default lowpass filter specification object d, 
fdesign sets the passband frequency Fpass, the stopband frequency Fstop, the 
stopband attenuation Astop, and the passband attenuation Apass (ripple in the 
passband) for d:

d = fdesign.lowpass
 
d =
 
               Response: 'Lowpass'      
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     

Added Properties for mfilt Objects Description

DecimationFactor Specifies the amount to decrease 
the sampling rate. Always 
a positive integer.

InterpolationFactor Specifies the amount to increase 
the sampling rate. Always 
a positive integer.

PolyphaseLength Polyphase length is the length of 
each polyphase subfilter that 
composes the decimator or 
interpolator or rate-change factor 
filters. Total filter length is the 
product of pl and the rate change 
factors. pl must be an even 
integer.
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    NormalizedFrequency: true           
                  Fpass: 0.45           
                  Fstop: 0.55           
                  Apass: 1              
                  Astop: 60             

However, lowpass design syntax accepts any one of the following Spec strings 
(among others) to define the filter response:

Other filter object types, such as Nyquist or highpass, accept a different set of 
strings for Spec. Refer to the Help system for details about the strings for each 
filter type.

One important note is that the Spec string you choose controls which design 
method works for the specifications object.

For the lowpass filter specification object d from earlier, you can use butter, 
cheby1, cheby2, or ellip (to name a few) to design a filter. However, if the Spec 

Spec String Description

Fp,Fst,Ap,Ast Define the filter by specifying the passband 
cutoff, the stopband cutoff, the ripple in the 
passband, and the attenuation in the stopband. 
This is the default string for a lowpass filter.

N,Fc Set the filter order and the cutoff frequency to 
define the filter.

N,Fp,Ap Set the filter order, passband cutoff frequency, 
and passband ripple.

N,Fst,Ast Define the filter by setting the order, stopband 
frequency, and stopband attenuation.

N,Fp,Ap,Ast Set the order, passband cutoff frequency, 
passband ripple, and stopband attenuation.

N,Fp,Fst,Ap Set the filter order, passband cutoff frequency, 
stopband frequency, and passband ripple.
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string had been 'n,fp,fst,ap', you could only use the ellip design method to 
design your filter.

When you implement this lowpass filter hd using a filter design method such 
as Butterworth (the butter design function), the constraints in fp, fst, ap, and 
ast (the default string and filter specification) define the response of the final 
minimum-order lowpass filter:

hd = design(d,'butter')
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [13x6 double]                          
             ScaleValues: [14x1 double]                          
        PersistentMemory: false                                  

FVTool shows that hd is a lowpass filter that meets the design specification.

d = fdesign.type(...,fs) adds the argument fs, specified in Hz to define 
the sampling frequency to use. In this case, all frequencies in the specifications 
are in Hz as well.

d = fdesign.type(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Using Filter Design Methods With Specification Objects
After you create a filter specification object, you use a filter design method to 
implement your filter with a selected algorithm. The following methods are 
available for filter specification objects, but all methods do not apply to all 



fdesign

8-545

object types. Also, the specification string you use to define the object changes 
the algorithms available to design a filter. Enter doc butter, for example, to 
get more information about using the Butterworth design method with your 
filter specification object. 

When you use any of the design methods without providing an output 
argument, the resulting filter design appears in FVTool by default.

Design Function Description

butter Implement a Butterworth filter 
resulting in an SOS filter with 
direct-form II structure.

cheby1 Implement a Chebyshev Type I 
filter, resulting in a direct-form II 
second-order filter. 

cheby2 Implement a Chebyshev Type II 
filter, resulting in an SOS filter 
with direct-form II structure

ellip Implement an elliptic filter 
resulting in an SOS filter with 
direct-form II structure

equiripple Implement an equiripple filter. 

firls Implement a least-squares filter. 

kaiserwin Implement a filter that uses a 
Kaiser window.

multistage Implement a multistage filter
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Along with filter design methods, fdesign works with supporting methods that 
help you create filter specification objects or determine which design methods 
work for a given specifications object. 

You can set filter specification values by passing them after the Specification 
argument, or by passing the values without the Specification string. 

Filter object constructors take the input arguments in the same order as 
setspecs and the order in the strings for Specification. Enter doc setspecs 
at the prompt for more information about using setspecs.

When the first input to fdesign is not a valid Specification string like 'n,fc', 
fdesign assumes that the input argument is a filter specification and applies 
it using the default Specification string—fp,fst,ap,ast for a lowpass 
object, for example.

Examples These examples show a few default filter objects constructed from the 
MATLAB command prompt, and how to design a Butterworth filter.

Example 1—Halfband filter specification object with filter order and stopband 
attenuation provided as input arguments. Add the linear magunits option so 
you specify the attenuation in decimal—0.0001.

n = 80;
ast = 1e-4;
fs = 48000
d=fdesign.halfband('n,ast',n,ast,fs,'linear') % specifications 
object.
 
d =
 

Supporting Function Description

setspecs Set all of the specifications simultaneously.

designmethods Return the design methods.

designopts Return the input arguments and default values 
that apply to a specifications object and 
method
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           Response: [1x51 char]
      Specification: 'N,Ast'
            Description: {2x1 cell}
    NormalizedFrequency: false
                     Fs: 48000
            FilterOrder: 80
                  Astop: 80

d.description

ans =

    'Filter Order'

    'Stopband Attenuation (dB)'

Example 2—Interpolator filter specification object

d = fdesign.interpolator % A specifications object.
 
d =
 
           Response: 'Minimum-order halfband'
      Specification: 'TW,Ast'
            Description: {2x1 cell}
    InterpolationFactor: 2
    NormalizedFrequency: true
                     Fs: 'Normalized'
        TransitionWidth: 0.1000
                  Astop: 80

d.Description

ans =

    'Transition Width'
    'Stopband Attenuation (dB)'

Example 3—Highpass filter specification object
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d=fdesign.highpass % Creates a specifications object.
 
d =
 
           Response: 'Minimum-order highpass'
      Specification : 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
                  Fstop: 0.4500
                  Fpass: 0.5500
                  Astop: 60
                  Apass: 1

d.Description

ans =

    'Stopband Frequency'
    'Passband Frequency'
    'Stopband Attenuation (dB)'
    'Passband Ripple (dB)'

Notice the correspondence between the properties Specification and 
Description—in Description you see in words the definitions of the variables 
shown in Specification.

Example 4—Lowpass Butterworth filter specification object

Use a filter specification object to construct a lowpass Butterworth filter with 
default Specification fp,fst,ap,ast—the edge frequencies of the passband 
and stopband, the attenuation in the passband, and the attenuation in the 
stopband. Start by creating the specifications object d and providing the filter 
order and cutoff frequency values. 

d = fdesign.lowpass(0.4,0.5,1,80);
d
 
d =
 
           Response: 'Minimum-order lowpass'
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      Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
                  Fpass: 0.4000
                  Fstop: 0.5000
                  Apass: 1
                  Astop: 80

Determine which design methods apply to d.

designmethods(d)

Design Methods for class fdesign.lowpass:

butter
cheby1
cheby2
ellip

Now use d and the butter design method to design a Butterworth filter.

hd = design(d,'butter','matchexactly','passband'); % A filter.
fvtool(hd);

The resulting filter magnitude response shown by FVTool appears below.
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If you had a default Nyquist filter specification object d

d = fdesign.nyquist

you could find out which design methods apply to d by entering

designmethods(d)

Design methods for class fdesign.nyquist:

kaiserwin

Notice that only the Kaiser window-based design method applies to default 
Nyquist filter objects.
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See Also butter, cheby1, cheby2, designmethods, ellip, equiripple, fdatool, 
fdesign.bandpass, fdesign.bandstop, fdesign.decimator, 
fdesign.halfband, fdesign.highpass, fdesign.interpolator, 
fdesign.lowpass, fdesign.nyquist, fdesign.rsrc, firls, fvtool, 
kaiserwin, setspecs
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8fdesign.arbmagPurpose Construct filter specification object for designing arbitrary response magnitude 
filters

Syntax d = fdesign.arbmag
d = fdesign.arbmag(specification)
d = fdesign.arbmag(specification,specvalue1,specvalue2,...)
d = fdesign.arbmag(specvalue1,specvalue2,specvalue3)
d = fdesign.arbmag(...,fs)

Description d = fdesign.arbmag constructs an arbitrary magnitude filter designer d.

d = fdesign.arbmag(specification) initializes the Specification property 
for specifications object d to the string in specification. The input argument 
specification must be one of the following strings. Specification strings are 
not case sensitive and must be entered as shown. 

Specification String Description of Resulting Filter

 n,f,a Single band design (default). FIR and IIR (n is 
the order for both numerator and 
denominator).

n,b,f,a Multiband design where b defines the number 
of bands. FIR and IIR (n is the order for both 
numerator and denominator). 

nb,na,f,a IIR single band design.

nb,na,b,f,a IIR multiband design where b defines the 
number of bands
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The arguments in the strings are

By default, this method assumes that all frequency specifications are supplied 
in normalized frequency.

Specifying f and a
f and a are the input arguments you use to define the filter response desired. 
Each frequency value you specify in f must have a corresponding response 
value in a. Here is an example that creates a filter with two passbands 
(b = 4)and shows how f and a are related. This example is for illustration only. 
It is not a real filter. 

Define the frequency vector f as [0 0.1 0.2 0.4 0.5 0.6 0.9 1.0]

Define the reponse vector a as [0 0.5 0.5 0.1 0.1 0.8 0.8 0]

Argument Description

a Amplitude vector. Values in a define the filter 
amplitude at frequency points you specify in f, 
the frequency vector. If you use a, you must 
use f as well. Amplitude values must be real. 
For complex values designs, use 
fdesign.arbmagnphase.

b Number of bands in the multiband filter.

f Frequency vector. Frequency values in f 
specify locations where you provide specific 
filter response amplitudes. When you provide 
f you must also provide a.

n Filter order for FIR filters and the numerator 
and denominator orders for IIR filters.

nb Numerator order for IIR filters.

na Denominator order for IIR filter designs.
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With those specifications, f and a are connected as follows:

A response with two passbands—one roughly between 0.1 and 0.2 and the 
second between 0.6 and 0.9 —results from the mapping between f and a. 
A filter that used f and a might look like this

f (normalized frequency) a (response desired at f)

0 0

0.1 0.5

0.2 0.5

0.4 0.1

0.5 0.1

0.6 0.8

0.9 0.8

1.0 0.0
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.

Different specification types often have different design methods available. 
Use designmethods(d) to get a list of design methods available for a given 
specification string and specifications object.

d = fdesign.arbmag(specification,specvalue1,specvalue2,...)
initializes the filter specification object specifications with specvalue1, 
specvalue2, and so on. Use get(d,'description') for descriptions of the 
various specifications specvalue1, specvalue2,...specn.

d = fdesign.arbmag(specvalue1,specvalue2,specvalue3) uses the default 
specification string n,f,a, setting the filter order, filter frequency vector, and 
the amplitude vector to the values specvalue1, specvalue2, and specvalue3.
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d = fdesign.arbmag(...,fs) specifies the sampling frequency in Hz. All 
other frequency specifications are also assumed to be in Hz when you specify 
fs.

Examples These three examples introduce designing filters that have arbitrary filter 
response shapes. In this first example, use fdesign.arbmag to design 
a single-band, arbitrary-magnitude FIR filter. Notice that the design process 
uses the default design method for the n,f,a specification.

n = 120;
f = linspace(0,1,100); % 100 frequency points.
as = ones(1,100)-f*0.2;
absorb = [ones(1,30),(1-0.6*bohmanwin(10))',...
ones(1,5), (1-0.5*bohmanwin(8))',ones(1,47)];
a = as.*absorb; % Optical absorption of atomic Rubidium 87 vapor.
d = fdesign.arbmag(n,f,a);
hd1 = design(d,'freqsamp');

Next, design a single-band, arbitrary-magnitude IIR filter and display the 
magnitude response in FVTool. Use f and a from the previous example as input 
arguments for this case. Display the response from the previous example in 
FVTool as well, because the FIR and IIR filters are similar.

To demonstrate that the same specification generates both FIR and IIR filters, 
use the same specifications object d, but change the design method to 
iirlpnorm.

d.filterorder=10
 
d =
 

Response: 'Arbitrary Magnitude' 
Specification: 'N,F,A'          

Description: {'Filter Order';'Frequency Vector';'Amplitude Vector'}
NormalizedFrequency: true            

FilterOrder: 10                                       
Frequencies: [1x100 double]      
Amplitudes: [1x100 double]         

                                                                               
hd2=design(d,'iirlpnorm') % Design an IIR filter from the same object.
 
hd2 =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [5x6 double]                           
             ScaleValues: [0.85714867585342;1;1;1;1;1]           
        PersistentMemory: false    
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fvtool(hd1,hd2)

FVTool returns the following plot for the filters.

For the third example, design a multiband filter for noise shaping when you are 
simulating the Rayleigh fading phenomenon in a wireless communications 
channel. This example uses the default design method for fdesign.arbmag 
specifications objects with the nb,na,nbands specification—iirlpnorm.

nb = 4; % Numerator order.
na = 6; % Denominator order.
nbands = 2; % Number of filter bands.
f1 = 0:0.01:0.4; % Frequency vector values.
a1 = 1.0 ./ (1 - (f1./0.42).^2).^0.25; % Amplitude values.
f2 = [.45 1];
a2 = [0 0];
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d = fdesign.arbmag('nb,na,b,f,a',nb,na,nbands,f1,a1,f2,a2);
design(d); % Starts FVTool to display the filter response.

The filter response shows the characteristic shape for noise shaping—
increasing gain with increasing frequency in the passband, and a narrow 
transition region.

See Also design, designopts, fdesign, setspecs
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8fdesign.arbmagnphasePurpose Design discrete-time filter specification object for arbitrary magnitude and 
phase response

Syntax d = fdesign.arbmagnphase
d = fdesign.arbmagnphase(specification)
d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,...)
d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3)
d = fdesign.arbmagnphase(...,fs)

Description d = fdesign.arbmag constructs an arbitrary magnitude filter specification 
object d.

d = fdesign.arbmag(specification) initializes the Specification property 
for specifications object d to the string in specification. The input argument 
specification must be one of the following strings. Specification strings are 
not case sensitive and must be entered as shown. 

Specification String Description of Resulting Filter

 n,f,h Single band design (default). FIR and IIR (n is 
the order for both numerator and 
denominator).

n,b,f,h Multiband design where b defines the number 
of bands. FIR and IIR (n is the order for both 
numerator and denominator). 

nb,na,f,h IIR single band design.
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The arguments in the strings are

By default, this method assumes that all frequency specifications are supplied 
in normalized frequency. 

Specifying f and h
f and h are the input arguments you use to define the filter response desired. 
Each frequency value you specify in f must have a corresponding response 
value in h. Here is an example that creates a filter with two passbands (b = 4) 
and shows how f and h are related. This example is for illustration only. It is 
not a real filter. 

Define the frequency vector f as [0 0.1 0.2 0.4 0.5 0.6 0.9 1.0]

Define the reponse vector h as [0 0.5 0.5 0.1 0.1 0.8 0.8 0]

Argument Description

b Number of bands in the multiband filter.

f Frequency vector. Frequency values in 
f specify locations where you provide specific 
filter response amplitudes. When you provide 
f you must also provide h which contains the 
reponse values.

h Complex frequency response values.

n Filter order for FIR filters and the numerator 
and denominator orders for IIR filters (when 
not specified by nb and na).

nb Numerator order for IIR filters.

na Denominator order for IIR filter designs.
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With those specifications, f and h are connected as follows:

A response with two passbands—one roughly between 0.1 and 0.2 and the 
second between 0.6 and 0.9 —results from the mapping between f and h. 
Plotting f and h yeilds this figure that resembles a filter with two passbands.

f (normalized frequency) h (response desired at f)

0 0

0.1 0.5

0.2 0.5

0.4 0.1

0.5 0.1

0.6 0.8

0.9 0.8

1.0 0.0



fdesign.arbmagnphase

8-562

The second example in Examples shows this in more detail with a complex 
filter response for h. In the example, h uses complex values for the response.

Different specification types often have different design methods available. 
Use designmethods(d) to get a list of design methods available for a given 
specification string and specifications object.

d = fdesign.arbmagnphase(specification,specvalue1,specvalue2,...)
initializes the filter specification object with specvalue1, specvalue2, and so 
on. Use get(d,'description') for descriptions of the various specifications 
specvalue1, specvalue2,...specn.

d = fdesign.arbmagnphase(specvalue1,specvalue2,specvalue3) uses the 
default specification string n,f,h, setting the filter order, filter frequency 
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vector, and the complex frequency response vector to the values specvalue1, 
specvalue2, and specvalue3.

d = fdesign.arbmagnphase(...,fs) specifies the sampling frequency in Hz. 
All other frequency specifications are also assumed to be in Hz when you 
specify fs.

Examples Use fdesign.arbmagnphase to model a complex analog filter.

d=fdesign.arbmagnphase('n,f,h',100); % N=100, f and h set to defaults.
design(d,'freqsamp');

For a more complex example, design a bandpass filter with low group delay by 
specifying the desired delay and using f and h to define the filter bands.

n = 50;  % Group delay of a linear phase filter would be 25.
gd = 12; % Set the desired group delay for the filter.
f1=linspace(0,.25,30); % Define the first stopband frequencies.
f2=linspace(.3,.56,40);% Define the passband frequencies.
f3=linspace(.62,1,30); % Define the second stopband frequencies.
h1 = zeros(size(f1));  % Specify the filter response at the freqs in f1.
h2 = exp(-j*pi*gd*f2); % Specify the filter response at the freqs in f2.
h3 = zeros(size(f3)); % Specify the response at the freqs in f3.
d=fdesign.arbmagnphase('n,b,f,h',50,3,f1,h1,f2,h2,f3,h3); 
design(d,'equiripple') 

Displaying the filter in FVTool shows both the magnitude response and the 
nearly linear phase.
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See Also fdesign, design, designmethods, setspecs
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8fdesign.bandpassPurpose Construct bandpass filter specification object

Syntax d = fdesign.bandpass
d = fdesign.bandpass(spec)
d = fdesign.bandpass(spec,specvalue1,specvalue2,...)
d = fdesign.bandpass(specvalue1,specvalue2,specvalue3,specvalue4,

specvalue4,specvalue5,specvalue6,specvalue7)
d = fdesign.bandpass(...,fs)
d = fdesign.bandpass(...,magunits)

Description d = fdesign.bandpass constructs a bandpass filter specification object d, 
applying default values for the properties Fstop1, Fpass1, Fpass2, Fstop2, 
Astop1, Apass, and Astop2—one possible set of values you use to specify a 
bandpass filter.

Using fdesign.bandpass with a design method generates a dfilt object.

d = fdesign.bandpass(spec) constructs object d and sets its Specification 
property to spec. Entries in the spec string represent various filter response 
features, such as the filter order, that govern the filter design. Valid entries for 
spec are shown below and used to define the bandpass filter. The strings are 
not case sensitive. 

• fst1,fp1,fp2,fst2,ast1,ap,ast2 (default spec)

• n,f3dB1,f3dB2

• n,f3dB1,f3dB2,ap

• n,f3dB1,f3dB2,ast

• n,f3dB1,f3dB2,ast1,ap,ast2

• n,f3dB1,f3dB2,bwp

• n,f3dB1,f3dB2,bwst

• n,fc1,fc2

• n,fp1,fp2,ap

• n,fp1,fp2,ast1,ap,ast2

• n,fst1,fp1,fp2,fst2

• n,fst1,fp1,fp2,fst2,ap
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• n,fst1,fst2,ast

• nb,na,fst1,fp1,fp2,fst2

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band. Also called Apass.

• ast1—attenuation in the first stop band in dB (the default units). Also called 
Astop1.

• ast2—attenuation in the second stop band in dB (the default units). Also 
called Astop2.

• bwp—bandwidth of the filter passband. Specified in normalized frequency 
units.

• bwst—bandwidth of the filter stopband. Specified in normalized frequency 
units.

• f3dB1—cutoff frequency for the point 3dB point below the passband value for 
the first cutoff. Specified in normalized frequency units. (IIR filters)

• f3dB2—cutoff frequency for the point 3dB point below the passband value for 
the second cutoff. Specified in normalized frequency units. (IIR filters)

• fc1—cutoff frequency for the point 3dB point below the passband value for 
the first cutoff. Specified in normalized frequency units. (FIR filters)

• fc2—cutoff frequency for the point 3dB point below the passband value for 
the second cutoff. Specified in normalized frequency units. (FIR filters)

• fp1—frequency at the edge of the start of the pass band. Specified in 
normalized frequency units. Also called Fpass1.

• fp2—frequency at the edge of the end of the pass band. Specified in 
normalized frequency units. Also called Fpass2.

• fst1—frequency at the edge of the start of the first stop band. Specified in 
normalized frequency units. Also called Fstop1.

• fst2—frequency at the edge of the start of the second stop band. Specified in 
normalized frequency units. Also called Fstop2.

• n—filter order for FIR filters. Or both the numerator and denominator orders 
for IIR filters when na and nb are not provided.

• na—denominator order for IIR filters

• nb—numerator order for IIR filters
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Graphically, the filter specifications look like this.

Regions between specification values like fst1 and fp1 are transition regions 
where the filter response is not explicitly defined.

The filter design methods that apply to a bandpass filter specification object 
change depending on the Specification string.Use designmethods to 
determine which design method applies to an object and its specification string.

d = fdesign.bandpass(spec,specvalue1,specvalue2,...) constructs 
an object d and sets its specifications at construction time.

d = fdesign.bandpass(specvalue1,specvalue2,specvalue3,specvalue4,
specvalue4,specvalue5,specvalue6) constructs d, an object with the default 
Specification property string, using the values you provide as input 
arguments for specvalue1,specvalue2,specvalue3,specvalue4,specvalue
4,specvalue5,specvalue6 and specvalue7.

d = fdesign.bandpass(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.bandpass(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units



fdesign.bandpass

8-568

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples These examples show how to construct a bandpass filter specification object. 
First, create a default specifications object without using input arguments.

d = fdesign.bandpass
d =
 
               Response: 'Minimum-order bandpass'
          Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}
    NormalizedFrequency: true
                 Fstop1: 0.3500
                 Fpass1: 0.4500
                 Fpass2: 0.5500
                 Fstop2: 0.6500
                 Astop1: 60
                  Apass: 1
                 Astop2: 60

Now, pass the filter specifications that correspond to the default 
Specification—fst1,fp1,fp2,fst2,ast1,ap,ast2—without specifying the 
Specification string. Notice that we add fs as the final input argument to 
specify the sampling frequency of 48 Hz.

d = fdesign.bandpass(10, 12, 14, 16, 80, .5, 60, 48)
d =
 
               Response: 'Minimum-order bandpass'
          Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}
    NormalizedFrequency: false
                     Fs: 48
                 Fstop1: 10
                 Fpass1: 12
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                 Fpass2: 14
                 Fstop2: 16
                 Astop1: 80
                  Apass: 0.5000

                 Astop2: 60

Next create a specifications object by passing a specification type string 
'n,fc1,fc2'—the resulting object uses default values for n, fc1, and fc2.

d = fdesign.bandpass('n,fc1,fc2')

d =
 
               Response: 'Bandpass with cutoff'
          Specification: 'N,Fc1,Fc2'
            Description: {3x1 cell}
    NormalizedFrequency: true
            FilterOrder: 10
               Fcutoff1: 0.4000
               Fcutoff2: 0.6000

Create the same filter, passing the specification values to the object rather 
than accepting the default values for n, fc1, and fc2. Notice that you can 
include the sampling frequency fs as the final input argument, and that you 
specify the cutoff frequencies in Hz since fs is in Hz.

d = fdesign.bandpass('n,fc1,fc2', 10, 9600, 14400, 48000)
d =
 
               Response: 'Bandpass with cutoff'
          Specification: 'N,Fc1,Fc2'
            Description: {3x1 cell}
    NormalizedFrequency: false
                     Fs: 48000
            FilterOrder: 10
               Fcutoff1: 9600
               Fcutoff2: 14400

See Also fdesign, fdesign.bandstop, fdesign.highpass, fdesign.lowpass
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8fdesign.bandstopPurpose Construct bandstop filter specification object

Syntax d = fdesign.bandstop
d = fdesign.bandstop(spec)
d = fdesign.bandstop(spec,specvalue1,specvalue2,...)
d = fdesign.bandstop(specvalue1,specvalue2,specvalue3,specvalue4,

specvalue4,specvalue5,specvalue6,specvalue7)
d = fdesign.bandstop(...,fs)
d = fdesign.bandstop(...,magunits)

Description d = fdesign.bandstop constructs a bandstop filter specification object d, 
applying default values for the properties Fpass1, Fstop1, Fstop2, Fpass2, 
Apass1, Astop1 and Apass2.

Using fdesign.bandstop with a design method generates a dfilt object.

d = fdesign.bandstop(spec) constructs object d and sets its 'Specification' 
to spec. Entries in the spec string represent various filter response features, 
such as the filter order, that govern the filter design. Valid entries for spec are 
shown below. The strings are not case sensitive.

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default spec)

• n,f3dB1,f3dB2

• n,f3dB1,f3dB2,ap

• n,f3dB1,f3dB2,ap,ast

• n,f3dB1,f3dB2,ast

• n,f3dB1,f3dB2,bwp

• n,f3dB1,f3dB2,bwst

• n,fc1,fc2

• n,fp1,fp2,ap

• n,fp1,fp2,ap,ast

• n,fp1,fst1,fst2,fp2

• n,fp1,fst1,fst2,fp2,ap

• n,fst1,fst2,ast

• nb,na,fp1,fst1,fst2,fp2

The string entries are defined as follows:
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• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• ast—attenuation in the first stop band in dB (the default units). Also called 
Astop1.

• bwp—bandwidth of the filter passband. Specified in normalized frequency 
units.

• bwst—bandwidth of the filter stopband. Specified in normalized frequency 
units.

• f3dB1—cutoff frequency for the point 3dB point below the passband value for 
the first cutoff. Specified in normalized frequency units. 

• f3dB2—cutoff frequency for the point 3dB point below the passband value for 
the second cutoff. Specified in normalized frequency units. 

• fp1—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass1.

• fp2—frequency at the end of the pass band. Specified in normalized 
frequency units. Also called Fpass2.

• fst1—frequency at the end of the first stop band. Specified in normalized 
frequency units. Also called Fstop1.

• fst2—frequency at the start of the second stop band. Specified in normalized 
frequency units. Also called Fstop2.

• n—filter order.

• na—denominator order for IIR filters

• nb—numerator order for IIR filters.

Graphically, the filter specifications look like this:
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Regions between specification values like fp1 and fst1 are transition regions 
where the filter response is not explicitly defined.

The filter design methods that apply to a bandstop filter specification object 
change depending on the Specification string. Use designmethods to 
determine which design method applies to an object and its specification string.

d = fdesign.bandstop(spec,specvalue1,specvalue2,...) constructs an 
object d and sets its specifications at construction time.

d = fdesign.bandstop(fpass1,fstop1,fstop2,fpass2,apass1,... 
astop,apass2)  constructs an object d with the default Specification 
property string, using the values you 
provide for specvalue1,specvalue2,specvalue3,specvalue4,specvalue4,
specvalue5,specvalue6 and specvalue7.

d = fdesign.bandstop(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.bandstop(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)
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• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples These examples show how to construct a bandpass filter specification object. 
First, create a default specifications object without using input arguments.

d = fdesign.bandstop
d =
 
               Response: 'Minimum-order bandstop'
            Description: {7x1 cell}
          Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
    NormalizedFrequency: true
                 Fpass1: 0.3500
                 Fstop1: 0.4500
                 Fstop2: 0.5500
                 Fpass2: 0.6500
                 Apass1: 1
                  Astop: 60
                 Apass2: 1

Now create an object by passing a specification type string 'n,fc1,fc2'—the 
resulting object uses default values for n, fc1, and fc2.

d=fdesign.bandstop('n,f3dB1,f3dB2')
 
d =
 
               Response: 'Bandstop with cutoff'
          Specification: 'N,F3dB1,F3dB2'
            Description: {3x1 cell}
    NormalizedFrequency: true
            FilterOrder: 10
               Fcutoff1: 0.4000
               Fcutoff2: 0.6000

designmethods(d)
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Design Methods for class fdesign.bandstop:

butter
cheby1
cheby2
ellip

Create another bandstop filter, passing the specification values to the object 
rather than accepting the default values for n, f3db1, and fc2. Notice that you 
can add fs as the final input argument to specify the sampling frequency of 48 
kHz.

d = fdesign.bandstop('n,f3db1,f3db2', 10, 9600, 14400, 48000)
 
d =
 
               Response: 'Bandstop with cutoff'
          Specification: 'N,F3dB1,F3dB2'
            Description: {3x1 cell}
    NormalizedFrequency: false
                     Fs: 48000
            FilterOrder: 10
               Fcutoff1: 9600
               Fcutoff2: 14400

For this bandstop filter, pass the filter specifications that correspond to the 
default Specification—fp1,fst1,fst2,fp2,ap1,ast,ap2. 

d = fdesign.bandstop(0.3,0.4,0.6,0.7,0.5,60,1)
 
d =
 
               Response: 'Minimum-order bandstop'
          Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
            Description: {7x1 cell}
    NormalizedFrequency: true
                 Fpass1: 0.3000
                 Fstop1: 0.4000
                 Fstop2: 0.6000
                 Fpass2: 0.7000
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                 Apass1: 0.5000
                  Astop: 60
                 Apass2: 1

And for the final example, pass the magnitude specifications in squared units, 
using the magunits option squared.

d = fdesign.bandstop(0.4,0.5,0.6,0.7,0.98,0.01,0.99,'squared')
d =
 
               Response: 'Minimum-order bandstop'
          Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
            Description: {7x1 cell}
    NormalizedFrequency: true
                 Fpass1: 0.4000
                 Fstop1: 0.5000
                 Fstop2: 0.6000
                 Fpass2: 0.7000
                 Apass1: 0.0877
                  Astop: 20
                 Apass2: 0.0436

See Also fdesign, fdesign.bandpass, fdesign.highpass, fdesign.lowpass



fdesign.ciccomp

8-576

8fdesign.ciccompPurpose Construct filter cascaded-integrator comb (CIC) compensator filter 
specification object 

Syntax h = fdesign.ciccomp
h = fdesign.ciccomp(d,nsections)
h = fdesign.ciccomp(...,spec)
h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...)

Description h = fdesign.ciccomp constructs a CIC compensator specifications object d, 
applying default values for the properties Fpass, Fstop, Apass, and Astop. In 
this syntax, the filter has two sections and the differential delay is 1.

Using fdesign.ciccomp with a design method creates a dfilt object, 
a single-rate discrete-time filter.

h = fdesign.ciccomp(d,nsections) constructs a CIC compensator 
specifications object with the filter differential delay set to d and the number of 
sections in the filter set to nsections.  By default, d and nsections are 1 and 
2 if you omit them as input arguments.

h = fdesign.ciccomp(...,spec) constructs a CIC Compensator 
specifications object and sets its Specification property to spec.  Entries in 
the spec string represent various filter response features, such as the filter 
order, that govern the filter design. Valid entries for spec are shown in the list 
below. The strings are not case sensitve. 

• fp,fst,ap,ast (default spec)
• n,fc,ap,ast
• n,fp,ap,ast
• n,fp,fst
• n,fst,ap,ast

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called 
Astop.
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• fc—cutoff frequency for the point 3dB point below the passband value. 
Specified in normalized frequency units. 

• fp—frequency at the end of the pass band. Specified in normalized frequency 
units. Also called Fpass.

• fst—frequency at the start of the stop band. Specified in normalized 
frequency units. Also called Fstop.

• n—filter order.

In graphic form, the filter specifications look like this:

Regions between specification values like fp and fst are transition regions 
where the filter response is not explicitly defined.

The filter design methods that apply to a CIC compensator specifications object 
change depending on the Spcification string. Use designmethods to 
determine which design method applies to an object and its specification string.

h = fdesign.ciccomp(...,spec,specvalue1,specvalue2,...) constructs 
an object and sets the specifications in the order they are specified in the spec 
input when you construct the object.

Designing CIC Compensators
Typically, when they develop filters, designers want flat passbands and 
transition regions that are as narrow as possible. CIC filters present a (sinx/x) 
profile in the passband and relatively wide transitions. 
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To compensate for this fall off in the passband, and to try to reduce the width 
of the transition region, you can use a CIC compensator filter that 
demonstrates an (x/sinx) profile in the passband. fdesign.ciccomp is 
specifically tailored to designing CIC compensators. 

Here is a plot of a CIC filter and a compensator for that filter. The example that 
produces these filters follows the plot.

Given a CIC filter, how do you design a compensator for that filter? CIC 
compensators share three defining properties with the CIC filter—differential 
delay, d; number of sections, numberofsections; and the usable passband 
frequency, Fpass.

By taking the number of sections, passband, and differential delay from your 
CIC filter and using them in the definition of the CIC compensator, the 
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resulting compensator filter effectively corrects for the passband droop of the 
CIC filter, and narrows the transition region.

As a demonstration of this concept, this example creates a CIC decimator and 
its compensator.

fs = 96e3;   % Input sampling frequency. 
fpass = 4e3; % Frequency band of interest.
m = 6;  % Decimation factor.       
hcic = design(fdesign.decimator(m,'cic',1,fpass,60,fs));
hd = cascade(dfilt.scalar(1/gain(hcic)),hcic);
hd(2) = design(fdesign.ciccomp(hcic.differentialdelay, ...
            hcic.numberofsections,fpass,4.5e3,.1,60,fs/m));
fvtool(hd(1),hd(2),cascade(hd(1),hd(2)),'Fs',[96e3 96e3/m 96e3])

You see the results in the preceeding plot.

Examples Designed to compensate for the roll-off inherent in CIC filters, CIC 
compensators can improve the performance of your CIC design. This example 
designs a compensator d with five sections and a differential delay equal to one. 
The plot displayed after the code shows the increasing gain in the passband 
that is characteristic of CIC compensators, to overcome the droop in the CIC 
filter passband. Ideally, cascading the CIC compensator with the CIC filter 
results in a lowpass filter with flat passband response and narrow transition 
region.

h = fdesign.ciccomp;
set(h, 'NumberOfSections', 5, 'DifferentialDelay', 1);
hd = equiripple(h);
fvtool(hd);
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This compensator would work for a decimator or interpolator that had 
diffential delay of 1 and 5 sections.

See Also fdesign.decimator, fdesign.interpolator
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8fdesign.decimatorPurpose Construct decimator filter specification object

Syntax d = fdesign.decimator(m)
d = fdesign.decimator(m,design)
d = fdesign.decimator(m,design,spec)
d = fdesign.decimator(...,spec,specvalue1,specvalue2,...
d = fdesign.decimator(...,fs)
d = fdesign.decimator(...,magunits)

Description d = fdesign.decimator(m) constructs a decimating filter specification object 
d, applying default values for the properties fp, fst, ap, and ast and using the 
default design, Nyquist. Specify m, the decimation factor, as an integer. When 
you omit the input argument m, fdesign.decimator sets the decimation factor 
m to 2.

Using fdesign.decimator with a design method generates an mfilt object.

d = fdesign.decimator(m,design) constructs a decimator with the 
decimation factor m and the design type you specify in design. By using the 
design input argument, you can choose the sort of filter that results from using 
the decimator specifications object. design accepts the following strings that 
define the filter response.

design String Description

bandpass Sets the design for the decimator 
specifications object to bandpass.

bandstop Sets the design for the decimator 
specifications object to bandstop.

cic Sets the design for the decimator 
specifications object to CIC filter.

ciccomp Sets the design for the decimator 
specifications object to CIC compensator.

halfband Sets the design for the decimator 
specifications object to halfband.
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Notice the entries in the first column. They match the design method names. 
However, when you create your specifications object, the Response property 
contains the full name of the response, such as CIC Compensator or 
Inverse-Sinc Lowpass, rather than the shorter method names isinclp or 
ciccomp. So, when you seek to design a new filter object, use the design method 
name shown in the table. To change the Response property value for an 
existing specifications object, use the full response name.

d = fdesign.decimator(m,design,spec) constructs object d and sets its 
Specification property to spec. Entries in the spec string represent various 
filter response features, such as the filter order, that govern the filter design. 
Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input 
argument.

Because you are designing multirate filters, the specification strings available 
are not the same as the specifications for designing single-rate filters with such 
design methods as fdesign.lowpass.  The strings are not case sensitive.

highpass Sets the design for the decimator 
specifications object to highpass.

isinclp Sets the design for the decimator 
specifications object to inverse-sinc 
lowpass.

lowpass Sets the design for the decimator 
specifications object to lowpass.

nyquist Sets the design for the decimator 
specifications object to Nyquist.

design String (Continued) Description
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Notice that the decimation factor m is not in the specification strings. Various 
design types provide different specifications, as shown in this table. .

Design Type Valid Specification Strings

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default 
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default 
string)

CIC • fp,ast (default and only string)

CIC Compensator • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast
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The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc Lowpass • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fst,ap,ast

• n,fp,ap,ast

• n,fp,fst

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

Design Type Valid Specification Strings
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• ap1—amount of ripple allowed in the pass band in dB (the default units). 
Also called Apass1. Bandpass and bandstop filters use this option.

• ap2—amount of ripple allowed in the pass band in dB (the default units). 
Also called Apass2. Bandpass and bandstop filters use this option.

• ast—attenuation in the first stop band in dB (the default units). Also called 
Astop.

• ast1—attenuation in the first stop band in dB (the default units). Also called 
Astop1. Bandpass and bandstop filters use this option.

• ast2—attenuation in the first stop band in dB (the default units). Also called 
Astop2. Bandpass and bandstop filters use this option.

• fc1—cutoff frequency for the point 3dB point below the passband value for 
the first cutoff. Specified in normalized frequency units. Bandpass and 
bandstop filters use this option.

• fc2—cutoff frequency for the point 3dB point below the passband value for 
the second cutoff. Specified in normalized frequency units. Bandpass and 
bandstop filters use this option.

• fp1—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass1. Bandpass and bandstop filters use this 
option.

• fp2—frequency at the end of the pass band. Specified in normalized 
frequency units. Also called Fpass2. Bandpass and bandstop filters use this 
option.

• fst1—frequency at the end of the first stop band. Specified in normalized 
frequency units. Also called Fstop1. Bandpass and bandstop filters use this 
option.

• fst2—frequency at the start of the second stop band. Specified in normalized 
frequency units. Also called Fstop2. Bandpass and bandstop filters use this 
option.

• n—filter order.

• tw—width of the transition region between the pass and stop bands. Both 
halfband and Nyquist filters use this option.

d = fdesign.decimator(...,spec,specvalue1,specvalue2,...) constructs 
an object d and sets its specifications at construction time.
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d = fdesign.decimator(...,fs) adds the argument fs, specified in Hz, to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.decimator(...,magunits) specifies the units for any 
magnitude specification you provide in the input arguments. magunits can be 
one of

• linear—specify the magnitude in linear units.

• dB—specify the magnitude in dB (decibels).

• squared—specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples These examples show how to construct decimating filter specification objects. 
First, create a default specifications object without using input arguments 
except for the decimation factor m.

d = fdesign.decimator(2,0.1,80) % Set tw=0.1, and ast=80.

d =
 
          MultirateType: 'Decimator'                                     
               Response: 'Nyquist'                                       
       DecimationFactor: 2                                               
          Specification: 'TW,Ast'                                        
            Description: {'Transition Width';'Stopband Attenuation (dB)'}
    NormalizedFrequency: true                                            
        TransitionWidth: 0.1                                             
                  Astop: 80                                              

Now create an object by passing a specification type string 
'fst1,fp1,fp2,fst2,ast1,ap,ast2' and a design—the resulting object uses 
default values for the filter specifications. You must provide the design input 
argument, bandpass in this example, when you include a specification.

d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')
 
d =
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          MultirateType: 'Decimator'                     
               Response: 'Bandpass'                      
       DecimationFactor: 8                               
          Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}                      
    NormalizedFrequency: true                            
                 Fstop1: 0.35                            
                 Fpass1: 0.45                            
                 Fpass2: 0.55                            
                 Fstop2: 0.65                            
                 Astop1: 60                              
                  Apass: 1                               
                 Astop2: 60                              

Create another decimating filter specification object, passing the specification 
values to the object rather than accepting the default values for fp,fst,ap,ast. 

d=fdesign.decimator(3,'lowpass',.45,0.55,.1,60)
 
d =
 
          MultirateType: 'Decimator'    
               Response: 'Lowpass'      
       DecimationFactor: 3              
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fpass: 0.45           
                  Fstop: 0.55           
                  Apass: 0.1            
                  Astop: 60             

Now pass the filter specifications that correspond to the specifications—
n,fc,ap,ast. 

d=fdesign.decimator(3,'cic compensator','n,fc,ap,ast',...
20,0.45,.05,50)
 
d =
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          MultirateType: 'Decimator'      
               Response: 'CIC Compensator'
       DecimationFactor: 3                
          Specification: 'N,Fc,Ap,Ast'    
            Description: {4x1 cell}       
       NumberOfSections: 2                
      DifferentialDelay: 1                
    NormalizedFrequency: true             
            FilterOrder: 20               
                Fcutoff: 0.45             
                  Apass: 0.05             
                  Astop: 50               

Now design a decimator using the kaiserwin design method.

hm = kaiserwin(d)

Pass a new specification type for the filter, specifying the filter order. Note that 
the inputs must include the differential delay dd with the CIC input argument 
to design a CIC specification object.

m = 5;
dd = 2;
d = fdesign.decimator(m,'cic',dd,'fp,ast',0.55,55)
 
d =
 
          MultirateType: 'Decimator'                                      
               Response: 'CIC'                                            
       DecimationFactor: 5                                                
          Specification: 'Fp,Ast'                                          
            Description: {'Passband Frequency';'Stopband Attenuation(dB)'}
      DifferentialDelay: 2                                                
    NormalizedFrequency: true                                             
                  Fpass: 0.55                                             

In this example, you specify a sampling frequency as the last input argument.

d=fdesign.decimator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,...
ap,ast2',0.25,0.35,.55,.65,50,.05,50,1e3) % Fs = 1000 Hz.
 
d =
 
          MultirateType: 'Decimator'                     
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               Response: 'Bandpass'                      
       DecimationFactor: 8                               
          Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}                      
    NormalizedFrequency: false                           
                     Fs: 1000                            
                 Fstop1: 0.25                            
                 Fpass1: 0.35                            
                 Fpass2: 0.55                            
                 Fstop2: 0.65                            
                 Astop1: 50                              
                  Apass: 0.05                            
                 Astop2: 50                              

In this, the last example, use the linear option for the filter specification object 
and specify the stopband ripple attenuation in linear format.

hs = fdesign.decimator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,50,...
1e-3,'linear') % 1e-3 = 60dB.

 
hs =
 
           Response: 'Lowpass decimator'                             
      Specification: 'TW,Ast'                                        
            Description: {'Transition Width';'Stopband Attenuation (dB)'}
       DecimationFactor: 4                                               
    NormalizedFrequency: false                                           
                     Fs: 500                                             
        TransitionWidth: 0.1                                             
                  Astop: 60                                              

Design the filter and display the magnitude response in FVTool.

designmethods(hs);
equiripple(hs);  % Starts FVTool to display the response.
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See Also fdesign, fdesign.interpolator, fdesign.rsrc
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8fdesign.differentiatorPurpose Construct differentiator filter specification object

Syntax d = fdesign.differentiator
d = fdesign.differentiator(spec)
d = fdesign.differentiator(spec,specvalue1,specvalue2,...)
d = fdesign.differentiator(specvalue1)
d = fdesign.differentiator(...,fs)
d = fdesign.differentiator(...,magunits)

Description d = fdesign.differentiator constructs a default differentiator filter 
designer d the filter order, set to 31.

d = fdesign.differentiator(spec) initializes the filter designer 
Specification property to spec.  You provide one of the following strings as 
input to replace spec. The string you provide is not case sensitive:

• n—full band differentiator (default).

• n,fp,fst—partial band differentiator.

• ap—minimum-order full band differentiator. 

• fp,fst,ap,ast—minimum-order partial band differentiator.

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called 
Astop.

• fp—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass.

• fst—frequency at the end of the stop band. Specified in normalized 
frequency units. Also called Fstop.

• n—filter order.

By default, fdesign.differentiator assumes that all frequency specifications 
are provided in normalized frequency units. Also, dB is the default for all 
magnitude specifications.
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Different specification strings may have different design methods available. 
Use designmethods(d) to get a list of the design methods available for a given 
specification string.

d = fdesign.differentiator(spec,specvalue1,specvalue2, ...)
initializes the filter designer specifications in spec with specvalue1, 
specvalue2, and so on. To get a description of the specifications specvalue1, 
specvalue2, and more, enter

get(d,'description')

at the Command prompt.

d = fdesign.differentiator(specvalue1) assumes the default specification 
string n, setting the filter order to the value you provide. 

d = fdesign.differentiator(...,fs) adds the argument fs, specified in Hz 
to define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.differentiator(...,magunits) specifies the units for any 
magnitude specification you provide in the input arguments. magunits can be 
one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples The toolbox lets you design a range of differentiators. These examples present 
a few possible designs. The first example designs a 33rd-order full band 
differentiator. The FVTool plot following the code shows the resulting 
33rd-order filter.

d = fdesign.differentiator(33); % N is the filter order of 33.
designmethods(d);
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hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange',...
'[-pi, pi)')

Design Methods for class fdesign.differentiator (N):

equiripple
firls

For the second example, design a narrow band differentiator. Differentiate the 
first 25 percent of the frequencies in the Nyquist range and filter the higher 
frequencies.
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d = fdesign.differentiator('n,fp,fst',54,.25,.3);
designmethods(d);
hd = design(d,'equiripple'); 
fvtool(hd,'magnitudedisplay','zero-phase');
set(hf,'frequencyrange','[-fs/2, fs/2]')

Here is the view from FVTool.

Finally, design a minimum-order, wide-band differentiator.

d = fdesign.differentiator('fp,fst,ap,ast',.8,.9,1,80);
designmethods(d);
hd = design(d,'equiripple'); 
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange')

FVTool returns this plot.
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See Also design, fdesign, setspecs
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8fdesign.halfbandPurpose Construct halfband filter specification object

Syntax d = fdesign.halfband
d = fdesign.halfband(spec)
d = fdesign.halfband(spec,specvalue1,specvalue2,...)
d = fdesign.halfband(specvalue1,specvalue2)
d = fdesign.halfband(...,fs)
d = fdesign.halfband(...,magunits)

Description d = fdesign.halfband constructs a halfband filter specification object d, 
applying default values for the properties tw and ast.

Using fdesign.halfband with a design method generates a dfilt object.

d = fdesign.halfband(spec) constructs object d and sets its 'Specification' 
to spec. Entries in the spec string represent various filter response features, 
such as the filter order, that govern the filter design. Valid entries for spec are 
shown below. The strings are not case sensitive.

• tw,ast (default spec)

• n,tw
• n

• n,ast

The string entries are defined as follows:

• ast—attenuation in the stop band in dB (the default units).

• n—filter order.

• tw—width of the transition region between the pass and stop bands. 
Specified in normalized frequency units. 

The filter design methods that apply to a halfband filter specification object 
change depending on the Specification string. Use designmethods to 
determine which design method applies to an object and its specification string.

d = fdesign.halfband(spec,specvalue1,specvalue2,...) constructs an 
object d and sets its specifications at construction time.

d = fdesign.halfband(specvalue1,specvalue2)  constructs an object d 
assuming the default Specification property string tw,ast, using the values  
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you provide for the input arguments specvalue1 and specvalue2 for tw and 
ast.

d = fdesign.halfband(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.halfband(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples These examples show how to construct a halfband filter specification object. 
First, create a default specifications object without using input arguments.

d=fdesign.halfband
 
d =
 
               Response: 'Minimum-order halfband'
          Specification: 'TW,Ast'
            Description: {2x1 cell}
    NormalizedFrequency: true
        TransitionWidth: 0.1000
                  Astop: 80

Now create an object by passing a specification type string 'n,ast'—the 
resulting object uses default values for n and ast.

d=fdesign.halfband('n,ast')
 
d =
 
               Response: 'Halfband with filter order and stopband attenuation'
          Specification: 'N,Ast'
            Description: {2x1 cell}
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    NormalizedFrequency: true
            FilterOrder: 10
                  Astop: 80

Create another halfband filter object, passing the specification values to the 
object rather than accepting the default values for n and ast. 

d = fdesign.halfband('n,ast', 42, 80)
 
d =
 
               Response: 'Halfband with filter order and stopband attenuation'
          Specification: 'N,Ast'
            Description: {2x1 cell}
    NormalizedFrequency: true
            FilterOrder: 42
                  Astop: 80

For another example, pass the filter values that correspond to the default 
Specification—n,ast. 

d = fdesign.halfband(.01, 80)
 
d =
 
               Response: 'Minimum-order halfband'
          Specification: 'TW,Ast'
            Description: {2x1 cell}
    NormalizedFrequency: true
        TransitionWidth: 0.0100
                  Astop: 80% 

This example designs an equiripple FIR filter, starting by passing a new 
specification type and specification values to fdesign.halfband.

hs = fdesign.halfband('n,ast',80,70);
hs
 
hs =
 
               Response: [1x51 char]
          Specification: 'N,Ast'
            Description: {2x1 cell}
    NormalizedFrequency: true
            FilterOrder: 80
                  Astop: 70
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equiripple(hs); % Opens FVTool automatically.

In the final example, pass the for the filter, and then design a least-squares FIR 
filter from the object, using firls as the design method.

hs = fdesign.halfband('n,tw', 42, .04)
 
hs =
 
               Response: [1x47 char]
          Specification: 'N,TW'
            Description: {2x1 cell}
    NormalizedFrequency: true
            FilterOrder: 42
        TransitionWidth: 0.0400

designmethods(hs)

Design Methods for class fdesign.halfband:

equiripple
kaiserwin
firls

hd=firls(hs)
 
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'double'
               Numerator: [1x43 double]
        PersistentMemory: false
                  States: [42x1 double]

See Also fdesign, fdesign.decimator, fdesign.interpolator, fdesign.nyquist
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8fdesign.highpassPurpose Construct highpass filter specification object

Syntax d = fdesign.highpass
d = fdesign.highpass(spec)
d = fdesign.highpass(spec,specvalue1,specvalue2,...)
d = fdesign.highpass(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.highpass(...,fs)
d = fdesign.highpass(...,magunits)

Description d = fdesign.highpass constructs a highpass filter specification object d, 
applying default values for the properties fst, fp, ast and ap.

Using fdesign.highpass with a design method generates a dfilt object.

d = fdesign.highpass(spec) constructs object d and sets its 'Specification' 
to spec. Entries in the spec string represent various filter response features, 
such as the filter order, that govern the filter design. Valid entries for spec are 
shown below. The strings are not case sensitive.

• fst,fp,ast,ap (default spec)

• n,f3db

• n,f3db,ap

• n,f3db,ast

• n,f3db,ast,ap

• n,f3db,fp

• n,fc

• n,fc,ast,ap

• n,fp,ap

• n,fp,ast,ap

• n,fst,ast

• n,fst,ast,ap

• n,fst,f3db

• n,fst,fp

• n,fst,fp,ap

• n,fst,fp,ast



fdesign.highpass

8-601

• nb,na,fst,fp

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called 
Astop.

• f3db—cutoff frequency for the point 3dB point below the passband value. 
Specified in normalized frequency units. 

• fc—cutoff frequency for the point 3dB point below the passband value. 
Specified in normalized frequency units. 

• fp—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass.

• fst—frequency at the end of the stop band. Specified in normalized 
frequency units. Also called Fstop.

• n—filter order.

• na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look like this:

Regions between specification values like fst1 and fp are transition regions 
where the filter response is not explicitly defined.
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The filter design methods that apply to a highpass filter specification object 
change depending on the Specification string. Use designmethods to 
determine which design method applies to an object and its specification string.

d = fdesign.highpass(spec,specvalue1,specvalue2,...) constructs an 
object d and sets its specification values at construction time.

d = fdesign.highpass(specvalue1,specvalue2,specvalue3,specvalue4)  
constructs an object d with the values for the default Specification property 
string, using the specifications you provide as input arguments 
specvalue1,specvalue2,specvalue3,specvalue4.

d = fdesign.highpass(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.highpass(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples These examples how to construct a highpass filter specification object. First, 
create a default specifications object without using input arguments.

d=fdesign.highpass
 
d =
 
               Response: 'Minimum-order highpass'
          Specification: 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}
    NormalizedFrequency: true
                  Fstop: 0.4500
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                  Fpass: 0.5500
                  Astop: 60
                  Apass: 1

This time, pass the specifications that correspond to the default Specification 
string.

hs = fdesign.highpass(.4,.5,80,1);

hs =
 
               Response: 'Minimum-order highpass'
          Specification: 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}
    NormalizedFrequency: true
                  Fstop: 0.4000
                  Fpass: 0.5000
                  Astop: 80
                  Apass: 1

Now create an object by passing a specification type string 'n,fc'—the 
resulting object uses default values for n and fc.

d=fdesign.highpass('n,fc')
 
d =
 
               Response: 'Highpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: true
            FilterOrder: 10
                Fcutoff: 0.5000

Create the same filter, passing the values for n and fc rather than accepting 
the default values. Notice that you can add include the sampling frequency fs 
as the final input argument. Adding fs puts all the frequency specifications into 
linear frequency format, rather than normalized frequency.

d=fdesign.highpass('n,fc',10,9600,48000)
 
d =
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               Response: 'Highpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: false
                     Fs: 48000
            FilterOrder: 10
                Fcutoff: 9600

Finally, pass values for the filter specifications that match the default 
Specification string—fp = 10, fst = 12, ast = 80 and ap = 0.5. Add the 
sampling frequency on the end.

d=fdesign.highpass(10,12,80,0.5,48000)
 
d =
 
               Response: 'Minimum-order highpass'
          Specification: 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}
    NormalizedFrequency: false
                     Fs: 48000
                  Fstop: 10
                  Fpass: 12
                  Astop: 80

To demonstrate the magunits input option, pass the magnitude specifications 
in squared units and include the squared input argument for magunits.

hs = fdesign.highpass(.4, .5, .02, .98, 'squared');
hd = cheby1(hs);
fvtool(hd,'MagnitudeDisplay','Magnitude Squared');

The figure below shows the filter response.
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See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.lowpass
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8fdesign.hilbertPurpose Construct Hilbert filter specification object

Syntax d = fdesign.hilbert
d = fdesign.hilbert(specvalue1,specvalue2)
d = fdesign.hilbert(spec)
d = fdesign.hilbert(spec,specvalue1,specvalue2)
d = fdesign.hilbert(...,fs)
d = fdesign.hilbert(...,magunits)

Description d = fdesign.hilbert constructs a default Hilbert filter designer d with n, the 
filter order, set to 31.

d = fdesign.hilbert(specvalue1,specvalue2) constructs a Hilbert filter 
designer d assuming the default specification string n,tw.You input specvalue1 
and specvalue2 for n and tw.

d = fdesign.hilbert(spec) initializes the filter designer Specification 
property to spec.  You provide one of the following strings as input to replace 
spec. The string you provide is not case sensitive:

• n,tw—default spec string.

• tw,ap—minimum-order Hilbert filter.

The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• n—filter order.

• tw—width of the transition region between the pass and stop bands.

By default, fdesign.hilbert assumes that all frequency specifications are 
provided in normalized frequency units. Also, dB is the default for all 
magnitude specifications.

Different specification strings may have different design methods available. 
Use designmethods(d) to get a list of the design methods available for a given 
specification string.
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d = fdesign.hilbert(spec,specvalue1,specvalue2) initializes the filter 
designer specifications in spec with specvalue1, specvalue2, and so on. To get 
a description of the specifications specvalue1 and specvalue2, enter

get(d,'description')

at the Command prompt.

d = fdesign.hilbert(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.hilbert(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples The toolbox lets you design a range of Hilbert filters. These examples present 
a few possible designs. The first example designs a 30th-order type III Hilbert 
transformer filter. The FVTool plot following the code shows the resulting  
filter.

d = fdesign.hilbert(30,0.2); % n,tw specification string.
designmethods(d);

hd = design(d,'firls');
fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange',...
'[-pi, pi)')

Design Methods for class fdesign.hilbert (N,TW):

ellip
iirlinphase
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equiripple
firls

For the second example, design a 35th-order type IV Hilbert transformer.

d = fdesign.hilbert('n,tw',35,0.1);
designmethods(d);
hd = design(d,'equiripple'); 
hf = fvtool(hd,'magnitudedisplay','zero-phase','frequencyrange')
set(hf,'frequencyrange','[-fs/2, fs/2]')

Here is the view from FVTool.
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Finally, design a minimum-order transformer that has a sampling frequency 
of 100 Hz—add Fs as an input argument in Hz.

d = fdesign.hilbert('tw,ap',1,0.1,100); % Fs = 100 Hz.
designmethods(d);
hd = design(d,'equiripple'); 
fvtool(hd,'magnitudedisplay','zero-phase');
set(hf,'frequencyrange','[-fs/2, fs/2]')

FVTool returns this plot.
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See Also design, fdesign, setspecs
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8iirlinphasePurpose Design quasi-linear phase IIR filter from halfband filter specification object

Syntax hd = design(d,'iirlinphase')
hd = design(d,'iirlinphase','filterstructure',structure)

Description hd = design(d,'iirlinphase') designs a quasi-linear phase filter hd 
specified by the filter specification object d.

hd = design(...,'filterstructure',structure) returns a filter with the 
structure specified by structure.  By default, the filter structure is df2sos 
(direct-form II with second-order sections). You can substitute one of the 
following strings for structure to specify the structure of hd.

Examples Design a quasi-linear phase, minimum-order halfband IIR filter with  
transition width of 0.36 and stopband attenuation of at least 80 dB. 

tw = 0.36;
ast = 80;
d = fdesign.halfband('tw,ast',tw,ast); % Transition width, 

% stopband attenuation.
hd = design(d,'iirlinphase');

fvtool(hd)

Notice the characteristic halfband nature of the ripple in the stopband. If you 
measure the resulting filter, you see it meets the specifications.

Structure String Filter Structure

df1sos Direct-form I IIR filter with  second-order 
sections

df2sos Direct-form II IIR filter with  second-order 
sections

df1tsos Transposed direct-form I IIR filter with  
second-order sections

df2tsos Transposed direct-form II IIR filter with  
second-order sections
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measure(hd)
 
ans =
 
Sampling Frequency : N/A (normalized frequency)
Passband Edge      : 0.32                      
3-dB Point         : 0.5                       
6-dB Point         : 0.51911                   
Stopband Edge      : 0.68                      
Passband Ripple    : 4.0866e-008 dB            
Stopband Atten.    : 80.2642 dB                
Transition Width   : 0.36                      

See Also fdesign.nyquist
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8fdesign.interpolatorPurpose Construct interpolator filter specification object 

Syntax d = fdesign.interpolator(l)
d = fdesign.interpolator(l,design)
d = fdesign.interpolator(l,design,spec)
d = fdesign.interpolator(...,spec,specvalue1,specvalue2,...
d = fdesign.interpolator(...,fs)
d = fdesign.interpolator(...,magunits)

Description d = fdesign.interpolator(l) constructs an interpolating filter specification 
object d, applying default values for the properties fp, fst, ap, and ast and 
using the default design, Nyquist. Specify l, the interpolation factor, as an 
integer. When you omit the input argument l, fdesign.interpolator sets the 
interpolation factor l to 3.

Using fdesign.interpolator with a design method generates an mfilt object.

d = fdesign.interpolator(l,design) constructs an interpolator with the 
interpolation factor l and the response you specify in design. By using the 
design input argument, you can choose the sort of filter that results from using 
the interpolator specifications object. design accepts the following strings that 
define the filter response.

design String Description

Bandpass Sets the response for the interpolator 
specifications object to bandpass.

Bandstop Sets the response for the interpolator 
specifications object to bandstop.

CIC Sets the response for the interpolator 
specifications object to CIC filter.

CIC Compensator Sets the response for the interpolator 
specifications object to CIC compensator.

Halfband Sets the response for the interpolator 
specifications object to halfband.



fdesign.interpolator

8-614

d = fdesign.interpolator(l,design,spec) constructs object d and sets its 
Specification property to spec. Entries in the spec string represent various 
filter response features, such as the filter order, that govern the filter design. 
Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input 
argument.

Because you are designing multirate filters, the specification strings available 
are not the same as the specifications for designing single-rate filters with such 
design methods as fdesign.lowpass.  The strings are not case sensitive.

Notice that the interpolation factor l is not in the specification strings. Various 
design types provide different specifications, as shown in this table.

Highpass Sets the response for the interpolator 
specifications object to highpass.

Inverse-Sinc Lowpass Sets the response for the interpolator 
specifications object to inverse-sinc 
lowpass.

Lowpass Sets the response for the interpolator 
specifications object to lowpass.

Nyquist Sets the response for the interpolator 
specifications object to Nyquist.

Design Type Valid Specification Strings

Arbitrary Magnitude • n,b,f,a
• n,f,a

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default 
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

design String (Continued) Description
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Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default 
string)

CIC • fp,ast (default and only string)

CIC Compensator • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc Lowpass • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fst,ap,ast

• n,fp,ap,ast

• n,fp,fst

Design Type Valid Specification Strings
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The string entries are defined as follows:

• a—magnitude response at the frequencies in f. Usually this is a vector of 
values with the same length as f.

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• ap1—amount of ripple allowed in the pass band in dB (the default units). 
Also called Apass1. Bandpass and bandstop filters use this option.

• ap2—amount of ripple allowed in the pass band in dB (the default units). 
Also called Apass2. Bandpass and bandstop filters use this option.

• ast—attenuation in the first stop band in dB (the default units). Also called 
Astop.

• ast1—attenuation in the first stop band in dB (the default units). Also called 
Astop1. Bandpass and bandstop filters use this option.

• ast2—attenuation in the first stop band in dB (the default units). Also called 
Astop2. Bandpass and bandstop filters use this option.

• b—number of filter bands.

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

Design Type Valid Specification Strings
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• f—vector of specific frequency points in the filter response. In combination 
with a, this specifies the desired filter response.

• fc1—cutoff frequency for the point 3dB point below the passband value for 
the first cutoff. Specified in normalized frequency units. Bandpass and 
bandstop filters use this option.

• fc2—cutoff frequency for the point 3dB point below the passband value for 
the second cutoff. Specified in normalized frequency units. Bandpass and 
bandstop filters use this option.

• fp1—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass1. Bandpass and bandstop filters use this 
option.

• fp2—frequency at the end of the pass band. Specified in normalized 
frequency units. Also called Fpass2. Bandpass and bandstop filters use this 
option.

• fst1—frequency at the end of the first stop band. Specified in normalized 
frequency units. Also called Fstop1. Bandpass and bandstop filters use this 
option.

• fst2—frequency at the start of the second stop band. Specified in normalized 
frequency units. Also called Fstop2. Bandpass and bandstop filters use this 
option.

• n—filter order.

• tw—width of the transition region between the pass and stop bands. 
Halfband, Hilbert, and Nyquist filters use this option.

d = fdesign.interpolator(...,spec,specvalue1,specvalue2,...)
constructs an object d and sets its specifications at construction time.

d = fdesign.interpolator(...,fs) adds the argument fs, specified in Hz, 
to define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.interpolator(...,magunits) specifies the units for any 
magnitude specification you provide in the input arguments. magunits can be 
one of

• linear—specify the magnitude in linear units.

• dB—specify the magnitude in dB (decibels).
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• squared—specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples These examples show how to construct interpolating filter specification objects. 
First, create a default specifications object without using input arguments 
except for the interpolation factor l.

l = 2;
d = fdesign.interpolator(2)

d =
 
          MultirateType: 'Interpolator'                                     
               Response: 'Nyquist'                                       
       DecimationFactor: 2                                               
          Specification: 'TW,Ast'                                        
            Description: {'Transition Width';'Stopband Attenuation (dB)'}
    NormalizedFrequency: true                                            
        TransitionWidth: 0.1                                             
                  Astop: 80                                              

Now create an object by passing a specification string 
'fst1,fp1,fp2,fst2,ast1,ap,ast2' and a design—the resulting object uses 
default values for all of the filter specifications. You must provide the design 
input argument when you include a specification.

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,...
ast1,ap,ast2')
 
d =
 
          MultirateType: 'Interpolator'                     
               Response: 'Bandpass'                      
       DecimationFactor: 8                               
          Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}                      
    NormalizedFrequency: true                            
                 Fstop1: 0.35                            
                 Fpass1: 0.45                            
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                 Fpass2: 0.55                            
                 Fstop2: 0.65                            
                 Astop1: 60                              
                  Apass: 1                               
                 Astop2: 60                              

Create another interpolating filter object, passing the specification values to 
the object rather than accepting the default values for, in this case, 
fp,fst,ap,ast. 

d=fdesign.interpolator(3,'lowpass',.45,0.55,.1,60)
 
d =
 
          MultirateType: 'Interpolator'    
               Response: 'Lowpass'      
       DecimationFactor: 3              
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fpass: 0.45           
                  Fstop: 0.55           
                  Apass: 0.1            
                  Astop: 60             

Now pass the filter specifications that correspond to the specifications—
n,fc,ap,ast. 

d=fdesign.interpolator(3,'cic compensator','n,fc,ap,ast',...
20,0.45,.05,50)
 
d =
 
          MultirateType: 'Interpolator'      
               Response: 'CIC Compensator'
       DecimationFactor: 3                
          Specification: 'N,Fc,Ap,Ast'    
            Description: {4x1 cell}       
       NumberOfSections: 2                
      DifferentialDelay: 1                
    NormalizedFrequency: true             
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            FilterOrder: 20               
                Fcutoff: 0.45             
                  Apass: 0.05             
                  Astop: 50               

With the specifications object in your workspace, design an interpolator using 
the kaiserwin design method.

hm = design(d,'kaiserwin')

Pass a new specification type for the filter, specifying the filter order.

d = fdesign.interpolator(5,'CIC','fp,ast',0.55,55)
 
d =
 
          MultirateType: 'Interpolator'                                      
               Response: 'CIC'                                            
       DecimationFactor: 5                                                
          Specification: 'Fp,Aa'                                          
            Description: {'Passband Frequency';'Stopband Attenuation(dB)'}
      DifferentialDelay: 1                                                
    NormalizedFrequency: true                                             
                  Fpass: 0.55                                             

In this example, you specify a sampling frequency as the rightmost input 
argument.

d=fdesign.interpolator(8,'bandpass','fst1,fp1,fp2,fst2,ast1,...
ap,ast2',0.25,0.35,.55,.65,50,.05,50,1e3) % Fs = 1000 Hz.
 
d =
 
          MultirateType: 'Interpolator'                     
               Response: 'Bandpass'                      
       DecimationFactor: 8                               
          Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}                      
    NormalizedFrequency: false                           
                     Fs: 1000                            
                 Fstop1: 0.25                            
                 Fpass1: 0.35                            
                 Fpass2: 0.55                            
                 Fstop2: 0.65                            
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                 Astop1: 50                              
                  Apass: 0.05                            
                 Astop2: 50                              

In this, the last example, use the linear option for the filter specification object 
and specify the stopband ripple attenuation in linear form.

d = fdesign.interpolator(4,'lowpass','n,fst,ap,ast',15,0.55,.05,...
50,1e3,'linear') % 1e3 = 60dB.

 
d =
 
           Response: 'Lowpass interpolator'                             
      Specification: 'TW,Ast'                                        
            Description: {'Transition Width';'Stopband Attenuation (dB)'}
       DecimationFactor: 4                                               
    NormalizedFrequency: false                                           
                     Fs: 500                                             
        TransitionWidth: 0.1                                             
                  Astop: 60                                              

Design the filter and display the magnitude response in FVTool.

designmethods(d);
design(d,'equiripple');  % Opens FVTool to display the response.

Now design a CIC interpolator for a signal sampled at 19200 Hz. Specify the 
differential delay of 2 and set the attenuation of information beyond 50 Hz to 
be at least 80 dB.

Notice that the filter object sampling frequency is (l x fs) where fs is the  
sampling frequency of the input signal.

dd = 2;     % Differential delay.
fp = 50;    % Passband of interest.
ast = 80;    % Minimum attenuation of alias components in passband.
fs = 600;   % Sampling frequency for input signal.
l = 32;    % Interpolation factor.
d = fdesign.interpolator(l,'cic',dd,'fp,ast',fp,ast,l*fs);
d =
 
          MultirateType: 'Interpolator'                                  
   InterpolationFactor: 32                                              
               Response: 'CIC'                                           
         Specification: 'Fp,Ast'                                        
           Description: {'Passband Frequency';'Imaging Attenuation(dB)'}
      DifferentialDelay: 2                                               
    NormalizedFrequency: false                                           
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                     Fs: 19200                                           
                  Fs_in: 600                                             
                 Fs_out: 19200                                           
                  Fpass: 50                                              
                  Astop: 80                                              
hm = design(d);  %Use the default design method.
hm
 
hm =
 
        FilterStructure: 'Cascaded Integrator-Comb Interpolator'
             Arithmetic: 'fixed'
      DifferentialDelay: 2
       NumberOfSections: 2
    InterpolationFactor: 32
       PersistentMemory: false
 
        InputWordLength: 16             
        InputFracLength: 15             
                                        
        FilterInternals: 'FullPrecision'

This next example results in a minimum-order CIC compensator that 
interpolates by 4 and compensates for the droop in the passband for the CIC 
filter hm from the previous example. 

nsecs = hm.numberofsections;
d = fdesign.interpolator(4,'ciccomp',dd,nsecs,...
50,100,0.1,80,fs);
hmc = design(d,'equiripple');
hmc.arithmetic = 'fixed';

hmc is designed to compensate for hm. To see the effect of the compensating CIC 
filter, use FVTool to analyze both filters individually and include the compound 
filter response by cascading hm and hmc.

fvtool(hmc,hm,cascade(hmc,hm),'fs',[fs,l*fs,l*fs],...
'showreference','off');
legend('CIC Compensator','CIC Interpolator',...
'Overall Response');

FVTool returns with this plot.
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For the third example, use fdesign.interpolator to design a minimum-order 
Nyquist interpolator that uses a Kaiser window. For comparison, design 
a multistage interpolator as well and compare the responses.

l = 15;   % Set the interpolation factor and the Nyquist band.
tw = 0.05; % Specify the normalized transition width.
ast = 40;   % Set the minimum stopband attenuation in dB.
d = fdesign.interpolator(l,'nyquist',l,tw,ast);
hm = design(d,'kaiserwin');  
hm2 = design(d,'multistage'); % Design the multistage interpolator.
fvtool(hm,hm2);
legend('Kaiser Window','Multistage')

FVTool shows both responses.
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Design a lowpass interpolator for an interpolation factor of 8. Compare the 
single-stage equiripple design to a multistage design with the same 
interpolation factor.

l = 8; % Interpolation factor.
d = fdesign.interpolator(l,'lowpass');
hm(1) = design(d,'equiripple');
hm(2) = design(d,'multistage','usehalfbands',true); % Use...

% halfband filters whenever possible.
fvtool(hm); 
legend('Single-Stage Equiripple','Multistage')
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See Also fdesign, fdesign.decimator, fdesign.rsrc, setspecs
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8fdesign.isinclpPurpose Construct inverse-sinc filter specification object

Syntax d = fdesign.isinclp
d = fdesign.isinclp(spec)
d = fdesign.isinclp(spec,specvalue1,specvalue2,...)
d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.isinclp(...,fs)
d = fdesign.isinclp(...,magunits)

Description d = fdesign.isinclp constructs an inverse-sinc lowpass filter specification 
object d, applying default values for the properties tw and ast.

Using fdesign.isinclp with a design method generates a dfilt object.

d = fdesign.isinclp(spec) constructs object d and sets its 'Specification' 
to spec. Entries in the spec string represent various filter response features, 
such as the filter order, that govern the filter design. Valid entries for spec are 
shown below. The strings are not case sensitive.

• fp,fst,ap,ast (default spec)

• n,fst,ap,ast

• n,fp,fst

The string entries are defined as follows:

• ast—attenuation in the first stop band in dB (the default units). Also called 
Astop.

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• fp—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass.

• fst—frequency at the end of the first stop band. Specified in normalized 
frequency units. Also called Fstop.

• n—filter order.

The filter design methods that apply to an inverse-sinc lowpass filter 
specification object change depending on the Specification string.  Use 
designmethods to determine which design method applies to an object and its 
specification string.
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d = fdesign.isinclp(spec,specvalue1,specvalue2,...) constructs an 
object d and sets its specifications at construction time.

d = fdesign.isinclp(specvalue1,specvalue2,specvalue3,specvalue4)  
constructs an object d assuming the default Specification property string 
fp,fst,ap,ast, using the values you provide in specvalue1,specvalue2,
specvalue3, and specvalue4.

d = fdesign.isinclp(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.isinclp(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples Pass the specifications for the default specification—fp,fst,ap,ast—as input 
arguments to the specifications object.

d = fdesign.isinclp(.4,.5,.01,40);
designmethods(d)
hd = design(d,'equiripple');
fvtool(hd);

FVTool shows the classic inverse-sinc filter response.

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.halfband, 
fdesign.highpass, fdesign.lowpass, fdesign.nyquist
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8fdesign.lowpassPurpose Construct lowpass filter specification object

Syntax d = fdesign.lowpass
d = fdesign.lowpass(spec)
d = fdesign.lowpass(spec,specvalue1,specvalue2, )
d = fdesign.lowpass(specvalue1,specvalue2,specvalue3,specvalue4)
d = fdesign.lowpass(...,fs)
d = fdesign.lowpass(...,magunits)

Description d = fdesign.lowpass constructs a lowpass filter specification object d, 
applying default values for the properties fp, fst, ap, and ast.

Using fdesign.lowpass with a design method generates a dfilt object.

d = fdesign.lowpass(spec) constructs object d and sets its 'Specification' 
to spec. Entries in the spec string represent various filter response features, 
such as the filter order, that govern the filter design. Valid entries for spec are 
shown below. The strings are not case sensitive.

• fp,fst,ap,ast (default spec)
• n,f3db
• n,f3db,ap
• n,f3db,ap,ast
• n,f3db,ast
• n,f3db,fst
• n,fc
• n,fc,ap,ast
• n,fp,ap
• n,fp,ap,ast
• n,fp,fst,ap
• n,fp,f3db
• n,fp,fst
• n,fp,fst,ap
• n,fp,fst,ast
• n,fst,ap,ast
• n,fst,ast

• nb,na,fp,fst

The string entries are defined as follows:
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• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

• ast—attenuation in the stop band in dB (the default units). Also called 
Astop.

• f3db—cutoff frequency for the point 3dB point below the passband value. 
Specified in normalized frequency units. 

• fc—cutoff frequency for the point 3dB point below the passband value. 
Specified in normalized frequency units. 

• fp—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass.

• fst—frequency at the end of the stop band. Specified in normalized 
frequency units. Also called Fstop.

• n—filter order.

• na and nb are the order of the denominator and numerator.

Graphically, the filter specifications look like this:

Regions between specification values like fp and fst are transition regions 
where the filter response is not explicitly defined.

The filter design methods that apply to a lowpass filter specification object 
change depending on the Specification string. Here are all the valid strings 
for lowpass filter specification objects.

• fp,fst,ap,ast
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• n,f3dB
• n,f3dB,Ap
• n,f3dB,Ap,Ast
• n,f3dB,Ast
• n,f3dB, Fst
• n,fc
• n,fc,Ap,Ast
• n,fp,ap
• n,fp,ap,ast
• n,fp,f3db
• n,fp,fst
• n,fp,fst,ap
• n,fp,fst,ast
• n,fst,ap,ast
• n,fst,ast
• n,fp,ap,ast
• nb,na,fp,fst

d = fdesign.lowpass(spec,specvalue1,specvalue2,...) constructs an 
object d and sets its specification values at construction time.

d = fdesign.lowpass(fp,fst,ap,ast)  constructs an object d with values for 
the default Specification property string fp,fst,ap,ast using the 
specifications you provide as input arguments 
specvalue1,specvalue2,specvalue3,specvalue4.

d = fdesign.lowpass(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.lowpass(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
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(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples These examples how to construct a lowpass filter specification object. First, 
create a default lowpass filter object without using input arguments.

d=fdesign.lowpass
 
d =
 
               Response: 'Minimum-order lowpass'
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
                  Fpass: 0.4500
                  Fstop: 0.5500
                  Apass: 1
                  Astop: 60

Now create an object by passing specifications for the passband and stopband 
edge frequencies and the passband and stopband attenuations—the resulting 
object uses the input values for fp, fst, ap, and ast.

hs = fdesign.lowpass(.4,.5,1,80);
hs
 
hs =
 
               Response: 'Minimum-order lowpass'
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
                  Fpass: 0.4000
                  Fstop: 0.5000
                  Apass: 1
                  Astop: 80

Create another filter object, passing the values for n and fc rather than 
accepting the default values. Notice that you can add include the sampling 
frequency fs as the final input argument.
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d=fdesign.lowpass('n,fc',10, 9600,48000)
 
d =
 
               Response: 'Lowpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: false
                     Fs: 48000
            FilterOrder: 10
                Fcutoff: 9600

Finally, pass values for the filter specifications that match the default 
Specification string entries—fp = 0.4, fst = 0.5, ast = 80 and ap = 1.0. 
Add the sampling frequency on the end.

hs = fdesign.lowpass(.4,.5,1,80)
 
hs =
 
               Response: 'Minimum-order lowpass'
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
                  Fpass: 0.4000
                  Fstop: 0.5000
                  Apass: 1
                  Astop: 80

Finally, the next examples add the sampling frequency specification in Hz, and 
then the magunits option.

hs = fdesign.lowpass('N,Fp,Ap', 10, 9600, .5, 48000);

and

hsmag = fdesign.lowpass(.4, .5, .98, .02, 'squared');

Using the last example filter object, create a highpass filter.

hd = design(hsmag,'cheby1';

See Also fdesign, fdesign.bandpass, fdesign.bandstop, fdesign.highpass
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8fdesign.nyquistPurpose Construct Nyquist filter specification object

Syntax d = fdesign.nyquist
d = fdesign.nyquist(l,spec)
d = fdesign.nyquist(l,spec,specvalue1,specvalue2, )
d = fdesign.nyquist(l,specvalue1,specvalue2)
d = fdesign.nyquist(...,fs)
d = fdesign.nyquist(...,magunits)

Description d = fdesign.nyquist constructs a Nyquist  or L-band filter specification 
object d, applying default values for the properties tw and ast. By default, the 
filter object designs a minimum-order half-band (L=2) Nyquist filter.

Using fdesign.nyquist with a design method generates a dfilt object.

d = fdesign.nyquist(l,spec) constructs object d and sets its Specification 
property to spec. Use l to specify the desired value for L. L=2 design a 
half-band FIR filter, L=3 a third-band FIR filter, and so on. When you use a 
Nyquist filter as an interpolator, l or L is the interpolation factor. The first 
input argument must be l when you are not using the default syntax 
d = fdesign.nyquist. 

Entries in the spec string represent various filter response features, such as 
the filter order, that govern the filter design. Valid entries for spec are shown 
below. The strings are not case sensitive.

• tw,ast (default spec)

• n,tw
• n

• n,ast

The string entries are defined as follows:

• ast—attenuation in the stop band in dB (the default units).

• n—filter order.

• tw—width of the transition region between the pass and stop bands. 
Specified in normalized frequency units. 

The filter design methods that apply to an interpolating filter specification 
object change depending on the Specification string. Paired with each string 
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in the following table are the design methods for interpolating filter 
specification objects that use that string.

d = fdesign.nyquist(l,spec,specvalue1,specvalue2,...) constructs an 
object d and sets its specification to spec, and the specification values to 
specvalue1, specvalue2, and so on at construction time.

d = fdesign.nyquist(l,specvalue1,specvalue2)  constructs an object d 
with the values you provide in l, specvalue1,specvalue2 as the values for l,  
tw and ast.

d = fdesign.nyquist(...,fs) adds the argument fs, specified in Hz to 
define the sampling frequency to use. In this case, all frequencies in the 
specifications are in Hz as well.

d = fdesign.nyquist(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units

• dB—specify the magnitude in dB (decibels)

• squared—specify the magnitude in power units

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Specification String Applicable Design Method

tw,ast kaiserwin

n,tw kaiserwin

n window

n,ast kaiserwin
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Limitations of the Nyquist fdesign Object
Using Nyquist filter specification objects with the equiripple design method 
imposes a few limitations on the resulting filter, caused by the equiripple 
design algorithm.

• When you request a minimum-order design from equiripple with your 
Nyquist object, the design algorithm might not converge and can fail with a 
filter convergence error.

• When you specify the order of your desired filter, and use the equiripple 
design method, the design might not converge.

• Generally, the following specifications, alone or in combination with one 
another, can cause filter convergence problems with Nyquist objects and the  
equiripple design method.

- very high order

- small transition width

- very large stopband attenuation

Note that halfband filters (filters where band = 2) do not exhibit convergence 
problems.

When convergence issues arise, either in the cases mentioned or in others, you 
might be able to design your filter with the kaiserwin method.

In addition, if you use Nyquist objects to design decimators or interpolators 
(where the interpolation or decimation factor is not a prime number), using 
multistage filter designs might be your best approach.

Examples These examples show how to construct a Nyquist filter specification object. 
First, create a default specifications object without using input arguments.

d=fdesign.nyquist
 
d =
 
               Response: 'Nyquist'                                       
          Specification: 'TW,Ast'                                        
            Description: {'Transition Width';'Stopband Attenuation (dB)'}
                   Band: 2                                               
    NormalizedFrequency: true                                            
        TransitionWidth: 0.1                                             
                  Astop: 80                                              
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Now create an object by passing a specification type string 'n,ast'—the 
resulting object uses default values for n and ast.

d=fdesign.nyquist(2,'n,ast')
 
d =
 
               Response: 'Nyquist'                                   
          Specification: 'N,Ast'                                     
            Description: {'Filter Order';'Stopband Attenuation (dB)'}
                   Band: 2                                           
    NormalizedFrequency: true                                        
            FilterOrder: 10                                          
                  Astop: 80                                          

Create another Nyquist filter object, passing the specification values to the 
object rather than accepting the default values for n and ast. 

d=fdesign.nyquist(3,'n,ast',42,80)
 
d =
 
               Response: 'Nyquist'                                   
          Specification: 'N,Ast'                                     
            Description: {'Filter Order';'Stopband Attenuation (dB)'}
                   Band: 3                                           
    NormalizedFrequency: true                                        
            FilterOrder: 42                                          
                  Astop: 80                                          

Finally, pass the filter specifications that correspond to the default 
Specification—tw,ast. When you pass only the values, fdesign.nyquist 
assumes the default Specification string.

d = fdesign.nyquist(4,.01,80)
 
d =
 
               Response: 'Nyquist'                                       
      Specification: 'TW,Ast'                                        
            Description: {'Transition Width';'Stopband Attenuation (dB)'}
                   Band: 4                                               
    NormalizedFrequency: true                                            
        TransitionWidth: 0.01                                            
                  Astop: 80                                              

Now design a Nyquist filter using the kaiserwin design method.

hd = design(d,'kaiserwin')
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hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x1005 double]  
    PersistentMemory: false            

See Also fdesign, fdesign.interpolator, fdesign.halfband, fdesign.interpolator, 
fdesign.rsrc
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8fdesign.rsrcPurpose Construct rational-factor sample-rate converter specifications object

Syntax d = fdesign.rsrc(l,m)
d = fdesign.rsrc(...,design)
d = fdesign.rsrc(...,design,spec)
d = fdesign.rsrc(l,m,design,spec,specvalue1,specvalue2)
d = fdesign.rsrc(...,fs)
d = fdesign.rsrc(...,magunits)

Description d = fdesign.rsrc(l,m) constructs a rational-factor sample-rate convertor 
filter specification object d, applying default values for the properties tw and 
ast and using the default design, Nyquist. Specify l and m, the interpolation 
and decimation factors, as integers.

l/m is the rational-factor for the rate change. When you omit the input 
argument l or m or both, fdesign.rsrc sets the values to defaults—the 
interpolation factor (if omitted) to 3 and the decimation factor (if omitted) to 2. 
The default rate change factor is 3/2 . 

Using fdesign.rsrc with a design method generates an mfilt object.

d = fdesign.rsrc(...,design) constructs an rational-factor sample-rate 
converter with the interpolation factor l, decimation factor m, and the response 
you specify in design. Using the design input argument lets you  choose the 
sort of filter that results from using the rational-factor sample-rate converter 
specifications object. design accepts the following strings that define the filter 
response.

design String Description

Bandpass Sets the design for the rational-factor 
sample-rate converter specifications object 
to bandpass.

Bandstop Sets the design for the rational-factor 
sample-rate converter specifications object 
to bandstop.
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d = fdesign.rsrc(...,design,spec) constructs object d and sets its 
Specification property to spec. Entries in the spec string represent various 
filter response features, such as the filter order, that govern the filter design. 
Valid entries for spec depend on the design type of the specifications object.

When you add the spec input argument, you must also add the design input 
argument.

Because you are designing multirate filters, the specification strings available 
are not the same as the specifications for designing single-rate filters with such 
design methods as fdesign.lowpass.  The strings are not case sensitive.

CIC Sets the design for the rational-factor 
sample-rate converter specifications object 
to CIC filter.

CIC Compensator Sets the design for the rational-factor 
sample-rate converter specifications object 
to CIC compensator.

Halfband Sets the design for the rational-factor 
sample-rate converter specifications object 
to halfband.

Highpass Sets the design for the rational-factor 
sample-rate converter specifications object 
to highpass.

Inverse-Sinc Lowpass Sets the design for the rational-factor 
sample-rate converter specifications object 
to inverse-sinc lowpass.

Lowpass Sets the design for the rational-factor 
sample-rate converter specifications object 
to lowpass.

Nyquist Sets the design for the rational-factor 
sample-rate converter specifications object 
to Nyquist.

design String (Continued) Description
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Notice that the interpolation factor l is not in the specification strings. Various 
design types provide different specifications. as shown in this table. In the 
third column, you see the filter design methods that apply to specifications 
objects that use the specification string in column two.

Design Type Valid Specification Strings

Bandpass • fst1,fp1,fp2,fst2,ast1,ap,ast2 (default 
string)

• n,fc1,fc2

• n,fst1,fp1,fp2,fst2

Bandstop • n,fc1,fc2

• n,fp1,fst1,fst2,fp2

• fp1,fst1,fst2,fp2,ap1,ast,ap2 (default 
string)

CIC • fp,ast (default and only string)

CIC Compensator • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fst,ap,ast

Halfband • tw,ast (default string)

• n,tw

• n

• n,ast
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The string entries are defined as follows:

• ap—amount of ripple allowed in the pass band in dB (the default units). Also 
called Apass.

Highpass • fst,fp,ast,ap (default string)

• n,fc

• n,fc,ast,ap

• n,fp,ast,ap

• n,fst,fp,ap

• n,fst,fp,ast

• n,fst,ast,ap

• n,fst,fp

Inverse-Sinc Lowpass • fp,fst,ap,ast (default string)

• n,fc,ap,ast

• n,fp,fst

Lowpass • fp,fst,ap,ast (default string)

• n,fc

• n,fc,ap,ast

• n,fp,ap,ast

• n,fp,fst

• n,fp,fst,ap

• n,fp,fst,ast

• n,fst,ap,ast

Nyquist • tw,ast (default string)

• n,tw

• n

• n,ast

Design Type Valid Specification Strings
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• ap1—amount of ripple allowed in the pass band in dB (the default units). 
Also called Apass1. Bandpass and bandstop filters use this option.

• ap2—amount of ripple allowed in the pass band in dB (the default units). 
Also called Apass2. Bandpass and bandstop filters use this option.

• ast—attenuation in the first stop band in dB (the default units). Also called 
Astop.

• ast1—attenuation in the first stop band in dB (the default units). Also called 
Astop1. Bandpass and bandstop filters use this option.

• ast2—attenuation in the first stop band in dB (the default units). Also called 
Astop2. Bandpass and bandstop filters use this option.

• fc1—cutoff frequency for the point 3dB point below the passband value for 
the first cutoff. Specified in normalized frequency units. Bandpass and 
bandstop filters use this option.

• fc2—cutoff frequency for the point 3dB point below the passband value for 
the second cutoff. Specified in normalized frequency units. Bandpass and 
bandstop filters use this option.

• fp1—frequency at the start of the pass band. Specified in normalized 
frequency units. Also called Fpass1. Bandpass and bandstop filters use this 
option.

• fp2—frequency at the end of the pass band. Specified in normalized 
frequency units. Also called Fpass2. Bandpass and bandstop filters use this 
option.

• fst1—frequency at the end of the first stop band. Specified in normalized 
frequency units. Also called Fstop1. Bandpass and bandstop filters use this 
option.

• fst2—frequency at the start of the second stop band. Specified in normalized 
frequency units. Also called Fstop2. Bandpass and bandstop filters use this 
option.

• n—filter order.

• tw—width of the transition region between the pass and stop bands. Both 
halfband and Nyquist filters use this option.

d = fdesign.rsrc(...,spec,specvalue1,specvalue2,...) constructs an 
object d and sets its specifications at construction time.
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d = fdesign.rsrc(...,fs) adds the argument fs, specified in Hz, to define 
the sampling frequency to use. In this case, all frequencies in the specifications 
are in Hz as well.

d = fdesign.rsrc(...,magunits) specifies the units for any magnitude 
specification you provide in the input arguments. magunits can be one of

• linear—specify the magnitude in linear units.

• dB—specify the magnitude in dB (decibels).

• squared—specify the magnitude in power units.

When you omit the magunits argument, fdesign assumes that all magnitudes 
are in dB. Note that fdesign stores all magnitude specifications in dB 
(converting to dB when necessary) regardless of how you specify the 
magnitudes.

Examples This series of examples demonstrates progressively more complete techniques 
for creating rational sample-rate change filters. First, pass the filter design 
specifications directly to the Nyquist design type. Then use kaiserwin, one of 
the valid design methods, to design the rate change filter.

d = fdesign.rsrc(5,3,'nyquist',.05,40);
designmethods(d)
hm = design(d,'kaiserwin'); % Use Kaiser window to design rate 
changer.

For this example, specify the filter order (12) when you create the specifications 
object d.

d = fdesign.rsrc(5,3,'nyquist','n,tw',12)

Expand the input arguments by specify a sampling frequency for the filter. 
Recall that the sampling frequency for rate changers refers to the input sample 
rate times the interpolation factor.

d = fdesign.rsrc(5,3,'nyquist','n,tw',12,0.1,5)
designmethods(d); 
design(d,'equiripple'); % Opens FVTool to display the response.

Specify a stopband ripple in linear units.
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d = fdesign.rsrc(4,7,'nyquist','tw,ast',.1,1e-3,5,...
'linear') % 1e-3 = 60dB attenuation in the stopband.

See Also design, designmethods, fdesign.decimator, fdesign.interpolator, 
setspecs



fftcoeffs

8-645

8fftcoeffsPurpose Frequency-domain coefficients used when filtering with discrete-time and 
adaptive filter objects

Syntax c = fftcoeffs(hd)
c = fftcoeffs(ha)

Description c = fftcoeffs(hd) Return the frequency-domain coefficients used when 
filtering with the dfilt.fftfir object. c contains the coefficients 

c = fftcoeffs(ha) Return the frequency-domain coefficients used when 
filtering with  adaptfilt objects.

fftcoeffs applies to the following adaptive filter algorithms:

• adaptfilt.fdaf
• adaptfilt.pbfdaf
• adaptfilt.pbufdaf
• adaptfilt.ufdaf

Examples This example demonstrates returning the FFT coefficients from the 
discrete-time filter hd.

b = [0.05 0.9 0.05];
len = 50;
hd = dfilt.fftfir(b,len)
 
hd =
 
        FilterStructure: 'Overlap-Add FIR'
              Numerator: [0.0500 0.9000 0.0500]
            BlockLength: 50
    NonProcessedSamples: []
       PersistentMemory: false
 
c=fftcoeffs(hd)

c =

   1.0000          
   0.9920 + 0.1204i
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   0.9681 + 0.2386i
   0.9289 + 0.3523i
   0.8753 + 0.4594i
   0.8084 + 0.5580i
   0.7297 + 0.6464i
   0.6408 + 0.7233i
   0.5435 + 0.7874i
   0.4398 + 0.8381i
   0.3317 + 0.8747i
   0.2211 + 0.8971i
   0.1099 + 0.9054i
        0 + 0.9000i
  -0.1070 + 0.8815i
  -0.2097 + 0.8506i
  -0.3066 + 0.8084i
  -0.3967 + 0.7558i
  -0.4790 + 0.6939i
  -0.5528 + 0.6240i
  -0.6176 + 0.5472i
  -0.6730 + 0.4645i
  -0.7185 + 0.3771i
  -0.7541 + 0.2860i
  -0.7796 + 0.1921i
  -0.7949 + 0.0965i
  -0.8000          
  -0.7949 - 0.0965i
  -0.7796 - 0.1921i
  -0.7541 - 0.2860i
  -0.7185 - 0.3771i
  -0.6730 - 0.4645i
  -0.6176 - 0.5472i
  -0.5528 - 0.6240i
  -0.4790 - 0.6939i
  -0.3967 - 0.7558i
  -0.3066 - 0.8084i
  -0.2097 - 0.8506i
  -0.1070 - 0.8815i
        0 - 0.9000i
   0.1099 - 0.9054i
   0.2211 - 0.8971i
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   0.3317 - 0.8747i
   0.4398 - 0.8381i
   0.5435 - 0.7874i
   0.6408 - 0.7233i
   0.7297 - 0.6464i
   0.8084 - 0.5580i
   0.8753 - 0.4594i
   0.9289 - 0.3523i
   0.9681 - 0.2386i
   0.9920 - 0.1204i

Similarly, you can use fftcoeffs with the adaptive filters algorithms listed 
above. Start by constructing an adaptive filter ha.

d = 16;                    % Number of samples of delay.
b = exp(j*pi/4)*[-0.7 1];  % Numerator coefficients of channel.
a = [1 -0.7];              % Denominator coefficients of channel.
ntr= 1000;                  % Number of iterations.
s = sign(randn(1,ntr+d)) +...
j*sign(randn(1,ntr+d)); % Baseband QPSK signal.
n = 0.1*(randn(1,ntr+d) + j*randn(1,ntr+d));  % Noise signal.
r = filter(b,a,s)+n;       % Received signal.
x = r(1+d:ntr+d);          % Input signal (received signal).
d = s(1:ntr);              % Desired signal (delayed QPSK signal).
del = 1;                    % Initial FFT input powers.
mu = 0.1;                  % Step size.
lam = 0.9;                  % Averaging factor.
d  = 8;                    % Block size.
ha = adaptfilt.pbufdaf(32,mu,1,del,lam,n);

Here are the coefficients before you filter a signal.

c=fftcoeffs(ha)

c =

  Columns 1 through 13 

     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0
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     0     0     0     0     0     0     0     0     0     0     0     0     0

  Columns 14 through 16 

     0     0     0
     0     0     0
     0     0     0
     0     0     0

Filtering a signal y produces complex nonzero coefficients that you use 
fftcoeffs to see.

[y,e] = filter(ha,x,d);
c=fftcoeffs(ha)

c =

  Columns 1 through 4 

   0.1425 - 0.0957i   0.0487 - 0.0503i  -0.0479 + 0.0315i   0.0769 - 0.0435i
   0.7264 - 0.7605i  -0.7423 - 0.6382i   0.1758 + 0.6679i   0.2018 - 0.6544i
  -0.1604 + 0.0747i  -0.0709 + 0.2610i  -0.1634 + 0.2929i  -0.1488 + 0.3610i
  -0.0396 + 0.0416i   0.0985 + 0.0095i   0.0733 + 0.0011i   0.0700 + 0.0348i

  Columns 5 through 8 

  -0.0604 + 0.1767i   0.0732 - 0.0648i  -0.0870 + 0.0383i   0.0298 - 0.0852i
  -0.1665 + 0.3741i   0.3174 - 0.5234i  -0.1990 + 0.4150i   0.3657 - 0.4760i
  -0.2198 + 0.4273i  -0.2690 + 0.3981i  -0.2820 + 0.3095i  -0.3633 + 0.3517i
  -0.0537 - 0.0855i  -0.0190 + 0.0336i   0.0091 - 0.0061i  -0.0299 + 0.0001i

  Columns 9 through 12 

  -0.0437 + 0.0676i   0.0499 - 0.0164i  -0.0397 + 0.0165i   0.0455 - 0.0085i
  -0.3293 + 0.3076i   0.4986 - 0.3949i  -0.3300 + 0.3448i   0.5492 - 0.2633i
  -0.2671 + 0.3238i  -0.3813 + 0.2999i  -0.4130 + 0.2333i  -0.2910 + 0.2823i
  -0.0300 + 0.0236i  -0.0103 + 0.0438i   0.0244 + 0.0476i   0.1043 + 0.0359i

  Columns 13 through 16 

  -0.0602 + 0.1189i  -0.0227 - 0.1076i  -0.0282 + 0.0634i   0.0170 - 0.0464i
  -0.4385 + 0.0549i   0.5232 - 0.1904i  -0.6414 - 0.1717i   0.5580 + 0.6477i
  -0.4511 + 0.3217i  -0.4301 + 0.1765i  -0.2805 + 0.1270i  -0.2531 + 0.0299i
   0.1076 - 0.0383i  -0.0166 + 0.0020i   0.0004 - 0.0376i   0.0071 - 0.0714i

See Also adaptfilt.fdaf, adaptfilt.pbfdaf, adaptfilt.pbufdaf, adaptfilt.ufdaf
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8filterPurpose Apply filter objects to data and access states and filtering information

Syntax Fixed-Point Filter Syntaxes
y = filter(hd,x)
y = filter(hd,x,dim)

Adaptive Filter Syntax
y = filter(ha,x,d)
[y,e] = filter(ha,x,d)

Multirate Filter Syntax
y = filter(hm,x)

y = filter(hm,x,dim)

Description This reference page contains three sections that describe the syntaxes for the 
filter objects:

• Fixed-Point Filter Syntaxes

• “Adaptive Filter Syntaxes” on page 8-650

• “Multirate Filter Syntaxes” on page 8-651

Fixed-Point Filter Syntaxes

y = filter(hd,x) filters a vector of real or complex input data x through a 
fixed-point filter hd, producing filtered output data y. The vectors x and y have 
the same length. filter stores the final conditions for the filter in the States 
property of hd—hd.states.

When you set the property PersistentMemory to false (the default setting), 
the initial conditions for the filter are set to zero before filtering starts. To use 
nonzero initial conditions for hd, set PersistentMemory to true. Then set 
hd.states to a vector of nstates(hd) elements, one element for each state to 
set. If you specify a scalar for hd.states, filter expands the scalar to a vector 
of the proper length for the states. All elements of the expanded vector have the  
value of the scalar.
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If x is a matrix, y = filter(hd,x) filters along each column of x to produce a 
matrix y of independent channels. If x is a multidimensional array, 
y = filter(hd,x) filters x along the first nonsingleton dimension of x.

To use nonzero initial conditions when you are filtering a matrix x, set the filter 
states to a matrix of initial condition values. Set the initial conditions by 
setting the States property for the filter (hd.states) to a matrix of 
nstates(hd) rows and size(x,2) columns.

y = filter(hd,x,dim) applies the filter hd to the input data located along the 
specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which 
dimension of the input matrix to filter along—whether a row represents 
a channel or a column represents a channel. When you provide the dim input 
argument, the filter operates along the dimension specified by dim. When your 
input data x is a vector or matrix and dim is 1, each column of x is treated as a 
one input channel. When dim is 2, the filter treats each row of the input x as a 
channel. 

To filter multichannel data in a loop environment, you must use the dim input 
argument to set the proper processing dimension. 

You  specify the initial conditions for each channel individually, when needed, 
by setting hm.states to a matrix of nstates(hd) rows (one row containing the 
states for one channel of input data) and size(x,2) columns (one column 
containing the filter states for each channel).

Adaptive Filter Syntaxes

y = filter(ha,x,d) filters a vector of real or complex input data x through an 
adaptive filter object ha, producing the estimated desired response data y from 
the process of adapting the filter. The vectors x and y have the same length. 
Use d for the desired signal. Note that d and x must be the same length signal 
chains.

[y,e] = filter(ha,x,d) produces the estimated desired response data y and 
the prediction error e (refer to previous syntax for more information).
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Multirate Filter Syntaxes

y = filter(hd,x) filters a vector of real or complex input data x through a 
fixed-point filter hd, producing filtered output data y. The vectors x and y have 
the same length. filter stores the final conditions for the filter in the States 
property of hd—hd.states.

y = filter(hm,x,dim) applies the filter hd to the input data located along the 
specific dimension of x specified by dim.

When you are filtering multichannel data, dim lets you specify which 
dimension of the input matrix to filter along—whether a row represents 
a channel or a column represents a channel. When you provide the dim input 
argument, the filter operates along the dimension specified by dim. When your 
input data x is a vector or matrix and dim is 1, each column of x is treated as a 
one input channel. When dim is 2, the filter treats each row of the input x as a 
channel. 

To filter multichannel data in a loop environment, you must use the dim input 
argument to set the processing dimension. 

You  specify the initial conditions for each channel individually, when needed, 
by setting hm.states to a matrix of nstates(hm) rows (one row containing the 
states for one channel of input data) and size(x,2) columns (one column 
containing the filter states for each channel).

The number of data samples in your input data set x does not need to be 
a multiple of the rate change factor r for the object. When the rate change 
factor is not an even divisor of the number of input samples x, filter processes 
the samples as shown in the following figure, where the rate change factor is 3 
and the number of input samples is 23. Decimators always take the first input 
sample to generate the first output sample. After that, the next output sample 
comes after each r number of input samples. 
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Examples Filter a signal using a filter with various initial conditions (IC) or no initial 
conditions.

x = randn(100,1);       % Original signal.
b = fir1(50,.4);        % 50th-order linear-phase FIR filter.
hd = dfilt.dffir(b);    % Direct-form FIR implementation.
  
% Do not set specific initial conditions.

y1 = filter(hd,x);      % 'PersistentMemory' is 'false' (default).
zf = hd.states;         % Final conditions.

Now use nonzero initial conditions by setting ICs after before you filter.

hd.persistentmemory = true;
hd.states = 1;          % Uses scalar expansion.
y2 = filter(hd,x);
stem([y1 y2])           % Different sequences at the beginning.

Looking at the stem plot shows that the sequences are different at the 
beginning of the filter process.

Given 23 Input Data Samples

 You Get 7 Output Data Samples
After Decimation By 3

{ { { { { { { {

2 Processed Samples
That Did Not Generate

An Output Sample
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Here is one way to use filter with streaming data.

reset(hd);              % Clear filter history.
y3 = filter(hd,x);      % Filter the entire signal in one block.

As an experiment, repeat the process, filtering the data as sections, rather than 
in streaming form.

reset(hd);              % Clear filter history.
yloop = zeros(100,1)  % Preallocate output array.
xblock = reshape(x,[20 5]);
for i=1:5,

yloop = [yloop; filter(hd,xblock(:,i))];
end
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Use a stem plot to see the comparison between streaming and block-by-block 
filtering.

stem([y3 yloop]);

Filtering the signal section-by-section is equivalent to filtering the entire 
signal at once.

To show the similarity between filtering with discrete-time and with multirate 
filters, this example demonstrates multirate filtering.

Fs = 44.1e3;             % Original sampling frequency: 44.1kHz.
n = [0:10239].';         % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/Fs*n); % Original signal, sinusoid at 1kHz.
m = 2;                   % Decimation factor.
hm = mfilt.firdecim(m);  % Use the default filter.
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First, filter without setting initial conditions.

y1 = filter(hm,x);       % PersistentMemory is false (default).
zf = hm.states;          % Final conditions.

This time, set nonzero initial conditions before filtering the data.

hm.persistentmemory = true;
hm.states = 1;           % Uses scalar expansion to set ICs.
y2 = filter(Hm,x);
stem([y1(1:60) y2(1:60)]) % Show the filtering results.

Note the different sequences at the start of filtering.

Finally, try filtering streaming data.

reset(hm);               % Clear the filter history.
y3 = filter(hm,x);       % Filter the entire signal in one block.

As with the discrete-time filter, filtering the signal section by section is 
equivalent to filtering the entire signal at once.

reset(hm);               % Clear filter history again.
yloop = zeros(100,1)  % Preallocate output array.
xblock = reshape(x,[2048 5]);
for i=1:5,

yloop = [yloop; filter(Hm,xblock(:,i))];
end

Algorithm Quantized Filters
The filter command implements fixed- or floating-point arithmetic on the 
quantized filter structure you specify.

The algorithm applied by filter when you use a discrete-time filter object on 
an input signal depends on the response you chose for the filter, such as 
lowpass or Nyquist or bandstop. To learn more about each filter algorithm, 
refer to the literature reference provided on the appropriate discrete-time filter 
reference page.
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Note  dfilt/filter does not normalize the filter coefficients automatically. 
Function filter supplied by MATLAB does normalize the coefficients.

Adaptive Filters
The algorithm used by filter when you apply an adaptive filter object to 
a signal depends on the algorithm you chose for your adaptive filter. To learn 
more about each adaptive filter algorithm, refer to the literature reference 
provided on the appropriate adaptfilt.algorithm reference page.

Multirate Filters
The algorithm applied by filter when you apply a multirate filter objects to 
signals depends on the algorithm you chose for the filter—the form of the 
multirate filter, such as decimator or interpolator. To learn more about each 
filter algorithm, refer to the literature reference provided on the appropriate 
multirate filter reference page.

See Also adaptfilt, impz, mfilt, nstates
dfilt in the Signal Processing Toolbox

References [1] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Pren-
tice-Hall, 1989.
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8filtmsbPurpose Bmax, most significant bit, of cascaded integrator-comb (CIC) filter

Syntax filtmsb(hm)

Description filtmsb(hm) returns the most significant bit (MSB) of the filter output and is 
a function of the following parameters of filter hm.

• R—the interpolation factor or decimation factor depending on the filter form

• M—the differential delay

• N—the number of sections in the filter

Because the output of the integrators can grow without bound, the MSB 
returned represents the maximum number of bits that can propagate through 
the filter without losing data. This MSB is both the MSB at the filter output 
and the MSB for all stages.

Examples Using the mfilt.cicdecim filter constructor, create a multirate filter and 
determine the most significant bit. For the decimator specifications used here, 
refer to the CIC decimator design example D on pp. 159 in [1].

hm = mfilt.cicdecim(25,1,4,16,16)
 
hm =
 
          FilterStructure: 'Cascaded Integrator-Comb Decimator'
               Arithmetic: 'fixed'
        DifferentialDelay: 1
         NumberOfSections: 4
         DecimationFactor: 25
         PersistentMemory: false
 
          InputWordLength: 16              
          InputFracLength: 15              
                                           
    SectionWordLengthMode: 'MinWordLengths'
                                           
         OutputWordLength: 16              
                                           
bmax=filtmsb(hm)
bmax =
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    34

Reviewing the referenced Hogenauer paper [1] shows that 34 is the correct 
result.

Algorithm filtmsb calculates the most significant bit for interpolators and decimators 
using the following algorithms and filter property values. In each case, hm is a 
multirate filter of the approriate form, either decimator or interpolator. Both 
equations derive from [1].

Decimators
From equation 11 in [1],  calculate Bmax as follows for decimators:

bmax = ceil(hm.NumberOfSections*log2(hm.DecimationFactor*
hm.DifferentialDelay) + hm.InputWordLength -1)

Interpolators
Interpolators use a slightly different formulation, equation 23 in [1].

bmax = ceil(hm.InputWordLength + log2(Gmax))

where

gmax = (((hm.InterpolationFactor*hm.DifferentialDelay)^hm.NumberOfSections)/...
hm.InterpolationFactor)

See Also gain, mfilt
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8filtstates.cicPurpose Object for storing states of cascaded-integrator comb (CIC) filters

Description filtstates.cic objects hold the states information for CIC filters. Once you 
create a CIC filter, the states for the filter are stored in filtstates.cic 
objects, and you can access them and change them as you would any property 
of the filter. This arrangement parallels that of the filtstates object that IIR 
direct-form I filters use (refer to filtstates for more information).

Each States property in the CIC filter comprises two properties—Numerator 
and Comb—that hold filtstates.cic objects.Within the filtstates.cic 
objects are the numerator-related and comb-related filter states. The states are 
column vectors, where each column represents the states for one section of the 
filter. For example, a CIC filter with four decimator sections and four 
interpolator sections has filtstates.cic objects that contain four columns of 
states each. 

Examples To show you the filtstates.cic object, create a CIC decimator and filter a signal.

hm=mfilt.cicdecim(5,2,4)
 
hm =
 
          FilterStructure: 'Cascaded Integrator-Comb Decimator'
               Arithmetic: 'fixed'
        DifferentialDelay: 2
         NumberOfSections: 4
         DecimationFactor: 5
         PersistentMemory: false
 
          InputWordLength: 16              
          InputFracLength: 15              
                                           
    SectionWordLengthMode: 'MinWordLengths'
                                           
hm.persistentMemory=true
 
hm =
 
          FilterStructure: 'Cascaded Integrator-Comb Decimator'
               Arithmetic: 'fixed'
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        DifferentialDelay: 2
         NumberOfSections: 4
         DecimationFactor: 5
         PersistentMemory: true
                   States: Integrator: [4x1 States]
                                 Comb: [4x1 States]
              InputOffset: 0
 
          InputWordLength: 16              
          InputFracLength: 15              
                                           
    SectionWordLengthMode: 'MinWordLengths'

Use hm to filter some input data.

fs = 44.1e3;             % Original sampling frequency: 44.1kHz.
n = 0:10239;             % 10240 samples, 0.232 second long signal.
x = sin(2*pi*1e3/fs*n); % Original signal, sinusoid at 1kHz.
y=filter(hm,x)

hm has nonzero states now.

s=hm.states
 
s =
 
    Integrator: [4x1 States]
          Comb: [4x1 States]

s.Integrator
 
ans =
 
  1.0e+003 *

    0.0043
   -2.0347
   -0.4175
    0.8206

s.Comb
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ans =
 
  1.0e+003 *

   -3.1301
   -0.8493
   -2.5474
    1.7888
   -1.6253
    3.1981
    0.4729
    3.4559

You can use int to see the states as 32-bit integers.

int(s.Integrator)

ans =

      142435
    -8334019
     -427469
      210081

whos shows you the filtstates.cic object.

whos
  Name      Size                    Bytes  Class

  Fs        1x1                         8  double array
  ans       4x1                        16  int32 array
  hm        1x1                            mfilt.cicdecim
  n         1x10240                 81920  double array
  s         1x1                            filtstates.cic
  x         1x10240                 81920  double array
  y         1x2048                         embedded.fi

Grand total is 20488 elements using 163864 bytes

See Also mfilt, mfilt.cicdecim, mfilt.cicinterp
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filtstates in the Signal Processing Toolbox documentation
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8fircbandPurpose Perform constrained-band equiripple FIR filter design

Syntax b = fircband(n,f,a,w,c)
b = fircband(n,f,a,s)
b = fircband(...,'1')
b = fircband(...,'minphase')
b = fircband(..., 'check')
b = fircband(...,{lgrid})
[b,err] = fircband(...)
[b,err,res] = fircband(...)

Description fircband is a minimax filter design algorithm that you use to design the 
following types of real FIR filters:

• Types 1-4 linear phase

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase, 

• Minimum order (even or odd), extra ripple

• Maximal ripple

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain

• Arbitrary shape frequency response curve filters

b = fircband(n,f,a,w,c) designs filters having constrained error 
magnitudes (ripples). c is a cell array of strings of the same length as w. The 
entries of c must be either 'c' to indicate that the corresponding element in w is 
a constraint (the ripple for that band cannot exceed that value) or 'w' indicating 
that the corresponding entry in w is a weight. There must be at least one 
unconstrained band—c must contain at least one w entry. For instance, 
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Example 1 below uses a weight of one in the passband, and constrains the 
stopband ripple not to exceed 0.2 (about 14 dB).

A hint about using constrained values: if your constrained filter does not touch 
the constraints, increase the error weighting you apply to the unconstrained 
bands. 

Notice that, when you work with constrained stopbands, you enter the 
stopband constraint according to the standard conversion formula for power—
the resulting filter attenuation or constraint equals 20*log(constraint) where 
constraint is the value you enter in the function. For example, to set 20 dB of 
attenuation, use a value for the constraint equal to 0.1. This applies to 
constrained stopbands only.

b = fircband(n,f,a,s) is used to design filters with special properties at 
certain frequency points. s is a cell array of strings and must be the same 
length as f and a. Entries of s must be one of:

• 'n'—normal frequency point.

• 's'—single-point band. The frequency band is given by a single point. You 
must specify the corresponding gain at this frequency point in a.

• 'f'—forced frequency point. Forces the gain at the specified frequency band 
to be the value specified.

• 'i'—indeterminate frequency point. Use this argument when bands abut 
one another (no transition region). 

b = fircband(...,'1') designs a type 1 filter (even-order symmetric). You 
could also specify type 2 (odd-order symmetric), type 3 (even-order 
antisymmetric), or type 4 (odd-order antisymmetric) filters. Note there are 
restrictions on a at f = 0 or f=1 for types 2, 3, and 4.

b = fircband(...,'minphase') designs a minimum-phase FIR filter. There 
is also 'maxphase'.

b = fircband(..., 'check') produces a warning when there are potential 
transition-region anomalies in the filter response.

b = fircband(...,{lgrid}), where {lgrid} is a scalar cell array containing 
an integer, controls the density of the frequency grid. 
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[b,err] = fircband(...) returns the unweighted approximation error 
magnitudes. err has one element for each independent approximation error. 

[b,err,res] = fircband(...) returns a structure res of optional results 
computed by fircband, and contains the following fields:.

Structure Field Contents

res.fgrid Vector containing the frequency grid used in 
the filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency 
grid

res.error Error at each point (desired response - actual 
response) on the frequency grid 

res.iextr Vector of indices into fgrid of extremal 
frequencies

res.fextr Vector of extremal frequencies

res.order Filter order

res.edgecheck Transition-region anomaly check. One element 
per band edge. Element values have the 
following meanings:

1 = OK
0 = probable transition-region anomaly

-1 = edge not checked

Computed when you specify the 'check' input 
option in the function syntax.



fircband

8-666

Examples Two examples of designing filters with constrained bands.

Example 1—design a 12th-order lowpass filter with a constraint on the filter 
response. 

b = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2], {'w' 'c'});

Using fvtool to display the result b shows you the response of the filter you 
designed.

res.iterations  Number of Remez iterations for the 
optimization

res.evals  Number of function evaluations for the 
optimization

Structure Field Contents
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Example 2—design two filters of different order with the stopband constrained 
to 60 dB. Use excess order (80) in the second filter to improve the passband 
ripple.

b1=fircband(60,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
b2=fircband(80,[0 .2 .25 1],[1 1 0 0],[1 .001],{'w','c'});
fvtool(b1,1,b2,1)

To set the stopband constraint to 60 dB, enter 0.001, since 20*log(0.001) = -60, 
or 60 dB of signal attenuation.
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See Also firceqrip, firgr, firls

firpm in the Signal Processing Toolbox
Also refer to “Constrained Band Equiripple FIR Filter Design” in Demos
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8fireqintPurpose Design equiripple FIR interpolators

Syntax b = fireqint(n,l,alpha)
b = fireqint(n,l,alpha,w)
b = fireqint('minorder',l,alpha,r)
b = fireqint({'minorder',initord},l,alpha,r)

Description b = fireqint(n,l,alpha) designs an FIR equiripple filter useful for 
interpolating  input signals. n is the filter order and it must be an integer. l, 
also an integer, is the interpolation factor. alpha is the bandlimitedness factor, 
identical to the same feature in intfilt.

alpha is inversely proportional to the transition bandwidth of the filter. It also 
affects the bandwith of the don't-care regions in the stopband. Specifying alpha 
allows you to control how much of the Nyquist interval your input signal 
occupies. This can be beneficial for signals to be interpolated because it allows 
you to increase the transition band width without affecting the interpolation, 
resulting in better stopband attenuation for a given l. If you set alpha to 1, 
fireqint assumes that your signal occupies the entire Nyquist interval. Setting 
alpha to a value less than one allows for don't-care regions in the stopband. For 
example, if your input occupies half the Nyquist interval, you could set alpha 
to 0.5.

The signal to be interpolated is assumed to have zero (or negligible) power in 
the frequency band between (alpha*π) and π. alpha must therefore be a 
positive scalar between 0 and 1. fireqint treat such bands as don’t-care 
regions for assessing filter design.

b = fireqint(n,l,alpha,w) allows you to specify a vector of weights in w. The 
number of weights required in w is given by 1 + floor(l/2). The weights in w are 
applied to the passband ripple and stopband attenuations. Using weights 
(values between 0 and 1) enables you to specify  different attenuations in 
different parts of the stopband, as well as providing the ability to adjust the 
compromise between passband ripple and stopband attenuation.

b = fireqint('minorder',l,alpha,r) allows you to design a 
minimum-order filter  that meets the design specifications. r is a vector of 
maximum deviations or ripples from the ideal filter magnitude response. When 
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you use the input argument minorder, you must provide the vector r. The 
number of elements required in r is given by 1 + floor(l/2).

b = fireqint({'minorder',initord},l,alpha,r) adds the argument 
initord si you can provide an initial estimate of the filter order. Any positive 
integer is valid here. Again, you must provide r, the vector of maximum 
deviations or ripples, from the ideal filter magnitude response.

Examples Design a minimum order interpolation filter for l = 6 and alpha = 0.8. A vector 
of ripples must be supplied with the input argument minorder.

b = fireqint('minorder',6,.8,[0.01 .1 .05 .02]);
hm = mfilt.firinterp(6,b); % Create a polyphase interpolator filter
zerophase(hm); 

Here is the resulting plot of the zerophase response for hm.
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For hm, the minimum order filter with the requested design specifications, here 
is the filter information.

hm =
 
        FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
             Arithmetic: 'double'                                
              Numerator: [1x70 double]                           
    InterpolationFactor: 6                                       
       PersistentMemory: false                                   

See Also firgr, firhalfband, firls, firnyquist, mfilt

intfilt in your Signal Processing Toolbox documentation
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8firceqripPurpose Design constrained, equiripple FIR filter

Syntax hd = firceqrip(n,wo,del)
hd = firceqrip(...,'slope',r)
hd = firceqrip(...,'passedge')
hd = firceqrip(...,'stopedge')
hd = firceqrip(...,'high')
hd = firceqrip(...,'min')
hd = firceqrip(...,'invsinc',c)

Description hd = firceqrip(n,wo,del) design an order n filter (filter length equal n+1) 
lowpass FIR filter with linear phase.

firceqrip produces the same equiripple lowpass filters that firpm produces 
using the Parks-McClellan algorithm. The difference is how you specify the 
filter characteristics for the function.

Input argument wo specifies the cutoff frequency. The two-element vector del 
specifies the peak or maximum error allowed in the passband and stopbands. 
Enter [d1 d2] for del where d1 sets the passband error and d2 sets the 
stopband error. Since firceqrip works in the normalized frequency domain, 
you must set wo to be between 0 and 1 (0 < wo < 1). 

hd = firceqrip(...,'slope',r) uses the input keyword 'slope' and input 
argument r to design a filter with a stopband that does not demonstrate 
equiripple characteristics. r determines the slope of the stopband in dB when 
r > 0.

In this constrained equiripple design approach, you can specify a stopband 
slope (increasing attenuation with increasing frequency). Enter your desired 
slope in dB as a positive value. Larger slope values create increasing 
attenuation of the stopband as frequency increases. 

Slope is defined in the following ways: 

• For filters specified in linear frequency, the slope is defined over every Fs/2 
frequency bands. 

• For filters specified in normalized frequency, the slope is defined over 
π rad/sample. 
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Here is a description of how slope works. The algorithm defines slope in dB per 
half of the Nyquist interval. If you are working in normalized frequency and 
you set the slope to 40 dB, the stopband attenuation increases by 40 dB every  
rad/sample.

Try setting r to 10 to see the effect on the filter frequency response. In the 
Examples section, example 3 designs a filter with r equal to 20.

hd = firceqrip(...,'passedge') designs a filter where wo specifies the 
frequency at which the passband starts to roll off. 

hd = firceqrip(...,'stopedge') designs a filter where wo specifies the 
frequency at which the stopband begins.

hd = firceqrip(...,'high') designs a high pass FIR filter instead of 
a lowpass filter.

hd = firceqrip(...,'min') designs an FIR filter with minimum phase.

hd = firceqrip(...,'invsinc',c)) designs a lowpass filter whose passband 
has the shape of the inverse sinc function. For this syntax, keyword invsinc 
applies the inverse sinc function as defined by whether c is a scalar or a 
two-element vector:

• When you use c as a scalar with the invsinc keyword, firceqrip applies the 
function 1/sinc(c*w), where w is the normalized frequency, to the passband.

• When you use c as a two-element vector entered as [c p], with the invsinc 
keyword, firceqrip applies the function 1/sinc(c*w)p to the passband, where 
w is the normalized frequency. 

In both cases, c must meet the condition c < 1/wo.

When you use a cascaded-integrated comb (CIC) filter in series with this FIR 
filter, argument p lets you compensate for the droop in the passband of the CIC 
filter. Setting p equal to the number of stages in your CIC generally produces 
an FIR filter whose passband neatly compensates for the CIC passband shape.

To let you specify precisely the FIR filter to design, use any or all of the optional 
input arguments together. Any ordering of the optional arguments works—
order is not important in the function call. Refer to Examples 3 and 4 to see 
multiple optional input arguments being used.
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Note  If the wo you specify is too small or too large, or if either c or p is too 
large, your filter specifications may be unfeasible, causing the design 
algorithm to fail to generate your filter.

Examples To introduce a few of the variations on FIR filters that you design with 
firceqrip, these five examples cover both the default syntax 
hd = firceqrip(n,wo,del) and some of the optional input arguments. For 
each example, the input arguments n, wo, and del remain the same.

Example 1—Design an order = 30 FIR filter without using optional input 
arguments or keywords.

hd = firceqrip(n,wo,del); fvtool(hd)

Both the phase and magnitude response for the resulting lowpass filter appear 
in the plot shown here.
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Example 2—Design an order = 30 FIR filter with the stopedge keyword to 
define the response at the edge of the filter stopband.

hd = firceqrip(n,wo,del,'stopedge'); fvtool(hd,1)

Example 3—Design an order = 30 FIR filter with the slope keyword and 
r = 20.

hd = firceqrip(n,wo,del,'slope',20,'stopedge'); fvtool(hd)

Example 4—Design an order = 30 FIR filter defining the stopband and 
specifying that the resulting filter is minimum phase with the min keyword.

hd = firceqrip(n,wo,del,'stopedge','min'); fvtool(hd)
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Comparing this filter to the filter in Example 1, notice that the cutoff frequency 
wo = 0.4 now applies to the edge of the stopband rather than the point at which 
the frequency response magnitude is 0.5.

Viewing the zero-pole plot shown here reveals this is a minimum phase FIR 
filter—the zeros lie on or inside the unit circle, z = 1.

Example 5—Design an order = 30 FIR filter with the invsinc keyword to 
shape the filter passband with an inverse sinc function.

hd = firceqrip(n,wo,del,'invsinc',[2 1.5]); fvtool(hd,1)
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With the inverse sinc function being applied defined as 1/sinc(2*w)1.5, the figure 
shows the reshaping of the passband that results from using the invsinc 
keyword option, and entering c as the two-element vector [2 1.5].

See Also firhalfband, firnyquist, firgr, ifir, iirgrpdelay, iirlpnorm, iirlpnormc

fircls, firls, firpm in your Signal Processing Toolbox documentation
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8firgrPurpose Use Parks-McClellan technique to design digital FIR filter 

Syntax b = firgr(n,f,a,w)
b = firgr(n,f,a,'hilbert') 
b = firgr(n,f,a,'differentiator')
b = firgr(m,f,a,r)
b = firgr({m,ni},f,a,r)
b = firgr(n,f,a,w,e) 
b = firgr(n,f,a,s)
b = firgr(n,f,a,s,w,e) 

Description firgr is a minimax filter design algorithm you use to design the following types 
of real FIR filters: 

• Types 1-4 linear phase:

- Type 1 is even order, symmetric

- Type 2 is odd order, symmetric

- Type 3 is even order, antisymmetric

- Type 4 is odd order, antisymmetric

• Minimum phase

• Maximum phase

• Minimum order (even or odd)

• Extra ripple

• Maximal ripple

• Constrained ripple

• Single-point band (notching and peaking)

• Forced gain 

• Arbitrary shape frequency response curve filters

b = firgr(n,f,a,w) returns a length n+1 linear phase FIR filter which has 
the best approximation to the desired frequency response described by f and 
a in the minimax sense. w is a vector of weights, one per band. When you omit 
w, all bands are weighted equally. For more information on the input 
arguments, refer to firpm in Signal Processing Toolbox User’s Guide.
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b = firgr(n,f,a,'hilbert') and b = firgr(n,f,a,'differentiator') 
design FIR Hilbert transformers and differentiators. For more information on 
designing these filters, refer to firpm in Signal Processing Toolbox User’s 
Guide. 

b = firgr(m,f,a,r), where m is one of 'minorder', 'mineven' or 'minodd', 
designs filters repeatedly until the minimum order filter, as specified in m, that 
meets the specifications is found. r is a vector containing the peak ripple per 
frequency band. You must specify r. When you specify 'mineven' or 'minodd', the 
minimum even or odd order filter is found. 

b = firgr({m,ni},f,a,r) where m is one of 'minorder', 'mineven' or 'minodd', 
uses ni as the initial estimate of the filter order. ni is optional for common filter 
designs, but it must be specified for designs in which firpmord cannot be used, 
such as while designing differentiators or Hilbert transformers. 

b = firgr(n,f,a,w,e) specifies independent approximation errors for 
different bands. Use this syntax to design extra ripple or maximal ripple filters. 
These filters have interesting properties such as having the minimum 
transition width. e is a cell array of strings specifying the approximation errors 
to use. Its length must equal the number of bands. Entries of e must be in the 
form 'e#' where # indicates which approximation error to use for the 
corresponding band. For example, when e = {'e1','e2','e1'}, the first and 
third bands use the same approximation error 'e1' and the second band uses 
a different one 'e2'. Note that when all bands use the same approximation 
error, such as {'e1','e1','e1',...}, it is equivalent to omitting e, as in 
b = firgr(n,f,a,w). 

b = firgr(n,f,a,s) is used to design filters with special properties at certain 
frequency points. s is a cell array of strings and must be the same length as f 
and a. Entries of s must be one of:

• 'n' - normal frequency point.

• 's' - single-point band. The frequency “band” is given by a single point. The 
corresponding gain at this frequency point must be specified in a.

• 'f' - forced frequency point. Forces the gain at the specified frequency band 
to be the value specified.

• 'i' - indeterminate frequency point. Use this argument when adjacent 
bands abut one another (no transition region). 
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For example, the following command designs a bandstop filter with zero-valued 
single-point stop bands (notches) at 0.25 and 0.55.

b = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],...
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'})

b = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'})
designs a highpass filter with the gain at 0.06 forced to be zero. The band edge 
at 0.055 is indeterminate since the first two bands actually touch. The other 
band edges are normal.

b = firgr(n,f,a,s,w,e) specifies weights and independent approximation 
errors for filters with special properties. The weights and properties are 
included in vectors w and e. Sometimes, you may need to use independent 
approximation errors to get designs with forced values to converge. For 
example,

b = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

b = firgr(...,'1') designs a type 1 filter (even-order symmetric). You can 
specify type 2 (odd-order symmetric), type 3 (even-order antisymmetric), and 
type 4 (odd-order antisymmetric) filters as well. Note that restrictions apply to 
a at f=0 or f=1 for FIR filter types 2, 3, and 4.

b = firgr(...,'minphase') designs a minimum-phase FIR filter. You can 
use the argument 'maxphase' to design a maximum phase FIR filter.

b = firgr(..., 'check') returns a warning when there are potential 
transition-region anomalies.

b = firgr(...,{lgrid}), where {lgrid} is a scalar cell array. The value of 
the scalar controls the density of the frequency grid by setting the number of 
samples used along the frequency axis. 

[b,err] = firgr(...) returns the unweighted approximation error 
magnitudes. err contains one element for each independent approximation 
error returned by the function.
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[b,err,res] = firgr(...) returns the structure res comprising optional 
results computed by firgr. res contains the following fields.

Structure Field Contents

res.fgrid Vector containing the frequency grid used in 
the filter design optimization

res.des Desired response on fgrid

res.wt Weights on fgrid

res.h Actual frequency response on the frequency 
grid

res.error Error at each point (desired response - actual 
response) on the frequency grid 

res.iextr Vector of indices into fgrid of extremal 
frequencies

res.fextr Vector of extremal frequencies

res.order Filter order

res.edgecheck Transition-region anomaly check. One element 
per band edge. Element values have the 
following meanings:

1 = OK
0 = probable transition-region anomaly

-1 = edge not checked

Computed when you specify the 'check' input 
option in the function syntax.

res.iterations  Number of s iterations for the optimization

res.evals  Number of function evaluations for the 
optimization
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firgr is also a “function function”, allowing you to write a function that defines 
the desired frequency response. 

b = firgr(n,f,fresp,w) returns a length N+1 FIR filter which has the best 
approximation to the desired frequency response as returned by the 
user-defined function fresp. Use the following firgr syntax to call fresp:

[dh,dw] = fresp(n,f,gf,w)

where: 

• fresp is the string variable that identifies the function that you use to define 
your desired filter frequency response. 

• n is the filter order. 

• f is the vector of frequency band edges which must appear monotonically 
between 0 and 1, where 1 is one-half of the sampling frequency. The 
frequency bands span f(k) to f(k+1) for k odd. The intervals f(k+1) to 
f(k+2) for k odd are “transition bands” or “don't care” regions during 
optimization. 

• gf is a vector of grid points that have been chosen over each specified 
frequency band by firgr, and determines the frequencies at which firgr 
evaluates the response function.

• w is a vector of real, positive weights, one per band, for use during 
optimization. w is optional in the call to firgr. If you do not specify w, it is set 
to unity weighting before being passed to fresp.

• dh and dw are the desired frequency response and optimization weight 
vectors, evaluated at each frequency in grid gf.

firgr includes a predefined frequency response function named 'firpmfrf2'. 
You can write your own based on the simpler 'firpmfrf'. See the help for 
private/firpmfrf for more information. 

b = firgr(n,f,{fresp,p1,p2,...},w) specifies optional arguments p1, 
p2,..., pn to be passed to the response function fresp. 

b = firgr(n,f,a,w) is a synonym for b = firgr(n,f,{'firpmfrf2',a},w), 
where a is a vector containing your specified response amplitudes at each band 
edge in f. By default, firgr designs symmetric (even) FIR filters. 'firpmfrf2' 
is the predefined frequency response function. If you do not specify your own 
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frequency response function (the fresp string variable), firgr uses 
'firpmfrf2'.

b = firgr(...,'h') and b = firgr(...,'d') design antisymmetric (odd) 
filters. When you omit the 'h' or 'd' arguments from the firgr command 
syntax, each frequency response function fresp can tell firgr to design either 
an even or odd filter. Use the command syntax 
sym = fresp('defaults',{n,f,[],w,p1,p2,...}).

firgr expects fresp to return sym = 'even' or sym = 'odd'. If fresp does not 
support this call, firgr assumes even symmetry.

For more information about the input arguments to firgr, refer to firpm.

Examples These examples demonstrate some filters you might design using firgr.

Example 1—design an FIR filter with two single-band notches at 0.25 and 0.55

b1 = firgr(42,[0 0.2 0.25 0.3 0.5 0.55 0.6 1],[1 1 0 1 1 0 1 1],... 
{'n' 'n' 's' 'n' 'n' 's' 'n' 'n'});

Example 2—design a highpass filter whose gain at 0.06 is forced to be zero. The 
gain at 0.055 is indeterminate since it should abut the band.

b2 = firgr(82,[0 0.055 0.06 0.1 0.15 1],[0 0 0 0 1 1],...
{'n' 'i' 'f' 'n' 'n' 'n'});

Example 3—design a second highpass filter with forced values and 
independent approximation errors.

b3 = firgr(82,[0 0.055 0.06 0.1 0.15 1], [0 0 0 0 1 1], ...
{'n' 'i' 'f' 'n' 'n' 'n'}, [10 1 1] ,{'e1' 'e2' 'e3'});

Use the filter visualization tool to view the results of the filters created in these 
examples.

fvtool(b1,1,b2,1,b3,1)

Here is the figure from FVTool.
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See Also butter, cheby1, cheby2, ellip, freqz, filter, firls, fircls, and firpm in 
your Signal Processing Toolbox documentation

Reference Shpak, D.J. and A. Antoniou, “A generalized Remez method for the design of 
FIR digital filters,” IEEE Trans. Circuits and Systems, pp. 161-174,Feb. 1990.
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8firhalfbandPurpose Design halfband FIR filter

Syntax b = firhalfband(n,fp)
b = firhalfband(n,win)
b = firhalfband(n,dev,'dev')
b = firhalfband('minorder',fp,dev)
b = firhalfband('minorder',fp,dev,'kaiser')
b = firhalfband(...,'high')

b = firhalfband(...,'minphase')

Description b = firhalfband(n,fp) designs a lowpass halfband FIR filter of order n with 
an equiripple characteristic. n must be an even integer. fp determines the 
passband edge frequency, and it must satisfy 0 < fp < 1/2, where 1/2 
corresponds to  rad/sample.

b = firhalfband(n,win) designs a lowpass Nth-order filter using the 
truncated, windowed-impulse response method instead of the equiripple 
method. win is an n+1 length vector. The ideal impulse response is truncated to 
length n + 1, and then multiplied point-by-point with the window specified in 
win.

b = firhalfband(n,dev,'dev') designs an Nth-order lowpass halfband 
filter with an equiripple characteristic. Input argument dev sets the value for 
the maximum passband and stopband ripple allowed.

b = firhalfband('minorder',fp,dev) designs a lowpass minimum-order 
filter, with passband edge fp. The peak ripple is constrained by the scalar dev. 
This design uses the equiripple method.

b = firhalfband('minorder',fp,dev,'kaiser') designs a lowpass 
minimum-order filter, with passband edge fp. The peak ripple is constrained 
by the scalar dev. This design uses the Kaiser window method.

b = firhalfband(...,'high') returns a highpass halfband FIR filter.

b = firhalfband(...,'minphase') designs a minimum-phase FIR filter such 
that the filter is a spectral factor of a halfband filter (recall that 
h = conv(b,fliplr(b)) is a halfband filter). This can be useful for designing 
perfect reconstruction, two-channel FIR filter banks. The minphase option for 

π 2⁄
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firhalfband is not available for the window-based halfband filter designs—
b = firhalfband(n,win) and 
b = firhalfband('minorder',fp,dev,'kaiser').

In the minimum phase cases, the filter order must be odd.

Examples This example designs a minimum order halfband filter with specified 
maximum ripple:

b = firhalfband('minorder',.45,0.0001);
h = dfilt.dfsymfir(b);
impz(b) % Impulse response is zero for every other sample

The next example designs a halfband filter with specified maximum ripple of 
0.0001 dB in the pass and stop bands.
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b = firhalfband(98,0.0001,'dev');
h = mfilt.firdecim(2,b); % Create a polyphase decimator
freqz(h); % 80 dB attenuation in the stopband

See Also firnyquist, firgr
fir1, firls, firpm in your Signal Processing Toolbox documentation

References Saramaki, T, “Finite Impulse Response Filter Design,” Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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8firlp2lpPurpose Convert FIR Type I lowpass to FIR Type 1 lowpass with inverse bandwidth

Syntax g = firlp2lp(b)

Description g = firlp2lp(b) transforms the Type I lowpass FIR filter b with zero-phase 
response Hr(w) to a Type I lowpass FIR filter g with zero-phase response 
[1 - Hr(π-w)].

When b is a narrowband filter, g will be a wideband filter and vice versa. The 
passband and stopband ripples of g will be equal to the stopband and passband 
ripples of b.

Examples Overlay the original narrowband lowpass and the resulting wideband lowpass

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 5]);
zerophase(b);
hold on
h = firlp2lp(b); 
zerophase(h); hold off

See Also firlp2hp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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8firlp2hpPurpose Convert FIR lowpass filter to Type I FIR highpass filter

 Syntax g = firlp2hp(b)
g = firlp2hp(b,'narrow')
g = firlp2hp(b,'wide')

Description g = firlp2hp(b) transforms the lowpass FIR filter b into a Type I highpass 
FIR filter g with zero-phase response Hr(π-w). Filter b can be any FIR filter, 
including a nonlinear-phase filter.

The passband and stopband ripples of g will be equal to the passband and 
stopband ripples of b.

g = firlp2hp(b,'narrow') transforms the lowpass FIR filter b into a Type I 
narrow band highpass FIR filter g with zero-phase response Hr(π-w). b can be 
any FIR filter, including a nonlinear-phase filter.

g = firlp2hp(b,'wide') transforms the Type I lowpass FIR filter b with 
zero-phase response Hr(w) into a Type I wide band highpass FIR filter g with 
zero-phase response 1 - Hr(w). Note the restriction that b must be a Type I 
linear-phase filter.

For this case, the passband and stopband ripples of g will be equal to the 
stopband and passband ripples of b.

Examples Overlay the original narrowband lowpass (the prototype filter) and the 
post-conversion narrowband highpass and wideband highpass filters to 
compare and assess the conversion. The plot below shows the results.

b = firgr(36,[0 .2 .25 1],[1 1 0 0],[1 3]);
zerophase(b); hold on;
h = firlp2hp(b);
zerophase(h);
g = firlp2hp(b,'wide');
zerophase(g); hold off
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See Also firlp2lp

zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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8firlpnormPurpose Least P-norm optimal FIR filter design

Syntax b = firlpnorm(n,f,edges,a)
b = firlpnorm(n,f,edges,a,w)
b = firlpnorm(n,f,edges,a,w,p)
b = firlpnorm(n,f,edges,a,w,p,dens)
b = firlpnorm(n,f,edges,a,w,p,dens,initnum)
b = firlpnorm(...,'minphase')
[b,err] = firlpnorm(...)

Description b = firlpnorm(n,f,edges,a) returns a filter of numerator order n which 
represents the best approximation to the frequency response described by f 
and a in the least-Pth norm sense. P is set to 128 by default, which essentially 
equivalent to the infinity norm. Vector edges specifies the band-edge 
frequencies for multiband designs. firlpnorm uses an unconstrained 
quasi-Newton algorithm to design the specified filter.

f and a must have the same number of elements, which can exceed the number 
of elements in edges. This lets you specify filters with any gain contour within 
each band. However, the frequencies in edges must also be in vector f. Always 
use freqz to check the resulting filter.

Note  firlpnorm uses a nonlinear optimization routine that may not converge 
in some filter design cases. Furthermore the algorithm is not well-suited for 
certain large-order (order > 100) filter designs.

b = firlpnorm(n,f,edges,a,w) uses the weights in w to weight the error. 
w has one entry per frequency point (the same length as f and a) which tells 
firlpnorm how much emphasis to put on minimizing the error in the vicinity 
of each frequency point relative to the other points. For example,

b = firlpnorm(20,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband, and with 
emphasis placed on minimizing the error in the stopband.
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b = firlpnorm(n,f,edges,a,w,p) where p is a two-element vector [pmin 
pmax] lets you specify the minimum and maximum values of p used in the 
least-pth algorithm. Default is [2 128] which essentially yields the L-infinity, 
or Chebyshev, norm. pmin and pmax should be even numbers. The design 
algorithm starts optimizing the filter with pmin and moves toward an optimal 
filter in the pmax sense.When p is the string 'inspect', firlpnorm does not 
optimize the resulting filter. You might use this feature to inspect the initial 
zero placement.

b = firlpnorm(n,f,edges,a,w,p,dens) specifies the grid density dens used 
in the optimization. The number of grid points is [dens*(n+1)]. The default is 
20. You can specify dens as a single-element cell array. The grid is equally 
spaced.

b = firlpnorm(n,f,edges,a,w,p,dens,initnum) lets you determine the 
initial estimate of the filter numerator coefficients in vector initnum. This can 
prove helpful for difficult optimization problems. The pole-zero editor in the 
Signal Processing Toolbox can be used for generating initnum.

b = firlpnorm(...,'minphase') where string 'minphase' is the last 
argument in the argument list generates a minimum-phase FIR filter. By 
default, firlpnorm design mixed-phase filters. Specifying input option 
'minphase' causes firlpnorm to use a different optimization method to design 
the minimum-phase filter. As a result of the different optimization used, the 
minimum-phase filter can yield slightly different results.

[b,err] = firlpnorm(...) returns the least-pth approximation error err.

Examples To demonstrate firlpnorm, here are two examples — the first designs a 
lowpass filter and the second a highpass, minimum-phase filter.

% Lowpass filter with a peak of 1.4 in the passband.
b = firlpnorm(22,[0 .15 .4 .5 1],[0 .4 .5 1],[1 1.4 1 0 0],...
[1 1 1 2 2]);
fvtool(b)
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From the figure you see the resulting filter is lowpass, with the desired 1.4 
peak in the passband (notice the 1.4 specified in vector a).

Now for the minimum-phase filter.

% Highpass minimum-phase filter optimized for the 4-norm.
b = firlpnorm(44,[0 .4 .45 1],[0 .4 .45 1],[0 0 1 1],[5 1 1 1],...
[2 4],'minphase');
fvtool(b)

As shown in the next figure, this is a minimum-phase, highpass filter. 
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The next zero-pole plot shows the minimum phase nature more clearly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−180

−140

−100

−60

−20

20

M
ag

ni
tu

de
 (

dB
)

Magnitude and Phase Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−800

−640

−480

−320

−160

0

rad/sample

P
ha

se
 (

de
gr

ee
s)

Filter #1: Discrete filter magnitude
Filter #1: Discrete filter phase



firlpnorm

8-695

See Also firgr, iirgrpdelay, iirlpnorm, iirlpnormc
filter, fvtool, freqz, zplane in your Signal Processing Toolbox 
documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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8firlsPurpose Design filter from filter specification object using least-square minimization 
technique

Syntax hd = firls(d)

Description hd = firls(d) designs a discrete-time FIR filter using a least-squares error 
minimization method. Only halfband and interpolation specifications objects 
with Specification of 'n,tw' or 'pl,tw' work as specifications objects for 
firls.

hd is either a dfilt object (a single-rate digital filter) or an mfilt object (a 
multirate digital filter) depending on the Specification property of the filter 
specification object d and the filter specification object type—halfband or 
interpolator.

Examples Here are two examples of using firls to design filters. The first example 
returns a single-rate halfband filter.

d = fdesign.halfband('n,tw',120,.04); % 120 is the filter order.
hd = firls(d);

Now use firls to design a multirate halfband interpolator filter.

d = fdesign.interpolator(2,'pl,tw',60,.04); % 60 is the polyphase 
% length.

hm = firls(d);

See Also equiripple, kaiserwin
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8firminphasePurpose Compute minimum-phase FIR spectral factor

Syntax h = firminphase(b)
h = firminphase(b,nz)

Description h = firminphase(b) computes the minimum-phase FIR spectral factor h of a 
linear-phase FIR filter b. Filter b must be real, have even order, and have 
nonnegative zero-phase response.

h = firminphase(b,nz) specifies the number of zeros, nz, of b that lie on the 
unit circle. You must specify nz as an even number to compute the 
minimum-phase spectral factor because every root on the unit circle must have 
even multiplicity. Including nz can help firminphase calculate the required 
FIR spectral factor. Zeros with multiplicity greater than two on the unit circle 
cause problems in the spectral factor determination.

Note  You can find the maximum-phase spectral factor, g, by reversing h, 
such that , and .

Example This example designs a constrained least squares filter with a nonnegative 
zero-phase response, and then uses firminphase to compute the 
minimum-phase spectral factor. 

f  = [0 0.4 0.8 1];
a  = [0 1 0];
up = [0.02 1.02  0.01];
lo = [0 0.98 0]; % The zeros insure nonnegative zero-phase resp.
n  = 32;
b  = fircls(n,f,a,up,lo);
h  = firminphase(b);

See Also firgr
fircls, zerophase in your Signal Processing Toolbox documentation

References [1] Saramaki, T, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.

g fliplr h( )= b conv h g,( )=
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8firnyquistPurpose Design lowpass Nyquist (Lth-band) FIR filter

Syntax firnyquist(n,l,r,varargin)

Description b = firnyquist(n,l,r) designs an Nth order, Lth band, Nyquist FIR filter 
with a roll-off factor r and an equiripple characteristic.

The rolloff factor r is related to the normalized transition width tw by 
 (rad/sample). The order, n, must be even. l must be an integer 

greater than one. If l is not specified, it defaults to 4. r must satisfy 0< r < 1. 
If r is not specified, it defaults to 0.5.

b = firnyquist('minorder',l,r,dev) designs a minimum-order, Lth band 
Nyquist FIR filter with a rolloff factor r using the Kaiser window. The peak 
ripple is constrained by the scalar dev.

b = firnyquist(n,l,r,decay) designs an Nth order, Lth band, Nyquist FIR 
filter where the scalar decay, specifies the rate of decay in the stopband. decay 
must be nonnegative. If omitted or left empty, decay defaults to 0 which yields 
an equiripple stopband. A nonequiripple stopband may be desirable for 
decimation purposes.

b = firnyquist(n,l,r,'nonnegative') returns an FIR filter with 
nonnegative zero-phase response. This filter can be spectrally factored into 
minimum-phase and maximum-phase “square-root” filters. This allows using 
the spectral factors in applications such as matched-filtering.

b = firnyquist(n,l,r,'minphase') returns the minimum-phase spectral 
factor bmin of order n. bmin meets the condition b=conv(bmin,bmax) so that b 
is an Lth band FIR Nyquist filter of order 2n with rolloff factor r. Obtain bmax, 
the maximum phase spectral factor by reversing the coefficients of bmin. For 
example, bmax = bmin(end:-1:1).

Example Example 1: This example designs a minimum phase factor of a Nyquist filter.

bmin = firnyquist(47,10,.45,'minphase'); 
b = firnyquist(2*47,10,.45,'nonnegative');
[h,w,s] = freqz(b); hmin = freqz(bmin);
fvtool(b,1,bmin,1);

tw 2π r l⁄( )=
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Example 2: This example compares filters with different decay rates.

b1 = firnyquist(72,8,.3,0); % Equiripple
b2 = firnyquist(72,8,.3,.5);
b3 = firnyquist(72,8,.3,1);
fvtool(b1,1,b2,1,b3,1);

See Also firhalfband, firgr, firls, firminphase
firrcos, firls in your Signal Processing Toolbox documentation

References [1]  T. Saramaki, Finite Impulse Response Filter Design, Handbook for Digital 
Signal Processing. S.K. Mitra and J.F. Kaiser Eds. Wiley-Interscience, N.Y., 
1993, Chapter 4.
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8firpr2chfbPurpose Design two-channel FIR filter bank for perfect reconstruction 

Syntax [h0,h1,g0,g1] = firpr2chfb(n,fp)
[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev')
[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev)

Description [h0,h1,g0,g1] = firpr2chfb(n,fp) designs four FIR filters for the analysis 
sections (h0 and h1) and synthesis section is (g0 and g1) of a two-channel 
perfect reconstruction filter bank. The design corresponds to the orthogonal 
filter banks also known as power-symmetric filter banks. 

n is the order of all four filters. It must be an odd integer. fp is the 
passband-edge for the lowpass filters h0 and g0. The passband-edge argument 
fp must be less than 0.5. h1 and g1 are highpass filters with the passband-edge 
given by (1-fp).

[h0,h1,g0,g1] = firpr2chfb(n,dev,'dev') designs the four filters such 
that the maximum stopband ripple of h0 is given by the scalar dev. The 
stopband-ripple of h1 is also be given by dev, while the maximum 
stopband-ripple for both g0 and g1 is (2*dev).

[h0,h1,g0,g1] = firpr2chfb('minorder',fp,dev) designs the four filters 
such that h0 meets the passband-edge specification fp and the stopband-ripple 
dev using minimum order filters to meet the specification.

Algorithm For perfect reconstruction, filters that compose the filter bank must fulfill 
these conditions. 

Examples Design a filter bank with filters of order n equal to 99 and passband edges of 
0.45 and 0.55.

n = 99;
[h0,h1,g0,g1] = firpr2chfb(n,.45);
fvtool(h0,1,h1,1,g0,1,g1,1);

Here are the filters, showing clearly the passband edges.
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Use the following stem plots to verify perfect reconstruction using the filter 
bank created by firpr2chfb.

stem(1/2*conv(g0,h0)+1/2*conv(g1,h1))
n=0:n;
stem(1/2*conv((-1).^n.*h0,g0)+1/2*conv((-1).^n.*h1,g1))
stem(1/2*conv((-1).^n.*g0,h0)+1/2*conv((-1).^n.*g1,h1))
stem(1/2*conv((-1).^n.*g0,(-1).^n.*h0)+1/2*conv((-1).^n.*g1,...
(-1).^n.*h1))
stem(conv((-1).^n.*h1,h0)-conv((-1).^n.*h0,h1))

See Also firceqrip, firgr, firhalfband, firnyquist
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8firtypePurpose Determine type of linear phase FIR filter

Syntax t = firtype(hd)
t = firtype(hm)

Description The next sections describe common firtype operation with discrete-time and 
multirate filters.

Discrete-Time Filters

t = firtype(hd) determines the type (1 through 4) of a discrete-time FIR 
filter object hd, returning the type number in t. Filter hd must be both real and 
have linear phase.

Filter types 1 through 4 are defined as follows:

• Type 1—even order symmetric coefficients

• Type 2—odd order symmetric coefficients

• Type 3—even order antisymmetric coefficients

• Type 4—odd order antisymmetric coefficients

When hd is a cascade or parallel filter and therefore has multiple stages, each 
stage must be a real FIR filter with linear phase. In this case, t is a cell array 
containing the filter type of each stage.

Multirate Filters

t = firtype(hm) determines the type (1 through 4) of the multirate filter 
object hm. The filter must be real and have linear phase.

Filter types 1 through 4 are defined as follows:

• Type 1—even order symmetric coefficients

• Type 2—odd order symmetric coefficients

• Type 3—even order antisymmetric coefficients

• Type 4—odd order antisymmetric coefficients

When hm has multiple sections, all sections must be real FIR filters with linear 
phase. In this case, t is a cell array containing the filter type of each section.



firtype

8-703

Examples Determine the type of the default interpolator for L=4.

l = 4;
hm = mfilt.firinterp(l);
firtype(hm)
ans =

     1

See Also islinphase
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8freqsampPurpose Design real or complex frequency-sampled FIR filters from filter specification 
objects

Syntax hd = design(d,'freqsamp')
hd = design(...,'filterstructure',structure)
hd = design(...,'window',window)

Description hd = design(d,'freqsamp') designs a frequency-sampled filter specified by 
the fspecifications object h.

hd = design(...,'filterstructure',structure) returns a filter with the 
filter structure you specify by the structure input argument.  structure is 
dffir by default and can be any one of the following filter structures.

hd = design(...,'window',window) designs filters using the window 
specified by the string in window. Provide the input argument window as

• A string for the window type. For example, use bartlett or chebwin, or 
hamming. Click window for the full list of windows available or refer to 
window in the Signal Processing Toolbox User’s Guide. 

• A function handle that references the window function. When the window 
function requires more than one input, use a cell array to hold the required 
arguments. The final example below shows a cell array input argument.

• The window vector itself.

Structure String Description of Resulting Filter Structure 

dffir Direct-form FIR filter

dffirt Transposed direct-form FIR filter

dfsymfir Symmetrical direct-form FIR filter

dfasymfir Asymmetrical direct-form FIR filter

fftfir Fast Fourier transform FIR filter
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Examples These examples design FIR filters that have arbitrary magnitude responses. In 
the first filter, the response has three distinct sections and the resulting filter 
is real.

The second example creates a complex filter.

b1 = 0:0.01:0.18;b2 = [.2 .38 .4 .55 .562 .585 .6 
.78];b3 = [0.79:0.01:1];
a1 = .5+sin(2*pi*7.5*b1)/4;    % Sinusoidal response section.
a2 = [.5 2.3 1 1 -.2 -.2 1 1]; % Piecewise linear response section.
a3 = .2+18*(1-b3).^2;          % Quadratic response section.
f = [b1 b2 b3];
a = [a1 a2 a3];
n = 300;
d = fdesign.arbmag('n,f,a',n,f,a); % First specifications object.
hd = design(d,'freqsamp','window',{@kaiser,.5}); % Filter.
fvtool(hd)

The plot from FVTool shows the response for hd.
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Now design the arbitrary-magnitude complex FIR filter. Recall that vector 
f contains frequency locations and vector a contains the desired filter response 
values at the locations specified in f.

f = [-1 -.93443 -.86885 -.80328 -.7377 -.67213 -.60656 -.54098 ... 
-.47541,-.40984 -.34426 -.27869 -.21311 -.14754 -.081967 ... 
-.016393 .04918 .11475,.18033 .2459 .31148 .37705 .44262 ...
 .5082 .57377 .63934 .70492 .77049,.83607 .90164 1];
a = [.0095848 .021972 .047249 .099869 .23119 .57569 .94032 ...
.98084 .99707,.99565 .9958 .99899 .99402 .99978 .99995 .99733 ... 
.99731 .96979 .94936,.8196 .28502 .065469 .0044517 .018164 ... 
.023305 .02397 .023141 .021341,.019364 .017379 .016061];
n = 48;
d = fdesign.arbmag('n,f,a',n,f,a); % Second spec. object.
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hdc = design(d,'freqsamp','window','rectwin'); % Filter.
fvtool(hdc)

FVTool shows you the response for hdc from -1 to 1 in normalized frequency. 
design(d,...) returns a complex filter for hdc because the frequency vector 
includes negative frequency values.

See Also design, designmethods, fdesign.arbmag, help

window in the Signal Processing Toolbox documentation
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8freqzPurpose Compute frequency response of discrete-time filters, adaptive filters, or 
multirate filters

Syntax [h,w] = freqz(ha)
[h,w] = freqz(ha,n)
freqz(ha)
[h,w] = freqz(hd)
[h,w] = freqz(hd,n)
freqz(hd)
[h,w] = freqz(hm)
[h,w] = freqz(hm,n)
freqz(hm)

Description The next sections describe common freqz operation with adaptive, 
discrete-time, and multirate filters. For more input options, refer to freqz in 
the Signal Processing Toolbox. 

Adaptive Filters
For adaptive filters, freqz returns the instantaneous frequency response based 
on the current filter coefficients.

[h,w] = freqz(ha) returns the frequency response vector h and the 
corresponding frequency vector w for the adaptive filter ha. When ha is a vector 
of adaptive filters, freqz returns the matrix h. Each column of h corresponds to 
one filter in the vector ha. 

[h,w] = freqz(ha,n) returns the frequency response vector h and the 
corresponding frequency vector w for the adaptive filter ha. freqz uses the 
transfer function associated with the adaptive filter to calculate the frequency 
response of the filter with the current coefficient values. The vectors h and w 
are both of length n. The frequency vector w has values ranging from 0 to π 
radians per sample. If you do not specify the integer n, or you specify it as the 
empty vector [], the frequency response is calculated using the default value 
of 8192 samples for the FFT.

freqz(ha) uses FVTool to plot the magnitude and unwrapped phase of the 
frequency response of the adaptive filter ha. If ha is a vector of filters, freqz 
plots the magnitude response and phase for each filter in the vector.
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Discrete-Time Filters

[h,w] = freqz(hd) returns the frequency response vector h and the 
corresponding frequency vector w for the discrete-time filter hd. When hd is 
a vector of discrete-time filters, freqz returns the matrix h. Each column of 
h corresponds to one filter in the vector hd. 

[h,w] = freqz(hd,n) returns the frequency response vector h and the 
corresponding frequency vector w for the discrete-time filter hd. freqz uses the 
transfer function associated with the discrete-time filter to calculate the 
frequency response of the filter with the current coefficient values. The vectors 
h and w are both of length n. The frequency vector w has values ranging from 0 
to π radians per sample. If you do not specify the integer n, or you specify it as 
the empty vector [], the frequency response is calculated using the default 
value of 8192 samples for the FFT.

freqz(hd) uses FVTool to plot the magnitude and unwrapped phase of the 
frequency response of the adaptive filter hd. If hd is a vector of filters, freqz 
plots the magnitude response and phase for each filter in the vector.

Multirate Filters

[h,w] = freqz(hm) returns the frequency response vector h and the 
corresponding frequency vector w for the multirate filter hd. When hd is a vector 
of multirate filters, freqz returns the matrix h. Each column of h corresponds 
to one filter in the vector hd. 

[h,w] = freqz(hd,n) returns the frequency response vector h and the 
corresponding frequency vector w for the multirate filter hd. freqz uses the 
transfer function associated with the multirate filter to calculate the frequency 
response of the filter with the current coefficient values. The vectors h and w 
are both of length n. The frequency vector w has values ranging from 0 to π 
radians per sample. If you do not specify the integer n, or you specify it as the 
empty vector [], the frequency response is calculated using the default value 
of 8192 samples for the FFT.

freqz(hd) uses FVTool to plot the magnitude and unwrapped phase of the 
frequency response of the adaptive filter hd. If hd is a vector of filters, freqz 
plots the magnitude response and phase for each filter in the vector.
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Remarks There are several ways of analyzing the frequency response of filters. freqz 
accounts for quantization effects in the filter coefficients, but does not account 
for quantization effects in filtering arithmetic. To account for the quantization 
effects in filtering arithmetic, refer to function noisepsd.

Algorithm freqz calculates the frequency response for a filter from the filter transfer 
function Hq(z). The complex-valued frequency response is calculated by 
evaluating Hq(ejω) at discrete values of w specified by the syntax you use. The 
integer input argument n determines the number of equally-spaced points 
around the upper half of the unit circle at which freqz evaluates the frequency 
response. The frequency ranges from 0 to π radians per sample when you do not 
supply a sampling frequency as an input argument. When you supply the 
scalar sampling frequency fs as an input argument to freqz, the frequency 
ranges from 0 to fs/2 Hz. 

Examples Plot the estimated frequency response of a filter. This example uses 
discrete-time filters, but any adaptfilt, dfilt, or mfilt object would work. 
First plot the results for one filter.

b = fir1(80,0.5,kaiser(81,8));
hd = dfilt.dffir(b);
freqz(hd);
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If you have more than one filter, you can plot them on the same figure using 
a vector of filters.

b = fir1(40,0.5,kaiser(41,6));
hd2 = dfilt.dffir(b);
h = [hd hd2];
freqz(h);
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See Also adaptfilt, dfilt, mfilt
fvtool in your Signal Processing Toolbox documentation
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8gainPurpose Gain of cascaded integrator-comb (CIC) filter

Syntax gain(hm)
gain(hm,j)

Description gain(hm) returns the gain of hm, the CIC decimation or interpolation filter.

When hm is a decimator, gain returns the gain for the overall CIC decimator.

When hm is an interpolator, the CIC interpolator inserts zeros into the input 
data stream, reducing the filter overall gain by 1/R, where R is the 
interpolation factor, to account for the added zero valued samples. Therefore, 

the gain of a CIC interpolator is , where N is the number of filter 
sections and M is the filter differential delay. gain(hm) returns this value. The 
example below presents this case.

gain(hm,j) returns the gain of the jth section of a CIC interpolation filter. 
When you omit j, gain assumes that j is  2*N, where N is the number of 
sections, and returns the gain of the last section of the filter. This syntax does 
not apply when hm is a decimator.

Examples To compare the performance of two interpolators, one a CIC filter and the other 
an FIR filter, use gain to adjust the CIC filter output amplitude to match the 
FIR filter output amplitude. Start by creating an input data set—a sinusoidal 
signal x.

fs = 1000; % Input sampling frequency.
t = 0:1/fs:1.5; % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.

l = 4; % Interpolation factor for FIR filter.
d = fdesign.interpolator(l);
hm = design(d,'multistage');
ym = filter(hm,x);

r = 4; % Interpolation factor for the CIC filter.
d = fdesign.interpolator(r,'cic');
hcic = design(d,'multisection');
ycic = filter(hcic,x);
gaincic = gain(hcic);

RM( )N R⁄
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subplot(211);
plot(1:length(ym),[ym; double(ycic)]);
subplot(212)
plot(1:length(ym),[ym; double(ycic)/gain(hcic)]);

After correcting for the gain induced by the CIC interpolator, the figure below 
shows the filters provide nearly identical interpolation.

See Also filtmsb
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8grpdelayPurpose Group delay of adaptive, discrete-time, and multirate filters

Syntax [gd,w] = grpdelay(ha)
[gd,w] = grpdelay(ha,n)
[gd,w] = grpdelay(...,f)
grpdelay(ha)
[gd,w] = grpdelay(hd)
[gd,w] = grpdelay(hd,n)
[gd,w] = grpdelay(...,f)
grpdelay(hd)
[gd,w] = grpdelay(hm)
[gd,w] = grpdelay(hm,n)
[gd,w] = grpdelay(...,f)
grpdelay(hm)

Description The next sections describe common grpdelay operation with adaptive, 
discrete-time, and multirate filters. For more input options, refer to grpdelay 
in the Signal Processing Toolbox. 

Adaptive Filters
For adaptive filters, grpdelay returns the instantaneous group delay based on 
the current filter coefficients.

[gd,w] = grpdelay(ha) returns the group delay vector gd and the 
corresponding frequency vector w for the adaptive filter ha. When ha is a vector 
of adaptive filters, grpdelay returns the matrix gd. Each column of 
gd corresponds to one filter in the vector ha. If you provide a row vector of 
frequency points f as an input argument, each row of gd corresponds to one 
filter in the vector.

Function grpdelay uses the transfer function associated with the adaptive 
filter to calculate the group delay of the filter with the current coefficient 
values. The vectors gd and w are both of length n. The frequency vector w has 
values ranging from 0 to π radians per sample. If you do not specify the integer 
n, or you specify it as the empty vector [], the frequency response is calculated 
using the default value of 8192 samples for the FFT.
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[gd,w] = grpdelay(h,n) returns length n vectors vector gd containing the 
current group delay for the adaptive filter ha and the vector w which contains 
the frequencies in radians at which grpdelay calculated the delay. Group delay 
is

The frequency response is evaluated at n points equally spaced around the 
upper half of the unit circle. For FIR filters where n is a power of two, the 
computation is done faster using FFTs. When you do not specify n, it defaults 
to 8192.

grpdelay(ha) uses FVTool to plot the group delay of the adaptive filter ha. If 
ha is a vector of filters, grpdelay plots the magnitude response and phase for 
each filter in the vector. 

Discrete-Time Filters

[gd,w] = grpdelay(hd) returns the group delay vector gd and the 
corresponding frequency vector w for the discrete-time filter hd. When hd is 
a vector of discrete-time filters, grpdelay returns the matrix gd. Each column 
of gd corresponds to one filter in the vector hd. If you provide a row vector of 
frequency points f as an input argument, each row of gd corresponds to each 
filter in the vector.

Function grpdelay uses the transfer function associated with the discrete-time 
filter to calculate the group delay of the filter. The vectors gd and w are both of 
length n. The frequency vector w has values ranging from 0 to π radians per 
sample. If you do not specify the integer n, or you specify it as the empty vector 
[], the frequency response is calculated using the default value of 8192 
samples for the FFT.

[gd,w] = grpdelay(hd,n) returns length n vectors vector gd containing the 
current group delay for the discrete-time filter hd and the vector w which 
contains the frequencies in radians at which grpdelay calculated the delay. 
Group delay is

wd
d angle w( )( )–

wd
d angle w( )( )–
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The frequency response is evaluated at n points equally spaced around the 
upper half of the unit circle. For FIR filters where n is a power of two, the 
computation is done faster using FFTs. When you do not specify n, it defaults 
to 8192.

grpdelay(hd) uses FVTool to plot the group delay of the discrete-time filter hd. 
If hd is a vector of filters, grpdelay plots the magnitude response and phase for 
each filter in the vector. 

Multirate Filters

[gd,w] = grpdelay(hm) returns the group delay vector gd and the 
corresponding frequency vector w for the multirate filter hm. When hm is a vector 
of multirate filters, grpdelay returns the matrix gd. Each column of 
gd corresponds to one filter in the vector hm. If you provide a row vector of 
frequency points f as an input argument, each row of gd corresponds to one 
filter in the vector.

Function grpdelay uses the transfer function associated with the multirate 
filter to calculate the group delay of the filter. The vectors gd and w are both of 
length n. The frequency vector w has values ranging from 0 to π radians per 
sample. If you do not specify the integer n, or you specify it as the empty vector 
[], the frequency response is calculated using the default value of 8192 
samples for the FFT.

[gd,w] = grpdelay(hm,n) returns length n vectors vector gd containing the 
group delay for the multirate filter hm and the vector w which contains the 
frequencies in radians at which grpdelay calculated the delay. Group delay is

The frequency response is evaluated at n points equally spaced around the 
upper half of the unit circle. For FIR filters where n is a power of two, the 
computation is done faster using FFTs. When you do not specify n, it defaults 
to 8192.

grpdelay(hm) uses FVTool to plot the magnitude and unwrapped phase of the 
group delay of the multirate filter hm. If ha is a vector of filters, grpdelay plots 
the group delay for each filter in the vector. 

wd
d angle w( )( )–
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See Also phasez, zerophase
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8helpPurpose Help text for design method with filter specification object

Syntax help(d,'designmethod')

Description help(d,'designmethod') displays help in the Command Window for the 
design algorithm designmethod for the current specifications of the filter 
specification object d. The string you enter for designmethod must be one of the 
strings returned by designmethods for d, the design object.

 Examples Get specific help for designing lowpass Butterworth filters. The first lowpass 
filter uses the default specification string 'Fp,Fst,Ap,Ast' and returns help 
text specific to the specification string.

d = fdesign.lowpass;
designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

help(d,'butter')

DESIGN Design a Butterworth IIR filter.
HD = DESIGN(D, 'butter') designs a Butterworth filter specified 
by the FDESIGN object D.
 
HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter 
with the structure STRUCTURE.  STRUCTURE is 'df2sos' by default 
and can be any of the following.

'df1sos'
'df2sos'
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'df1tsos'
'df2tsos'
 
HD = DESIGN(..., 'MatchExactly', MATCH) designs a Butterworth 
filter and matches the frequency and magnitude specification for 
the band MATCH exactly. The other band will exceed the 
specification.  MATCH can be 'stopband' or 'passband' and is 
'stopband' by default.
 
% Example #1 - Compare passband and stopband MatchExactly.
h     = fdesign.lowpass('Fp,Fst,Ap,Ast', .1, .3, 1, 60);
Hd    = design(h, 'butter', 'MatchExactly', 'passband');
Hd(2) = design(h, 'butter', 'MatchExactly', 'stopband');
       
% Compare the passband edges in FVTool.
fvtool(Hd);
axis([.09 .11 -2 0]);

Note the discussion of the MatchExactly input option. When you use a design 
object that uses a different specification string, such as 'N,F3dB', the help 
content for the butter design method changes.

In this case, the MatchExactly option does not appear in the help because it is 
not an available input argument for the specification string 'N,F3dB'.

d=fdesign.lowpass('N,F3dB')
 
d =
 
               Response: 'Lowpass'                       
          Specification: 'N,F3dB'                        
            Description: {'Filter Order';'3dB Frequency'}
    NormalizedFrequency: true                            
            FilterOrder: 10                              
                   F3dB: 0.5                             
                                                         
designmethods(d)

Design Methods for class fdesign.lowpass (N,F3dB):



help

8-721

butter

help(d,'butter')
DESIGN Design a Butterworth IIR filter.

HD = DESIGN(D, 'butter') designs a Butterworth filter specified by 
the FDESIGN object D.

HD = DESIGN(..., 'FilterStructure', STRUCTURE) returns a filter with 
the structure STRUCTURE. STRUCTURE is 'df2sos' by default and can be 
any of the following.

'df1sos'

'df2sos'

'df1tsos'

'df2tsos'

% Example #1 - Design a lowpass Butterworth filter in the DF2TSOS 
structure.

h = fdesign.lowpass('N,F3dB');

Hd = design(h, 'butter', 'FilterStructure', 'df2tsos');

See Also fdesign, design, designmethods, designopts
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8ifirPurpose Use interpolated FIR method to design FIR filter from filter specification object

Syntax hd = ifir(d)
hd = design(d,'ifir',designoption,value,designoption,value,...)

Description hd = ifir(d) designs an FIR filter from design object d, using the interpolated 
FIR method. ifir returns hd as a cascade of two filters that act together to 
meet the specifications in d. The resulting filter is particulary efficient, having 
a low number of multipliers. However, if ifir determines that a single-stage 
filter would be more efficient than the default two-stage design, it returns hd 
as a single-stage filter. In this syntax, ifir only creates minimum phase 
filters. Generally, ifir uses an advanced optimization algorithm to create 
highly efficient FIR filters.

ifir returns hd as either a single-rate dfilt object or a multirate mfilt object 
(when you have the Filter Design Toolbox installed), based on the specifications 
you provide in d, the filter specification object.

specifications supplied in the object h.

hd = design(d,'ifir',designoption,value,designoption,...
value,...) returns an interpolated FIR filter where you specify design options 
as input arguments. 

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using ifir, refer to the command line help system. For 
example, to get specific information about using ifir with d, the specification 
object, enter the following at the MATLAB prompt.

help(d,'ifir')

Note  For help about how you use ifir to design filters without using design 
objects, enter
 

help ifir
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at the MATLAB prompt.

Examples Use fdesign.lowpass and fdesign.highpass to design a lowpass filter and 
a wideband highpass filter. After designing the filters, use FVTool to plot the 
response curves for both.

fpass = 0.2;
fstop = 0.24;
d1 = fdesign.lowpass(fpass, fstop);
hd1 = design(d1,'ifir');
fstop = 0.2;
fpass = 0.25;
astop = 40;
apass = 1;
d2 = fdesign.highpass(fstop,fpass,astop,apass);
hd2 = design(d2,'ifir');

Here are the magnitude response curves for both filters.

fvtool(hd1,hd2)
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See Also fdesign, firgr

fir1, firls, firpm in your Signal Processing Toolbox documentation
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8iirbpc2bpcPurpose Transform IIR complex bandpass filter to IIR complex bandpass filter with 
different frequency response characteristics

Syntax [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirbpc2bpc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the complex bandpass prototype by applying a 
first-order complex bandpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

This transformation effectively places two features of an original filter, located 
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and 
Wt2 respectively. It is assumed that Wt2 is greater than Wt1. In most of the cases 
the features selected for the transformation are the band edges of the filter 
passbands. In general it is possible to select any feature; e.g., the stopband 
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., complex notch filters or resonators can be repositioned at two distinct 
desired frequencies at any place around the unit circle; e.g., in the adaptive 
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc (b, a, 0.5, [0.25,0.75]);
[num, den] = iirbpc2bpc(b, a, [0.25, 0.75], [-0.5, 0.5]);

Verify the result by comparing the prototype filter with the target filter:



iirbpc2bpc

8-726

fvtool(b, a, num, den);

Using FVTool to plot the filters shows you the comparison, presented in this 
figure. 

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter
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Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpassbpc2bpc, zpkbpc2bpc



iircomb

8-728

8iircombPurpose Design IIR comb notching or peaking digital filter

Syntax [num,den] = iircomb(n,bw)
[num,den] = iircomb(n,bw,ab)
[num,den] = iircomb( , 'type')

Description [num,den] = iircomb(n,bw) returns a digital notching filter with order n and 
with the width of the filter notch at -3dB set to bw, the filter bandwidth. The 
filter order must be a positive integer. n also defines the number of notches in 
the filter across the frequency range from 0 to 2π—the number of notches 
equals n+1.

For the notching filter, the transfer function takes the form

where a and b are the filter coefficients and n is the filter order or the number 
of notches in the filter minus 1.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by 
q = ω0/bw where ω0 is the frequency to remove from the signal. 

[num,den] = iircomb(n,bw,ab) returns a digital notching filter whose 
bandwidth, bw, is specified at a level of -ab decibels. Including the optional 
input argument ab lets you specify the magnitude response bandwidth at a 
level that is not the default -3dB point, such as -6 dB or 0 dB. 

[num,den] = iircomb( ,'type') returns a digital filter of the specified type. 
The input argument type can be either

• 'notch' to design an IIR notch filter. Notch filters attenuate the response at 
the specified frequencies. This is the default type. When you omit the type 
input argument, iircomb returns a notch filter.

• 'peak' to design an IIR peaking filter. Peaking filters boost the signal at the 
specified frequencies.

H z( ) b 1 z n––

1 az n––
---------------------×=
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The transfer function for peaking filters is

Examples Design and plot an IIR notch filter with 11 notches (equal to filter order plus 1) 
that removes a 60 Hz tone (f0) from a signal at 600 Hz (fs). For this example, 
set the Q factor for the filter to 35 and use it to specify the filter bandwidth.

fs = 600; fo = 60;  q = 35; bw = (fo/(fs/2))/q;
[b,a] = iircomb(fs/fo,bw,'notch'); % Note the type flag 'notch'
fvtool(b,a);

Using the Filter Visualization Tool (FVTool) generates the following plot 
showing the filter notches. Note the notches are evenly spaced and one falls at 
exactly 60 Hz.

H z( ) b 1 z n–+

1 az n––
---------------------×=
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See Also firgr, iirnotch, iirpeak
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8iirftransfPurpose IIR frequency transformation of digital filter

Syntax [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)

Description [OutNum,OutDen] = iirftransf(OrigNum,OrigDen,FTFNum,FTFDen)  returns 
the numerator and denominator vectors, OutNum and OutDen, of the target 
filter, which is the result of transforming the prototype filter specified by the 
numerator, OrigNum, and denominator, OrigDen, with the mapping filter given 
by the numerator, FTFNum, and the denominator, FTFDen. If the allpass 
mapping filter is not specified, then the function returns an original filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[num, den] = iirftransf(b, a, AlpNum, AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Here’s the comparison between the filters.
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Arguments OrigNum
Numerator of the prototype lowpass filter

OrigDen
Denominator of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

OutNum
Numerator of the target filter

OutDen
Denominator of the target filter
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See Also zpkftransf
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8iirgrpdelayPurpose Optimal IIR filter design with prescribed group-delay

Syntax [num,den] = iirgrpdelay(n,f,edges,a)
[num,den] = iirgrpdelay(n,f,edges,a,w)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden)
[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
[num,den,tau] = iirgrpdelay(n,f,edges,a,w)

Description [num,den] = iirgrpdelay(n,f,edges,a) returns an allpass IIR filter of 
order n (n must be even) which is the best approximation to the relative 
group-delay response described by f and a in the least-pth sense. f is a vector 
of frequencies between 0 and 1 and a is specified in samples. The vector edges 
specifies the band-edge frequencies for multi-band designs. iirgrpdelay uses 
a constrained Newton-type algorithm. Always check your resulting filter using 
grpdelay or freqz.

[num,den] = iirgrpdelay(n,f,edges,a,w) uses the weights in w to weight 
the error. w has one entry per frequency point and must be the same length 
length as f and a). Entries in w tell iirgrpdelay how much emphasis to put on 
minimizing the error in the vicinity of each specified frequency point relative 
to the other points.

f and a must have the same number of elements. f and a can contains more 
elements than the vector edges contains. This lets you use f and a to specify a 
filter that has any group-delay contour within each band. 

[num,den] = iirgrpdelay(n,f,edges,a,w,radius) returns a filter having a 
maximum pole radius equal to radius, where 0<radius<1. radius defaults to 
0.999999. Filters whose pole radius you constrain to be less than 1.0 can better 
retain transfer function accuracy after quantization.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p), where p is a 
two-element vector [pmin pmax], lets you determine the minimum and 
maximum values of p used in the least-pth algorithm. p defaults to [2 128] 
which yields filters very similar to the L-infinity, or Chebyshev, norm. pmin and 
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pmax should be even. If p is the string 'inspect', no optimization occurs. You 
might use this feature to inspect the initial pole/zero placement.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens) specifies the 
grid density dens used in the optimization process. The number of grid points 
is (dens*(n+1)). The default is 20. dens can be specified as a single-element 
cell array. The grid is not equally spaced.

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden) allows 
you to specify the initial estimate of the denominator coefficients in vector 
initden. This can be useful for difficult optimization problems. The pole-zero 
editor in the Signal Processing Toolbox can be used for generating initden. 

[num,den] = iirgrpdelay(n,f,edges,a,w,radius,p,dens,initden,tau)
allows the initial estimate of the group delay offset to be specified by the value 
of tau, in samples. 

[num,den,tau] = iirgrpdelay(n,f,edges,a,w) returns the resulting group 
delay offset. In all cases, the resulting filter has a group delay that 
approximates [a + tau]. Allpass filters can have only positive group delay and 
a non-zero value of tau accounts for any additional group delay that is needed 
to meet the shape of the contour specified by (f,a). The default for tau is 
max(a). 

Hint: If the zeros or poles cluster together, your filter order may be too low or 
the pole radius may be too small (overly constrained). Try increasing n or 
radius.

For group-delay equalization of an IIR filter, compute a by subtracting the 
filter's group delay from its maximum group delay. For example,

[be,ae] = ellip(4,1,40,0.2);
f = 0:0.001:0.2;
g = grpdelay(be,ae,f,2);   % Equalize only the passband.
a = max(g)-g;
[num,den]=iirgrpdelay(8, f, [0 0.2], a);

See Also freqz, filter, grpdelay, iirlpnorm, iirlpnormc, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second 
Edition, McGraw-Hill, Inc. 1993.
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8iirlp2bpPurpose Transform IIR real lowpass filter to IIR real bandpass filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bp(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a second-order 
real lowpass to real bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “DC Mobility,”  
meaning that the Nyquist feature stays at Nyquist, but the DC feature moves 
to a location dependent on the selection of Wts.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature: the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming 
other types of filters; e.g., real notch filters or resonators can be doubled and 
positioned at two distinct desired frequencies.

[G,AllpassNum,AllpassDen] = iirlp2bp(Hd,Wo,Wt) returns transformed 
dfilt object G with a real bandpass magnitude response. The coefficients 
AllpassNum and AllpassDen represent the allpass mapping filter for mapping 
the prototype filter frequency Wo and target frequencies vector Wt. Note that in 
this syntax Hd is a dfilt object with a lowpass magnitude response. 
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Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b,a] = ellip(3, 0.1, 30, 0.409); 

Create the real bandpass filter by placing the cutoff frequencies of the 
prototype filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num,den] = iirlp2bp(b,a,0.5,[0.25,0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b,a,num,den);

You can compare the results in this figure to verify the transformation.

Arguments B
Numerator of the prototype lowpass filter
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A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2bp, zpklp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings, 
vol. 1, pp. 1129-1231, June 1969.
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8iirlp2bpcPurpose IIR lowpass to complex bandpass frequency transformation frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bpc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a first-order 
real lowpass to complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; for example real notch filters or resonators can be doubled and 
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandpass filters for radio receivers from the high-quality 
prototype lowpass filter.

[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt) returns transformed 
dfilt object G with a bandpass magnitude response. The coefficients 
AllpassNum and AllpassDen represent the allpass mapping filter for mapping 
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the prototype filter frequency Wo and the target frequencies vector Wt. Note that 
in this syntax Hd is a dfilt object with a lowpass magnitude response. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and 
Wt2=0.75 creating a complex bandpass filter:

[num, den] = iirlp2bpc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

PLotting the prototype and target filters together in FVTool lets you compare 
the filters.
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Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.
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Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also iirftransf, allpasslp2bpc, zpklp2bpc
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8iirlp2bsPurpose Transform IIR real lowpass filter to IIR real bandstop filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bs(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a second-order 
real lowpass to real bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “Nyquist Mobility,” 
which means that the DC feature stays at DC, but the Nyquist feature moves 
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns transformed 
dfilt object G with a bandstop magnitude response. The coefficients 
AllpassNum and AllpassDen represent the allpass mapping filter for mapping 
the prototype filter frequency Wo and the target frequencies vector Wt. Note that 
in this syntax Hd is a dfilt object with a lowpass magnitude response. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409); 
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Create the real bandstop filter by placing the cutoff frequencies of the prototype 
filter at the band edge frequencies Wt1=0.25 and Wt2=0.75:

[num, den] = iirlp2bs(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

With both filters plotted in the figure, you see clearly the results of the 
transformation.

Arguments B
Numerator of the prototype lowpass filter
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A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2bs, zpklp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

Constantinides, A.G., “Design of bandpass digital filters,” IEEE Proceedings, 
vol. 1, pp. 1129-1231, June 1969.



iirlp2bsc

8-746

8iirlp2bscPurpose Transform IIR real lowpass filter to IIR complex bandstop filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2bsc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a first-order 
real lowpass to complex bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and the denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. Additionally the transformation swaps passbands with 
stopbands in the target filter. 

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and 
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandstop filters for band attenuation or frequency 
equalizers, from the high-quality prototype lowpass filter.

[G,AllpassNum,AllpassDen] = iirlp2bsc(Hd,Wo,Wt) returns transformed 
dfilt object G with a bandstop magnitude response. The coefficients 
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AllpassNum and AllpassDen represent the allpass mapping filter for mapping 
the prototype filter frequency Wo and the target frequencies vector Wt. Note that 
in this syntax Hd is a dfilt object with a lowpass magnitude response. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and 
Wt2=0.75 creating a complex bandstop filter:

[num, den] = iirlp2bsc(b, a, 0.5, [0.25, 0.75]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

The last command in the example plots both filters in the same window so you 
can compare the results.
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Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.
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Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2bsc, zpklp2bsc.
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8iirlp2hpPurpose Transform discrete time lowpass IIR filter to highpass filter

Syntax [num,den] = iirlp2hp(b,a,wc,wd)

[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt), where Hd is a dfilt object

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the 
numerator and denominator coefficients (zeros and poles) for a lowpass IIR 
filter, iirlp2bp transforms the magnitude response from lowpass to highpass. 
num and den return the coefficients for the transformed highpass filter. For wc, 
enter a selected frequency from your lowpass filter. You use the chosen 
frequency to define the magnitude response value you want in the highpass 
filter. Enter one frequency for the highpass filter — the value that defines the 
location of the transformed point — in wd. Note that all frequencies are 
normalized between zero and one. Notice also that the filter order does not 
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the 
magnitude response at the wd values of your bandstop filter to be the same as 
the magnitude response of your lowpass filter at wc. Filter performance 
between the values in wd is not specified, except that the stopband retains the 
ripple nature of your original lowpass filter and the magnitude response in the 
stopband is equal to the peak response of your lowpass filter. To accurately 
specify the filter magnitude response across the stopband of your bandpass 
filter, use a frequency value from within the stopband of your lowpass filter as 
wc. Then your bandstop filter response is the same magnitude and ripple as 
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what 
makes this function useful. If you have a lowpass filter whose characteristics, 
such as rolloff or passband ripple, particularly meet your needs, the 
transformation function lets you create a new filter with the same 
characteristic performance features, but in a highpass version. Without 
designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems, 
resulting in incorrect conversion to the highpass filter. Use fvtool to verify the 
response of your converted filter. 

[G,AllpassNum,AllpassDen] = iirlp2hp(Hd,Wo,Wt) returns transformed 
dfilt object G with a highpass magnitude response. The coefficients 
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AllpassNum and AllpassDen represent the allpass mapping filter for mapping 
the prototype filter frequency Wo and the target frequencies vector Wt. Note that 
in this syntax Hd is a dfilt object with a lowpass magnitude response. 

Examples This example transforms an IIR filter from lowpass to high pass by moving the 
magnitude response at one frequency in the source filter to a new location in 
the transformed filter. To generate a highpass filter whose passband flattens 
out at 0.4, we select the frequency in the lowpass filter where the passband 
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.4.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.4;
[num,den] = iirlp2hp(b,a,wc,wd);
fvtool(b,a,num,den);
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In the figure showing the magnitude responses for the two filters, the 
transition band for the highpass filter is essentially the mirror image of the 
transition for the lowpass filter from 0.0175 to 0.025, stretched out over a wider 
frequency range. In the passbands, the filter share common ripple 
characteristics and magnitude.

See Also iirlp2bp, iirlp2bs, iirlp2lp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, 
Second Edition, McGraw-Hill, 2001.
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8iirlp2lpPurpose Transform discrete time lowpass IIR filter to different lowpass filter

Syntax [num,den] = iirlp2lp(b,a,wc,wd)

[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt), where Hd is a dfilt object

Description [num,den] = iirlp2hp(b,a,wc,wd) with input arguments b and a, the 
numerator and denominator coefficients (zeros and poles) for a lowpass IIR 
filter, iirlp2bp transforms the magnitude response from lowpass to highpass. 
num and den return the coefficients for the transformed highpass filter. For wc, 
enter a selected frequency from your lowpass filter. You use the chosen 
frequency to define the magnitude response value you want in the highpass 
filter. Enter one frequency for the highpass filter — the value that defines the 
location of the transformed point — in wd. Note that all frequencies are 
normalized between zero and one. Notice also that the filter order does not 
change when you transform to a highpass filter.

When you select wc and designate wd, the transformation algorithm sets the 
magnitude response at the wd values of your bandstop filter to be the same as 
the magnitude response of your lowpass filter at wc. Filter performance 
between the values in wd is not specified, except that the stopband retains the 
ripple nature of your original lowpass filter and the magnitude response in the 
stopband is equal to the peak response of your lowpass filter. To accurately 
specify the filter magnitude response across the stopband of your bandpass 
filter, use a frequency value from within the stopband of your lowpass filter as 
wc. Then your bandstop filter response is the same magnitude and ripple as 
your lowpass filter stopband magnitude and ripple.

The fact that the transformation retains the shape of the original filter is what 
makes this function useful. If you have a lowpass filter whose characteristics, 
such as rolloff or passband ripple, particularly meet your needs, the 
transformation function lets you create a new filter with the same 
characteristic performance features, but in a highpass version. Without 
designing the highpass filter from the beginning.

In some cases transforming your filter may cause numerical problems, 
resulting in incorrect conversion to the highpass filter. Use fvtool to verify the 
response of your converted filter. 

[G,AllpassNum,AllpassDen] = iirlp2lp(Hd,Wo,Wt) returns transformed 
dfilt object G with a lowpass magnitude response. The coefficients AllpassNum 
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and AllpassDen represent the allpass mapping filter for mapping the prototype 
filter frequency Wo and the target frequencies vector Wt. Note that in this 
syntax Hd is a dfilt object with a lowpass magnitude response. 

Examples This example transforms an IIR filter from lowpass to high pass by moving the 
magnitude response at one frequency in the source filter to a new location in 
the transformed filter. To generate a lowpass filter whose passband extends 
out to 0.2, we select the frequency in the lowpass filter where the passband 
starts to rolloff (wc = 0.0175) and move it to the new location at wd = 0.2.

[b,a] = iirlpnorm(10,6,[0 0.0175 0.02 0.0215 0.025 1],...
[0 0.0175 0.02 0.0215 0.025 1],[1 1 0 0 0 0],[1 1 1 1 10 10]);
wc = 0.0175;
wd = 0.2;
[num,den] = iirlp2lp(b,a,wc,wd);
fvtool(b,a,num,den);

Moving the edge of the passband from 0.0175 to 0.2 results in a new lowpass 
filter whose peak response in-band is the same as the original filter: same 
ripple, same absolute magnitude. 
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Notice that the rolloff is slightly less steep and the stopband profiles are the 
same for both filters; the new filter stopband is a “stretched” version of the 
original, as is the passband of the new filter.

See Also iirlp2bp, iirlp2bs, iirlp2hp, firlp2lp, firlp2hp

References Sanjit K. Mitra, Digital Signal Processing. A Computer-Based Approach, 
Second Edition, McGraw-Hill, 2001.
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8iirlp2mbPurpose Transform IIR real lowpass filter to IIR real M-band filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt,Pass)
[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object
[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mb(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Mth-order 
real lowpass to real multibandpass frequency mapping. By default the DC 
feature is kept at its original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2mb(B,A,Wo,Wt,Pass)  allows you 
to specify an additional parameter, Pass, which chooses between using the “DC 
Mobility” and the “Nyquist Mobility.” In the first case the Nyquist feature stays 
at its original location and the DC feature is free to move. In the second case 
the DC feature is kept at an original frequency and the Nyquist feature is 
movable.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
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frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2bs(Hd,Wo,Wt) returns transformed 
dfilt object G with an IIR real M-band filter frequency response. The 
coefficients AllpassNum and AllpassDen represent the allpass mapping filter 
for mapping the prototype filter frequency Wo and the target frequencies vector 
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude 
response. 

[G,AllpassNum,AllpassDen] = iirlp2mb(Hd,Wo,Wt) returns transformed 
dfilt object G with an IIR real M-band filter frequency response. The 
coefficients AllpassNum and AllpassDen represent the allpass mapping filter 
for mapping the prototype filter frequency Wo and the target frequencies vector 
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude 
response. 

[G,AllpassNum,AllpassDen] = iirlp2mb(...,Pass) returns transformed 
dfilt object G with an IIR real M-band filter frequency response. This syntax 
allows you to specify an additional parameter, Pass, which chooses between 
using the “DC Mobility” and the “Nyquist Mobility.” In the first case the 
Nyquist feature stays at its original location and the DC feature is free to move. 
In the second case the DC feature is kept at an original frequency and the 
Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping 
filter for mapping the prototype filter frequency Wo and the target frequencies 
vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass 
magnitude response. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Example 1: Create the real multiband filter with two passbands:

[num1, den1] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10);
[num2, den2] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'pass');

The second code snippet uses the pass option to select the Nyquist mobility 
option. In this case the resulting filter is the same.
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Example 2: Create the real multiband filter with two stopbands:

[num3, den3] = iirlp2mb(b, a, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with target filters:

fvtool(b, a, num1, den1, num2, den2, num3, den3);

Combining all of the filters, prototypes and targets, on one figure makes 
comparing them straightforward. Passbands for the filters in example 1 appear 
separately in the figure, although they overlap to a degree that makes them 
hard to identify—they have identical coefficients.

Arguments B
Numerator of the prototype lowpass filter
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A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, 'pass' being the default

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2mb, zpklp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation 
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering, 
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and 
frequency transformation problem,” Proceedings 20th Asilomar Conference on 
Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, 
November 1986.

[3] Mullis, C.T. and R. A. Roberts, Digital Signal Processing, section 6.7, 
Reading, Mass., Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, “An extension of the Schur Algorithm 
for frequency transformations,” Linear Circuits, Systems and Signal 
Processing: Theory and Application, C. J. Byrnes et al Eds, Amsterdam: 
Elsevier, 1988.
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8iirlp2mbcPurpose Transform IIR real lowpass filter to IIR complex M-band filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)
[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2mbc(B,A,Wo,Wc)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Mth-order 
real lowpass to complex multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2mbc(Hd,Wo,Wt) returns transformed 
dfilt object G with an IIR complex M-band filter frequency response. The 
coefficients AllpassNum and AllpassDen represent the allpass mapping filter 
for mapping the prototype filter frequency Wo and the target frequencies vector 
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude 
response. 
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Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Now create a complex multiband filter with two passbands:

[num1, den1] = iirlp2mbc(b, a, 0.5, [2 4 6 8]/10);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num1, den1);

You see in the figure that iirlp2mbc replicates the desired feature at 0.5 in the 
lowpass filter at four locations in the multiband filter.
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Arguments B
Numerator of the prototype lowpass filter.

A
Denominator of the prototype lowpass filter.

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wc
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Num
Numerator of the target filter.

Den
Denominator of the target filter.

AllpassNum
Numerator of the mapping filter.

AllpassDen
Denominator of the mapping filter.

See Also iirftransf, allpasslp2mbc, zpklp2mbc
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8iirlp2xcPurpose Transform IIR real lowpass filter to IIR complex N-point filter frequency 
response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)
[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt), where Hd is a dfilt object

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xc(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Nth-order 
real lowpass to complex multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation. This transformation effectively 
places N features of an original filter, located at frequencies Wo1,...,WoN, at the 
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., a stopband edge, DC, the deep minimum in the stopband, or 
other ones. The only condition is that the features must be selected in such a 
way that when creating N bands around the unit circle, there will be no band 
overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.
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[G,AllpassNum,AllpassDen] = iirlp2xc(Hd,Wo,Wt) returns transformed 
dfilt object G with an IIR complex N-point filter frequency response. The 
coefficients AllpassNum and AllpassDen represent the allpass mapping filter 
for mapping the prototype filter frequency Wo and the target frequencies vector 
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude 
response. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Create the complex bandpass filter from the real lowpass filter:

[num, den] = iirlp2xc(b, a, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

REviewing the coefficients and the figure produced by the example shows that 
the target filter has complex coefficients and is indeed a bandpass filter as 
expected.
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Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.
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Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpasslp2xc, zpklp2xc
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8iirlp2xnPurpose Transform IIR real lowpass filter to IIR real N-point filter frequency response

Syntax [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)
[Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt,Pass)

[G,AllpassNum,AllpassDen] = iirlp2bpc(Hd,Wo,Wt), where Hd is a dfilt object
[G,AllpassNum,AllpassDen] = iirlp2bpc(...,Pass)

Description [Num,Den,AllpassNum,AllpassDen] = iirlp2xn(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying an Nth-order 
real lowpass to real multipoint frequency transformation, where N is the 
number of features being mapped. By default the DC feature is kept at its 
original location.

[Num,Den,AllpassNum,AllpassDen]=iirlp2xn(B,A,Wo,Wt,Pass)  allows you 
to specify an additional parameter, Pass, which chooses between using the “DC 
Mobility” and the “Nyquist Mobility.” In the first case the Nyquist feature stays 
at its original location and the DC feature is free to move. In the second case 
the DC feature is kept at an original frequency and the Nyquist feature is 
allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation. This transformation effectively 
places N features of an original filter, located at frequencies Wo1,...,WoN, at the 
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
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any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones. The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

[G,AllpassNum,AllpassDen] = iirlp2xn(Hd,Wo,Wt) returns transformed 
dfilt object G with an IIR real N-point filter frequency response. The 
coefficients AllpassNum and AllpassDen represent the allpass mapping filter 
for mapping the prototype filter frequency Wo and the target frequencies vector 
Wt. Note that in this syntax Hd is a dfilt object with a lowpass magnitude 
response. 

[G,AllpassNum,AllpassDen] = iirlp2xn(...,Pass) returns transformed 
dfilt object G with an IIR real N-point filter frequency response. This syntax 
allows you to specify an additional parameter, Pass, which chooses between 
using the “DC Mobility” and the “Nyquist Mobility.” In the first case the 
Nyquist feature stays at its original location and the DC feature is free to move. 
In the second case the DC feature is kept at an original frequency and the 
Nyquist feature is allowed to move.

The coefficients AllpassNum and AllpassDen represent the allpass mapping 
filter for mapping the prototype filter frequency Wo and the target frequencies 
vector Wt. Note that in this syntax Hd is a dfilt object with a lowpass 
magnitude response. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Move the cutoffs of the prototype filter to the new locations Wt1=0.25 and 
Wt2=0.75 creating a real bandpass filter:

[num, den] = iirlp2xn(b, a, [-0.5 0.5], [0.25 0.75], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);
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iirlp2xn has created the desired bandpass filter with the cutoff locations 
specified in the command.

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter

Wt
Desired frequency locations in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default
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Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpasslp2xn, zpklp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for 
Flexible IIR Filter Design,” VII European Signal Processing Conference 
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order 
frequency transformations for IIR filters,” 38th Midwest Symposium on 
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
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8iirlpnormPurpose Least P-norm optimal IIR filter design

Syntax [num,den] = iirlpnorm(n,d,f,edges,a)
[num,den] = iirlpnorm(n,d,f,edges,a,w)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens)
[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)

Description [num,den] = iirlpnorm(n,d,f,edges,a) returns a filter having a numerator 
order n and denominator order d which is the best approximation to the desired 
frequency response described by f and a in the least-pth sense. The vector 
edges specifies the band-edge frequencies for multi-band designs. An 
unconstrained quasi-Newton algorithm is employed and any poles or zeros that 
lie outside of the unit circle are reflected back inside. n and d should be chosen 
so that the zeros and poles are used effectively. See the “Hints” section. Always 
use freqz to check the resulting filter.

[num,den] = iirlpnorm(n,d,f,edges,a,w) uses the weights in w to weight 
the error. w has one entry per frequency point (the same length as f and a) 
which tells iirlpnorm how much emphasis to put on minimizing the error in 
the vicinity of each frequency point relative to the other points. f and a must 
have the same number of elements, which may exceed the number of elements 
in edges. This allows for the specification of filters having any gain contour 
within each band. The frequencies specified in edges must also appear in the 
vector f. For example,

[num,den] = iirlpnorm(5,12,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

is a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p) where p is a two-element 
vector [pmin pmax] allows for the specification of the minimum and maximum 
values of p used in the least-pth algorithm. Default is [2 128] which essentially 
yields the L-infinity, or Chebyshev, norm. Pmin and pmax should be even. If p is 
the string 'inspect', no optimization will occur. This can be used to inspect 
the initial pole/zero placement. 
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[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens) specifies the grid density 
dens used in the optimization. The number of grid points is (dens*(n+d+1)). 
The default is 20. dens can be specified as a single-element cell array. The grid 
is not equally spaced.

[num,den] = iirlpnorm(n,d,f,edges,a,w,p,dens,initnum,initden)
allows for the specification of the initial estimate of the filter numerator and 
denominator coefficients in vectors initnum and initden. This may be useful 
for difficult optimization problems. The pole-zero editor in the Signal 
Processing Toolbox can be used for generating initnum and initden.

Hints

• This is a weighted least-pth optimization.

• Check the radii and locations of the poles and zeros for your filter. If the zeros 
are on the unit circle and the poles are well inside the unit circle, try 
increasing the order of the numerator or reducing the error weighting in the 
stopband. 

• Similarly, if several poles have a large radii and the zeros are well inside of 
the unit circle, try increasing the order of the denominator or reducing the 
error weighting in the passband.

See Also iirlpnormc, filter, freqz, iirgrpdelay, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second 
Edition, McGraw-Hill, Inc. 1993.
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8iirlpnormcPurpose Design constrained least Pth-norm optimal IIR filter

Syntax [num,den] = iirlpnormc(n,d,f,edges,a) 
[num,den] = iirlpnormc(n,d,f,edges,a,w)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius)
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) 
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) 
[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,...

dens,initnum,initden)
[num,den,err] = iirlpnormc(...)
[num,den,err,sos,g] = iirlpnormc(...)

Description [num,den] = iirlpnormc(n,d,f,edges,a) returns a filter having numerator 
order n and denominator order d which is the best approximation to the desired 
frequency response described by f and a in the least-pth sense. The vector 
edges specifies the band-edge frequencies for multi-band designs. A 
constrained Newton-type algorithm is employed. n and d should be chosen so 
that the zeros and poles are used effectively. See the “Hints” section. Always 
check the resulting filter using fvtool. 

[num,den] = iirlpnormc(n,d,f,edges,a,w) uses the weights in w to weight 
the error. w has one entry per frequency point (the same length as f and a) 
which tells iirlpnormc how much emphasis to put on minimizing the error in 
the vicinity of each frequency point relative to the other points. f and a must 
have the same number of elements, which can exceed the number of elements 
in edges. This allows for the specification of filters having any gain contour 
within each band. The frequencies specified in edges must also appear in the 
vector f. For example,

[num,den] = iirlpnormc(5,5,[0 .15 .4 .5 1],[0 .4 .5 1],...
[1 1.6 1 0 0],[1 1 1 10 10])

designs a lowpass filter with a peak of 1.6 within the passband.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius) returns a filter having 
a maximum pole radius of radius where 0<radius<1. radius defaults to 
0.999999. Filters that have a reduced pole radius may retain better transfer 
function accuracy after you quantize them. 
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[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p) where p is a 
two-element vector [pmin pmax] allows for the specification of the minimum 
and maximum values of p used in the least-pth algorithm. Default is [2 128] 
which essentially yields the L-infinity, or Chebyshev, norm. pmin and pmax 
should be even. If p is the string 'inspect', no optimization will occur. This can 
be used to inspect the initial pole/zero placement.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens) specifies the 
grid density dens used in the optimization. The number of grid points is 
(dens*(n+d+1)). The default is 20. dens can be specified as a single-element 
cell array. The grid is not equally spaced.

[num,den] = iirlpnormc(n,d,f,edges,a,w,radius,p,dens,...
initnum,initden) allows for the specification of the initial estimate of the 
filter numerator and denominator coefficients in vectors initnum and initden. 
This may be useful for difficult optimization problems. The pole-zero editor in 
the Signal Processing Toolbox can be used for generating initnum and initden.

[num,den,err] = iirlpnormc(...) returns the least-Pth approximation 
error err.

[num,den,err,sos,g] = iirlpnormc(...) returns the second-order section 
representation in the matrix SOS and gain G.  For numerical reasons you may 
find SOS and G beneficial in some cases.

Hints

• This is a weighted least-pth optimization.

• Check the radii and location of the resulting poles and zeros. 

• If the zeros are all on the unit circle and the poles are well inside of the unit 
circle, try increasing the order of the numerator or reducing the error 
weighting in the stopband. 

• Similarly, if several poles have a large radius and the zeros are well inside of 
the unit circle, try increasing the order of the denominator or reducing the 
error weight in the passband.

• If you reduce the pole radius, you might need to increase the order of the 
denominator.

The message
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Poorly conditioned matrix. See the "help" file.

indicates that iirlpnormc cannot accurately compute the optimization because 
either:

a  The approximation error is extremely small (try reducing the number of 
poles or zeros—refer to the hints above).

b  The filter specifications have huge variation, such as a=[1 1e9 0 0].

Examples This example returns a lowpass filter whose pole radius is constrained to 0.8

[b,a,err,s,g] = iirlpnormc(6,6,[0 .4 .5 1],[0 .4 .5 1],...
[1 1 0 0],[1 1 1 1],.8);
hd = dfilt.df1sos(s,g); % Construct second-order sections filter.
fvtool(hd); % View filter's magnitude response

From the magnitude response shown here you see the lowpass nature of the 
filter. The pole/zero plot following shows that the poles are constrained to 0.8 
as specified in the command.
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See Also freqz, filter, iirgrpdelay, iirlpnorm, zplane

References Antoniou, A., Digital Filters: Analysis, Design, and Applications, Second 
Edition, McGraw-Hill, Inc. 1993.
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8iirlsPurpose Design least-squares IIR filter from filter specfication object

Syntax hd = design(d,'iirls')
hd = design(d,'iirls',designoption,value,designoption,value,...)

Description hd = design(d,'iirls') designs a least-squares filter specified by the filter 
specification object d.

Note  The iirls algorithm might not be well behaved in all cases. Experience 
is your best guide to determining if the resulting filter meets your needs. 
When you use iirls to design a filter, review the filter carefully to ensure 
that it is appropriate for your use.

hd = design(d,'iirls',designoption,value,designoption,value,...)
returns a least-squares IIR filter where you specify design options as input 
arguments. 

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using iirls, refer to the command line help system. 
For example, to get specific information about using iirls with d, the 
specification object, enter the following at the MATLAB prompt.

help(d,'iirls')

Examples Starting from an arbitrary magnitude and phase design object d, generate 
a complex bandpass filter of order = 5. To make the example a little easier to 
do, use the default values for F, and H, the frequency vector and the complex 
desired frequency response. 

d = fdesign.arbmagnphase('N,F,H',5);
d =
 

Response: 'Arbitrary Magnitude and Phase' 
         Specification: 'N,F,H'
          Description: {'Filter Order';'Frequency Vector';'Complex Desired Frequency 

Response'}
    NormalizedFrequency: true 
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            FilterOrder: 5 
            Frequencies: [1x655 double]
           FreqResponse: [1x655 double]

design(d,'iirls'); % Opens FVTool to show the filter.

Displaying both the phase and magnitude response in FVTool shows you the 
filter.

See Also fdesign.arbmag, fdesign.arbmagnphase, firls
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8iirnotchPurpose Design second-order IIR notch digital filter

Syntax [num,den] = iirnotch(w0,bw)
[num,den] = iirnotch(w0,bw,ab)

Description [num,den] = iirnotch(w0,bw) turns a digital notching filter with the notch 
located at w0, and with the bandwidth at the -3 dB point set to bw. To design the 
filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0 corresponds to 
π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by 
q = w0/bw where ω0 is w0, the frequency to remove from the signal. 

[num,den] = iirnotch(w0,bw,ab) returns a digital notching filter whose 
bandwidth, bw, is specified at a level of -ab decibels. Including the optional 
input argument ab lets you specify the magnitude response bandwidth at 
a level that is not the default -3dB point, such as -6 dB or 0 dB. 

Examples Design and plot an IIR notch filter that removes a 60 Hz tone (f0) from a signal 
at 300 Hz (fs). For this example, set the Q factor for the filter to 35 and use it 
to specify the filter bandwidth:

wo = 60/(300/2);  bw = wo/35;
[b,a] = iirnotch(wo,bw);  
fvtool(b,a);

Shown in the next plot, the notch filter has the desired bandwidth with the 
notch located at 60 Hz, or 0.4π radians per sample. Compare this plot to the 
comb filter plot shown on the reference page for iircomb.
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See Also firgr, iircomb, iirpeak
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8iirpeakPurpose Design second-order IIR peak or resonator digital filter

Syntax [num,den] = iirpeak(w0,bw)
[num,den] = iirpeak(w0,bw,ab)

Description [num,den] = iirpeak(w0,bw) turns a second-order digital peaking filter with 
the peak located at w0, and with the bandwidth at the +3dB point set to bw. To 
design the filter, w0 must meet the condition 0.0 < w0 < 1.0, where 1.0 
corresponds to π radians per sample in the frequency range.

The quality factor (Q factor) q for the filter is related to the filter bandwidth by 
q = w0/bw where ω0 is w0 the signal frequency to boost.

[num,den] = iirpeak(w0,bw,ab) returns a digital peaking filter whose 
bandwidth, bw, is specified at a level of +ab decibels. Including the optional 
input argument ab lets you specify the magnitude response bandwidth at a 
level that is not the default +3dB point, such as +6 dB or 0 dB. 

Examples Design and plot an IIR peaking filter that boosts the frequency at 1.75 Khz in 
a signal and has bandwidth of 500 Hz at the -3 dB point:

fs = 10000; wo = 1750/(fs/2);  bw = 500/(fs/2);
[b,a] = iirpeak(wo,bw);
fvtool(b,a);

Shown in the next plot, the peak filter has the desired gain and bandwidth at 
1.75 KHz.
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See Also firgr, iircomb, iirnotch
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8iirpowcompPurpose Compute power complementary filter

Syntax [bp,ap] = iirpowcomp(b,a)
[bp,ap,c] = iirpowcomp(b,a)

Description [bp,ap] = iirpowcomp(b,a) returns the coefficients of the power 
complementary IIR filter g(z) = bp(z)/ap(z) in vectors bp and ap, given the 
coefficients of the IIR filter h(z) = b(z)/a(z) in vectors b and a. b must be 
symmetric (Hermitian) or antisymmetric (antihermitian) and of the same 
length as a. The two power complementary filters satisfy the relation

|H(w)|2 +  |G(w)|2 = 1.

[bp,ap,c] = iirpowcomp(b,a) where c is a complex scalar of magnitude =1, 
forces bp to satisfy the generalized hermitian property

conj(bp(end:-1:1)) = c*bp.

When c is omitted, it is chosen as follows:

• When b is real, chooses C as 1 or -1, whichever yields bp real

• When b is complex, C defaults to 1

ap is always equal to a.

Examples [b,a]=cheby1(10,.5,.4);
[bp,ap]=iirpowcomp(b,a);
[h,w,s]=freqz(b,a); [h1,w,s]=freqz(bp,ap);
s.plot='mag'; s.yunits='sq';freqzplot([h h1],w,s)

The next figure presents the results of applying iirpowcomp to the Chebyshev 
filter—the power complementary version of the original filter.
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See Also tf2ca, tf2cl, ca2tf, cl2tf
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8iirrateupPurpose Upsample IIR filter by integer factor

Syntax [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N) 

Description [Num,Den,AllpassNum,AllpassDen] = iirrateup(B,A,N)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter being transformed from any prototype by applying an Nth-order rateup 
frequency transformation, where N is the upsample ratio. Transformation 
creates N equal replicas of the prototype filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with a 
numerator specified by B and a denominator specified by A.

The relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
[num, den] = iirrateup(b, a, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

As shown in the figure produced by FVTool, the transformed filter appears as 
expected.
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Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

N
Frequency multiplication ratio

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter
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AllpassDen
Denominator of the mapping filter

See Also iirftransf, allpassrateup, zpkrateup
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8iirshiftPurpose Shift frequency response of IIR real filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshift(B,A,Wo,Wt)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a second-order 
real shift frequency mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass 
mapping filter, AllpassDen. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

This transformation places one selected feature of an original filter located at 
frequency Wo to the required target frequency location, Wt. This transformation 
implements the “DC Mobility,” which means that the Nyquist feature stays at 
Nyquist, but the DC feature moves to a location dependent on the selection of 
Wo and Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to 
the cutoff frequency of an original lowpass filter. In general it is possible to 
select any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can change their position in a simple way 
without designing them from the beginning.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Perform the real frequency shift by defining where the selected feature of the 
prototype filter, originally at Wo=0.5, should be placed in the target filter, 
Wt=0.75:
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Wo = 0.5; Wt = 0.75;

[num, den] = iirshift(b, a, Wo, Wt);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

Shifting the specified feature from the prototype to the target generates the 
response shown in the figure.

Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter
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Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpassshift, zpkshift.
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8iirshiftcPurpose Shift frequency response of IIR complex filter

Syntax [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wt)

Description [Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,Wo,Wc)  returns the 
numerator and denominator vectors, Num and Den respectively, of the target 
filter transformed from the real lowpass prototype by applying a first-order 
complex frequency shift transformation. This transformation rotates all the 
features of an original filter by the same amount specified by the location of the 
selected feature of the prototype filter, originally at Wo, placed at Wt in the 
target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with the 
numerator specified by B and the denominator specified by A.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,0.5)  calculates 
the allpass filter for doing the Hilbert transformation, i.e. a 90 degree 
counterclockwise rotation of an original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = iirshiftc(B,A,0,-0.5)  calculates 
the allpass filter for doing an inverse Hilbert transformation, i.e. a 90 degree 
clockwise rotation of an original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);

Rotate all features of the prototype filter in the frequency domain by the same 
amount by specifying where the selected feature of an original filter, Wo=0.5, 
should appear in the target filter, Wt=0.25:

[num, den] = iirshiftc(b, a, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, num, den);

After applying the shift, the selected feature from the original filter is just 
where it should be, at Wt = 0.25.
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Arguments B
Numerator of the prototype lowpass filter

A
Denominator of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Num
Numerator of the target filter

Den
Denominator of the target filter
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AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also iirftransf, allpassshiftc, zpkshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal 
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert 
transformers, and half-band low-pass filters,” IEEE Transactions on 
Education, vol. 32, pp. 314-318, August 1989.
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8impzPurpose Compute impulse response of filters

Syntax [h,t] = impz(ha)
[h,t] = impz(...,fs)
impz(ha,...)
[h,t] = impz(hd)
[h,t] = impz(...,fs)
impz(hd,...)
[h,t] = impz(hm)
[h,t] = impz(...,fs)
impz(hm,...)

Description The next sections describe common impz operation with adaptive, 
discrete-time, and multirate filters. For more input options, refer to impz in the 
Signal Processing Toolbox. 

• “Discrete-Time Filters” on page 8-796

• “Multirate Filters” on page 8-796

Adaptive Filters
For adaptive filters, impz returns the instantaneous impulse response based on 
the current filter coefficients.

[h,t] = impz(ha) computes the instantaneous impulse response of the 
adaptive filter ha choosing the number of samples for you, and returns the 
response in column vector h and a vector of times or sample intervals in 
t where (t = [0 1 2...]'). 

[h,t] = impz(...,fs) returns a matrix h if ha is a vector. Each column of the 
matrix corresponds to one filter in the vector. When ha is a vector of adaptive 
filters, impz returns the matrix h. Each column of h corresponds to one filter in 
the vector ha. If you provide a sampling frequency fs as an input argument, 
impz uses fs in when determining the impulse response.

impz(ha,...) uses FVTool to plot the impulse response of the adaptive filter 
ha. If ha is a vector of filters, impz plots the response and for each filter in the 
vector.
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Discrete-Time Filters

[h,t] = impz(hd) computes the instantaneous impulse response of the 
discrete-time filter hd choosing the number of samples for you, and returns the 
response in column vector h and a vector of times or sample intervals in 
t where (t = [0 1 2...]'). impz returns a matrix h if hd is a vector. Each column 
of the matrix corresponds to one filter in the vector. When hd is a vector of 
discrete-time filters, impz returns the matrix h. Each column of h corresponds 
to one filter in the vector hd.

impz(hd) uses FVTool to plot the impulse response of the discrete-time filter 
hd. If hd is a vector of filters, impz plots the response and for each filter in the 
vector.

Multirate Filters

[h,t] = impz(hm) computes the instantaneous impulse response of the 
multirate filter hm choosing the number of samples for you, and returns the 
response in column vector h and a vector of times or sample intervals in 
t where (t = [0 1 2...]'). [h,t] = impz(hm) returns a matrix h if hm is a vector. 
Each column of the matrix corresponds to one filter in the vector. When hm is 
a vector of multirate filters, impz returns the matrix h. Each column of 
h corresponds to one filter in the vector ha.

impz(hm) uses FVTool to plot the impulse response of the multirate filter hm. If 
ha is a vector of filters, impz plots the response and for each filter in the vector.

Note that the multirate filter impulse response is computed relative to the rate 
at which the filter is running. When you specify fs (the sampling rate) as an 
input argument, impz assumes the filter is running at that rate.

For multistage cascades, impz forms a single-stage multirate filter that is 
equivalent to the cascade and computes the response relative to the rate at 
which the equivalent filter is running. impz does not support all multistage 
cascades. Only cascades for which it is possible to derive an equivalent 
single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an 
interpolation factor of 2 and the second stage has an interpolation factor of 4. 
An equivalent single-stage filter with an overall interpolation factor of 8 can be 
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found. impz uses the equivalent filter for the analysis. If a sampling frequency 
fs is specified as an input argument to impz, the function interprets fs as the 
rate at which the equivalent filter is running.

Note  impz works for both real and complex filters. When you omit the output 
arguments, impz plots only the real part of the impulse response.

Examples Create a discrete-time filter for a fourth-order, low-pass elliptic filter with a 
cutoff frequency of 0.4 times the Nyquist frequency. Use a second-order 
sections structure to resist quantization errors. Plot the first 50 samples of the 
impulse response, along with the reference impulse response.

% Create a design object for the prototype filter.

d = fdesign.lowpass(.4,.5,1,80)
 
d =
 
               Response: 'Minimum-order lowpass'
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
                  Fpass: 0.4000
                  Fstop: 0.5000
                  Apass: 1
                  Astop: 80

Use ellip to design the discrete-time filter in second-order section form, with 
minimum-order.

hd=design(d,'ellip')
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [4x6 double]
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             ScaleValues: [5x1 double]
    ResetBeforeFiltering: 'on'
                  States: [2x4 double]

Convert hd to fixed-point and check the impulse response 
hd.arithmetic = 'fixed';

impz(hd)

See Also filter
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8infoPurpose Information about filter objects

Syntax s = info(ha)
s = info(hd)
s = info(hm)

Description The next sections describe common info operation with adaptive, 
discrete-time, and multirate filters.

info returns a variety of information about filters:

• Specifications such as the filter structure and filter order

• Information about the design method and options

• Performance measurements for the filter response, such as the passband 
cutoff or stopband attenuation. Filter measurement data is the same as the 
information returned by measure for the filter. Specific measurements 
appearing in the display depend on the filter and on the specifications you 
use when you construct the filter. 

• Cost of implementing the filter in terms of operations required to apply the 
filter to data. Cost information is the same as you get from the cost method.

When the filter object uses fixed-point arithmetic (fixed-point dfilt objects or 
mfilt objects), info returns additional information about the filter, including 
the arithmetic setting and details about the filter internals. 

You do not need to assign the output of info to a variable. Omitting the output 
value displays the same information in the Command Window.

Adaptive Filters

s = info(ha) returns a string matrix with information about the filter ha.

Generally, info returns more information than the default display for the 
filter.

Discrete-Time Filters

s = info(hd) returns a string matrix with information about the filter hd.
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Generally, info returns more information than the default display for the 
filter.

Multirate Filters

s = info(hm) returns a string matrix with information about the filter hm.

Generally, info returns more information than the default display for the 
filter.

Examples Given two filters—hd and hm, use info to learn more about each filter. Here is 
hd, a discrete-time direct-form FIR filter.

d = fdesign.lowpass('N,Fc,Ap,Ast',80,0.45,0.05,60);
designmethods(d)

Design Methods for class fdesign.lowpass (N,Fc,Ap,Ast):

equiripple

hd=design(d,'equiripple')
 
hd =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'
           Numerator: [1x81 double]
    PersistentMemory: false

Similarly, here is a multirate CIC filter hm. Note the diffential delay value 2.

d1 = fdesign.interpolator(6,'cic',2,'fp,ast',0.40,60);
designmethods(d1)

FIR Design Methods for class fdesign.interpolator (Fp,Ast):

multisection
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hm=design(d1,'multisection')
 
hm =
 
        FilterStructure: 'Cascaded Integrator-Comb Interpolator'
             Arithmetic: 'fixed'
      DifferentialDelay: 2
       NumberOfSections: 5
    InterpolationFactor: 6
       PersistentMemory: false
 
        InputWordLength: 16             
        InputFracLength: 15             
                                        
        FilterInternals: 'FullPrecision'

Now use info to get more details about both filters.

s = info(hd)

Discrete-Time FIR Filter (real)                
-------------------------------                
Filter Structure  : Direct-Form FIR            
Filter Length     : 81                         
Stable            : Yes                        
Linear Phase      : Yes (Type 1)               
                                               
Design Method Information                      
Design Algorithm : equiripple                  
                                               
Design Options                                 
MinPhase      : false                          
StopbandDecay : 0                              
StopbandShape : flat                           
                                               
Design Specifications                          
Sampling Frequency : N/A (normalized frequency)
Response           : Lowpass                   
Specification      : N,Fc,Ap,Ast               
FilterOrder        : 80                        
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Fcutoff            : 0.45                      
Passband Ripple    : 0.05 dB                   
Stopband Atten.    : 60 dB                     
                                               
Measurements                                   
Sampling Frequency : N/A (normalized frequency)
Passband Edge      : 0.41517                   
3-dB Point         : 0.44091                   
6-dB Point         : 0.45                      
Stopband Edge      : 0.48968                   
Passband Ripple    : 0.05 dB                   
Stopband Atten.    : 60 dB                     
Transition Width   : 0.074506                  
                                               
Implementation Cost                            
Number of Multipliers : 81                     
Number of Adders      : 80                     
Number of States      : 80                     
MultPerInputSample    : 81                     
AddPerInputSample     : 80                     

s = info(hm)

Discrete-Time FIR Multirate Filter (real)                                           
-----------------------------------------                                           
Filter Structure        : Cascaded Integrator-Comb Interpolator                      
Interpolation Factor    : 6                                                          
Differential Delay      : 2                                                         
Number of Sections      : 5                                                          
Stable                  : Yes                                                        
Linear Phase            : Yes (Type 2)                                              
                                                                                  
Input                   : s16,15                                                     
Output                  : s32,15                                                     
Filter Internals        : Full Precision                                             
Integrator Section 1  : s17,15                                                       
Integrator Section 2  : s18,15                                                       
Integrator Section 3  : s19,15                                                       
Integrator Section 4  : s20,15                                                       
Integrator Section 5  : s21,15                                                       
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Comb Section 1        : s21,15                                                       
Comb Section 2        : s24,15                                                       
Comb Section 3        : s27,15                                                       
Comb Section 4        : s29,15                                                       
Comb Section 5        : s32,15                                                      
                                                                                     
Design Method Information                                                            
Design Algorithm : multisection                                                     
                                                                                     
Design Specifications                                                                
Sampling Frequency  : N/A (normalized frequency)                                     
Response            : CIC                                                            
Specification       : Fp,Ast                                                         
MultirateType       : Interpolator                                                   
InterpolationFactor : 6                                                              
DifferentialDelay   : 2                                                              
Passband Edge       : 0.4                                                            
Stopband Atten.     : 60 dB                                                         
                                                                                     
Measurements                                                                         
Sampling Frequency : N/A (normalized frequency)                                      
Passband Edge      : 0.4                                                             
Stopband Edge      : -0.23333                                                        
Fnulls            : 0.16667  0.33333  0.5  0.66667  0.83333     1
Passband Ripple    : 87.0194 dB                                                      
Stopband Atten.    : 65.5304 dB                                             
                                                                                     
Implementation Cost                                                                  
Number of Multipliers : 0                                                           
Number of Adders      : 10                                                      
Number of States      : 15                                           
MultPerInputSample    : 0                                              
AddPerInputSample     : 35                                            

If you convert your filter object, such as a dfilt or mfilt, to a fixed-point filter, 
info returns more information about the ranges provided by the fixed-point 
formats in the filter. After converting hd to fixed arithmetic, info returns this 
display:

Discrete-Time FIR Filter (real)                                                
-------------------------------                                                
Filter Structure  : Direct-Form FIR                                            
Filter Length     : 81                                                         
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Stable            : Yes                                                        
Linear Phase      : Yes (Type 1)                                               
Arithmetic        : fixed                                                      
Numerator         : s16,16 -> [-5.000000e-001 5.000000e-001)                   
Input             : s16,15 -> [-1 1)                                           
Filter Internals  : Full Precision                                             
  Output          : s34,31 -> [-4 4)  (auto determined)                        
  Product         : s31,31 -> [-5.000000e-001 5.000000e-001)  (auto 
determined)
  Accumulator     : s34,31 -> [-4 4)  (auto determined)                        
  Round Mode      : No rounding                                                
  Overflow Mode   : No overflow                                                
                                                                               
Design Method Information                                                      
Design Algorithm : equiripple                                                  
                                                                               
Design Options                                                                 
MinPhase      : false                                                          
StopbandDecay : 0                                                              
StopbandShape : flat                                                           
                                                                               
Design Specifications                                                          
Sampling Frequency : N/A (normalized frequency)                                
Response           : Lowpass                                                   
Specification      : N,Fc,Ap,Ast                                               
FilterOrder        : 80                                                        
Fcutoff            : 0.45                                                      
Passband Ripple    : 0.05 dB                                                   
Stopband Atten.    : 60 dB                                                     
                                                                               
Measurements                                                                   
Sampling Frequency : N/A (normalized frequency)                                
Passband Edge      : 0.41517                                                   
3-dB Point         : 0.44091                                                   
6-dB Point         : 0.45                                                      
Stopband Edge      : 0.48962                                                   
Passband Ripple    : 0.05 dB                                                   
Stopband Atten.    : 60 dB                                                     
Transition Width   : 0.07445                                                   
                                                                               
Implementation Cost                                                            
Number of Multipliers : 81                                                     
Number of Adders      : 80                                                     
Number of States      : 80                                                     
MultPerInputSample    : 81                                                     
AddPerInputSample     : 80                                          
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See Also coefficients, isfir, isstable, islinphase

dfilt in the Signal Processing Toolbox documentation
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8intPurpose Return states from CIC filter as signed integer matrix containing the 
numerator and denominator states for all filter sections

Syntax integerstates = int(hm.states)

Description integerstates = int(hm.states) returns the states of a CIC filter in matrix 
form, rather than as the native filtstates object. An important point about 
int is that it quantizes the state values to the smallest number of bits possible 
while maintaining the values accurately. 

Examples For many users, the states of multirate filters are most useful as a matrix, but 
the CIC filters store the states as objects. Here is how you get the states from 
you CIC filter as a matrix.

hm = mfilt.cicdecim;
hs = hm.states; % Returns a FILTSTATES.CIC object hs.
states = int(hs); % Convert object hs to a signed integer matrix.

After using int to convert the states object to a matrix, here is what you get.

Before converting:

hm.states
 
ans =
 
    Integrator: [2x1 States]
          Comb: [2x1 States]

After the conversion and assigning the states to states:

states

states =

           0           0
           0           0

See Also filtstates.cic, mfilt.cicdecim, mfilt.cicinterp
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8isallpassPurpose Determine whether filters are allpass structures

Syntax isallpass(hd)
isallpass(hd,tolerance)

Description isallpass(hd) determines whether the filter object hd is an allpass filter, 
returning 1 if true and 0 if false.

isallpass(hd,tolerance) uses input argument tolerance to  determine 
whether the numerator and denominator transfer functions for the filter are 
close enough in value to be considered equal, and thus allpass, returning 1 if 
true (the difference between the numbers is less than tolerance) and 0 if not.

Given an allpass filter with this transfer function

if the numerator and denominator transfer functions are equal, the filter is 
allpass. The tolerance input argument lets you determine how closely the 
transfer functions have to match to be considered equal. This might be most 
helpful in fixed-point allpass filters.

Lattice coupled allpass filters always have allpass sections, this function 
always returns 1 for filters whose structure is latticeca.

Examples Use dfilt.allpass to construct an allpass filter and test whether the filter is 
allpass.

c=[.8,1.5,0.4, 0.7]; % Allpass coefficients.
hd=dfilt.allpass(c)
 
hd =
 
        FilterStructure: 'Minimum-Multiplier Allpass'
    AllpassCoefficients: [.8,1.5,0.4, 0.7]           
       PersistentMemory: false                       
                 States: [0;0;0;0;0;0;0;0]           
    NumSamplesProcessed: 0                           
                                                     

H z( )
an … a1z n 1–( )– z n–+ + +

1 a1z 1– … anz n–+ + +
------------------------------------------------------------------=
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isallpass(hd)

ans =

     1

See Also isfir, islinphase, ismaxphase, isminphase, isreal, issos, isstable
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8isfirPurpose Determine whether filters are FIR filters

Syntax isfir(h)

Description isfir(h) determines whether filter h is an FIR filter, returning 1when the 
filter is an FIR filter, and 0 when it is IIR. isfir applies to dfilt, mfilt, and 
adaptfilt objects.

To determine whether h is an FIR filter, isfir(h) inspects filter h and 
determines whether the filter, in transfer function form, has a scalar 
denominator. If it does, it is an FIR filter.

Examples d = fdesign.lowpass;
h = design(d);
isfir(h)
ans =

     1

returns 1 for the status of filter h; the filter is an FIR structure with 
denominator reference coefficient equal to 1.

For multirate filters, isfir works the same way.

d = fdesign.interpolator(5); % Interpolate by 5.
h = design(d); % Use the default design method.
isfir(h)

ans =

     1

Use isfir with adaptive filters as well.

See Also isallpass, islinphase, ismaxphase, isminphase, isreal, issos, isstable
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8islinphasePurpose Determine whether filters are linear phase

Syntax islinphase(h)
islinphase(h,tolerance)

Description islinphase(h) determines if the filter object h is linear phase, and returns 1 if 
true and 0 if false. adapfilt, dfilt, and mfilt objects work with islinphase.

islinphase(h,tolerance) uses input argument tolerance to  determine 
whether the filter coefficients are close enough in value to be considered 
symmetric or antisymmetric, returning 1 if true (the difference between the 
values is less than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter has 
linear phase if it is FIR and its transfer function coefficients are symmetric or 
antisymmetric. If it is IIR and it has poles on or outside the unit circle and both 
numerator and denominator are symmetric or antisymmetric, it is linear phase 
also.

Examples This IIR filter has linear phase.

d = fdesign.lowpass('n,fc',10,0.55);
h = design(d,'window');
islinphase(h)
ans =

     1

Using the specification nb,na,fp,fst results in an IIR filter that is not linear 
phase in this design.

nb=15
na=10
d=fdesign.lowpass('nb,na,fp,fst',nb,na,0.45,0.55)
 
d =
 
               Response: 'Lowpass'     
          Specification: 'Nb,Na,Fp,Fst'
            Description: {4x1 cell}    
    NormalizedFrequency: true          
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               NumOrder: 15            
               DenOrder: 10            
                  Fpass: 0.45          
                  Fstop: 0.55          
                                       

h=design(d) % Use the default design method iirlpnorm.
 
h =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'                               
               sosMatrix: [8x6 double]                           
             ScaleValues: [-0.0051749857036492;1;1;1;1;1;1;1;1]  
        PersistentMemory: false                                  
                                                                 
islinphase(h)

ans =

     0

See Also isallpass, isfir, ismaxphase, isminphase, isreal, issos, isstable
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8ismaxphasePurpose Determine whether filters are maximum phase

Syntax ismaxphase(h)
ismaxphase(h,tolerance)

Description ismaxphase(h) determines if the filter object h is maximum phase, and returns 
1 if true and 0 if false. adapfilt, dfilt, and mfilt objects work with 
ismaxphase.

ismaxphase(h,tolerance) uses input argument tolerance to determine 
whether the zeros of the filter transfer function have values that are close 
enough to 1 to be considered 1 or greater (on or outside the unit circle, 
returning 1 if true (the difference between the coefficient value and 1 is less 
than tolerance) and 0 if not.

The phase determination is based on the reference coefficients. A filter is 
maximum phase when the zeros of its transfer function are on or outside the 
unit circle, or when the numerator is a scalar.

Examples Two examples show ismaxphase in use. The first is a discrete-time dfilt object 
and the second an adaptive filter.

fp = 100;
fst= 120;
fs = 800;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);

isminphase(h)

ans =

1

To make this a maximum phase filter, use fliplr to change the coefficient 
order. Reordering the coefficients this way changes the phase from minimum 
to maximum.

h.numerator=fliplr(h.numerator);
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ismaxphase(h)

ans =

     1

returns 1 so this is a maximum phase filter. Compare to isminphase.

For the adaptive filter example, try the following code:

x = randn(1,500);     % Input to the filter
b = fir1(31,0.5);     % FIR system to be identified
n = 0.1*randn(1,500); % Observation noise signal
d = filter(b,1,x)+n;  % Desired signal
mu = 1;                % NLMS step size
offset = 50;           % NLMS offset
ha = adaptfilt.nlms(32,mu,1,offset);
[y,e] = filter(ha,x,d);

After adapting, ha is an FIR filter that does not exhibit maximum phase.

ismaxphase(ha)

ans =

     0

See Also isallpass, isfir, islinphase, isminphase, isreal, issos, isstable
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8isminphasePurpose Determine whether filters are minimum phase

Syntax isminphase(h)
isminphase(h,tolerance)

Description isminphase(h) determines if the filter object h is maximum phase, and returns 
1 if true and 0 if false. adapfilt, dfilt, and mfilt objects work with 
isminphase.

isminphase(h,tolerance) uses input argument tolerance to determine 
whether the values of the filter transfer function zeros are close enough to 1 to 
be considered to be on the unit circle, returning 1 if true (the difference between 
the transfer function zero values and 1 is less than tolerance) and 0 if not. 

The determination is based on the reference coefficients. A filter is minimum 
phase when the zeros of its transfer function are on or inside the unit circle, or 
the numerator is a scalar.

Examples This example creates a minimum-phase filter.

fp = 200;
fst= 230;
fs = 900;
ap = 1;
ast= 80;
d = fdesign.lowpass('fp,fst,ap,ast',fp,fst,ap,ast,fs);
h = design(d,'equiripple','minphase',true);
isminphase(h)

ans =

     1

When you make h a fixed-point filter, the quantization process results in the 
filter no longer being minimum phase.

h.arithmetic='fixed';
isminphase(h)
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ans =

     0

See Also isallpass, isfir, islinphase, ismaxphase, isreal, issos, isstable, 
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8isrealPurpose Determine whether discrete-time filters use purely real coefficients

Syntax isreal(hd)

Description isreal(hd) returns 1 (or true) if all filter coefficients for the filter hd are real, 
and returns 0 (or false) otherwise.

isreal(hd) returns 1 if all filter coefficients in filter hd have zero imaginary 
part. Otherwise, isreal(hd) returns a 0 indicating that the filter is complex. 
Complex filters have one or more coefficients with nonzero imaginary parts.

Note  Quantizing a filter cannot make a real filter into a complex filter.

Examples To demonstrate the isreal test, this example creates a double-precision filter 
and fixed-point filter, and tests the coefficients of the fixed-point filter to see if 
they are strictly real.

d=fdesign.lowpass('n,fp,ap,ast',5,0.4,0.5,20);
hd=design(d,'ellip')

hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'                  
              Arithmetic: 'double'                                                 
               sosMatrix: [3x6 double]                                             
             ScaleValues: [0.362583368859661;0.918321077151039;0.496533475964919;1]
        PersistentMemory: false                                                    
                                                                                   
hq=design(d,'ellip'); % Use d to design the fixed-point filter.
hq.arithmetic='fixed'; % Convert to fixed-point arithmetic.
isreal(hq)

ans =

     1

See Also isfir, islinphase, ismaxphase, isminphase, issos, isstable, isallpass
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8issosPurpose Determine whether discrete-time filters are composed of second-order sections

Syntax issos(hd)

Description issos(hd) determines whether quantized filter hq consists of second-order 
sections. Returns 1 if all sections of quantized filter hq have order less than or 
equal to two, and 0 otherwise.

Examples By default, fdesign and design return SOS filters when possible. This example 
designs a lowpass SOS filter that uses fixed-point arithmetic.

d=fdesign.lowpass('n,fp,ap,ast',40,0.55,0.1,60)
 
d =
 
               Response: 'Lowpass'    
          Specification: 'N,Fp,Ap,Ast'
            Description: {4x1 cell}   
    NormalizedFrequency: true         
            FilterOrder: 40           
                  Fpass: 0.55         
                  Apass: 0.1          
                  Astop: 60           
                                      
designmethods(d)

Design Methods for class fdesign.lowpass (N,Fp,Ap,Ast):

ellip
equiripple

hd=design(d,'ellip');                                                                 
hd.arithmetic='fixed';

issos(hd)
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ans =

     1

Fixed-point filter hd is in second-order section form, as is the double-precision 
version.

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, isstable
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8isstablePurpose Determine whether  discrete-time filter is stable

Syntax isstable(hd)

Description isstable(hq) tests quantized filter hq to determine whether its poles are 
inside the unit circle. If the poles lie on or outside the circle, isstable 
returns 0. If the poles are inside the circle, isstable returns 1.

To determine the filter stability, isstable checks the filter coefficients. When 
the poles lie on or inside the unit circle, the filter is stable. FIR filters are stable 
by design since the defining transfer functions do not have denominator 
polynomials, thus no feedback to cause instability.

Examples Since filter stability is very important in your design process, use isstable to 
determine whether your double-precision or fixed-point IIR filter is stable.

d=fdesign.nyquist(2,'n,tw',24,0.1);
hd=design(d,'iirlinphase')
 
hd =
 
     FilterStructure: Cascade
            Stage(1): Scalar
            Stage(2): Parallel
                      Stage(1): Delay
                      Stage(2): Cascade
                            Stage(1): Delay
                            Stage(2): Cascade
    PersistentMemory: false
                           
isstable(hd)

ans =

     1

hd2=design(d,'equiripple');
isstable(hd2)
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ans =

     1

See Also isallpass, isfir, islinphase, ismaxphase, isminphase, isreal, issos, 
zplane
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8kaiserwinPurpose Design discrete-time or multirate filter from filter specification object and 
Kaiser window

Syntax h = design(d,'kaiserwin')

h = design(d,'kaiserwin',designoption,value,designoption,...
value,...)

Description h = design(d,'kaiserwin') designs a digital filter hd, or a multirate filter hm 
that uses a Kaiser window. For kaiserwin to work properly, the filter order in 
the specifications object must be even. In addition, higher order filters (filter 
order greater than 120) tend to be more accurate for smaller transition widths. 
kaiserwin returns a warning when your filter order may be too low to design 
your filter accurately.

h = design(d,'kaiserwin',designoption,value,designoption,...
value,...) returns a  filter where you specify design options as input 
arguments and the design process uses the Kaiser window technique. 

To determine the available design options, use designopts with the 
specification object and the design method as input arguments as shown.

designopts(d,'method')

For complete help about using kaiserwin, refer to the command line help 
system. For example, to get specific information about using kaiserwin with d, 
the specification object, enter the following at the MATLAB prompt.

help(d,'kaiserwin')

Examples This example designs a direct form FIR filter from a halfband filter 
specification object.

d=fdesign.halfband('n,tw',100,0.004)
 
d =
 
               Response: 'Halfband with filter order and transition width'
          Specification: 'N,TW'
            Description: {2x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
            FilterOrder: 100
        TransitionWidth: 0.0040
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designopts(d,'kaiserwin')

ans = 

    FilterStructure: 'dffir'

hd= design(d,'kaiserwin','filterstructure','dffir')
Warning: Filter order is too low. Design may be inaccurate.
 
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'double'
               Numerator: [1x101 double]
    ResetBeforeFiltering: 'on'
                  States: [100x1 double]

In this example, kaiserwin uses an interpolating filter specification object to 
implement a multirate filter.

d=fdesign.interp(4,'pl,tw',120,0.004)
 
d =
 
               Response: [1x46 char]
          Specification: 'PL,TW'
            Description: {2x1 cell}
    InterpolationFactor: 4
    NormalizedFrequency: true
                     Fs: 'Normalized'
        PolyphaseLength: 120
        TransitionWidth: 0.0040

hm = design(d,'kaiserwin')
 
hm =
 
         FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
               Numerator: [1x480 double]
     InterpolationFactor: 4
    ResetBeforeFiltering: 'on'
                  States: [119x1 double]
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With the polyphase length of 120 you do not see the warning about the filter 
accuracy. Increasing the transition width tw can also reduce the possible 
inaccuracies.

FVTool shows clearly the multirate filter hm.

See Also equiripple, firls
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8limitcyclePurpose Explore steady-state response of  single-rate, fixed-point IIR filter to 
zero-valued input

Syntax report = limitcycle(hd)
report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion)

Description report = limitcycle(hd) returns the structure report that contains 
information about how filter hd responds to a zero-valued input vector. By 
default, the input vector has length equal to twice the impulse response length 
of the filter.

limitcycle returns a structure whose elements contain the details about the 
limit cycle testing. As shown in this table, the report includes the following 
details.

Using an input vector longer than the filter impulse response ensures that the 
filter is in steady-state operation during the limit cycle testing. limitcycle 

Output Object Property Description

LimitCycleType Contains one of the following results:

• Granular—indicates that a granular 
overflow occurred.

• Overflow—indicates that an overflow limit 
cycle occurred.

• None—indicates that the test did not find 
any limit cycles.

Zi Contains the initial condition value(s) that 
caused the detected limit cycle to occur.

Output Contains the output of the filter in the steady 
state.

Trial Returns the number of the Monte Carlo trial 
on which the limit cycle testing stopped. For 
example, Trial = 10 indicates that testing 
stopped on the tenth Monte Carlo trial.
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ignores output that occurs before the filter reaches the steady state. For 
example, if the filter impulse length is 500 samples, limitcycle ignores the 
filter output from the first 500 input samples.

To perform limit cycle testing on your IIR filter, you must set the filter 
Arithmetic property to fixed and hd must be a fixed-point IIR filter of one of 
the following forms:

• df1—direct-form I
• df1t—direct-form I transposed
• df1sos—direct-form I with second-order sections
• df1tsos—direct-form I transposed with second-order sections
• df2—direct-form II
• df2t—direct-form II transposed
• df2sos—direct-form II with second-order sections
• df2tsos—direct-form II transposed with second-order sections

When you use limitcycle without optional input arguments, the default 
settings are

• Run 20 Monte Carlo trials

• Use an input vector twice the length of the filter impulse response

• Stop testing if the simulation process encounters either a granular or 
overflow limit cycle

To determine the length of the filter impulse response, use impzlength:

impzlength(hd)

During limit cycle testing, if the simulation runs reveal both overflow and 
granular limit cycles, the overflow limit cycle takes precedence and is the limit 
cycle that appears in the report.

Each time you run limitcycle, it uses a different sequence of random initial 
conditions, so the results can differ from run to run.

Each Monte Carlo trial uses a new set of randomly determined initial states for 
the filter. Test processing stops when limitcycle detects a zero-input limit 
cycle in filter hd. 
report = limitcycle(hd,ntrials,inputlengthfactor,stopcriterion) lets 
you set the following optional input arguments:
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• ntrials — Number of Monte Carlo trials (default is 20).

• inputlengthfactor — integer factor used to calculate the length of the input 
vector. The length of the input vector comes from 
(impzlength(hd) * inputlengthfactor), where inputlengthfactor = 2 is 
the default value.

• stopcriterion — the criterion for stopping the Monte Carlo trial processing. 
stopcriterion can be set to either (the default), granular, overflow. This 
table describes the results of each stop criterion.

Note  An important feature is that if you specify a specific limit cycle stop 
criterion, such as overflow, the Monte Carlo trials do not stop when testing 
encounters a granular limit cycle. You receive a warning that no overflow 
limit cycle occurred, but consider that a granular limit cycle might have 
occurred. 

Examples In this example, there is a region of initial conditions in which no limit cycles 
occur and a region where they do. If no limit cycles are detected before the 
Monte Carlo trials are over, the state sequence converges to zero. When a limit 
cycle is found, the states do not end at zero. Each time you run this example, it 
uses a different sequence of random initial conditions, so the plot you get can 
differ from the one displayed in the following figure.

s = [1 0 0 1 0.9606 0.9849];
hd = dfilt.df2sos(s);
hd.arithmetic = 'fixed';
greport = limitcycle(hd,20,2,'granular')

stopcriterion Setting Description

either Stop the Monte Carlo trials when limitcycle 
detects either a granular or overflow limit cycle.

granular Stop the Monte Carlo trials when limitcycle 
detects a granular limit cycle.  

overflow Stop the Monte Carlo trials when limitcycle 
detects an overflow limit cycle. 
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oreport = limitcycle(hd,20,2,'overflow')
figure,
subplot(211),plot(greport.Output(1:20)), title('Granular Limit Cycle');
subplot(212),plot(oreport.Output(1:20)), title('Overflow Limit Cycle');
 
greport =
 
    LimitCycle: 'granular'
            Zi: [2x1 double]
        Output: [1303x1 embedded.fi]
         Trial: 1
 
oreport =
 
    LimitCycle: 'overflow'
            Zi: [2x1 double]
        Output: [1303x1 embedded.fi]
         Trial: 2

The plots shown in this figure present both limit cycle types—the first displays 
the small amplitude granular limit cycle, the second the larger amplitude 
overflow limit cycle.
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As you see from the plots, and as is generally true, overflow limit cycles are   
much greater magnitude than granular limit cycles. This is why limitcycle 
favors overflow limit cycle detection and reporting.

See Also freqz, noisepsd
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8maxstepPurpose Maximum step size that allows adaptive filter convergence

Syntax mumax = maxstep(ha,x)
[mumax,mumaxmse] = maxstep(ha,x)

Description mumax = maxstep(ha,x) predicts a bound on the step size to provide 
convergence of the mean values of the adaptive filter coefficients. The columns 
of the matrix x contain individual input signal sequences. The signal set is 
assumed to have zero mean or nearly so. 

[mumax,mumaxmse] = maxstep(ha,x) predicts a bound on the adaptive filter 
step size to provide convergence of the LMS adaptive filter coefficients in the 
mean-square sense. maxstep issues a warning when ha.stepsize is outside of 
the range 0 < ha.stepsize < mumaxmse/2.

Note  maxstep is available for the following adaptive filter objects:
—adaptfilt.blms 
—adaptfilt.blmsfft 
—adaptfilt.lms 
—adaptfilt.nlms (uses a different syntax. Refer to the text below.) 
—adaptfilt.se

For adaptfilt.nlms filter objects, maxstep uses a slightly different syntax:

mumax = maxstep(ha)
[mumax,mumaxmse] = maxstep(ha)

The maximum step size for convergence is fully defined by the filter object ha. 
Matrix x is not necessary. If you include an x input matrix, MATLAB returns 
an error.

Examples Analyze and simulate a 32-coefficient (31st-order) LMS adaptive filter object. 
To demonstrate the adaptation process, run 2000 iterations and 50 trials.

% Specify [numiterations,numexamples] = size(x);
x = zeros(2000,50);
d = x;
obj = fdesign.lowpass('n,fc',31,0.5);
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hd = design(obj,'window'); % FIR filter to identified.
coef = cell2mat(hd.coefficients); % Convert cell array to matrix.

for k=1:size(x,2);   % Create input and desired response signal 
% matrices.

% Set the (k)th input to the filter.
x(:,k) = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x,1),1))); 
n = 0.1*randn(size(x,1),1);  % (k)th observation noise signal.
d(:,k) = filter(coef,1,x(:,k))+n; % (k)th desired signal end.

end
mu = 0.1;                     % LMS step size.
ha = adaptfilt.lms(32,mu);
[mumax,mumaxmse] = maxstep(ha,x);

Warning: Step size is not in the range 0 < mu < mumaxmse/2: 
Erratic behavior might result.

mumax

mumax =

    0.0623

mumaxmse

mumaxmse =

    0.0530

See Also msepred, msesim, filter
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8measurePurpose Magnitude response measurement for discrete-time and multirate filter 
created from filter specification object

Syntax measure(hd)
measure(hm)

Description measure(hd) returns measured values for specific points in the magnitude 
response curve for filter object hd. When you use a design object d to create 
a filter (by using fdesign.type to create d), you specify one or more values that 
define your desired filter response. measure(hd) tests the filter to determine 
the actual values in the magnitude response of the filter, such as the stopband 
attenuation or the passband ripple. Comparing the results returned by 
measure to the specifications you provided in the design object helps you assess 
whether the filter meets your design criteria.

Note  To use measure, hd or hm must result from using a filter design method 
with a filter specifications object. measure works with multirate filters and 
discrete-time filters. It does not support adaptive filters because you cannot 
use fdesign.type to construct adaptive filter specifications objects.

measure(hd) returns specifications determined by the response type of the 
design object you use to create the filter. For example, for single-rate lowpass 
filters made from design objects, measure(hd) returns the following filter 
specifications.

Lowpass Filter Specification Description

Sampling Frequency Filter sampling frequency.

Passband Edge Location of the edge of the passband as it 
enters transition.

3-dB Point Location of the -3 dB point on the response 
curve.

6-dB Point Location of the -6 dB point on the response 
curve.
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In contrast, when you use a bandstop design object, measure(hd) returns these 
specifications for the resulting bandstop filter.

Stopband Edge Location of the edge of the transition band 
as it enters the stopband.

Passband Ripple Ripple in the passband.

Seopband Atten. Attenuation in the stopband.

Transition Width Width of the transition between the pass- 
and stopband, in normalized frequency or 
absolute frequency. Measured between 
Fpass and Fstop.

Bandstop Filter Specification Description

Sampling Frequency Filter sampling frequency.

First Passband Edge Location of the edge of the first passband.

First 3-dB Point Location of the edge of the -3 dB point in 
the first transition band.

First 6-dB Point Location of the edge of the -6 dB point in 
the first transition band.

First Stopband Edge  Location of the start of the stopband.

Second Stopband Edge  Location of the end of the stopband.

Second 6-dB Point Location of the edge of the -6 dB point in 
the second transition band.

Second 3-dB Point Location of the edge of the -3 dB point in 
the second transition band.

Second Passband Edge Location of the start of the second 
passband.

Lowpass Filter Specification Description
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Filters from different filter responses return their designated sets of 
specifications. Also, whether the filter is single-rate or multirate changes the 
list of specifications that measure tests.

measure(hm) is the same as measure(hd), where hm is a multirate filter object. 
For multirate filters, the set of filter specifications that measure returns might 
be different from the discrete-filter set.

The set of response measurements that measure returns depends on the 
response you use to design the filter. When hm is an FIR lowpass interpolator 
(response is lowpass), for example, measure(hm) returns this set of 
measurements.

First Passband Ripple Ripple in the first passband.

Stopband Atten. Attenuation in the stopband.

Second Passband Edge Ripple in the second passband.

First Transition Width Width of the first transition region. 
Measured between the -3 and -6 dB 
points.

Second Transition Width Width of the second transition region. 
Measured between the -6 and -3 dB 
points.

Interpolator Filter Specification Description

First Passband Edge Location of the edge of the passband as 
it enters transition.

3-dB Point Location of the -3 dB point on the 
response curve.

6-dB Point Location of the -6 dB point on the 
response curve.

Bandstop Filter Specification Description
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For reference, this is the specification object d that created the interpolator 
specifications shown in the preceeding table.

d=fdesign.interpolator(6,'lowpass')
 
d =
 
          MultirateType: 'Interpolator'   
    InterpolationFactor: 6                
               Response: 'Lowpass'        
          Specification: 'Fp,Fst,Ap,Ast'  
            Description: {4x1 cell}       
    NormalizedFrequency: true             
                  Fpass: 0.133333333333333
                  Fstop: 0.166666666666667
                  Apass: 1                
                  Astop: 60               

Examples For the first example, create a lowpass filter and check whether the actual 
filter meets the specifications. For this case, use normalized frequency for Fs, 
the default setting.

d2=fdesign.lowpass('Fp,Fst,Ap,Ast',0.45,0.55,0.1,80)
 
d2 =
 
               Response: 'Lowpass'      

Stopband Edge Location of the edge of the transition 
band as it enters the stopband.

Passband Ripple Ripple in the passband.

Stopband Atten. Attenuation in the stopband.

Transition Width Width of the transition between the 
pass- and stopband, in normalized 
frequency or absolute frequency. 
Measured between Fpass and Fstop.

Interpolator Filter Specification Description
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          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fpass: 0.45           
                  Fstop: 0.55           
                  Apass: 0.1            
                  Astop: 80             
                                      
designmethods(d2)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin
multistage

hd2=design(d2) % Use the default equiripple design method.
 
hd2 =
 
     FilterStructure: 'Direct-Form FIR'
          Arithmetic: 'double'         
           Numerator: [1x68 double]    
    PersistentMemory: false            

measure(hd2)

ans =
 
Sampling Frequency : N/A (normalized frequency)
Passband Edge      : 0.45                      
3-dB Point         : 0.47794                   
6-dB Point         : 0.48909                   
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Stopband Edge      : 0.55                      
Passband Ripple    : 0.09615 dB                
Stopband Atten.    : 80.2907 dB                
Transition Width   : 0.1                       

Stopband Edge, Passband Edge, Passband Ripple, and Stopband Atten. all 
meet the specifications. 

Now, using Fs in linear frequency, create a bandpass filter and measure the 
magnitude response characteristics.

d=fdesign.bandpass
 
d =
 
               Response: 'Bandpass'                      
          Specification: 'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
            Description: {7x1 cell}                      
    NormalizedFrequency: true                            
                 Fstop1: 0.35                            
                 Fpass1: 0.45                            
                 Fpass2: 0.55                            
                 Fstop2: 0.65                            
                 Astop1: 60                              
                  Apass: 1                               
                 Astop2: 60                              
                                                         
 
normalizefreq(d,false,1.5e3) % Convert to linear freq.

hd=design(d,'cheby2');
                                                                  
measure(hd)

ans =
 
Sampling Frequency      : 1.5 kHz    
First Stopband Edge     : 0.2625 kHz 
First 6-dB Point        : 0.31996 kHz
First 3-dB Point        : 0.32497 kHz
First Passband Edge     : 0.3375 kHz 
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Second Passband Edge    : 0.4125 kHz 
Second 3-dB Point       : 0.42503 kHz
Second 6-dB Point       : 0.43004 kHz
Second Stopband Edge    : 0.4875 kHz 
First Stopband Atten.   : 60 dB      
Passband Ripple         : 0.17985 dB 
Second Stopband Atten.  : 60 dB      
First Transition Width  : 0.075 kHz  
Second Transition Width : 0.075 kHz  

measure(hd) returns the actual response values, in the units you chose. In this 
example, all frequencies appear in Hz because the sampling frequency is Hz.

See Also design, fdesign, normalizefreq
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8mfiltPurpose Construct multirate filter object

Syntax hm = mfilt.structure(input1,input2, )

Description hm = mfilt.structure(input1,input2, ) returns the object hm of type 
structure. As with dfilt and adaptfilt objects, you must include the 
structure string to construct a multirate filter object. You can, however, 
construct a default multirate filter object of a given structure by not including 
input arguments in your calling syntax.

Multirate filters include decimators and interpolators, and fractional 
decimators and fractional interpolators, meaning the resulting interpolation or 
decimation factor is not an integer.

Structures
Each of the following multirate filter structures has a reference page of its own.

Filter Structure String Description of Resulting Multirate Filter

mfilt.cascade Cascade multirate filters to form another 
filter

mfilt.cicdecim Cascaded integrator-comb decimator

mfilt.cicinterp Cascaded integrator-comb interpolator

mfilt.fftfirinterp Overlap-add FIR polyphase interpolator

mfilt.firdecim Direct-form FIR polyphase decimator

mfilt.firfracdecim Direct-form FIR polyphase fractional 
decimator

mfilt.firfracinterp Direct-form FIR polyphase fractional 
interpolator

mfilt.firinterp Direct-form FIR polyphase interpolator

mfilt.firsrc Direct-form FIR polyphase sample rate 
converter
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Copying mfilt Objects
To create a copy of an mfilt object, use the copy method. 

h2 = copy(hd)

Note  The syntax hd2 = hd copies only the object handle. It does not create 
a new object. hd2 and hd are not independent. If you change the property 
value for one of the two, such as hd2, you are changing the property for both.

Examples Create an FIR decimator that uses a decimation factor equal to three. In this 
case, the only input argument needed is m, the decimation factor. Other input 
arguments are available to you—refer to the reference page for the structure 
that interests you for more information.

m=3;

hm=mfilt.firdecim(m)
 
hm =
 
             FilterStructure: 'Direct-Form FIR Polyphase Decimator'
                   Numerator: [1x73 double]
            DecimationFactor: 3

mfilt.firtdecim Direct-form transposed FIR polyphase 
decimator

mfilt.holdinterp FIR hold interpolator

mfilt.iirdecim IIR decimator

mfilt.iirinterp IIR interpolator

mfilt.linearinterp FIR Linear interpolator

mfilt.iirwdfdecim IIR wave digital filter decimator

mfilt.iirwdfinterp IIR wave digital filter interpolator

Filter Structure String Description of Resulting Multirate Filter
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    NumberOfSamplesProcessed: 0
                 ResetStates: 'on'
                      States: [72x1 double]

To demonstrate a few of the methods that apply to multirate filters, here are 
two examples of using hm, your FIR decimator.

Use the Filter Visualization tool to review the magnitude response of your 
decimator.

Now check to see if your filter is stable.

isstable(hm)

ans =

     1
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Finally, pass a signal through the filter to see if it indeed decimates by three.

m = 3;                        % Decimation factor
hm = mfilt.firdecim(m);       % We use the default filter
fs = 44.1e3;                  % Original sample freq: 44.1kHz.
n = 0:10239;                  % 10240 samples, 0.232 second long 

% signal
x = sin(2*pi*1e3/fs*n);      % Original signal, sinusoid at 1 kHz
y = filter(hm,x);            % 5120 samples, still 0.232 seconds
stem(n(1:44)/fs,x(1:44))    % Plot original sampled at 44.1kHz 
hold on                       % Plot decimated signal (22.05kHz) in red
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

Here is the stem plot that shows the result of the decimation process.
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hm =
 

         FilterStructure: 'Direct-Form FIR Polyphase Decimator'
               Numerator: [1x73 double]
        DecimationFactor: 3
    PersistentMemory: 'on'
                  States: [72x1 double]

The filter processes 10239 samples with 1 unprocessed sample whose value is 
0.8963. One nonprocessed sample results from dividing the number of samples, 
10240, by the decimation factor, 3, to get 3413 output samples and one left over.

See Also mfilt.firfracdecim, mfilt.firfracinterp, mfilt.firinterp, 
mfilt.firsrc, mfilt.firtdecim
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8mfilt.cascadePurpose Cascade dfilt and mfilt object(s) into filter

Syntax hm = cascade(hm1,hm2,...,hmn)

Description hm = cascade(hm1,hm2,...,hmn) creates filter object hm by cascading 
(connecting in series) the individual filter objects hm1, hm2, and so on to hmn. 

In block diagram form, the cascade looks like this, with x as the input to the 
filter hm and y the output from the cascade filter hm:

Examples Create a variety of mfilt objects and cascade them together.

hm(1) = mfilt.firdecim(12); 
hm(2) = mfilt.firdecim(4); 
h1 = mfilt.cascade(hm(1),hm(2)); 

hm(3) = mfilt.firinterp(4); 
hm(4) = mfilt.firinterp(12); 
h2 = mfilt.cascade(hm(3),hm(4)); 

Now cascade h1 and h2 together to get another multirate filter.

h3 = mfilt.cascade(h1,h2,9600); 

See Also dfilt.cascade in your Signal Processing Toolbox documentation

hm1 hmnhm2 yx hm2 ...
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8mfilt.cicdecimPurpose Construct fixed-point cascaded integrator-comb (CIC) decimator filter object

Syntax hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps)

Description hm = mfilt.cicdecim(r,m,n,iwl,owl,wlps) returns a cascaded 
integrator-comb (CIC) decimation filter object. All of the input arguments are 
optional. When you omit one or more input options, the object applies default 
values for the omitted input argument as shown in the next table.

The following table describes the input arguments for creating hm. 

Input Arguments Description

r Decimation factor applied to the input signal. 
Sharpens the response curve to let you change 
the shape of the response. Default value is 2.

m Differential delay. Changes both the shape and 
number of nulls in the filter response. Also affects 
the null locations. Increasing m increases the 
number and sharpness of the nulls and response 
between nulls. Generally, one or two work best as 
values for m. Default is 1.

n Number of sections. Deepens the nulls in the 
response curve. Note that this is the number of 
either comb or integrator sections, not the total 
section count. 2 is the default value.

iwl Word length of the input signal. Use any integer 
number of bits. The default value is 16 bits.
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Constraints and Word Length Considerations
CIC decimators have the following  constraint—the word lengths of the filter 
section must be monotonically decreasing. The word length of each filter 
section must be the same size as, or smaller than, the word length of the 
previous filter section.

The formula for Bmax, the most significant bit at the filter output, is given in 
the Hogenauer paper in the References below.

where Bin is the number of bits of the input.

The cast operations shown in the  diagram in  “Algorithm” on 
page 8-859perform the changes between the word lengths of each section. 
When you specify word lengths that do not follow the constraints above, the 
constructor returns an error.

owl Word length of the output signal. It can be any 
positive integer number of bits. By default, owl is 
16 bits.

wlps Defines the number of bits per word in each filter 
section while accumulating the data in the 
integrator sections or while subtracting the data 
during the comb sections (using 'wrap' 
arithmetic). Enter wlps as a scalar or vector of 
length 2*n, where n is the number of sections. 
When wlps is a scalar, the scalar value is applied 
to each filter section. The default is 16 for each 
section in the decimator.

When you elect to specify wlps as an input 
argument, the SectionWordLengthMode property 
automatically switches from the default value of 
MinWordLengths to SpecifyWordLengths.

Input Arguments Description

Bmax Nlog2RM Bin 1–+( )=
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When you specify the word lengths correctly, the most significant bit Bmax 
stays the same throughout the filter, while the word length of each section 
either decreases or stays the same. This can cause the fraction length to change 
throughout the filter as least significant bits are truncated to decrease the 
word length, as shown in “Algorithm” on page 8-859.

Properties of the Object
Objects have properties that control the way the object behaves. This table lists 
all the properties for the filter, with a description of each.

Name Values Default Description

Arithmetic fixed fixed Reports the kind of 
arithmetic the filter uses. 
CIC decimators are 
always fixed-point filters.

DecimationFactor Any positive integer 2 Amount to reduce the 
input sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay 
for the filter. Usually a 
value of one or two is 
appropriate.

FilterStructure mfilt structure 
string

None Reports the type of filter 
object. You cannot set this 
property—it is always 
read only and results 
from your choice of mfilt 
objects.

FilterInternals FullPrecision, 
MinWordLengths, 
SpecifyPrecision, 
SpecifyWordLengths

FullPrecision Set the usage mode for 
the filter. Refer to “Usage 
Modes” below for details.



mfilt.cicdecim

8-847

InputFracLength Any positive integer 15 The number of bits 
applied to the fraction 
length to interpret the 
input data to the filter.

InputOffset 0 -> r. 0 Indicates the length of 
the output signal given 
the length of the input 
signal. InputOffset 
starts at zero and cycles 
through the phases as 
follows for each input 
sample:
0->r->(r-1)->(r-2)->(r-p)->
0, where p =  r-1.

InputWordLength Any positive integer 16 The number of bits 
applied to the word 
length to interpret the 
input data to the filter.

NumberOfSections Any positive integer 2 Number of sections used 
in the decimator. 
Generally called n. 
Reflects either the 
number of decimator or 
comb sections, not the 
total number of sections 
in the filter.

OutputFracLength Any positive integer 15 The number of bits 
applied to the fraction 
length to interpret the 
output data from the 
filter. Read-only.

Name Values Default Description
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OutputWordLength Any positive integer 16 The number of bits 
applied to the word 
length to interpret the 
output data from the 
filter.

PersistentMemory false or true false Determines whether the 
filter states get restored 
to their starting values 
for each filtering 
operation. The starting 
values are the values in 
place when you create the 
filter if you have not 
changed the filter since 
you constructed it. 
PersistentMemory 
returns to zero any state 
that the filter changes 
during processing. States 
that the filter does not 
change are not affected. 
When PersistentMemory 
is false, you cannot 
access the filter states. 
Setting 
PersistentMemory to 
true reveals the States 
property so you can 
modify the filter states.

Name Values Default Description
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SectionWordLengths Any integer or a 
vector of length 2*n.

16 Defines the bits per 
section used while 
accumulating the data in 
the integrator sections or 
while subtracting the 
data during the comb 
sections (using 'wrap' 
arithmetic). Enter 
SectionWordLengths as a 
scalar or vector of length 
2*n, where n is the 
number of sections. When 
SectionWordLengths is 
a scalar, the scalar value 
is applied to each filter 
section. When 
SectionWordLengths is a 
vector of values, the 
values apply to the 
sections in order. The 
default is 16 for each 
section in the decimator. 
Available when 
SectionWordLengthMode 
is SpecifyWordLengths.

Name Values Default Description
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SectionWordLengthMode MinWordLengths or 
SpecifyWordLengths

MinWordLength Determines whether the 
filter object sets the 
section word lengths or 
you provide the word 
lengths explicitly. By 
default, the filter uses the 
input and output word 
lengths in the command 
to determine the optimal 
word lengths for each 
section, according to the 
information in [1]. When 
you choose 
SpecifyWordLengths, you 
provide the word length 
for each section. In 
addition, choosing 
SpecifyWordLengths 
exposes the 
SectionWordLengths 
property for you to modify 
as needed.

Name Values Default Description
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Usage Modes
There are four modes of usage for this which are set using the 
FilterInternals property

• FullPrecision—All word and fraction lengths set to Bmax + 1, called Baccum 
by fred harris in [3]. Full Precision is the default setting.

• MinWordLengths—Automatically set the sections for minimum word lengths.

• SpecifyWordLengths—Specify the word lengths for each section.

• SpecifyPrecision—Specify precision by providing values for the word and 
fraction lengths for each section.

States filtstates.cic 
object

m+1-by-n 
matrix of 
zeros, after you 
call function 
int.

Stored conditions for the 
filter, including values for 
the integrator and comb 
sections before and after 
filtering. m is the 
differential delay of the 
comb section and n is the 
number of sections in the 
filter. The integrator 
states are stored in the 
first matrix row. States 
for the comb section fill 
the remaining rows in the 
matrix. Available for 
modification when 
PersistentMemory is 
true. Refer to the 
filtstates object in the 
Signal Processing 
Toolbox for more general 
information about the 
filtstates object.

Name Values Default Description
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Full Precision
In full precision mode, the word lengths of all sections and the output are set 
to Baccum as defined by

where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the 
input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'FullPrecision'

Minimum Wordlengths
In minimum word length mode, you control the output word length explicitly. 
When the output word length is less than Baccum,  roundoff noise is introduced 
at the output of the filter. Hogenauer's bit pruning theory (refer to [1]) states 
that one valid design criterion is to make the word lengths of the different 
sections of the filter smaller than Baccum as well, so that the roundoff noise 
introduced by all sections does not exceed the roundoff noise introduced at the 
output.

In this mode, the design calculates the word lengths of each section to meet the 
Hogenauer criterion. The algorithm subtracts the number of bits computed 
using eq. 21 in Hogenauer's paper from Baccum to determine the word length 
each section.

To compute the fraction lengths of the different sections, the algorithm notes 
that the bits thrown out for this word length criterion are least significant bits 
(LSB), therefore each bit thrown out at a particular section decrements the 

Baccum ceil N ssec Log2 D M×( )( ) InputWordLength+( )=
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frection length of that section by one bit compared to the input fraction length. 
Setting the output wordlength for the filter automatically sets the output 
fraction length as well.

Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'MinWordLengths'
                                          
OutputWordLength: 16  

Specify word lengths
In this mode, the design algorithm discards the LSBs, adjusting the fraction 
length so that unrecoverable overflow does not occur, always producing 
a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot  
control the fraction lengths for those quantities.

To specify the word lengths, you  enter a vector of length 
2*(NumberOfSections), where each vector element represents the word length 
for a section. If you specify a scalar, such as Baccum, the full-precision output 
word length, the algorithm expands that scalar to a vector of the appropriate 
size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are 
monotonically decreasing. There are some cases where the word lengths are 
not necessarily monotonically decreasing, for example

hcic=mfilt.cicdecim;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;
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which are valid CIC filters but the word lengths do not decrease monotonically 
across the sections.

Here is  the display looks like for the SpecifyWordLenghts mode.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'SpecifyWordLengths'
                                          
SectionWordLengths: [19 18 18 17]

OutputWordLength: 16  

Specify precision
In this mode, you have full control over the word length and fraction lengths of 
all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length 
2*(NumberOfSections) with elements that represent the word length for each 
section. When you enter a scalar such as Baccum, mfilt.cicdecim expands that 
scalar to a vector of the appropriate size and applies the scalar value to each 
section and the output. The design does not check that this vector is 
monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements 
that represent the fraction length for each section as well. When you enter 
a scalar such as Baccum, mfilt.cicdecim applies scalar expansion as done for 
the word lengths. 

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Decimator'
Arithmetic: 'fixed'
DifferentialDelay: 1



mfilt.cicdecim

8-855

NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'SpecifyPrecision'
                                          
SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16  
OutputFracLength: 11  

About the States of the Filter
In the states property you find the states for both the integrator and comb 
portions of the filter. states is a matrix of dimensions m+1-by-n, with the states 
apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the 
state matrix. 

• States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, use int to assign the states to a variable in 
MATLAB. As an example, here are the states for a CIC decimator hm before and 
after filtering a data set.

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicdecim(2,1,2,16,16,16);
sts=int(hm.states)

sts =

      0      0
      0      0

set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)
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sts=int(hm.states)

sts =

     10     45
     28     13

STS is an integer matrix that int returns from the contents of the 
filtstates.cic object in `.

Design Considerations
When you design your CIC decimation filter, remember the following general 
points:

• The filter output spectrum has nulls at ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of sections in the filter, determines the passband attenuation. 
Increasing n improves the filter ability to reject aliasing and imaging, but it 
also increases the droop (or rolloff) in the filter passband. Using an 
appropriate FIR filter in series after the CIC decimation filter can help you 
compensate for the induced droop.

• The DC gain for the filter is a function of the decimation factor. Raising the 
decimation factor increases the DC gain.

Examples This example applies a decimation factor r equal to 8 to a 160-point impulse 
signal. The signal output from the filter has 160/r, or 20, points or samples. 
Choosing 10 bits for the word length represents a fairly common setting for 
analog to digital converters. The plot shown after the code presents the stem 
plot of the decimated signal, with 20 samples remaining after decimation:

m = 2;  % Differential delays in the filter.
n = 4;  % Filter sections
r = 8   % Decimation factor
x = int16(zeros(160,1)); x(1) = 1;  % Create a 160-point 

% impulse signal.
hm = mfilt.cicdecim(r,m,n); % Expects 16-bit input by default.
y = filter(hm,x);
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stem(double(y));  % Plot the output as ... 
% a stem plot.

xlabel('Samples'); ylabel('Amplitude');
title('Decimated Signal');

The next example demonstrates one way to compute the filter frequency 
response, using a 4-section decimation filter with the decimation factor set to 7:

hm = mfilt.cicdecim(7,1,4);
fvtool(hm)

FVTool provides ways for you to change the title and x labels to match the 
figure shown. Here’s the frequency response plot for the filter. For details about 
the transfer function used to produce the frequency response, refer to [1] in the 
References section.
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This final example demonstrates the decimator for converting from 44.1 kHz 
audio to 22.05 kHz—decimation by two. To overlay the before and after signals, 
scale the output and plot the signals on a stem plot.

r = 2;                  % Decimation factor.
hm = mfilt.cicdecim(r); % Use default NumberOfSections & 

% DifferentialDelay property values.
fs = 44.1e3;            % Original sampling frequency: 44.1kHz.
n = 0:10239;            % 10240 samples, 0.232 second long signal.
x  = sin(2*pi*1e3/fs*n);% Original signal, sinusoid at 1kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.
  
% Scale the output to overlay the stem plots.
x = double(x);
y = double(y_fi);
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y = y/max(abs(y));
stem(n(1:44)/fs,x(2:45)); hold on;  % Plot original signal 

% sampled at 44.1kHz. 
stem(n(1:22)/(fs/r),y(3:24),'r','filled'); % Plot decimated 

% signal (22.05kHz) 
% in red.

xlabel('Time (seconds)');ylabel('Signal Value');

Algorithm To show how the CIC decimation filter is constructed, the following figure 
presents a block diagram of the filter structure for a two-section CIC 
decimation filter (n = 2). fs is the high sampling rate, the input to the 
decimation process.

For details about the bits that are removed in the Comb section, refer to [1] in 
References.
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mfilt.cicdecim calculates the fraction length at each section of the decimator 
to avoid overflows at the output of the filter.

See Also mfilt, mfilt.cicinterp

References [1] Hogenauer, E. B., “An Economical Class of Digital Filters for Decimation 
and Interpolation,” IEEE Transactions on Acoustics, Speech, and Signal 
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, “Hogenauer CIC Filters,” in Digital Signal Processing 
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172

[3] harris, fredric j, Multirate Signal Processing for Communication Systems, 
Prentice-Hall PTR, 2004 , pp. 343
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8mfilt.cicinterpPurpose Construct fixed-point cascaded integrator-comb (CIC) interpolator filter object

Syntax hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps)

Description hm = mfilt.cicinterp(r,m,n,ilw,owl,wlps) constructs a cascaded 
integrator-comb (CIC) interpolation filter object that uses fixed-point 
arithmetic. All of the input arguments are optional. When you omit one or more 
input options, the omitted option applies default values shown in the table 
below.

The following table describes the input arguments for creating hm. 

Input Arguments Description

r Interpolation factor applied to the input signal. 
Sharpens the response curve to let you change 
the shape of the response. 2 is the default value.

m Differential delay. Changes both the shape and 
number of nulls in the filter response. Also affects 
the null locations. Increasing m increases the 
number and sharpness of the nulls and response 
between nulls. Generally, one or two work as 
values for m. 1 is the default.

n Number of sections. Deepens the nulls in the 
response curve. Note that this is the number of 
either comb or integrator sections, not the total 
section count. By default, the filter has two 
sections.

iwl Word length of the input signal. Use any integer 
number of bits. The default value is 16 bits.
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Constraints and Conversions
In Hogenauer [1],  the author describes the constraints on CIC interpolator 
filters. mfilt.cicinterp enforces a constraint—the word lengths of the filter 
sections must be nondecreasing. That is, the word length of each filter section 
must be the same size as, or greater than, the word length of the previous filter 
section.

The formula for Wj, the minimum register width, is derived in [1]. The formula 
for Wj is given by

where Gj, the maximum register growth up to the jth section, is given by

owl Word length of the output signal. It can be any 
positive integer number of bits. By default, owl is 
16 bits.

wlps Defines the number of bits per word in each filter 
section while accumulating the data in the 
integrator sections or while subtracting the data 
during the comb sections (using 'wrap' 
arithmetic). Enter wlps as a scalar or vector of 
length 2*n, where n is the number of sections. 
When wlps is a scalar, the scalar value is applied 
to each filter section. The default is 16 for each 
section in the integrator.

When you elect to specify wlps as an input 
argument, the SectionWordLengthMode property 
automatically switches from the default value of 
MinWordLengths to SpecifyWordLengths.

Input Arguments Description

Wj ceil Bin log2Gj+( )=
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When the differential delay, M, is 1, there is also a special condition for the 
register width of the last comb, WN, that is given by

The conversions denoted by the cast blocks in the integrator diagrams in 
“Algorithm” on page 8-874 perform the changes between the word lengths of 
each section. When you specify word lengths that do not follow the constraints 
described in this section, mfilt.cicinterp returns an error.

The fraction lengths and scalings of the filter sections do not change. At each 
section the word length is either staying the same or increasing. The signal 
scaling can change at the output after the final filter section if you choose the 
output word length to be less than the word length of the final filter section.

Properties of the Object
Objects have properties that control the way the object behaves. This table lists 
all the properties for the filter, with a description of each.

WN Bin N 1–+= if M 1=

Name Values Default Description

Arithmetic fixed fixed Reports the kind of 
arithmetic the filter uses. 
CIC interpolators are 
always fixed-point filters.

InterpolationFactor Any positive integer 2 Amount to increase the 
input sampling rate.

DifferentialDelay Any integer 1 Sets the differential delay 
for the filter. Usually 
a value of one or two is 
appropriate.
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FilterStructure mfilt structure 
string

None Reports the type of filter 
object, such as a 
interpolator or fractional 
integrator. You cannot set 
this property—it is always 
read only and results from 
your choice of mfilt objects.

FilterInternals FullPrecision, 
MinWordLengths, 
SpecifyPrecision, 
SpecifyWordLengths

FullPrecision Set the usage mode for the 
filter. Refer to “Usage 
Modes” below for details.

InputFracLength Any positive integer 16 The number of bits applied 
as the fraction length to 
interpret the input data to 
the filter.

InputWordLength Any positive integer 16 The number of bits applied 
to the word length to 
interpret the input data to 
the filter.

NumberOfSections Any positive integer 2 Number of sections used in 
the interpolator. Generally 
called n. Reflects either the 
number of interpolator or 
comb sections, not the total 
number of sections in the 
filter.

OutputFracLength Any positive integer 15 The number of bits applied 
to the fraction length to 
interpret the output data 
from the filter. Read-only.

Name Values Default Description
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OutputWordLength Any positive integer 16 The number of bits applied 
to the word length to 
interpret the output data 
from the filter.

PersistentMemory false or true false Determines whether the 
filter states get restored to 
their starting values for 
each filtering operation. 
The starting values are the 
values in place when you 
create the filter if you have 
not changed the filter since 
you constructed it. 
PersistentMemory returns 
to zero any state that the 
filter changes during 
processing. States that the 
filter does not change are 
not affected. When 
PersistentMemory is 
false, you cannot access 
the filter states. Setting 
PersistentMemory to true 
reveals the States property 
so you can modify the filter 
states.

Name Values Default Description
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SectionWordLengths Any integer or a 
vector of length 2*n.

16 Defines the bits per section 
used while accumulating 
the data in the integrator 
sections or while 
subtracting the data during 
the comb sections (using 
'wrap' arithmetic). Enter 
SectionWordLengths as a 
scalar or vector of length 
2*n, where n is the number 
of sections. When 
SectionWordLengths is 
a scalar, the scalar value is 
applied to each filter 
section. When 
SectionWordLengths is a 
vector of values, the values 
apply to the sections in 
order. The default is 16 for 
each section in the 
interpolator. Available 
when 
SectionWordLengthMode is 
SpecifyWordLengths.

Name Values Default Description
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SectionWordLengthMode MinWordLengths, 
SpecifyWordLengths

MinWordLength Determines whether the 
filter object sets the section 
word lengths or you provide 
the word lengths explicitly. 
By default, the filter uses 
the input and output word 
lengths in the command to 
determine the proper word 
lengths for each section, 
according to the 
information in [1]. When 
you choose 
SpecifyWordLengths, you 
provide the word length for 
each section. In addition, 
choosing 
SpecifyWordLengths 
exposes the 
SectionWordLengths 
property for you to modify 
as needed.

Name Values Default Description
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Usage Modes
There are four modes of usage for this which are set using the 
FilterInternals property

• FullPrecision—All word and fraction lengths set to Bmax + 1, called Baccum 
by fred harris in [3]. Full Precision is the default setting.

• MinWordLengths—Automatically set the sections for minimum word lengths.

• SpecifyWordLengths—Specify the word lengths for each section.

• SpecifyPrecision—Specify precision by providing values for the word and 
fraction lengths for each section.

Full Precision
In full precision mode, the word lengths of all sections and the output are set 
to Baccum as defined by

States filtstates.cic 
object

m+1-by-n matrix 
of zeros, after 
you call 
function int.

Stored conditions for the 
filter, including values for 
the integrator and comb 
sections before and after 
filtering. m is the 
differential delay of the 
comb section and n is the 
number of sections in the 
filter. The integrator states 
are stored in the first 
matrix row. States for the 
comb section fill the 
remaining rows in the 
matrix. Available for 
modification when 
PersistentMemory is true. 
Refer to the filtstates 
object in the Signal 
Processing Toolbox for more 
general information about 
the filtstates object.

Name Values Default Description
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where Nsecs is the number of filter sections.

Section fraction lengths and the fraction length of the output are set to the 
input fraction length.

Here is the display looks for this mode.

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'FullPrecision'

Minimum Wordlengths
In minimum word length mode, you control the output word length explicitly. 
When the output word length is less than Baccum,  roundoff noise is introduced 
at the output of the filter. Hogenauer's bit pruning theory (refer to [1]) states 
that one valid design criterion is to make the word lengths of the different 
sections of the filter smaller than Baccum as well, so that the roundoff noise 
introduced by all sections does not exceed the roundoff noise introduced at the 
output.

In this mode, the design calculates the word lengths of each section to meet the 
Hogenauer criterion. The algorithm subtracts the number of bits computed 
using eq. 21 in Hogenauer's paper from Baccum to determine the word length 
each section.

To compute the fraction lengths of the different sections, the algorithm notes 
that the bits thrown out for this word length criterion are least significant bits 
(LSB), therefore each bit thrown out at a particular section decrements the 
frection length of that section by one bit compared to the input fraction length. 
Setting the output wordlength for the filter automatically sets the output 
fraction length as well.

Baccum ceil N ssec Log2 D M×( )( ) InputWordLength+( )=
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Here is the display for this mode:

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'MinWordLengths'
                                          
OutputWordLength: 16  

Specify wordlengths
In this mode, the design algorith discards the LSBs, adjusting the fraction 
length so that unrecoverable overflow does not occur, always producing 
a reasonable output.

You can specify the word lengths for all sections and the output, but you cannot  
control the fraction lengths for those quantities.

To specify the word lengths, you  enter a vector of length 
2*(NumberOfSections), where each vector element represents the word length 
for a section. If you specify a scalar, such as Baccum, the full-precision output 
word length, the algorithm expands that scalar to a vector of the appropriate 
size, applying the scalar value to each section.

The CIC design does not check that the specified word lengths are 
monotonically decreasing. There are some cases where the word lengths are 
not necessarily monotonically decreasing, for example

hcic=mfilt.cicinterp;
hcic.FilterInternals='minwordlengths';
hcic.Outputwordlength=14;

which are valid CIC filters but the word lengths do not decrease monotonically 
across the sections.

Here is  the display looks like for the SpecifyWordLengths mode.
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FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
InterpolationFactor: 4
PersistentMemory: false

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'SpecifyWordLengths'
                                          
SectionWordLengths: [19 18 18 17]

OutputWordLength: 16  

Specify precision
In this mode, you have full control over the word length and fraction lengths of 
all sections and the filter output.

When you elect the SpecifyPrecision mode, you must enter a vector of length 
2*(NumberOfSections) with elements that represent the word length for each 
section. When you enter a scalar such as Baccum, mfilt.cicinterp expands 
that scalar to a vector of the appropriate size and applies the scalar value to 
each section and the output. The design does not check that this vector is 
monotonically decreasing.

Also, you must enter a vector of length 2*(NumberOfSections) with elements 
that represent the fraction length for each section as well. When you enter 
a scalar such as Baccum, mfilt.cicinterp applies scalar expansion as done for 
the word lengths. 

Here is the SpecifyPrecision display.

FilterStructure: 'Cascaded Integrator-Comb Interpolator'
Arithmetic: 'fixed'
DifferentialDelay: 1
NumberOfSections: 2
DecimationFactor: 4
PersistentMemory: false



mfilt.cicinterp

8-872

InputWordLength: 16              
InputFracLength: 15              
                                          
FilterInternals: 'SpecifyPrecision'
                                          
SectionWordLengths: [19 18 18 17]
SectionFracLengths: [14 13 13 12]

OutputWordLength: 16  
OutputFracLength: 11  

About the States of the Filter
In the states property you find the states for both the integrator and comb 
portions of the filter. states is a matrix of dimensions m+1-by-n, with the states 
apportioned as follows:

• States for the integrator portion of the filter are stored in the first row of the 
state matrix. 

• States for the comb portion fill the remaining rows in the state matrix..

To review the states of a CIC filter, or any filter object states, use int to assign 
the states to a variable in MATLAB. As an example, here are the states for 
a CIC interpolator hm before and after filtering a data set.

x = fi(ones(1,10),true,16,0); % Fixed-point input data.
hm = mfilt.cicinterp(2,1,2,16,16,16);
sts=int(hm.states)

sts =

      0      0
      0      0

set(hm,'InputFracLength',0); % Integer input specified.
y=filter(hm,x)
 
sts=int(hm.states)

sts =
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     10     45
     28     13

Design Considerations
When you design your CIC interpolation filter, remember the following general 
points:

• The filter output spectrum has nulls at  ω = k * 2π/rm radians, k = 1,2,3….

• Aliasing and imaging occur in the vicinity of the nulls.

• n, the number of sections in the filter, determines the passband attenuation. 
Increasing n improves the filter ability to reject aliasing and imaging, but it 
also increases the droop or rolloff in the filter passband. Using an 
appropriate FIR filter in series after the CIC interpolation filter can help you 
compensate for the induced droop.

• The DC gain for the filter is a function of the interpolation factor. Raising the 
interpolation factor increases the DC gain.

Examples Demonstrate interpolation by a factor of two, in this case from 22.05 kHz to 
44.1 kHz. Note the scaling required to see the results in the stem plot and to 
use the full range of the int16 data type.

R = 2;                      % Interpolation factor.
hm = mfilt.cicinterp(R);    % Use default NumberOfSections and 

% DifferentialDelay property values.
fs = 22.05e3;               % Original sample frequency:22.05 kHz.
n = 0:5119;                % 5120 samples, .232 second long signal.
x = sin(2*pi*1e3/fs*n);    % Original signal, sinusoid at 1 kHz.

y_fi = filter(hm,x); % 5120 samples, still 0.232 seconds.
  
% Scale the output to overlay stem plots correctly.
x = double(x);
y = double(y_fi);
y = y/max(abs(y));
stem(n(1:22)/fs,x(1:22),'filled'); % Plot original signal sampled 

% at 22.05 kHz.
hold on;
stem(n(1:44)/(fs*R),y(4:47),'r');  % Plot interpolated signal 

% (44.1 kHz) in red.
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xlabel('Time (sec)');ylabel('Signal Value');

As you expect, the plot shows that the interpolated signal matches the input 
sine shape, with additional samples between each original sample.

Use the filter visualization tool (FVTool) to plot the response of the interpolator 
object. For example, to plot the response of an interpolator with an 
interpolation factor of 7, 4 sections, and 1 differential delay, do something like 
the following:

hm = mfilt.cicinterp(7,1,4)
fvtool(hm)

Algorithm To show how the CIC interpolation filter is constructed, the following figure 
presents a block diagram of the filter structure for a two-section CIC 
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interpolation filter (n = 2). fs is the high sampling rate, the output from the 
interpolation process.

For details about the bits that are removed in the integrator section, refer to 
[1] in References.

When you select MinWordLengths, the filter section word lengths are 
automatically set to the minimum number of bits possible in a valid CIC 
interpolator. mfilt.cicinterp computes the wordlength for each section so the 
roundoff noise introduced by all sections is less than the roundoff noise 
introduced by the quantization at the output.

References [1] Hogenauer, E. B., "An Economical Class of Digital Filters for Decimation 
and Interpolation," IEEE Transactions on Acoustics, Speech, and Signal 
Processing, ASSP-29(2): pp. 155-162, 1981

[2] Meyer-Baese, Uwe, "Hogenauer CIC Filters," in Digital Signal Processing 
with Field Programmable Gate Arrays, Springer, 2001, pp. 155-172 

[3] harris, fredric j, Multirate Signal Processing for Communication Systems, 
Prentice-Hall PTR, 2004 , pp. 343

InputFormat

Comb Portion Integrator Portion

OutputFormat

Cast1: [WLPS(1) inFL] Cast2: [WLPS(2) inFL]
Cast3: [WLPS(3) inFL] Cast4: [WLPS(4) inFL]

OutputFormat: [OutWL inFL+(OutWL−WLPS(2N))]
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8mfilt.fftfirinterpPurpose Construct an overlap-add FIR polyphase interpolator filter object

Syntax hm = mfilt.fftfirinterp(l,num,bl)

Description hm = mfilt.fftfirinterp(l,num,bl) returns a discrete-time FIR filter 
object that uses the overlap-add method for filtering input data.

The number of FFT points is given by [bl+ceil(length(num)/l)-1]. It is to 
your advantage to choose bl such that the number of FFT points is a power of 
two—using powers of two can improve the efficiency of the FFT and the 
associated interpolation process.

Input Arguments
The following table describes the input arguments for creating hm.

mfilt.fftfirinterp Object Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 

Input Argument Description

l Interpolation factor for the filter. l specifies the 
amount to increase the input sampling rate. It must be 
an integer. When you do not specify a value for l it 
defaults to 2.

num Vector containing the coefficients of the FIR lowpass 
filter used for interpolation. When num is not provided 
as an input, fftfirinterp uses a lowpass Nyquist 
filter with gain equal to l and cutoff frequency equal to 
π/l by default.

bl Length of each block of input data used in the filtering. 
bl must be an integer. When you omit input bl, it 
defaults to 100
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creating mfilt.fftfirinterp objects. The next table describes each property 
for an mfilt.fftfirinterp filter object.

Name Values Description

FilterStructure Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object.

Numerator Vector containing the 
coefficients of the FIR lowpass 
filter used for interpolation.

InterpolationFactor Interpolation factor for the filter. 
It specifies the amount to 
increase the input sampling 
rate. It must be an integer. 

BlockLength Length of each block of input 
data used in the filtering.

PersistentMemory false or 
true

Determines whether the filter 
states are restored to their 
starting values for each filtering 
operation. The starting values 
are the values in place when you 
create the filter if you have not 
changed the filter since you 
constructed it. 
PersistentMemory returns to 
zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected.

States Stored conditions for the filter, 
including values for the 
interpolator states.
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Examples Interpolation by a factor of 8. Notice that this object removes the spectral     
replicas in the signal after interpolation.

l = 8;                        % Interpolation factor
hm = mfilt.fftfirinterp(l);   % We use the default filter
n = 8192;                     % Number of points
hm.blocklength = n;           % Set block length to number of points
fs = 44.1e3;                  % Original sample freq: 44.1 kHz.
n = 0:n-1;                    % 0.1858 secs of data
x = sin(2*pi*n*22e3/fs);      % Original signal, sinusoid at 22 kHz
y = filter(hm,x);             % Interpolated sinusoid
xu = l*upsample(x,8);         % Upsample to compare--the spectrum 

% does not change
[px,f]=periodogram(xu,[],65536,l*fs);% Power spectrum of original 

% signal
[py,f]=periodogram(y,[],65536,l*fs); % Power spectrum of 

% interpolated signal
plot(f,10*log10(([fs*px,l*fs*py])))
legend('22  kHz sinusoid sampled at 44.1  kHz',...
'22  kHz sinusoid sampled at 352.8  kHz')
xlabel('Frequency (Hz)'); ylabel('Power Spectrum');

To see the results of the example, look at this figure.
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See Also mfilt.firinterp, mfilt.holdinterp, mfilt.linearinterp, 
mfilt.firfracinterp, mfilt.cicinterp
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8mfilt.firdecimPurpose Construct direct-form FIR polyphase decimator filter

Syntax hm = mfilt.firdecim(m)
hm = mfilt.firdecim(m,num)

Description hm = mfilt.firdecim(m) returns a direct-form FIR polyphase decimator 
object hm with a decimation factor of m. A lowpass Nyquist filter of gain 1 and 
cutoff frequency of π/m is designed by default. This filter allows some aliasing 
in the transition band but it very efficient because the first polyphase 
component is a pure delay.

hm = mfilt.firdecim(m,num) uses the coefficients specified by num for the 
decimation filter. This lets you specify more completely the FIR filter to use for 
the decimator.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.
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Object 
Properties

This section describes the properties for both floating-point filters 
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.firdecim objects. The next table describes each property for an 
mfilt.firdecim filter object.

Input Argument Description

m Decimation factor for the filter. m specifies the amount 
to reduce the sampling rate of the input signal. It must 
be an integer. When you do not specify a value for m it 
defaults to 2.

num Vector containing the coefficients of the FIR lowpass 
filter used for decimation. When num is not provided as 
an input, mfilt.firdecim constructs a lowpass Nyquist 
filter with gain of 1 and cutoff frequency equal to π/m 
by default. The default length for the Nyquist filter is 
24*m. Therefore, each polyphase filter component has 
length 24.

Name Values Description

Arithmetic Double, 
single, 
fixed

Defines the arithmetic the filter 
uses. Gives you the options 
double, single, and fixed. In 
short, this property defines the 
operation mode for your filter.

DecimationFactor Integer Decimation factor for the filter. 
m specifies the amount to reduce 
the sampling rate of the input 
signal. It must be an integer.



mfilt.firdecim

8-882

FilterStructure String Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object. 
Describes the signal flow for the 
filter object.

InputOffset Integers Contains a value derived from 
the number of input samples 
and the decimation factor—
InputOffset = mod(length(nx),m)

where nx is the number of input 
samples that have been 
processed so far and m is the 
decimation factor.

Numerator Vector Vector containing the 
coefficients of the FIR lowpass 
filter used for decimation.

PersistentMemory false, true Determines whether the filter 
states get restored to zeros for 
each filtering operation. The 
starting values are the values in 
place when you create the filter 
if you have not changed the filter 
since you constructed it. 
PersistentMemory set to false 
returns filter states to the  
default values after filtering. 
States that the filter does not 
change are not affected. Setting 
this to true allows you to modify 
the States, InputOffset, and 
PolyphaseAccum properties.

Name Values Description
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Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation 
of the filter. You see one or more of these properties when you set Arithmetic 
to fixed. Notice that some of the properties have different default values when 
they refer fixed point filters. One example is the property PolyphaseAccum 
which stores data as doubles when you use your filter in double-precision mode, 
but stores a fi object in fixed-point mode.

Note  The table lists all of the properties that a fixed-point filter can have. 
Many of the properties listed are dynamic, meaning they exist only in 
response to the settings of other properties. 

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

PolyphaseAccum  0 in 
double, 
single, or 
fixed for 
the 
different 
filter 
arithmetic 
settings.

Differentiates between the 
adders in the filter that work in 
full precision at all times 
(PolyphaseAccum) and the 
adders in the filter that the user 
controls and that may introduce 
quantization effects when 
FilterInternals is set to 
SpecifyPrecision.

States Double, 
single, or 
fi 
matching 
the filter 
arithmetic 
setting.

This property contains the filter 
states before, during, and after 
filter operations. States act as 
filter memory between filtering 
runs or sessions. Double is the 
default setting for floating-point 
filters in double arithmetic.

Name Values Description
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For further information about the properties of this filter or any mfilt object, 
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits 
[32]

Specifies the fraction length used to 
interpret data output by the accumulator. 
This is a property of FIR filters. 

AccumWordLength Any integer 
number of bits [39]

Sets the word length used to store data in 
the accumulator.

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify 
other filter properties to customize your 
fixed-point filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to 
represent filter coefficients without 
overflowing. Turning this off by setting the 
value to false enables you to change the 
NumFracLength property value to specify the 
precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically 
sets the output word and fraction lengths, 
product word and fraction lengths, and the 
accumulator word and fraction lengths  to 
maintain the best precision results during 
filtering. The default value, FullPrecision, 
sets automatic word and fraction length 
determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so 
you can set your own word and fraction 
lengths for them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits[16]

Specifies the word length applied to 
interpret input data.

OutputFracLength Any positive or 
negative integer 
number of bits 
[32]

Determines how the filter interprets the 
filter output data. You can change the value 
of OutputFracLength when you set 
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[39]

Determines the word length used for the 
output data. You make this property editable 
by setting FilterInternals to 
SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose 
from either saturate (limit the output to the 
largest positive or negative representable 
value) or wrap (set overflowing values to the 
nearest representable value using modular 
arithmetic.) The choice you make affects 
only the accumulator and output arithmetic. 
Coefficient and input arithmetic always 
saturates. Finally, products never overflow—
they maintain full precision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize 
numeric values when the values lie between 
representable values for the data format 
(word and fraction lengths).

• convergent—Round up to the next 
allowable quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if 
the least significant bit (after rounding) 
would be set to 1.

• fix—Round negative numbers up and 
positive numbers down to the next 
allowable quantized value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are 
halfway between the two nearest allowable 
quantized values are rounded up.

The choice you make affects only the 
accumulator and output arithmetic. 
Coefficient and input arithmetic always 
round. Finally, products never overflow—
they maintain full precision.

Name Values Description
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Filter Structure To provide decimation, mfilt.firdecim uses the following structure. At the 
input you see a commutator that operates counterclockwise, moving from 
position 0 to position 2, position 1, and back to position 0 as input samples enter 
the filter.

The figure below details the signal flow for the direct form FIR filter 
implemented by mfilt.firdecim.

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object This property contains the filter states 
before, during, and after filter operations. 
States act as filter memory between filtering 
runs or sessions. Notice that the states use 
fi objects, with the associated properties 
from those objects. For details, refer to 
fixed-point objects in your Fixed-Point 
Toolbox documentation or in the online Help 
system. For information about the ordering 
of the states, refer to the filter structure 
section.

Name Values Description



mfilt.firdecim

8-889

Notice the order of the states in the filter flow diagram. States 1 through 9 
appear in the diagram above each delay element. State 1 applies to the first 
delay element in phase 2. State 2 applies to the first delay element in phase 1. 
State 3 applies to the first delay element in phase 0. State 4 applies to the 
second delay in phase 2, and so on. When you provide the states for the filter 
as a vector to the States property, the above description explains how the filter 
assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:9];

Examples Convert an input signal from 44.1 kHz to 22.05 kHz using decimation by 
a factor of 2. In the figure that appears after the example code, you see the 
results of the decimation. 

m = 2;                        % Decimation factor.
hm = mfilt.firdecim(m);       % Use the default filter.
fs = 44.1e3;                  % Original sample freq: 44.1kHz.
n = 0:10239;                  % 10240 samples, 0.232 second long 

% signal.
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x = sin(2*pi*1e3/fs*n);      % Original signal--sinusoid at 1kHz.
y = filter(hm,x);             % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44))      % Plot original sampled at 44.1 kHz.
hold on                 % Plot decimated signal (22.05 kHz) 

% in red.
stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

See Also mfilt.firtdecim, mfilt.firfracdecim, mfilt.cicdecim
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8mfilt.firfracdecimPurpose Construct direct-form FIR polyphase fractional decimator filter object

Syntax hm = mfilt.firfracdecim(l,m,num)

Description hm = mfilt.firfracdecim(l,m,num) returns a direct-form FIR polyphase     
fractional decimator. Input argument l is the interpolation factor. l must be an 
integer. When you omit l in the calling syntax, it defaults to 2. m is the 
decimation factor. It must be an integer. If not specified, it defaults to l+1.

num is a vector containing the coefficients of the FIR lowpass filter used for 
decimation. If omitted, a lowpass Nyquist filter of gain l and cutoff frequency 
of π/max(l,m) is used by default.

By specifying both a decimation factor and an interpolation factor, you can 
decimate your input signal by noninteger amounts. The fractional decimator 
first interpolates the input, then decimates to result in an output signal whose 
sample rate is l/m of the input rate. By default, the resulting decimation factor 
is 3/2 when you do not provide l and m in the calling syntax. Specify l smaller 
than m for proper decimation.

Input Arguments
The following table describes the input arguments for creating hm.

Input Argument Description

l Interpolation factor for the filter. It must be an integer. 
When you do not specify a value for l it defaults to 2.

num Vector containing the coefficients of the FIR lowpass 
filter used for interpolation. When num is not provided 
as an input, firfracdecim uses a lowpass Nyquist 
filter with gain equal to l and cutoff frequency equal to 
π/max(l,m) by default.

m Decimation factor for the filter. m specifies the amount 
to reduce the sampling rate of the input signal. It must 
be an integer. When you do not specify a value for m it 
defaults to l + 1.
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mfilt.firfracdecim Object Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.firfracdecim objects. The next table describes each property 
for an mfilt.firfracdecim filter object.

Name Values Description

FilterStructure String Reports the type of filter object, 
such as a decimator or fractional 
decimator. You cannot set this 
property—it is always read only 
and results from your choice of 
mfilt object.

Numerator Vector Vector containing the 
coefficients of the FIR lowpass 
filter used for interpolation.

RateChangeFactors [l,m] Reports the decimation (m) and 
interpolation (l) factors for the 
filter object. Combining these 
factors results in the final rate 
change for the signal.
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PersistentMemory false or 
true

Determines whether the filter 
states are restored to their 
starting values for each filtering 
operation. The starting values 
are the values in place when you 
create the filter if you have not 
changed the filter since you 
constructed it. 
PersistentMemory returns to 
zero any state that the filter 
changes during processing. 
States that the filter does not 
change are not affected.

States Matrix Stored conditions for the delays 
between each interpolator 
phase, the filter states, and the 
states at the output of each 
phase in the filter.

The number of states is 
(lh-1)*m+(l-1)*(lo+mo) where lh 
is the length of each subfilter, 
and l and m are the interpolation 
and decimation factors. lo and 
mo, the input and output delays 
between each interpolation 
phase, are integers from Euclid's 
theorem such that lo*l-mo*m = -1 
(refer to the reference for more 
details). Use euclidfactors to 
get lo and mo for an 
mfilt.firfracdecim object

Name Values Description
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Example To demonstrate firfracdecim, perform a fractional decimation by a factor of 
2/3. This is one way to downsample a 48 kHz signal to 32 kHz, commonly done 
in audio processing.

l = 2; m = 3;               % Interpolation/decimation factors.
hm = mfilt.firfracdecim(l,m); % We use the default
fs = 48e3;                    % Original sample freq: 48 kHz.
n = 0:10239;                 % 10240 samples, 0.213 second long 

% signal
x = sin(2*pi*1e3/fs*n);      % Original signal, sinusoid at 1 kHz
y = filter(hm,x);            % 9408 samples, still 0.213 seconds
stem(n(1:49)/fs,x(1:49)); hold on; % Plot original signal sampled 

% at 48 kHz
stem(n(1:32)/(fs*l/m),y(13:44),'r','filled') % Plot decimated 

% signal at 32 kHz
xlabel('Time (sec)');

As shown, the plot clearly demonstrates the reduced sampling frequency of 32 
kHz.
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See Also mfilt.firsrc, mfilt.firfracinterp, mfilt.firinterp, mfilt.firdecim

References Fliege, N.J., Multirate Digital Signal Processing, John Wiley & Sons, Ltd., 
1994 
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8mfilt.firfracinterpPurpose Construct direct-form FIR polyphase fractional interpolator filter object

Syntax hm = mfilt.firfracinterp(l,m,num)

Description hm = mfilt.firfracinterp(l,m,num) returns a direct-form FIR polyphase 
fractional interpolator mfilt object. l is the interpolation factor. It must be an 
integer. If not specified, l defaults to 3.

m is the decimation factor. Like l, it must be an integer. If you do not specify m 
in the calling syntax, it defaults to 1. If you also do not specify a value for  l, m 
defaults to 2.

num is a vector containing the coefficients of the FIR lowpass filter used for 
interpolation. If omitted, a lowpass Nyquist filter of gain l and cutoff frequency 
of π/max(l,m) is used by default.

By specifying both a decimation factor and an interpolation factor, you can 
interpolate your input signal by noninteger amounts. The fractional 
interpolator first interpolates the input, then decimates to result in an output 
signal whose sample rate is l/m of the input rate. For proper interpolation, you 
specify l to be greater than m. By default, the resulting interpolation factor is 
3/2 when you do not provide l and m in the calling syntax.

Input Arguments
The following table describes the input arguments for creating hm.

Input Argument Description

l Interpolation factor for the filter. l specifies the 
amount to increase the input sampling rate. It must be 
an integer. When you do not specify a value for l it 
defaults to 3.
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mfilt.firfracinterp Object Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.firfracinterp objects. The next table describes each property 
for an mfilt.firfracinterp filter object.

num Vector containing the coefficients of the FIR lowpass 
filter used for interpolation. When num is not provided 
as an input, firfracinterp uses a lowpass Nyquist 
filter with gain equal to l and cutoff frequency equal to 
π/max(l,m) by default.

m Decimation factor for the filter. m specifies the amount 
to reduce the sampling rate of the input signal. It must 
be an integer. When you do not specify a value for m it 
defaults to 1. When you do not specify l as well, m 
defaults to 2.

Name Values Description

FilterStructure Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object.

Numerator Vector containing the 
coefficients of the FIR lowpass 
filter used for interpolation.

RateChangeFactors [l,m] Reports the decimation (m) and 
interpolation (l) factors for the 
filter object. Combining these 
factors results in the final rate 
change for the signal.

Input Argument Description
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Examples To convert a signal from 32 kHz to 48 kHz requires fractional interpolation. 
This example uses the mfilt.firfracinterp object to upsample an input 
signal. Setting l = 3 and m = 2 returns the same mfilt object as the default 
mfilt.firfracinterp object.

l = 3; m = 2;               % Interpolation/decimation factors.
hm = mfilt.firfracinterp(l,m); % We use the default filter
fs = 32e3;                   % Original sample freq: 32 kHz.
n = 0:6799;                  % 6800 samples, 0.212 second long signal
x = sin(2*pi*1e3/fs*n);     % Original signal, sinusoid at 1 kHz
y = filter(hm,x);            % 10200 samples, still 0.212 seconds
stem(n(1:32)/fs,x(1:32),'filled') % Plot original sampled at 

% 32 kHz
hold on;
% Plot fractionally interpolated signal (48 kHz) in red
stem(n(1:48)/(fs*l/m),y(20:67),'r')
xlabel('Time (sec)');ylabel('Signal Value')

PersistentMemory false or 
true

Determines whether the filter 
states are restored to their 
starting values for each filtering 
operation. The starting values 
are the values in place when you 
create the filter if you have not 
changed the filter since you 
constructed it. 
PersistentMemory returns to 
the default values any state that 
the filter changes during 
processing. States that the filter 
does not change are not affected.

States Matrix Stored conditions for the filter, 
including values for the 
interpolator and comb states.

Name Values Description
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Having the ability to interpolate by fractional amounts lets us raise the 
sampling rate from 32 to 48 kHz, something you cannot do with integral 
interpolators. Both signals appear in the following figure.

See Also mfilt.firsrc, mfilt.firfracdecim, mfilt.firinterp, mfilt.firdecim
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8mfilt.firinterpPurpose Construct FIR filter-based interpolator

Syntax hm = mfilt.firinterp(l)
hm = mfilt.firinterp(l,num)

Description hm = mfilt.firinterp(l) returns an FIR-based interpolator object hm with 
an interpolation factor of l. A lowpass Nyquist filter of gain l and cutoff 
frequency of π/l is the default if you do not include l as an input.

hm = mfilt.firinterp(l,num) uses the coefficients specified by num for the 
numerator coefficients of the interpolation filter.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.

Input Argument Description

l Interpolation factor for the filter. l specifies the 
amount to increase the input sampling rate. It must be 
an integer. When you do not specify a value for l it 
defaults to 2.

num Vector containing the coefficients of the FIR lowpass 
filter used for interpolation. When num is not provided 
as an input, firinterp uses a lowpass Nyquist filter 
with gain equal to l and cutoff frequency equal to π/l 
by default. The default length for the Nyquist filter is 
24*l. Therefore, each polyphase filter component has 
length 24.
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Object 
Properties

This section describes the properties for both floating-point filters 
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.firinterp objects. The next table describes each property for 
an mfilt.firinterp filter object.

Name Values Description

Arithmetic Double, 
single, 
fixed

Defines the arithmetic the filter 
uses. Gives you the options 
double, single, and fixed. In 
short, this property defines the 
operation mode for your filter.

FilterStructure String Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object.

Describes the signal flow for the 
filter object.

InterpolationFactor Integer Interpolation factor for the filter. 
l specifies the amount to 
increase the sampling rate of the 
input signal. It must be an 
integer.

Numerator Vector Vector containing the 
coefficients of the FIR lowpass 
filter used for decimation.
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Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation 
of the mfilt.firinterp filter.

Note  The table lists all of the properties that a fixed-point filter can have. 
Many of the properties listed are dynamic, meaning they exist only in 
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

PersistentMemory [false], 
true

Determines whether the filter 
states get restored to zeros for 
each filtering operation. The 
starting values are the values in 
place when you create the filter 
if you have not changed the filter 
since you constructed it. 
PersistentMemory set to false 
returns filter states to the  
default values after filtering. 
States that the filter does not 
change are not affected. Setting 
this to true allows you to modify 
the States property.

States Double, 
single, 
matching 
the filter 
arithmetic 
setting.

Contains the filter states before, 
during, and after filter 
operations. States act as filter 
memory between filtering runs 
or sessions. 

Name Values Description
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For further information about the properties of this filter or any mfilt object, 
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits. 
[32]

Specifies the fraction length used to interpret 
data output by the accumulator. This is a 
property of FIR filters and lattice filters. IIR 
filters have two similar properties—
DenAccumFracLength and 
NumAccumFracLength—that let you set the 
precision for numerator and denominator 
operations separately.

AccumWordLength Any integer 
number of bits[39]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths  to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data.

NumFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[32]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[39]

Determines the word length used for the output 
data. You make this property editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic.) 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description
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Filter Structure To provide interpolation, mfilt.firinterp uses the following structure. 

The figure below details the signal flow for the direct form FIR filter 
implemented by mfilt.firinterp. In the figure, the delay line updates happen 
at the lower input rate. The remainder of the filter— the sums and 
coefficients—operate at the higher output rate.

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object to match 
the filter 
arithmetic setting.

Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. 

Name Values Description
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Examples This example uses mfilt.firinterp to double the sample rate of a 22.05 kHz 
input signal. The output signal ends up at 44.1 kHz. Although l is set explicitly 
to 2, this represents the default interpolation value for mfilt.firinterp 
objects.

l = 2;                      % Interpolation factor.
hm = mfilt.firinterp(l);    % Use the default filter.
fs = 22.05e3;                % Original sample freq: 22.05 kHz.
n = 0:5119;                   % 5120 samples, 0.232s long signal.
x = sin(2*pi*1e3/fs*n);    % Original signal, sinusoid at 1 kHz.
y = filter(hm,x);           % 10240 samples, still 0.232s.
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at 

% 22.05 kHz.
hold on;
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% Plot interpolated signal (44.1 kHz) in red
stem(n(1:44)/(fs*l),y(25:68),'r')
xlabel('Time (sec)');ylabel('Signal Value')

With interpolation by 2, the resulting signal perfectly matches the original, but 
with twice as many samples—one between each original sample, as shown in 
the following figure.

See Also mfilt.holdinterp, mfilt.linearinterp, mfilt.fftfirinterp, 
mfilt.firfracinterp, mfilt.cicinterp
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8mfilt.firsrcPurpose Construct direct-form FIR polyphase sample rate converters

Syntax hm = mfilt.firsrc(l,m,num)

Description hm = mfilt.firsrc(l,m,num) returns a direct-form FIR polyphase sample 
rate converter. l specifies the interpolation factor. It must be an integer and 
when omitted in the calling syntax, it defaults to 2.

m is the decimation factor. It must be an integer. If not specified, m defaults to 1. 
If l is also not specified, m defaults to 3 and the overall rate change factor is 2/3.

You specify the coefficients of the FIR lowpass filter used for sample rate 
conversion in num. If omitted, a lowpass Nyquist filter with gain l and cutoff 
frequency of π/max(l,m) is the default.

Combining an interpolation factor and a decimation factor lets you use 
mfilt.firsrc to perform fractional interpolation or decimation on an input 
signal. Using an mfilt.firsrc object applies a rate change factor defined by 
l/m to the input signal. For proper rate changing to occur, l and m must be 
relatively prime—meaning the ratio l/m cannot be reduced to a ratio of smaller 
integers.

When you are doing sample-rate conversion with large values of l or m, such as 
l or m greater than 20, using the mfilt.firsrc structure is the most effective 
approach. Other possible fractional rate change structures, such as 
mfilt.firfracinterp (where l > m) or mfilt.firfracdecim (where l <  m) 
may have prohibitively large memory requirements for applications that 
require large rate changes.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');
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Input Arguments
The following table describes the input arguments for creating hm.

Object 
Properties

This section describes the properties for both floating-point filters 
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.firsrc objects. The next table describes each property for an 
mfilt.firsrc filter object.

Input Argument Description

l Interpolation factor for the filter. l specifies the 
amount to increase the input sampling rate. It must be 
an integer. When you do not specify a value for l, it 
defaults to 2.

num Vector containing the coefficients of the FIR lowpass 
filter used for interpolation. When num is not provided 
as an input, mfilt.firsrc uses a lowpass Nyquist 
filter with gain equal to l and cutoff frequency equal to 
π/max(l,m) by default. The default length for the 
Nyquist filter is 24*m. Therefore, each polyphase filter 
component has length 24.

m Decimation factor for the filter. m specifies the amount 
to reduce the sampling rate of the input signal. It must 
be an integer. When you do not specify a value for m, it 
defaults to 1. When l is unspecified as well, m defaults 
to 3.
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Name Values Description

Arithmetic [Double], 
single, 
fixed

Defines the arithmetic the filter 
uses. Gives you the options 
double, single, and fixed. In 
short, this property defines the 
operation mode for your filter.

FilterStructure String Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object. 
Describes the signal flow for the 
filter object.

InputOffset Integers Contains a value derived from 
the number of input samples 
and the decimation factor—
InputOffset = mod(length(nx),m)

where nx is the number of input 
samples and m is the decimation 
factor.

Numerator Vector Vector containing the 
coefficients of the FIR lowpass 
filter used for decimation.
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Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation 
of the mfilt.firsrc filter.

Note  The table lists all of the properties that a fixed-point filter can have. 
Many of the properties listed are dynamic, meaning they exist only in 
response to the settings of other properties.

PersistentMemory false, true Determines whether the filter 
states get restored to zeros for 
each filtering operation. The 
starting values are the values in 
place when you create the filter 
if you have not changed the filter 
since you constructed it. 
PersistentMemory set to false 
returns filter states to the  
default values after filtering. 
States that the filter does not 
change are not affected. Setting 
this to true allows you to modify 
the States, InputOffset, and 
PolyphaseAccum properties.

RateChangeFactors Positive 
integers. 
[2 3]

Specifies the interpolation and 
decimation factors [l m] (the 
rate change factors ) for 
changing the input sample rate 
by nonintegral amounts.

States Double, 
single, 
matching 
the filter 
arithmetic 
setting.

Contains the filter states before, 
during, and after filter 
operations. States act as filter 
memory between filtering runs 
or sessions.

Name Values Description
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To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, 
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits. 
[32]

Specifies the fraction length used to interpret 
data output by the accumulator. This is a 
property of FIR filters.

AccumWordLength Any integer 
number of bits [39]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths  to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data.

NumFracLength Any positive or 
negative integer 
number of bits [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[32]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[39]

Determines the word length used for the output 
data. You make this property editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description



mfilt.firsrc

8-916

OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic.) 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

RateChangeFactors Positive integers 
[2 3]

Specifies the interpolation and decimation 
factors [l m] (the rate change factors) for 
changing the input sample rate by nonintegral 
amounts.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description
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Examples This is an example of a common audio rate change process—changing the 
sample rate of a high end audio (48 kHz) signal to the compact disc sample rate 
(44.1 kHz). This conversion requires a rate change factor of 0.91875, or l = 147 
and m = 160.

l = 147; m = 160;            % Interpolation/decimation factors.
hm = mfilt.firsrc(l,m);       % Use the default FIR filter.
fs = 48e3;                    % Original sample freq: 48 kHz.
n = 0:10239;                  % 10240 samples, 0.213 seconds long.
x = sin(2*pi*1e3/fs*n);      % Original signal, sinusoid at 1 kHz.
y = filter(hm,x);             % 9408 samples, still 0.213 seconds.
stem(n(1:49)/fs,x(1:49))      % Plot original sampled at 48 kHz.
hold on

% Plot fractionally decimated signal (44.1 kHz) in red
stem(n(1:45)/(fs*l/m),y(13:57),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

Fractional decimation provides you the flexibility to pick and choose the 
sample rates you want by carefully selecting l and m, the interpolation and 
decimation factors, that result in the final fractional decimation. The following 
figure shows the signal after applying the rate change filter hm to the original 
signal.

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. For information about the 
ordering of the states, refer to the filter structure 
section.

Name Values Description
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See Also mfilt.firfracinterp, mfilt.firfracdecim, mfilt.firinterp, 
mfilt.firdecim
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8mfilt.firtdecimPurpose Construct direct-form transposed FIR filter

Syntax hm = mfilt.firtdecim(m)
hm = mfilt.firtdecim(m,num)

Description hm = mfilt.firtdecim(m) returns a polyphase decimator mfilt object hm 
based on a direct-form transposed FIR structure with a decimation factor of m. 
A lowpass Nyquist filter of gain 1 and cutoff frequency of π/m is the default.

hm = mfilt.firtdecim(m,num) uses the coefficients specified by num for the 
decimation filter. num is a vector containing the coefficients of the transposed 
FIR lowpass filter used for decimation. If omitted, a lowpass Nyquist filter with 
gain of 1 and cutoff frequency of π/m is the default.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.
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Object 
Properties

This section describes the properties for both floating-point filters 
(double-precision and single-precision) and fixed-point filters.

Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.firtdecim objects. The next table describes each property for 
an mfilt.firtdecim filter object.

Input Argument Description

num Vector containing the coefficients of the FIR lowpass 
filter used for interpolation. When num is not provided 
as an input, firtdecim uses a lowpass Nyquist filter 
with gain equal to l and cutoff frequency equal to π/m 
by default. The default length for the Nyquist filter is 
24*m. Therefore, each polyphase filter component has 
length 24.

m Decimation factor for the filter. m specifies the amount 
to reduce the sampling rate of the input signal. It must 
be an integer. When you do not specify a value for m it 
defaults to 2.

Name Values Description

Arithmetic Double, 
single, 
fixed

Specifies the arithmetic the 
filter uses to process data while 
filtering.

DecimationFactor Integer Decimation factor for the filter. 
m specifies the amount to reduce 
the sampling rate of the input 
signal. It must be an integer.
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FilterStructure String Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object. 
Also describes the signal flow for 
the filter object.

InputOffset Integers Contains a value derived from 
the number of input samples 
and the decimation factor—
InputOffset = mod(length(nx),m)

where nx is the number of input 
samples that have been 
processed so far and m is the 
decimation factor.

Numerator Vector Vector containing the 
coefficients of the FIR lowpass 
filter used for decimation.

PersistentMemory [false], 
true

Determines whether the filter 
states get restored to zeros for 
each filtering operation. The 
starting values are the values in 
place when you create the filter 
if you have not changed the filter 
since you constructed it. 
PersistentMemory set to false 
returns filter states to the  
default values after filtering. 
States that the filter does not 
change are not affected. Setting 
this to true allows you to modify 
the States, InputOffset, and 
PolyphaseAccum properties.

Name Values Description
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Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation 
of the mfilt.firtdecim filter.

Note  The table lists all of the properties that a fixed-point filter can have. 
Many of the properties listed are dynamic, meaning they exist only in 
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

PolyphaseAccum Double, 
single [0]

The idea behind having both 
PolyphaseAccum and Accum is to 
differentiate between the adders 
in the filter that work in full 
precision at all times 
(PolyphaseAccum) from the 
adders in the filter that the user 
controls and that may introduce 
quantization effects when 
FilterInternals is set to 
SpecifyPrecision.

States Double, 
single 
matching 
the filter 
arithmetic 
setting.

Contains the filter states before, 
during, and after filter 
operations. States act as filter 
memory between filtering runs 
or sessions. 

Name Values Description



mfilt.firtdecim

8-924

For further information about the properties of this filter or any mfilt object, 
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits. 
[32]

Specifies the fraction length used to interpret 
data output by the accumulator. This is a 
property of FIR filters and lattice filters. IIR 
filters have two similar properties—
DenAccumFracLength and NumAccumFracLength—
that let you set the precision for numerator and 
denominator operations separately.

AccumWordLength Any integer 
number of bits [39]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths  to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data.

NumFracLength Any positive or 
negative integer 
number of bits  [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[32]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[39]

Determines the word length used for the output 
data. You make this property editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic.)) 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

PolyphaseAccum fi object with zeros 
to start

Differentiates between the adders in the filter 
that work in full precision at all times 
(PolyphaseAccum) and the adders in the filter 
that the user controls and that may introduce 
quantization effects when FilterInternals is 
set to SpecifyPrecision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description
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Filter Structure To provide sample rate changes, mfilt.firtdecim uses the following 
structure. At the input you see a commutator that operates counterclockwise, 
moving from position 0 to position 2, position 1, and back to position 0 as input 
samples enter the filter. To keep track of the position of the commutator, the 
mfilt object uses the property InputOffset which reports the current position 
of the commutator in the filter.

The figure below details the signal flow for the direct form FIR filter 
implemented by mfilt.firtdecim.

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. For information about the 
ordering of the states, refer to the filter structure 
section.

Name Values Description
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Notice the order of the states in the filter flow diagram. States 1 through 3 
appear in the diagram below each delay element. State 1 applies to the third 
delay element in phase 2. State 2 applies to the second delay element in phase 
2. State 3 applies to the first delay element in phase 2. When you provide the 
states for the filter as a vector to the States property, the above description 
explains how the filter assigns the states you specify.

In property value form, the states for a filter hm are

hm.states=[1:3];

Examples Demonstrate decimating an input signal by a factor of 2, in this case converting 
from 44.1 kHz down to 22.05 kHz. In the figure shown following the code, you 
see the results of decimating the signal.

m = 2;                   % Decimation factor.
hm = mfilt.firtdecim(m); % Use the default filter coeffs.
fs = 44.1e3;             % Original sample freq: 44.1 kHz.
n = 0:10239;             % 10240 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n); % Original signal--sinusoid at 1 kHz.
y = filter(hm,x);        % 5120 samples, 0.232 seconds.
stem(n(1:44)/fs,x(1:44)) % Plot original sampled at 44.1 kHz. 
hold on                  % Plot decimated signal (22.05 kHz) in red
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stem(n(1:22)/(fs/m),y(13:34),'r','filled')
xlabel('Time (sec)');ylabel('Signal Value')

See Also mfilt.firdecim, mfilt.firfracdecim, mfilt.cicdecim
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8mfilt.holdinterpPurpose Construct FIR hold interpolator

Syntax hm = mfilt.holdinterp(l)

Description hm = mfilt.holdinterp(l) returns the object hm that represents a hold 
interpolator with the interpolation factor l. To work, l must be an integer. 
When you do not include l in the calling syntax, it defaults to 2. To perform 
interpolation by noninteger amounts, use one of the fractional interpolator 
objects, such as mfilt.firsrc or mfilt.firfracinterp.

When you use this hold interpolator, each sample added to the input signal 
between existing samples has the value of the most recent sample from the 
original signal. Thus you see something like a staircase profile where the 
interpolated samples form a plateau between the previous and next original 
samples. The example demonstrates this profile clearly. Compare this to the 
interpolation process for other interpolators in the toolbox, such as 
mfilt.linearinterp.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input arguments for creating hm.

Object 
Properties

This section describes the properties for both floating-point filters 
(double-precision and single-precision) and fixed-point filters.

Input Argument Description

l Interpolation factor for the filter. l specifies the 
amount to increase the input sampling rate. It must be 
an integer. When you do not specify a value for l it 
defaults to 2.
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Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.holdinterp objects. The next table describes each property for 
an mfilt.interp filter object.

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation 
of the mfilt.holdinterp filter.

Name Values Description

Arithmetic Double, 
single, 
fixed

Specifies the arithmetic the 
filter uses to process data while 
filtering.

FilterStructure String Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object.

InterpolationFactor Integer Interpolation factor for the filter. 
l specifies the amount to 
increase the input sampling 
rate. It must be an integer. 

PersistentMemory 'false' or 
'true'

Determines whether the filter 
states are restored to zero for 
each filtering operation.

States Double or 
single 
array

Filter states. states defaults to 
a vector of zeros that has length 
equal to nstates(hm). Always 
available, but visible in the 
display only when 
PersistentMemory is true.
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Note  The table lists all of the properties that a fixed-point filter can have. 
Many of the properties listed are dynamic, meaning they exist only in 
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, 
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

Arithmetic Double, 
single, 
fixed

Specifies the arithmetic the 
filter uses to process data while 
filtering.

FilterStructure String Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object.

InputFracLength Any 
positive or 
negative 
integer 
number of 
bits [15]

Specifies the fraction length the 
filter uses to interpret input 
data.

InputWordLength Any 
integer 
number of 
bits [16]

Specifies the word length 
applied to interpret input data.
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Filter Structure Hold interpolators do not have structures or filter coefficients.

Examples To see the effects of hold-based interpolation, interpolate an input sine wave 
from 22.05 to 44.1 kHz. Note that each added sample retains the value of the 
most recent original sample.

l = 2;                       % Interpolation factor
hm = mfilt.holdinterp(l);
fs = 22.05e3;                % Original sample freq: 22.05 kHz.
n = 0:5119;                  % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n);     % Original signal, sinusoid at 1 kHz
y = filter(hm,x);            % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at 

% 22.05 kHz 

InterpolationFactor Integer Interpolation factor for the filter. 
l specifies the amount to 
increase the input sampling 
rate. It must be an integer. 

PersistentMemory 'false' or 
'true'

Determine whether the filter 
states get restored to zero for 
each filtering operation

States fi object Contains the filter states before, 
during, and after filter 
operations. For hold 
interpolators, the states are 
always empty—hold 
interpolators do not have states. 
Notice that the states use fi 
objects, with the associated 
properties from those objects. 
For details, refer to fixed-point 
objects in your Fixed-Point 
Toolbox documentation or in the 
online Help system. 

Name Values Description
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hold on                      % Plot interpolated signal (44.1 kHz) 
in red
stem(n(1:44)/(fs*l),y(1:44),'r')
xlabel('Time (sec)');ylabel('Signal Value')

The following figure shows clearly the step nature of the signal that comes from 
interpolating the signal using the hold algorithm approach. Compare the 
output to the linear interpolation used in mfilt.linearinterp.

See Also mfilt.linearinterp, mfilt.firinterp, mfilt.firfracinterp, 
mfilt.cicinterp
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8mfilt.iirdecimPurpose Construct IIR decimator filter object

Syntax hm = mfilt.iirdecim(c1,c2,...)

Description hm = mfilt.iirdecim(c1,c2,...) constructs an IIR decimator filter given 
the coefficients specified in the cell arrays c1, c2, and so on. The resulting IIR 
decimator is a polyphase IIR filter where each phase is a cascade allpass IIR 
filter.

Each cell array ci contains a set of vectors representing a cascade of allpass 
sections. Each element in one cell array is one section. For more information 
about the contents of each cell array, refer to dfilt.cascadeallpass. The 
contents of the cell arrays are the same for both filter constructors and 
mfilt.iirdecim interprets them same way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell array—if 
one of the cell arrays ci contains only one vector, and that vector comprises 
a series of 0s and one element equal to 1, that cell array represents 
a dfilt.delay section with latency equal to the number of zeros, rather than 
a dfilt.cascadeallpass section. This exception case occurs with quasi-linear 
phase IIR decimators. 

Usually you do not construct IIR decimators explicitly. Instead, you obtain an 
IIR decimator filter as a result of designing a halfband decimator. The first 
example below illustrates this case.

Examples Design an elliptic halfband decimator with a decimation factor of 2. Notice that 
the example specifies the optional sampling frequency argument.

tw = 100;  % Transition width of filter to design, 100 Hz.
ast = 80;   % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of signal to filter.
m = 2;    % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

d contains the specifications for a decimator defined by tw, ast, m, and fs.

Use the specification object d to perform an actual filter design. hm is an 
mfilt.iirdecim filter object.

hm = design(d,'ellip','filterstructure','iirdecim'); 
realizemdl(hm) % Requires Simulink to build model for filter.
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Designing a linear phase decimator is similar to the previous example. In this 
case, design a halfband linear phase decimator with decimation factor of 2.  

tw  = 100;  % Transition width of filter to design, 100 Hz.
ast = 60;   % Stopband attenuation of filter to design, 80 dB.
fs  = 2000; % Sampling frequency of signal to filter.
m = 2;    % Decimation factor.

Create a specification object for the decimator.

d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Finally, design the actual filter hm. As designed, hm is an mfilt.iirdecim filter 
object.

hm = design(d,'iirlinphase','filterstructure','iirdecim'); 
realizemdl(hm) % Requires Simulink to visualize the structure.

The filter implementation appears in this model, generated by realizemdl and 
Simulink.

Given the design specifications shown here

hm =
 
     FilterStructure: 'IIR Polyphase Decimator' 

           Polyphase: Phase1: Section1: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]   

                      Phase2: Section1: [1.14740498857167 0.409481636102326]  

                            Section2: [0.751016281415127 0.36048597074495]  
                            Section3: [0.272921271612044 0.343931116911137] 
                            Section4: [-0.244601181956782 0.33691092991289] 
                            Section5: [-0.711317191438094 0.333590883744604]
                            Section6: [-1.03562723857273 0.332039064718955] 
                            Section7: 0.893704991634848                     
                            Section8: -0.575824830892574                    
    DecimationFactor: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            
PersistentMemory: false                                                                           

the first phase is a delay section with 0s and a 1 for coefficients and the second 
phase is a linear phase decimator, shown in the next models.
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Phase 1 model

Phase 2 model

1

Output
z
−141

Input

1

output

−K−

gain2(6)(6)

−K−

gain2(5)(5)

−K−

gain2(4)(4)

−K−

gain2(3)(3)

−K−

gain2(2)(2)

−K−

gain2(1)(1)

−K−

gain1(8)(8)

−K−

gain1(7)(7)

−K−

gain1(6)(6)

−K−

gain1(5)(5)

−K−

gain1(4)(4)

−K−

gain1(3)(3)

−K−

gain1(2)(2)

−K−

gain1(1)(1)

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

z
−11

input



mfilt.iirdecim

8-939

Overall model

See Also dfilt.cascadeallpass, mfilt, mfilt.iirinterp, mfilt.iirwdfdecim
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8mfilt.iirinterpPurpose Construct IIR interpolator filter object

Syntax hm = mfilt.iirinterp(c1,c2,...)

Description hm = mfilt.iirinterp(c1,c2,...) constructs an IIR interpolator filter     
given the coefficients specified in the cell arrays C1, C2, etc.

The IIR interpolator is a polyphase IIR filter where each phase is a cascade 
allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass 
sections. Each element in one cell array is one section. For more information 
about the contents of each cell array, refer to dfilt.cascadeallpass. The 
contents of the cell arrays are the same for both filter constructors and 
mfilt.iirdecim interprets them same way as mfilt.cascadeallpass.

The following exception applies to interpreting the contents of a cell array—if 
one of the cell arrays ci contains only one vector, and that vector comprises 
a series of 0s and a unique element equal to 1, that cell array represents 
a dfilt.delay section with latency equal to the number of zeros, rather than 
a dfilt.cascadeallpass section. This exception case occurs with quasi-linear 
phase IIR interpolators. 

Usually you do not construct IIR interpolators explicitly. Instead, you obtain an 
IIR interpolator filter as a result of designing a halfband interpolator. The first 
example below illustrates this case.

Examples Design an elliptic halfband interpolator with a interpolation factor of 2. 

tw = 100;  % Transition width of filter to design, 100 hz.
ast = 80;   % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of filter.
l  = 2;    % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs); 

Specification object d stores the interpolator design specifics. With the details 
in d, design the filter, returning hm, an mfilt.iirinterp object. Use hm to 
realize the filter if you have Simulink installed.

hm = design(d,'ellip','filterstructure','iirinterp'); 
realizemdl(hm) % Requires Simulink to build model for filter.
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Designing a linear phase halfband interpolator follows the same pattern.

tw = 100;  % Transition width of filter to design, 100 Hz. 
ast= 60;   % Stopband attenuation of filter to design, 80 dB.
fs = 2000; % Sampling frequency of filter.
l = 2;    % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

fdesign.interpolator returns a specification object that stores the design 
features for an interpolator.

Now perform the actual design that results in an mfilt.iirinterp filter, hm.

hm = design(d,'iirlinphase','filterstructure','iirinterp');
realizemdl(hm)

The toolbox creates a Simulink model for hm, shown here. Phase1, Phase2, and 
InterpCommutator are all subsystem blocks.

See Also dfilt.cascadeallpass, mfilt, mfilt.iirdecim, mfilt.iirwdfinterp
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8mfilt.iirwdfdecimPurpose Construct IIR wave digital filter decimator object

Syntax hm = mfilt.iirwdfdecim(c1,c2,...)

Description hm = mfilt.iirwdfdecim(c1,c2,...) constructs an IIR wave digital 
decimator given the coefficients specified in the cell arrays c1, c2, and so on. 
The IIR decimator hm is a polyphase IIR filter where each phase is a  cascade 
wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass 
sections. Each element in one cell array is one section. For more information 
about the contents of each cell array, refer to dfilt.cascadewdfallpass. The 
contents of the cell arrays are the same for both filter constructors and 
mfilt.iirwdfdecim interprets them same way as mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell array—if 
one of the cell arrays ci contains only one vector, and that vector comprises 
a series of 0s and one element equal to 1, that cell array represents 
a dfilt.delay section with latency equal to the number of zeros, rather than 
a dfilt.cascadewdfallpass section. This exception occurs with quasi-linear 
phase IIR decimators. 

Usually you do not construct IIR wave digital filter decimators explicitly. 
Instead, you obtain an IIR wave digital filter decimator as a result of designing 
a halfband decimator. The first example below illustrates this case.

Examples Design an elliptic halfband decimator with a decimation factor equal to 2. Both 
examples use the iirwdfdecim filter structure (an input argument to the 
design method) to design the final decimator.

The first portion of this example generates a filter specification object d that 
stores the specifications for the decimator.

tw  = 100;  % Transition width of filter to design, 100 Hz.
ast = 80;   % Stopband attenuation of filter 80 dB.
fs  = 2000; % Sampling frequency of the input signal.
m   = 2;    % Decimation factor. 
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs); 

Now perform the actual design using d. Filter object hm is an 
mfilt.iirwdfdecim filter.
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Hm = design(d,'ellip','FilterStructure','iirwdfdecim');
realizemdl(hm) % Requires Simulink to build and visualize the 
structure.

Design a linear phase halfband decimator for decimating a signal by a factor 
of 2.

tw  = 100;  % Transition width of filter, 100 Hz.
ast = 60;   % Filter stopband attenuation = 80 dB
fs  = 2000; % Input signal sampling frequency.
m   = 2;    % Decimation factor.
d = fdesign.decimator(m,'halfband','tw,ast',tw,ast,fs);

Use d to design the final filter hm, an mfilt.iirwdfdecim object.

hm = design(d,'iirlinphase','filterstructure','iirwdfdecim');
realizemdl(hm) % Requires Simulink to be able to build model.

The models that realizemdl returns for each example appear below. At this 
level, the realizations of the filters are identical. The differences appear in the 
subsystem blocks Phase1 and Phase2.
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This is the Phase1 subsystem from the halfband model.
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Phase1 subsystem from the linear phase model is less revealing—an allpass 
filter.
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See Also dfilt.cascadewdfallpass, mfilt, mfilt.iirdecim, mfilt.iirwdfinterp
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8mfilt.iirwdfinterpPurpose Construct IIR wave digital interpolator filter 

Syntax hm = iirwdfinterp(c1,c2,...)

Description hm = mfilt.iirwdfinterp(c1,c2,...) constructs an IIR wave digital     
interpolator filter given the coefficients specified in the cell arrays     C1, C2, 
etc.

hm = mfilt.iirwdfinterp(c1,c2,...) constructs an IIR wave digital 
interpolator given the coefficients specified in the cell arrays c1, c2, and so on. 
The IIR interpolator hm is a polyphase IIR filter where each phase is a cascade 
wave digital allpass IIR filter.

Each cell array ci contains a set of vectors representing a cascade of allpass 
sections. Each element in one cell array is one section. For more information 
about the contents of each cell array, refer to dfilt.cascadewdfallpass. The 
contents of the cell arrays are the same for both filter constructors and 
mfilt.iirwdfinterp interprets them same way as 
mfilt.cascadewdfallpass.

The following exception applies to interpreting the contents of a cell array—if 
one of the cell arrays ci contains only one vector, and that vector comprises 
a series of 0s and one element equal to 1, that cell array represents 
a dfilt.delay section with latency equal to the number of zeros, rather than 
a dfilt.cascadewdfallpass section. This exception occurs with quasi-linear 
phase IIR interpolators. 

Usually you do not construct IIR wave digital filter interpolators explicitly. 
Rather, you obtain an IIR wave digital interpolator as a result of designing 
a halfband interpolator. The first example below illustrates this case.

Examples Design an elliptic halfband interpolator with interpolation factor equal to 2. At 
the end of the design process, hm is an IIR wave digital filter interpolator.

tw  = 100;  % Transition width of filter, 100 Hz.
ast = 80;   % Stopband attenuation of filter, 80 dB.
fs  = 2000; % Sampling frequency of signal after interpolation.
l   = 2;    % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);
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The specification object d stores the  interpolator design requirements. Now 
use d to design the actual filter hm. 

hm = design(d,'ellip','filterstructure','iirwdfinterp'); 

If you have Simulink installed, you can realize your filter as a model built from 
blocks in the Signal Processing Blockset.

realizemdl(hm) % Requires Simulink to build model for filter.

For variety, design a linear phase halfband interpolator with an interpolation 
factor of 2.

tw  = 100;  % Transition width of filter, 100 Hz.
ast = 80;   % Stopband attenuation of filter, 80 dB.
fs  = 2000; % Sampling frequency of signal after interpolation.
l   = 2;    % Interpolation factor.
d = fdesign.interpolator(l,'halfband','tw,ast',tw,ast,fs);

Now perform the actual design process with d. Filter hm is an IIR wave digital 
filter interpolator. As in the previous example, realizemdl returns a Simulink 
model of the filter if you have Simulink installed.

hm = design(d,'iirlinphase','filterstructure','iirwdfinterp');
realizemdl(hm) % Requires Simulink to visualize the signal flow.

See Also dfilt.cascadewdfallpass, mfilt.iirinterp, mfilt.iirwdfdecim
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8mfilt.linearinterpPurpose Construct linear interpolator filter

Syntax hm = mfilt.linearinterp(l) 

Description hm = mfilt.linearinterp(l) returns an FIR linear interpolator hm with an 
integer interpolation factor l. Provide l as a positive integer. The default value 
for the interpolation factor is 2 when you do not include the input argument l.

When you use this linear interpolator, the samples added to the input signal 
have values between the values of adjacent samples in the original signal. Thus 
you see something like a smooth profile where the interpolated samples 
continue a line between the previous and next original samples. The example 
demonstrates this smooth profile clearly. Compare this to the interpolation 
process for mfilt.holdinterp, which creates a stairstep profile.

Make this filter a fixed-point or single-precision filter by changing the value of 
the Arithmetic property for the filter hm as follows:

• To change to single-precision filtering, enter
set(hm,'arithmetic','single');

• To change to fixed-point filtering, enter
set(hm,'arithmetic','fixed');

Input Arguments
The following table describes the input argument for mfilt.linearinterp.

Object 
Properties

This section describes the properties for both floating-point filters 
(double-precision and single-precision) and fixed-point filters.

Input Argument Description

l Interpolation factor for the filter. l specifies the 
amount to increase the input sampling rate. It must be 
an integer. When you do not specify a value for l it 
defaults to 2.
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Floating-Point Filter Properties
Every multirate filter object has properties that govern the way it behaves 
when you use it. Note that many of the properties are also input arguments for 
creating mfilt.linearinterp objects. The next table describes each property 
for an mfilt.linearinterp filter object.

Fixed-Point Filter Properties
This table shows the properties associated with the fixed-point implementation 
of the mfilt.holdinterp filter.

Name Values Description

Arithmetic Double, 
single, 
fixed

Specifies the arithmetic the 
filter uses to process data while 
filtering.

FilterStructure String Reports the type of filter object. 
You cannot set this property—it 
is always read only and results 
from your choice of mfilt object.

InterpolationFactor Integer Interpolation factor for the filter. 
l specifies the amount to 
increase the input sampling 
rate. It must be an integer. 

PersistentMemory 'false' or 
'true'

Determine whether the filter 
states get restored to zero for 
each filtering operation

States Double or 
single 
array

Filter states. states defaults to 
a vector of zeros that has length 
equal to nstates(hm). Always 
available, but visible in the 
display only when 
PersistentMemory is true.
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Note  The table lists all of the properties that a fixed-point filter can have. 
Many of the properties listed are dynamic, meaning they exist only in 
response to the settings of other properties.

To view all of the characteristics for a filter at any time, use
info(hm)

where hm is a filter.

For further information about the properties of this filter or any mfilt object, 
refer to “Multirate Filter Properties” on page 7-117.

Name Values Description

AccumFracLength Any positive or 
negative integer 
number of bits. 
Depends on L. 
[29 when L=2]

Specifies the fraction length used to interpret 
data output by the accumulator. 

AccumWordLength Any integer 
number of bits [33]

Sets the word length used to store data in the 
accumulator. 

Arithmetic fixed for 
fixed-point filters

Setting this to fixed allows you to modify other 
filter properties to customize your fixed-point 
filter.

CoeffAutoScale [true], false Specifies whether the filter automatically 
chooses the proper fraction length to represent 
filter coefficients without overflowing. Turning 
this off by setting the value to false enables you 
to change the NumFracLength property value to 
specify the precision used.

CoeffWordLength Any integer 
number of bits 
[16]

Specifies the word length to apply to filter 
coefficients. 
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FilterInternals [FullPrecision],
SpecifyPrecision

Controls whether the filter automatically sets 
the output word and fraction lengths, product 
word and fraction lengths, and the accumulator 
word and fraction lengths  to maintain the best 
precision results during filtering. The default 
value, FullPrecision, sets automatic word and 
fraction length determination by the filter. 
SpecifyPrecision makes the output and 
accumulator-related properties available so you 
can set your own word and fraction lengths for 
them.

InputFracLength Any positive or 
negative integer 
number of bits 
[15]

Specifies the fraction length the filter uses to 
interpret input data.

InputWordLength Any integer 
number of bits 
[16]

Specifies the word length applied to interpret 
input data.

NumFracLength Any positive or 
negative integer 
number of bits  [14]

Sets the fraction length used to interpret the 
numerator coefficients.

OutputFracLength Any positive or 
negative integer 
number of bits 
[29]

Determines how the filter interprets the filter 
output data. You can change the value of 
OutputFracLength when you set 
FilterInternals to SpecifyPrecision.

OutputWordLength Any integer 
number of bits 
[33]

Determines the word length used for the output 
data. You make this property editable by setting 
FilterInternals to SpecifyPrecision.

Name Values Description
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OverflowMode saturate, [wrap] Sets the mode used to respond to overflow 
conditions in fixed-point arithmetic. Choose from 
either saturate (limit the output to the largest 
positive or negative representable value) or wrap 
(set overflowing values to the nearest 
representable value using modular arithmetic.)) 
The choice you make affects only the 
accumulator and output arithmetic. Coefficient 
and input arithmetic always saturates. Finally, 
products never overflow—they maintain full 
precision.

Name Values Description
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RoundMode [convergent], 
ceil,fix,floor,
round

Sets the mode the filter uses to quantize numeric 
values when the values lie between 
representable values for the data format (word 
and fraction lengths).

• convergent—Round up to the next allowable 
quantized value.

• ceil—Round to the nearest allowable 
quantized value. Numbers that are exactly 
halfway between the two nearest allowable 
quantized values are rounded up only if the 
least significant bit (after rounding) would be 
set to 1.

• fix—Round negative numbers up and positive 
numbers down to the next allowable quantized 
value.

• floor—Round down to the next allowable 
quantized value.

• round—Round to the nearest allowable 
quantized value. Numbers that are halfway 
between the two nearest allowable quantized 
values are rounded up.

The choice you make affects only the accumulator 
and output arithmetic. Coefficient and input 
arithmetic always round. Finally, products never 
overflow—they maintain full precision.

Name Values Description
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Filter Structure Linear interpolator structures depend on the FIR filter you use to implement 
the filter. By default, the structure is direct-form FIR.

Signed [true], false Specifies whether the filter uses signed or 
unsigned fixed-point coefficients. Only 
coefficients reflect this property setting.

States fi object Contains the filter states before, during, and 
after filter operations. States act as filter 
memory between filtering runs or sessions. 
Notice that the states use fi objects, with the 
associated properties from those objects. For 
details, refer to fixed-point objects in your 
Fixed-Point Toolbox documentation or in the 
online Help system. For information about the 
ordering of the states, refer to the filter structure 
below.

Name Values Description
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Examples Interpolation by a factor of 2 (used to convert the input signal sampling rate 
from 22.05 kHz to 44.1 kHz).

l = 2;                      % Interpolation factor
hm = mfilt.linearinterp(l);
fs = 22.05e3;               % Original sample freq: 22.05 kHz.
n = 0:5119;                 % 5120 samples, 0.232 second long signal
x = sin(2*pi*1e3/fs*n);    % Original signal, sinusoid at 1 kHz
y = filter(hm,x);           % 10240 samples, still 0.232 seconds
stem(n(1:22)/fs,x(1:22),'filled') % Plot original sampled at 

% 22.05 kHz 
hold on                     % Plot interpolated signal (44.1 

% kHz) in red
stem(n(1:44)/(fs*l),y(2:45),'r')
xlabel('Time (s)');ylabel('Signal Value')

Using linear interpolation, as compared to the hold approach of 
mfilt.holdinterp, provides greater fidelity to the original signal.
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See Also mfilt.holdinterp, mfilt.firinterp, mfilt.firfracinterp, 
mfilt.cicinterp
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8msepredPurpose Calculate predicted mean-squared error for selected adaptive filter

Syntax [mmse,emse] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d)
[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d,m)

Description [mmse,emse] = msepred(ha,x,d)  predicts the steady-state values at 
convergence of the minimum mean-squared error (mmse) and the excess 
mean-squared error (emse) given the input and desired response signal 
sequences in x and d and the property values in the adaptfilt object ha.

[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d) calculates three 
sequences corresponding to the analytical behavior of the LMS adaptive filter 
defined by ha:

• meanw—contains the sequence of coefficient vector means. The columns of 
matrix meanw contain predictions of the mean values of the LMS adaptive 
filter coefficients at each time instant. The dimensions of meanw are 
(size(x,1))-by-(ha.length).

• mse—contains the sequence of mean-square errors. This column vector 
contains predictions of the mean-square error of the LMS adaptive filter at 
each time instant. The length of mse is equal to size(x,1).

• tracek—contains the sequence of total coefficient error powers. This column 
vector contains predictions of the total coefficient error power of the LMS 
adaptive filter at each time instant. The length of tracek is equal to 
size(x,1).

[mmse,emse,meanw,mse,tracek] = msepred(ha,x,d,m) specifies an optional 
input argument m that is the decimation factor for computing meanw, mse, and 
tracek. When m > 1, msepred saves every mth predicted value of each of these 
sequences. When you omit the optional argument m, it defaults to one.

Note  msepred is available for the following adaptive filters only:
—adaptfilt.blms
—adaptfilt.blmsfft
—adaptfilt.lms
—adaptfilt.nlms



msepred

8-959

—adaptfilt.se

Using msepred is the same for any adaptfilt object constructed by the 
supported filters.

Examples Analyze and simulate a 32-coefficient adaptive filter using 25 trials of 2000 
iterations each.

x = zeros(2000,25); d = x;     % Initialize variables
ha = fir1(31,0.5);             % FIR system to be identified
x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x)))); 
n = 0.1*randn(size(x));        % observation noise signal
d = filter(ha,1,x)+n;          % desired signal
l = 32;                        % Filter length
mu = 0.008;                    % LMS step size.
m = 5;                        % Decimation factor for analysis 

% and simulation results
ha = adaptfilt.lms(l,mu);
[mmse,emse,meanW,mse,traceK] = msepred(ha,x,d,m);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);
subplot(2,1,1);
plot(nn,meanWsim(:,12),'b',nn,meanW(:,12),'r',nn,...
meanWsim(:,13:15),'b',nn,meanW(:,13:15),'r');
title('Average Coefficient Trajectories for W(12), W(13),...
 W(14) and W(15)');
legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse,[0 size(x,1)],[(emse+mmse)... 
(emse+mmse)],nn,mse,[0 size(x,1)],[mmse mmse]);
title('Mean-Square Error Performance');
axis([0 size(x,1) 0.001 10]);
legend('MSE (Sim.)','Final MSE','MSE','Min. MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim,nn,traceK,'r');
title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)...
0.0001 1]);
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legend('Simulation','Theory');
xlabel('Time Index'); ylabel('Squared Error Value');

Viewing the plots in this figure you see the various error values plotted in both 
simulation and theory. Each subplot reveals more information about the 
results as the simulation converges with the theoretical performance.

See Also filter, maxstep, msesim
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8msesimPurpose Calculate and return measured mean-squared error for adaptive filter

Syntax mse = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d)
[mse,meanw,w,tracek] = msesim(ha,x,d,m)

Description mse = msesim(ha,x,d) returns the sequence of mean-square errors in column 
vector mse. The vector contains estimates of the mean-square error of the 
adaptive filter at each time instant during adaptation. The length of mse is 
equal to size(x,1). The columns of matrix x contain individual input signal 
sequences, and the columns of the matrix d contain corresponding desired 
response signal sequences. 

[mse,meanw,w,tracek] = msesim(ha,x,d) calculates three parameters that 
correspond to the simulated behavior of the adaptive filter defined by ha:

• meanw—sequence of coefficient vector means. The columns of this matrix 
contain estimates of the mean values of the LMS adaptive filter coefficients 
at each time instant. The dimensions of meanw are 
(size(x,1))-by-(ha.length).

• w—estimate of the final values of the adaptive filter coefficients for the 
algorithm corresponding to ha.

• tracek—sequence of total coefficient error powers. This column vector 
contains estimates of the total coefficient error power of the LMS adaptive 
filter at each time instant. The length of tracek is equal to size(X,1).

[mse,meanw,w,tracek] = msesim(ha,x,d,m)  specifies an optional input 
argument m that is the decimation factor for computing meanw, mse, and tracek. 
When m > 1, msepsim saves every mth predicted value of each of these sequences. 
When you omit the optional argument m, it defaults to one.

Examples Simulation of a 32-coefficient FIR filter using 25 trials, each trial having 2000 
iterations of the adaptation process.

x = zeros(2000,25); d = x;          % Initialize variables
ha = fir1(31,0.5);                  % FIR system to be identified
x = filter(sqrt(0.75),[1 -0.5],sign(randn(size(x)))); 
n = 0.1*randn(size(x));             % Observation noise signal
d = filter(ha,1,x)+n;               % Desired signal
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l = 32;                             % Filter length
mu = 0.008;                         % LMS Step size.
m = 5;                             % Decimation factor for analysis 

% and simulation results
ha = adaptfilt.lms(l,mu);
[simmse,meanWsim,Wsim,traceKsim] = msesim(ha,x,d,m);
nn = m:m:size(x,1);   
subplot(2,1,1);
plot(nn,meanWsim(:,12),'b',nn,meanWsim(:,13:15),'b');
title('Average Coefficient Trajectories for W(12), W(13),
W(14) and W(15)');
xlabel('Time Index'); ylabel('Coefficient Value');
subplot(2,2,3);
semilogy(nn,simmse);
title('Mean-Square Error Performance'); axis([0 size(x,1) 0.001
10]);
legend('Measured MSE');
xlabel('Time Index'); ylabel('Squared Error Value');
subplot(2,2,4);
semilogy(nn,traceKsim);
title('Sum-of-Squared Coefficient Errors'); axis([0 size(x,1)
0.0001 1]);
xlabel('Time Index'); ylabel('Squared Error Value');

Calculating the mean squared error for an adaptive filter is one measure of the 
performance of the adapting algorithm. In this figure, you see a variety of 
measures of the filter, including the error values.
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See Also filter, msepred

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Average Coefficient Trajectories for W(12), W(13), W(14) and W(15)

Time Index

C
oe

ffi
ci

en
t V

al
ue

0 500 1000 1500 2000
10

−3

10
−2

10
−1

10
0

10
1

Mean−Square Error Performance

Time Index

S
qu

ar
ed

 E
rr

or
 V

al
ue

Measured MSE

0 500 1000 1500 2000
10

−4

10
−3

10
−2

10
−1

10
0

Sum−of−Squared Coefficient Errors

Time Index

S
qu

ar
ed

 E
rr

or
 V

al
ue



multistage

8-964

8multistagePurpose Design multistage filter from filter specification object

Syntax hd = design(d,'multistage')
hd = design(...,'filterstructure',structure)
hd = design(...,'nstages',nstages)
hd = design(...,'usehalfbands',hb)

Description hd = design(d,'multistage') designs a multistage filter whose repsonse you 
specified by the filter specification object d.

hd = design(...,'filterstructure',structure) returns a filter with the 
structure specified by structure.  Input argument structure is dffir by 
default and can also be one of the following strings.

In short, multistage design applies to all lowpass filter specifications objects 
and to decimators and interpolators that use either lowpass or Nyquist 
responses.

hd = design(...,'nstages',nstages) specifies nstages, the number of 
stages to be used in the design. nstages must be an integer or the string auto.  
To allow the design algorithm to use the optimal number of stages while 
minimizing the cost of using the resulting filter, nstages is auto by default. 
When you specify an integer for nstages, the design algorithm minimizes the 
cost for the number of stages you specify.

hd = design(...,'usehalfbands',hb) uses halfband filters when you set hb 
to true.  The default value for hb is false.

structure String Valid with These Responses

firdecim Lowpass or Nyquist response

firtdecim Lowpass or Nyquist response

firinterp Lowpass or Nyquist response

lowpass All lowpass responses
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Examples Design a minimum-order, multistage Nyquist interpolator. Use the 
FilterStructure property to specify the Nyquist response.

l = 15;   % Interpolation factor. Also the Nyquist band.
tw = 0.05; % Normalized transition width
ast = 40;   % Minimum stopband attenuation in dB
d = fdesign.interpolator(l,'filterstructure','nyquist',l,tw,ast);
hm = design(d,'multistage');
fvtool(hm);

Design a multistage lowpass interpolator with an interpolation factor of 8.

m = 8; % Interpolation factor;
d = fdesign.interpolator(m,'lowpass');
hm = design(d,'multistage','Usehalfbands',true); % Use halfband filters

% if possible.
fvtool(hm);

This figure shows the response for hm.
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See Also design, designopts
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8noisepsdPurpose Compute power spectral density (PSD) of filter output caused by roundoff noise 
during quantization

Syntax hpsd = noisepsd(hd,l);
hpsd = noisepsd(hd,l, propertyname1, propertyvalue1,  

propertyname2,propertyvalue2, );
hpsd = noisepsd(hd,l,opts);

Description hpsd = noisepsd(hd,l) computes the power spectral density (PSD) at the 
output of filter hd due to roundoff noise produced by quantization errors within 
the filter. l is the number of trials used to compute the average. The PSD is 
computed from the average over the l trials. The more trials you specify, the 
better the estimate, but at the expense of longer computation time. When you 
do not explicitly set l, it defaults to 10 trials.

hpsd is a psd data object.To extract the PSD vector (the data from the PSD) 
from hpsd, enter

get(hpsd,'data')

at the prompt. Plot the PSD data with plot(hpsd). The average power of the 
output noise (the integral of the PSD) can be computed with avgpower, a 
method of dspdata objects:

avgpwr = avgpower(hpsd).
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hpsd = noisepsd(hd,l,p1,v1,p2,v2,...) specifies optional parameters via 
propertyname/propertyvalue pairs. The properties of the psd object, and the 
valid entries are:

Property Name Default Value Description and Valid Entries

Nfft 512 Specifies the number of FFT 
points to use to calculate the 
PSD.

NormalizedFrequency true Determines whether to use 
normalized frequency. Enter one 
of the logical true or false. Note 
that you do not use single 
quotations around this property 
value because it is a logical, not 
a string.

Fs normalized Specifies the sampling frequency 
to use when you set 
NormalizedFrequency to false. 
Any integer value greater than 1 
works. Enter the value in Hz.



noisepsd

8-969

SpectrumType onesided Tells noisepsd whether to 
generate a one-sided PSD or 
two-sided. Options are onesided 
or twosided. If you choose a 
two-sided computation, you can 
also choose centerdc = true. 
Otherwise, centerdc must be 
false.

• onesided converts the 
spectrum to a spectrum 
calculated over half the 
Nyquist interval. All 
properties affected by the new 
frequency range are adjusted 
automatically.

• twosided converts the 
spectrum to a spectrum 
calculated over the whole 
Nyquist interval. All 
properties affected by the new 
frequency range are adjusted 
automatically.

Property Name Default Value Description and Valid Entries
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Note  If the spectrum data you specify is calculated over half the Nyquist 
interval and you do not specify a corresponding frequency vector, the default 
frequency vector assumes that the number of points in the whole FFT was 
even. Also, the plot option to convert to a whole or two-sided spectrum 
assumes the original whole FFT length was even.

noisepsd(hd,l,opts) uses an options object opts to specify the optional input 
arguments instead of specifying property-value pairs in the command. Use 
opts = noisepsdopts(hd) to create the object. opts then has the noisepsd 
settings from hd. After creating opts, you change the property values before 
calling noisepsd:

set(opts,'fs',48e3); % Set Fs to 48 kHz.

Examples Compute the PSD of the output noise caused by the quantization processes in 
a fixed-point, direct form FIR filter.

CenterDC false Shifts the zero-frequency 
component to the center of a 
two-sided spectrum.

• When you set SpectrumType to 
onesided, it is changed to 
twosided and the data is 
converted to a two-sided 
spectrum.

• Setting CenterDC to false 
shifts the data and the 
frequency values in the object 
so that DC is in the left edge of 
the spectrum. This operation 
does not effect the 
SpectrumType property 
setting.

Property Name Default Value Description and Valid Entries
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b = firgr(27,[0 .4 .6 1],[1 1 0 0]);
h = dfilt.dffir(b); % Create the filter object.
h.arithmetic = 'fixed'; % Quantize the filter to fixed-point.
hpsd = noisepsd(h);
plot(hpsd)

hpsd looks like this—the data resulting from the noise PSD calculation. You 
can review the data in hpsd.data'.

Here is the specification for hpsd.

hpsd =
 
                   Name: 'Power Spectral Density'
                   Data: [257x1 double]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−130

−125

−120

−115

−110

−105

−100

Normalized Frequency (×π rad/sample)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/r
ad

/s
am

pl
e)

Power Spectral Density



noisepsd

8-972

           SpectrumType: 'Onesided'
            Frequencies: [257x1 double]
    NormalizedFrequency: true
                     Fs: 'Normalized'

See Also filter, noisepsdopts, norm, reorder, scale

spectrum.welch in the Signal Processing Toolbox

References McClellan, et al., Computer-Based Exercises for Signal Processing Using 
MATLAB 5, Prentice-Hall, 1998.
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8noisepsdoptsPurpose Create object containing options for running output noise power spectral 
density (PSD) computation noisepsd on filter

Syntax opts = noisepsdopts(hd)

Description opts = noisepsdopts(hd) uses the current settings in the filter hd to create 
an options object opts that contains specified options for computing the output 
noise PSD for a filter hd. You can pass opts to the scale method as an input 
argument to apply scaling settings to a second-order filter.

Within opts, the noisepsd options object returned by noisepsdopts, you can 
set the following properties:

Property Name Default Value Description and Valid Entries

Nfft 512 Specifies the number of FFT 
points to use to calculate the 
PSD.

NormalizedFrequency true Determines whether to use 
normalized frequency. Enter one 
of the logical true or false. Note 
that you do not use single 
quotations around this property 
value because it is a logical 
value, not a string.

Fs normalized Specifies the sampling frequency 
to use when you set 
NormalizedFrequency to false. 
Any integer value greater than 1 
works. Enter the value in Hz.
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SpectrumType onesided Tells noisepsd whether to 
generate a one-sided PSD or 
two-sided. Options are onesided 
or twosided. If you choose a 
two-sided computation, you can 
also choose centerdc = true. 
Otherwise, centerdc must be 
false.

• onesided converts the 
spectrum to a spectrum 
calculated over half the 
Nyquist interval. All 
properties affected by the new 
frequency range are adjusted 
automatically.

• twosided converts the 
spectrum to a spectrum 
calculated over the whole 
Nyquist interval. All 
properties affected by the new 
frequency range are adjusted 
automatically.

Property Name Default Value Description and Valid Entries
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SpectrumType onesided Tells noisepsd whether to 
generate a one-sided PSD or 
two-sided. Options are onesided 
or twosided. If you choose a 
two-sided computation, you can 
also choose centerdc = true. 
Otherwise, centerdc must be 
false.

• onesided converts the 
spectrum to a spectrum 
calculated over half the 
Nyquist interval. All 
properties affected by the new 
frequency range are adjusted 
automatically.

• twosided converts the 
spectrum to a spectrum 
calculated over the whole 
Nyquist interval. All 
properties affected by the new 
frequency range are adjusted 
automatically.

Property Name Default Value Description and Valid Entries
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See Also noisepsd

CenterDC false Shifts the zero-frequency 
component to the center of a 
two-sided spectrum.

• When you set SpectrumType to 
onesided, it is changed to 
twosided and the data is 
converted to a two-sided 
spectrum.

• Setting CenterDC to false 
shifts the data and the 
frequency values in the object 
so that DC is in the left edge of 
the spectrum. This operation 
does not effect the 
SpectrumType property 
setting.

Property Name Default Value Description and Valid Entries
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8normPurpose P-norm of adaptfilt, dfilt, or mfilt objects

Syntax l = norm(ha)
l = norm(ha,pnorm)
l = norm(hd)
l = norm(hd,pnorm)
l = norm(hd,'L2',tol)
l = norm(hm)
l = norm(hm,pnorm)

Description All of the variants of norm return the filter p-norm for the object in the syntax, 
either an adaptive filter, a digital filter, or a multirate filter. When you omit 
the pnorm argument, norm returns the L2-norm for the object.

Note that by Parseval’s theorem, the L2-norm of a filter is equal to the l2 norm. 
This equality is not true for the other norm variants.

For adaptfilt Objects
l = norm(ha)returns the L2-norm of an adaptive filter.

l = norm(ha,pnorm) adds the input argument pnorm to let you specify the 
norm returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

For dfilt Objects

l = norm(hd) returns the L2-norm of a discrete-time filter.

l = norm(hd,pnorm) includes input argument pnorm that lets you specify the 
norm returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

By Parseval’s theorem, the L2-norm of a filter is equal to the l2 norm. This 
equality is not true for the other norm variants.
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IIR filters respond slightly differently to norm. When you compute the l2, linf, 
L1, and L2 norms for an IIR filter, norm(...,L2,tol) lets you specify the 
tolerance for the accuracy in the computation. For l1, l2, L2, and linf, norm uses 
the tolerance to truncate the infinite impulse response that it uses to calculate 
the norm. For L1, norm passes the tolerance to the numerical integration 
algorithm. Refer to Examples to see this in use. You cannot specify Linf for the 
norm and include the tol option.

For mfilt Objects

l = norm(hm) returns the L2-norm of a multirate filter.

l = norm(hm,pnorm) includes argument pnorm to let you specify the norm 
returned. pnorm can be either

• Frequency-domain norms specified by one of L1, L2, or Linf

• Discrete-time domain norms specified by one of l1, l2, or linf

Note that, by Parseval’s theorem, the L2-norm of a filter is equal to the l2 norm. 
This equality is not true for the other norm variants.

Examples Adaptfilt Objects
For the adaptive filter example, compute the 2-norm of an adaptfilt object, 
here an LMS-based adaptive filter.

ha = adaptfilt.lms; % norm(ha) is zero because all coeffs are zero
% Create some data to filter to generate filter coeffs
x = randn(100,1);
d = x + randn(100,1);
[y,e] = filter(ha,x,d);
l2 = norm(ha); % Now norm(ha) is nonzero
l2 =

    1.1231

Dfilt Objects
To demonstrate the tolerance option used with an IIR filter (dfilt object), 
compute the 2-norm of filter hd with a tolerance of 1e-10.

d=fdesign.lowpass('n,fc',5,0.4)



norm

8-979

 
d =
 
               Response: 'Lowpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
            FilterOrder: 5
                Fcutoff: 0.4000

hd = butter(d);
l2=norm(hd,'l2',1e-10)

l2 =

    0.6336

Mfilt Objects
In this example, compute the infinity norm of an FIR interpolator, which is an 
mfilt object.

hm = mfilt.firinterp;
linf = norm(hm,inf); 
linf =

    2.0002

 See Also reorder, scale, scalecheck
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8normalizePurpose Normalize filter numerator or feed-forward coefficients to values between -1 
and 1

Syntax normalize(hq)
g = normalize(hq)

Description normalize(hq) normalizes the filter numerator coefficients for a quantized 
filter to have values between -1 and 1. Notice that the coefficients of hq 
change—normalize does not copy hq and return the copy. To restore the 
coefficients of hq to the original values, use denormalize.

Note that for lattice filters, the feed-forward coefficients stored in the property 
lattice are normalized.

g = normalize(hd) normalizes the numerator coefficients for the filter hq to 
between -1 and 1 and returns the gain g due to the normalization operation. 
Calling normalize again does not change the coefficients. g always returns the 
gain returned by the first call to normalize the filter.

Examples Create a direct form II quantized filter that uses second-order sections. Then 
use normalize to maximize the use of the range of representable coefficients.

d=fdesign.lowpass('n,fp,ap,ast',8,.5,2,40);
 
hd=ellip(d);
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [4x6 double]
             ScaleValues: [5x1 double]
    PersistentMemory: 'on'
                  States: [2x4 double]

hd.arithmetic='fixed'
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
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              Arithmetic: 'fixed'
               sosMatrix: [4x6 double]
             ScaleValues: [5x1 double]
    PersistentMemory: 'on'
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: true           
                  Signed: true           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
    StageInputWordLength: 16             
     StageInputAutoScale: true           
                                         
   StageOutputWordLength: 16             
    StageOutputAutoScale: true           

                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         

         StateWordLength: 16             
         StateFracLength: 15             
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: true           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         
                                         
         InheritSettings: false          

Check the filter coefficients to see that some of them are greater than 1.

hd.sosMatrix
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ans =

    1.0000    1.5132    1.0000    1.0000   -0.9207    0.4373
    1.0000    0.3867    1.0000    1.0000   -0.2779    0.8242
    1.0000    0.0929    1.0000    1.0000   -0.0514    0.9610
    1.0000    0.0339    1.0000    1.0000   -0.0020    0.9934

Use normalize to modify the coefficients into the range between -1 and 1. 
A quick check of the SOS matrix shows all of the numerator coefficients now 
within the limits. You see that g contains the gains applied to each section of 
the SOS filter.

g = normalize(hd)

g =

    1.5132
    1.0000
    1.0000
    1.0000

hd.sosMatrix

ans =

    0.6608    1.0000    0.6608    1.0000   -0.9207    0.4373
    1.0000    0.3867    1.0000    1.0000   -0.2779    0.8242
    1.0000    0.0929    1.0000    1.0000   -0.0514    0.9610
    1.0000    0.0339    1.0000    1.0000   -0.0020    0.9934

Notice that none of the numerator coefficients exceed -1 or 1.

See Also denormalize
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8normalizefreqPurpose Switch filter specification object between normalized frequency specification 
and absolute frequency specification

Syntax normalizefreq(d)
normalizefreq(d,flag)
normalizefreq(d,false,fs)

Description normalizefreq(d) normalizes the frequency specifications in filter 
specifications object d. By default, the NormalizedFrequency property is set to 
true when you create a design object. You provide the design specifications in 
normalized frequency units. normalizefreq does not affect filters that already 
use normalized frequency.

If you use this syntax when d does not use normalized frequency specifications, 
all of the frequency specifications are normalized by fs/2 so they lie between 0 
and 1, where fs is specified in the object. Included in the normalization are the 
filter properties that define the filter pass and stopband edge locations by 
frequency:

• F3dB—Used by IIR filter specifications objects to describe the passband 
cutoff frequency

• Fcutoff—Used by FIR filter specifications objects to describe the passband 
cutoff frequency

• Fpass—Describes the passband edges
• Fstop—Describes the stopband edges

In this syntax, normalizefreq(d) assumes you specified fs when you created d 
or changed d to use absolute frequency specifications.

normalizefreq(d,flag) where flag is either true or false, specifies whether 
the NormalizedFrequency property value is true or false and therefore 
whether the filter normalizes the sampling frequency fs and other related 
frequency specifications. fs defaults to 1 for this syntax.

When you do not provide the input argument flag, it defaults to true. If you 
set flag to false, affected frequency specifications are multiplied by fs/2 to 
remove the normalization. Use this syntax to switch your filter between using 
normalized frequency specifications and not using normalized frequency 
specifications.
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normalizefreq(d,false,fs) lets you specify a new sampling frequency fs 
when you set the NormalizedFrequency property to false.

Examples These examples demonstrate using normalizefreq in both of the major syntax 
applications—setting the design object frequency specifications to use absolute 
frequency (normalizefreq(hd,false,fs)) and resetting a design object to 
using normalized frequencies (normalizefreq(d)).

Construct a highpass filter specifications object by specifying the pass- and 
stopband edges and the desired attenuations in the bands. By default, provide 
the frequency specifications in normalized values between 0 and 1.

d=fdesign.highpass(0.35, 0.45, 60, 40)
 
d =
 
               Response: 'Highpass'     
          Specification: 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fstop: 0.35           
                  Fpass: 0.45           
                  Astop: 60             
                  Apass: 40             

Fstop and Fpass are in normalized form, and the property 
NormalizedFrequency is true.

Now use normalizedfreq to convert to absolute frequency specifications, with 
a sampling frequency of 1000 Hz.

normalizefreq(d,false,1e3)
d
 
d =
 
               Response: 'Highpass'     
          Specification: 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}     
    NormalizedFrequency: false          
                     Fs: 1000           
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                  Fstop: 175            
                  Fpass: 225            
                  Astop: 60             
                  Apass: 40             

Both of the attenuation specifications remain the same. The passband and 
stopband edge definitions now appear in Hz, where the new value represents 
the normalized values multiplied by Fs/2, or 500 Hz.

Converting to using normalized frequencies consists of using normalizefreq 
with the design object d.

normalizefreq(d)
d
 
d =
 
               Response: 'Highpass'     
          Specification: 'Fst,Fp,Ast,Ap'
            Description: {4x1 cell}     
    NormalizedFrequency: true           
                  Fstop: 0.35           
                  Fpass: 0.45           
                  Astop: 60             
                  Apass: 40             

For bandstop, bandpass, and multiple band filter specifications objects, 
normalizefreq works the same way for all band edge definitions. When you do 
not provide the sampling frequency Fs as an input argument and you are 
converting to absolute frequency specifications,  normalizefreq sets Fs to 1, as 
shown in this example.

d=fdesign.bandstop(0.25,0.35,0.55,0.65,50,60)
 
d =
 
               Response: 'Bandstop'                     
          Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
            Description: {7x1 cell}                     
    NormalizedFrequency: true                           
                 Fpass1: 0.25                           
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                 Fstop1: 0.35                           
                 Fstop2: 0.55                           
                 Fpass2: 0.65                           
                 Apass1: 50                             
                  Astop: 60                             
                 Apass2: 50                             
                                                        
normalizefreq(d,false)
d
 
d =
 
               Response: 'Bandstop'                     
          Specification: 'Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2'
            Description: {7x1 cell}                     
    NormalizedFrequency: false                          
                     Fs: 1                              
                 Fpass1: 0.125                          
                 Fstop1: 0.175                          
                 Fstop2: 0.275                          
                 Fpass2: 0.325                          
                 Apass1: 50                             
                  Astop: 60                             
                 Apass2: 50                             

See Also fdesign.lowpass, fdesign.halfband, fdesign.highpass, 
fdesign.interpolator
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8nstatesPurpose Number of filter states in discrete-time or multirate filter

Syntax n = nstates(hd)
n = nstates(hm)

Description Discrete-Time Filters

n = nstates(hd) returns the number of states n in the discrete-time filter hd. 
The number of states depends on the filter structure and the coefficients.

Multirate Filters

n = nstates(hm) returns the number of states n in the multirate filter hm. The 
number of states depends on the filter structure and the coefficients.

Examples Check the number of states for two different filters, one a direct form FIR filter, 
the other a multirate filter.

h=firls(30,[0 .1 .2 .5]*2,[1 1 0 0])

hd=dfilt.dffir(h)
 
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'double'
               Numerator: [1x31 double]
    PersistentMemory: 'on'
                  States: [30x1 double]

n=nstates(hd)

n =

    30

hm=mfilt.firfracdecim(2,3)
 
hm =
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         FilterStructure: [1x46 char]
               Numerator: [1x72 double]
       RateChangeFactors: [2 3]
        PersistentMemory: false
                  States: [35x1 double]

n=nstates(hm)

n =

    35

See Also mfilt
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8orderPurpose Order of quantized filter

Syntax n=order(hq)

Description n = order(hq) returns the order n of the quantized filter hq. When hq is a 
single-section filter, n is the number of delays required for a minimum 
realization of the filter.

When hq has more than one section, n is the number of delays required for a 
minimum realization of the overall filter.

Examples Create a discrete-time filter. Quantize the filter and convert to second-order 
section form. Then use order to check the order of the filter.

[b,a] = ellip(4,3,20,.6); % Create the reference filter.
hq = dfilt.df2(b,a);
% Quantize the filter and convert to second-order sections.
set(hq,'arithmetic','fixed');

n=order(hq) % Check the order of the overall filter.
n = 4
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8phasedelayPurpose Phase delay of  discrete-time or multirate filter

Syntax phasedelay(hd)
[phi,w] = phasedelay(hd,n)
[phi,w] = phasedelay(...,f)

phasedelay(hm)
[phi,w] = phasedelay(hm,n)

[phi,w] = phasedelay(...,f)

[phi,w] = phasedelay(...,fs)

Description The following sections describe phasedelay operation for discrete-time filters 
and multirate filters. For more information about optional input arguments for 
phasedelay, refer to phasez in the Signal Processing Toolbox.

Discrete-Time Filters

phasedelay(hd) displays the phase delay response of hd in the Filter 
Visualization Tool (FVTool).

[phi,w]=phasedelay(hd,n) returns vectors phi and w containing the 
instantaneous phase delay response of the adaptive filter hd, and the 
frequencies in radians at which it is evaluated. The response is evaluated at n 
points equally spaced around the upper half of the unit circle. When you do not 
specify n, it defaults to 8192.

If hd is a vector of filter objects, phasedelay returns phi as a matrix. Each 
column of phi corresponds to one filter in the vector. If you provide a row vector 
of frequency points f as an input argument, each row of phi corresponds to each 
filter in the vector. You can provide fs, the sampling frequency, as an input as 
well. phasedelay uses fs to calculate the delay response and plots the response 
to fs/2.

 Multirate Filters

phasedelay(hm) displays the phase response of hm in the Filter Visualization 
Tool (FVTool).
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[phi,w]=phasedelay(hm,n) returns vectors phi and w containing the 
instantaneous phase delay response of the adaptive filter hm, and the 
frequencies in radians at which it is evaluated. The response is evaluated at n 
points equally spaced around the upper half of the unit circle. When you do not 
specify n, it defaults to 8192.

If hm is a vector of filter objects, phasedelay returns phi as a matrix. Each 
column of phi corresponds to one filter in the vector. If you provide a row vector 
of frequency points f as an input argument, each row of phi corresponds to each 
filter in the vector.

Note that the multirate filter delay response is computed relative to the rate at 
which the filter is running. When you specify fs (the sampling rate) as an input 
argument, phasedelay assumes the filter is running at that rate.

For multistage cascades, phasedelay forms a single-stage multirate filter that 
is equivalent to the cascade and computes the response relative to the rate at 
which the equivalent filter is running. phasedelay does not support all 
multistage cascades. Only cascades for which it is possible to derive an 
equivalent single-stage filter are allowed for analysis.

As an example, consider a 2-stage interpolator where the first stage has an 
interpolation factor of 2 and the second stage has an interpolation factor of 4. 
An equivalent single-stage filter with an overall interpolation factor of 8 can be 
found. phasedelay uses the equivalent filter for the analysis. If a sampling 
frequency fs is specified as an input argument to phasedelay, the function 
interprets fs as the rate at which the equivalent filter is running. 

See Also freqz, grpdelay, phasez, zerophase, zplane

freqz, fvtool, phasez, zerophase in the Signal Processing Toolbox 
documentation
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8phasezPurpose Unwrapped phase response for filter

Syntax phasez(ha)
[phi,w] = phasez(ha,n)
[phi,w] = phasez(...,f)

phasez(hd)
[phi,w] = phasez(hd,n)
[phi,w] = phasez(...,f)

phasez(hm)
[phi,w] = phasez(hm,n)

[phi,w] = phasez(...,f)

[phi,w] = phasez(...,fs)

Description The following sections describe phasez operation for adaptive filters, 
discrete-time filters, and multirate filters. For more information about optional 
input arguments for phasez, refer to phasez in the Signal Processing Toolbox.

Adaptive Filters
For adaptive filters, phasez returns the instantaneous unwrapped phase 
response based on the current filter coefficients.

phasez(ha) displays the phase response of ha in the Filter Visualization Tool 
(FVTool).

[phi,w]=phasez(ha,n) returns vectors phi and w containing the 
instantaneous phase response of the adaptive filter ha, and the frequencies in 
radians at which it is evaluated. The phase response is evaluated at n points 
equally spaced around the upper half of the unit circle. When you do not specify 
n, it defaults to 8192.

If ha is a vector of filter objects, phasez returns phi as a matrix. Each column 
of phi corresponds to one filter in the vector. If you provide a row vector of 
frequency points f as an input argument, each row of phi corresponds to each 
filter in the vector.
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Discrete-Time Filters

phasez(hd) displays the phase response of hd in the Filter Visualization Tool 
(FVTool).

[phi,w]=phasez(hd,n) returns vectors phi and w containing the 
instantaneous phase response of the adaptive filter hd, and the frequencies in 
radians at which it is evaluated. The phase response is evaluated at n points 
equally spaced around the upper half of the unit circle. When you do not specify 
n, it defaults to 8192.

If hd is a vector of filter objects, phasez returns phi as a matrix. Each column 
of phi corresponds to one filter in the vector. If you provide a row vector of 
frequency points f as an input argument, each row of phi corresponds to each 
filter in the vector.

 Multirate Filters

phasez(hm) displays the phase response of hm in the Filter Visualization Tool 
(FVTool).

[phi,w]=phasez(hm,n) returns vectors phi and w containing the 
instantaneous phase response of the adaptive filter hm, and the frequencies in 
radians at which it is evaluated. The phase response is evaluated at n points 
equally spaced around the upper half of the unit circle. When you do not specify 
n, it defaults to 8192.

If hm is a vector of filter objects, phasez returns phi as a matrix. Each column 
of phi corresponds to one filter in the vector. If you provide a row vector of 
frequency points f as an input argument, each row of phi corresponds to each 
filter in the vector.

Note that the multirate filter response is computed relative to the rate at which 
the filter is running. When you specify fs (the sampling rate) as an input 
argument, phasez assumes the filter is running at that rate.

For multistage cascades, phasez forms a single-stage multirate filter that is 
equivalent to the cascade and computes the response relative to the rate at 
which the equivalent filter is running. phasez does not support all multistage 
cascades. Only cascades for which it is possible to derive an equivalent 
single-stage filter are allowed for analysis.
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As an example, consider a 2-stage interpolator where the first stage has an 
interpolation factor of 2 and the second stage has an interpolation factor of 4. 
An equivalent single-stage filter with an overall interpolation factor of 8 can be 
found. phasez uses the equivalent filter for the analysis. If a sampling 
frequency fs is specified as an input argument to phasez, the function 
interprets fs as the rate at which the equivalent filter is running. 

See Also freqz, grpdelay, phasedelay, zerophase, zplane

freqz, fvtool, phasez in the Signal Processing Toolbox documentation
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8polyphasePurpose Polyphase decomposition of multirate filter

Syntax p = polyphase(hm)
polyphase(hm)

Description p = polyphase(hm) returns the polyphase matrix p of the multirate filter hm. 
Each row in the matrix represents one subfilter of the multirate filter. The first 
row of matrix p represents the first subfilter, the second row the second 
subfilter, and so on to the last subfilter.

polyphase(hm) called with no output argument launches the Filter 
Visualization Tool (FVTool) with all the polyphase subfilters to allow you to 
analyze each component subfilter individually.

Examples When you create a multirate filter that uses polyphase decomposition, 
polyphase lets you analyze the component filters indiviually by returning the 
components as rows in a matrix. 

This example creates an interpolate by eight filter.

hm=mfilt.firinterp(8)
 
hm =
 
         FilterStructure: 'Direct-Form FIR Polyphase Interpolator'
               Numerator: [1x192 double]
     InterpolationFactor: 8
        PersistentMemory: false
                  States: [23x1 double]

In this syntax, the matrix p contains all of the subfilters for hm, one filter per 
matrix row.

p=polyphase(hm)

p =

  Columns 1 through 8 

         0         0         0         0         0         0         0         0
   -0.0000    0.0002   -0.0006    0.0013   -0.0026    0.0048   -0.0081    0.0133
   -0.0001    0.0004   -0.0012    0.0026   -0.0052    0.0094   -0.0160    0.0261
   -0.0001    0.0006   -0.0017    0.0038   -0.0074    0.0132   -0.0223    0.0361
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   -0.0002    0.0008   -0.0020    0.0045   -0.0086    0.0153   -0.0257    0.0415
   -0.0002    0.0008   -0.0021    0.0045   -0.0086    0.0151   -0.0252    0.0406
   -0.0002    0.0007   -0.0018    0.0038   -0.0071    0.0124   -0.0205    0.0330
   -0.0001    0.0004   -0.0011    0.0022   -0.0041    0.0072   -0.0118    0.0189

  Columns 9 through 16 

         0         0         0         0    1.0000         0         0         0
   -0.0212    0.0342   -0.0594    0.1365    0.9741   -0.1048    0.0511   -0.0303
   -0.0416    0.0673   -0.1189    0.2958    0.8989   -0.1730    0.0878   -0.0527
   -0.0576    0.0938   -0.1691    0.4659    0.7814   -0.2038    0.1071   -0.0648
   -0.0661    0.1084   -0.2003    0.6326    0.6326   -0.2003    0.1084   -0.0661
   -0.0648    0.1071   -0.2038    0.7814    0.4659   -0.1691    0.0938   -0.0576
   -0.0527    0.0878   -0.1730    0.8989    0.2958   -0.1189    0.0673   -0.0416
   -0.0303    0.0511   -0.1048    0.9741    0.1365   -0.0594    0.0342   -0.0212

  Columns 17 through 24 

         0         0         0         0         0         0         0         0
    0.0189   -0.0118    0.0072   -0.0041    0.0022   -0.0011    0.0004   -0.0001
    0.0330   -0.0205    0.0124   -0.0071    0.0038   -0.0018    0.0007   -0.0002
    0.0406   -0.0252    0.0151   -0.0086    0.0045   -0.0021    0.0008   -0.0002
    0.0415   -0.0257    0.0153   -0.0086    0.0045   -0.0020    0.0008   -0.0002
    0.0361   -0.0223    0.0132   -0.0074    0.0038   -0.0017    0.0006   -0.0001
    0.0261   -0.0160    0.0094   -0.0052    0.0026   -0.0012    0.0004   -0.0001

0.0133   -0.0081    0.0048   -0.0026    0.0013   -0.0006    0.0002   -0.0000

Finally, using polyphase without an output argument opens the Filter 
Visualization Tool, ready for you to use the analysis capabilities of the tool to 
investigate the interpolator hm.

polyphase(hm)

In this figure, we switch FVTool to show the magnitude responses for the 
subfilters.
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See Also mfilt
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8qreportPurpose Results of most recent fixed-point filtering operation

Syntax rlog = qreport(h)

Description rlog = qreport(h) returns the logging report stored in the filter object h in 
the object rlog. The ability to log features of the filtering operation is 
integrated in the fixed-point filter object and the filter method.

Each time you filter a signal with h, new log data overwrites the results in the 
filter from the previous filtering operation. To save the log from a filtering 
simulation, change the name of the output argument for the operation before 
subsequent filtering runs.

Note  qreport requires the Fixed-Point Toolbox and that filter h is 
a fixed-point filter.

Data logging for fi operations is a preference you set for each MATLAB 
session. To learn more about logging, LoggingMode, and fi object preferences, 
refer to fipref in the documentation for the Fixed-Point Toolbox in the online 
Help system.

Enable logging during filtering by setting LoggingMode to on for fi objects for 
your MATLAB session. Trigger logging by setting the Arithmetic property for 
h to fixed, making h a fixed-point filter and filtering an input signal. 

Using Fixed-Point Filtering Logging
Filter operation logging with qreport requires some preparation in MATLAB. 
Complete these steps before you use qreport.

1 Set the fixed-point object preference for LoggingMode to on for your 
MATLAB session. This setting enables data logging.`
fipref('LoggingMode','on')

2 Create your fixed-point filter.

3 Filter a signal with the filter.

4 Use qreport to return the filtering information stored in the filter object.
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qreport provides a way to instrument your fixed-point filters and the resulting 
data log offers insight into how the filter responds to a particular input data 
signal. 

Report object rlog contains a filter-structure-specific list of internal signals for 
the filter. Each signal contains

• Minimum and maximum values that were recorded during the last 
simulation. Minimum and maximum values correspond to values before 
quantization.

• Representable numerical range of the  word length and fraction length 
format

• Number of overflows during filtering for that signal.

Examples qreport depends on the LoggingMode preference for fixed-point objects. This 
example demonstrates the process for enabling and using qreport to log the 
results of filtering with a fixed-point filter. hd is a fixed-point direct-form FIR 
filter.

f = fipref('loggingmode','on');
hd = design(fdesign.lowpass,'equiripple');
hd.arithmetic = 'fixed';
fs = 1000;          % Input sampling frequency.
t = 0:1/fs:1.5;     % Signal length = 1501 samples.
x = sin(2*pi*10*t); % Amplitude = 1 sinusoid.
y = filter(hd,x); 
rlog = qreport(hd)
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View the logging report of a direct-form II, second-order sections IIR filter the 
same way. While this example sets loggingmode to on, you do that only once 
for a MATLAB session, unless you reset the mode to off during the session.

fipref('loggingmode', 'on');
hd = design(fdesign.lowpass, 'ellip');
hd. arithmetic = 'fixed';
rand('state', 0);
y = filter(hd, rand(100,1));
rlog = qreport(hd)

 See Also dfilt, mfilt
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8realizemdlPurpose Realize Simulink subsystem block for quantized filter

Syntax realizemdl(hq)
realizemdl(hq, propertyname1, propertyvalue1,...)

Description realizemdl(hq)  generates a model of filter hq in a Simulink subsystem block 
using sum, gain, and delay blocks from Simulink. The properties and values of 
hq define the resulting subsystem block parameters.

realizemdl requires Simulink. To accurately realize models of quantized 
filters, use Simulink Fixed-Point.

realizemdl(hq,propertyname1,propertyvalue1,...) generates the model 
or hq with the associated propertyname/propertyvalue pairs, and any other 
values you set in hq.

Note  Subsystem filter blocks that you use realizemdl to create support 
sample-based input and output only. You cannot input or output frame-based 
signals with the block.

Using the optional propertyname/propertyvalue pairs lets you control more 
fully the way the block subsystem model gets built, such as where the block 
goes, what the name is, or how to optimize the block structure. Valid properties 
and values for realizemdl are listed in this table, with the default value noted 
and descriptions of what the properties do.

Property Name Property Values Description

Destination 'current' (default) 
or 'new'

Specify whether to add the block to your 
current Simulink model or create a new 
model to contain the block. 

Blockname 'filter' (default) Provides the name for the new subsystem 
block. By default the block is named 
'filter'. To enter a name for the block, use 
the propertyvalue set to a string 
'blockname'.
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Examples To demonstrate how realizemdl works to create models, these two examples 
show the default and optional syntaxes in use. Both examples begin from 
a quantized filter designed by butter in the Signal Processing Toolbox.

[b,a] = butter(4,.5);
hq = dfilt.df1(b,a);

Example 1—Using the default syntax to realize a model of your quantized filter 
hq. When you use this syntax, realizemdl uses blocks from Simulink and 
Simulink Fixed-Point to realize the subsystem in your current Simulink model.

realizemdl(hq);

Look at the figure to see the model as realized by realizemdl.

OverwriteBlock 'off' or 'on' Specify whether to overwrite an existing 
block with the same name or create a new 
block. 

OptimizeZeros 'off' (default) or 
'on'

Specify whether to remove zero-gain blocks.

OptimizeOnes 'off' (default) or 
'on'

Specify whether to replace unity-gain blocks 
with direct connections.

OptimizeNegOnes 'off' (default) or 
'on'

Specify whether to replace negative 
unity-gain blocks with a sign change at the 
nearest sum block.

OptimizeDelayChains 'off' (default) or 
'on'

Specify whether to replace cascaded chains 
of delay blocks with a single integer delay 
block to provide an equivalent delay.

Property Name Property Values Description
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Example 2—Using propertyname/propertyvalue pairs to specify the features of 
the subsystem block model created by realizemdl.

First, convert the filter to fixed-point arithmetic to ensure a few zero valued 
coefficients:

hq.arithmetic = 'fixed';

Your filter has two zero value denominators, a(2) and a(4):

FilterStructure: 'Direct-Form I'
              Arithmetic: 'fixed'
               Numerator: [0.0940 0.3759 0.5639 0.3759 0.0940]
             Denominator: [1 0 0.4860 0 0.0176]
        PersistentMemory: false
                  States: Numerator:  [4x1 fi]
                          Denominator:[4x1 fi]

Now realize the model implementation.

realizemdl(hq,'optimizezeros','on',...
'blockname','newfiltermodel');
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Since this example uses the optional property name optimizezeros, set to 'on', 
the resulting block subsystem is slightly different—the zero-gain blocks for 
coefficients a(2) and a(4) are not included in the subsystem.

See Also realizemdl under the methods for dfilt in the Signal Processing Toolbox
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8reffilterPurpose Double-precision floating-point reference filter that corresponds to fixed-point 
or single-precision floating-point filter

Syntax href = reffilter(hd)

Description href = reffilter(hd) returns a new filter href that has the same structure 
as hd, but uses the reference coefficients and has its arithmetic property set to 
double. Note that hd can be either a fixed-point filter (arithmetic property set 
to 'fixed', or a single-precision floating-point filter whose arithmetic property 
is 'single').

reffilter(hd) differs from double(hd) in that 

• the filter href returned by reffilter has the reference coefficients of hd.

• double(hd) returns the quantized coefficients of hd represented in 
double-precision. 

To check the performance of your fixed-point filter, use href = reffilter(hd) 
to quickly have the floating-point, double-precision version of hd available for 
comparison.

Examples Compare several fixed-point quantizations of a filter with the same 
double-precision floating-point version of the filter. 

h = dfilt.dffir(firceqrip(87,.5,[1e-3,1e-6])); % Lowpass filter.
h1 = copy(h); h2 = copy(h); % Create copies of h.
h.arithmetic = 'fixed';   % Set h to filter using fixed-point  

% arithmetic.
h1.arithmetic = 'fixed';  % Same for h1.
h2.arithmetic = 'fixed';  % Same for h2.
h.CoeffWordLength = 16;  % Use 16 bits to represent the  

% coefficients.
h1.CoeffWordLength = 12;  % Use 12 bits to represent the  

% coefficients.
h2.CoeffWordLength =  8;  % Use 8 bits to represent the  

% coefficients.
href = reffilter(h);
hfvt = fvtool(href,h,h1,h2); 
set(hfvt,'ShowReference','off'); % Reference displayed once 

% already.
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legend(hfvt,'Reference filter','16-bits','12-bits','8-bits');

The following plot, taken from FVTool, shows href, the reference filter, and the 
effects of using three different word lengths to represent the coefficients.

As expected, the fidelity of the fixed-point filters suffers as you change the 
representation of the coefficients. With href available, it is easy to see just how 
the fixed-point filter compares to the ideal.

See Also double
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8reorderPurpose Rearrange sections in second-order sections (SOS) filter

Syntax reorder(hd,order)
reorder(hd,numorder,denorder)
reorder(hd,numorder,denorder,svorder)
reorder(hd,filter_type)
reorder(hd,dir_flag)
reorder(hd,dir_flag,sv))

Description reorder(hd,order) rearranges the sections of filter hd using the vector of 
indices provided in order.

order does not need to contain all of the indices of the filter. Omitting one or 
more filter section indices removes the omitted sections from the filter. You can 
use a logical array to remove sections from the filter, but not to reorder it (refer 
to the Examples to see this done). 

reorder(hd,numorder,denorder) reorders the numerator and denominator 
separately using the vectors of indices in numorder and denorder. These two 
vectors must be the same length.

reorder(hd,numorder,denorder,svorder) the scale values can be 
independently reordered. When svorder is not specified, the scale values are 
reordered with the numerator. The output scale value always remains on the 
end when you use the argument numorder to reorder the scale values.

reorder(hd,filter_type) where filter_type is one of auto, lowpass, 
highpass, bandpass, or bandstop, reorders hd in a way suitable for the filter 
type you specify by filter_type. This reordering mode can be especially 
helpful for fixed-point implementations where the order of the filter sections 
can significantly affect your filter performance.

The auto option and automatic ordering only apply to filters that you used 
fdesign to create.With the auto option as an input argument, reorder 
automatically rearranges the filter sections depending on the specification 
response type of the design, such as lowpass, or bandstop. This technique 
appears in the first example.

reorder(hd,dir_flag) if dir_flag is up, the first filter section contains the 
poles closest to the origin, and the last section contains the poles closest to the 
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unit circle. When dir_flag is down, the sections are ordered in the opposite 
direction. reorder always pairs zeros with the poles closest to them.

reorder(hd,dir_flag,sv) sv is either the string poles or zeros and describes 
how to reorder the scale values. By default the scale values are not reordered 
when you use the dir_flag option. 

Examples Being able to rearrange the order of the sections in a filter can be a powerful 
tool for controlling the filter process. This example uses reorder to change the 
sections of a df2sos filter. Let reorder do the reordering automatically in the 
first example. In the second, use reorder to specify the new order for the 
sections.

First use the automatic reordering option on a lowpass filter.

d = fdesign.lowpass('n,f3db',15,0.75)
hd = design(d,'butter');
d =
 
               Response: 'Lowpass'                       
          Specification: 'N,F3dB'                        
            Description: {'Filter Order';'3dB Frequency'}
    NormalizedFrequency: true                            
            FilterOrder: 15                              
                   F3dB: 0.75                            

reorder(hd,'auto')
hd
 
hd =
 
         FilterStructure: 'Direct-Form II, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [8x6 double]
             ScaleValues: [9x1 double]
        PersistentMemory: false

The SOS matrices show the reordering.

hd.sosMatrix
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ans =

    1.0000    2.0000    1.0000    1.0000    1.3169    0.8623
    1.0000    2.0000    1.0000    1.0000    1.1606    0.6414
    1.0000    2.0000    1.0000    1.0000    1.0448    0.4776
    1.0000    2.0000    1.0000    1.0000    0.9600    0.3576
    1.0000    2.0000    1.0000    1.0000    0.8996    0.2722
    1.0000    2.0000    1.0000    1.0000    0.8592    0.2151
    1.0000    2.0000    1.0000    1.0000    0.8360    0.1823
    1.0000    1.0000         0    1.0000    0.4142         0

hdreorder.sosMatrix

ans =

    1.0000    2.0000    1.0000    1.0000    1.0448    0.4776
    1.0000    2.0000    1.0000    1.0000    0.8360    0.1823
    1.0000    2.0000    1.0000    1.0000    0.8996    0.2722
    1.0000    2.0000    1.0000    1.0000    1.3169    0.8623
    1.0000    2.0000    1.0000    1.0000    0.9600    0.3576
    1.0000    1.0000         0    1.0000    0.4142         0
    1.0000    2.0000    1.0000    1.0000    0.8592    0.2151
    1.0000    2.0000    1.0000    1.0000    1.1606    0.6414

For another example of using reorder, create an SOS filter in the direct form II 
implementation.

[z,p,k] = butter(15,.5);
[sos, g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);

Reorder the sections by moving the second section to be between the seventh 
and eighth sections.

    reorder(hd, [1 3:7 2 8]);
    hfvt = fvtool(hd, 'analysis', 'coefficients');

Remove the third, fourth and seventh sections.

    hd1 = copy(hd);
    reorder(hd1, logical([1 1 0 0 1 1 0 1]));
    setfilter(hfvt, hd1);
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 Move the first filter to the end and remove the eighth section

    hd2 = copy(hd);
    reorder(hd2, [2:7 1]);
    setfilter(hfvt, hd2);

 Move the numerator and denominator independently.

    hd3 = copy(hd);
    reorder(hd3, [1 3:8 2], [1:8]);
    setfilter(hfvt, hd3);

See Also cumsec, scale, scaleopts

Reference Schlichthärle, Dietrich, Digital Filters Basics and Design, Springer-Verlag 
Berlin Heidelberg, 2000. 
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8resetPurpose Reset filter properties to initial conditions

Syntax reset(ha)
reset(hd)
reset(hm)

Description reset(ha) resets all the properties of the adaptive filter ha that are updated 
when filtering to the value specified at construction. If you do not specify 
a value for any particular property when you construct an adaptive filter, the 
property value for that property is reset to the default value for the property.

reset(hd) resets all the properties of the discrete-time filter hd to their factory 
values that are modifed when you run the filter. In particular, the States 
property is reset to zero.

reset(hm) resets all the properties of the multirate filter hm to their factory 
value that are modifed when the filter is run. In particular, the States 
property is reset to zero  when hm is a decimator. Additionally, the filter 
internal properties are also reset to their factory values.

Examples Denoise a sinusoid and reset the filter after filtering with it.

h = adaptfilt.lms(5,.05,1,[0.5,0.5,0.5,0.5,0.5]);
n = filter(1,[1 1/2 1/3],.2*randn(1,2000)); 
d = sin((0:1999)*2*pi*0.005) + n; % Noisy sinusoid
x = n;
[y,e]= filter(h,x,d);             % e has denoised signal
disp(h)
reset(h); % Reset the coefficients and states.
disp(h)  

See Also quantizer, set
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8scalePurpose Scale sections of second-order sections (SOS) filter

Syntax scale(hd)
scale(hd,pnorm)
scale(hd,pnorm,p1v,p2,v2, )
scale(hd,pnorm,opts)

Description scale(hd) scales the second-order section filter hd using peak magnitude 
response scaling (L-infinity, Linf), to reduce the possibility of overflows when 
your filter hd operates in fixed-point arithmetic mode.

scale(hd,pnorm) specifies the norm used to scale the filter. pnorm can be 
either a discrete-time-domain norm or a frequency-domain norm.

Valid time-domain norm values for pnorm are l1, l2, and linf. Valid 
frequency-domain norm values are L1, L2, and Linf. Note that L2 norm is equal 
to l2 norm (by Parseval's theorem) but this is not true for other norms—l1 is 
not the same as L1 and Linf is not the same as linf.

Filter norms can be ordered in terms of how stringent they are, as follows from 
most stringent to least:

l1 >= Linf >= L2 = l2 >= L1 >= linf

Using l1, the most stringent scaling, produces a filter that is least likely to 
overflow, but has the worst signal-to-noise ratio performance. Linf scaling, the 
least stringent, and the default scaling, is the most commonly used scaling 
norm.
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scale(hd,pnorm,p1,v1,p2,v2,...) uses parameter name/parameter value 
pair input arguments to specify optional scaling parameters. Valid parameter 
names and options values appear in the table.

Parameter Default Description and Valid Value 

MaxNumerator 2 Maximum allowed value for 
numerator coefficients.

MaxScaleValue Not Used Maximum allowed scale values. 
The filter applies the 
MaxScaleValue limit only when 
you set ScaleValueConstraint to 
a value other than unit (the 
default setting). Setting 
MaxScaleValue to any numerical 
value automatically changes the 
ScaleValueConstraint setting to 
none.

NumeratorConstraint none Specifies whether and how to 
constrain numerator coefficient 
values. Options are none, 
normalize, po2, and unit 

OverflowMode wrap Sets the way the filter handles 
arithmetic overflow situations 
during scaling. Choose from wrap, 
saturate or satall.
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If your device does not have guard bits available and you are using saturation 
arithmetic for filtering, use the satall setting for OverFlowMode instead of 
saturate.

With the Arithmetic property of hd set to double or single, the filter uses the 
default values for all options that you do not specify explicitly. When you set 
Arithmetic to fixed, the values used for the scaling options are set according 
to the settings in filter hd. However, if you specify a scaling option different 
from the settings in hd, the filter uses your explicit option selection for scaling 
purposes, but does not change the property setting in hd.

scale(hd,pnorm,opts) uses an input scale options object opts to specify the 
optional scaling parameters in lieu of specifying parameter-value pairs. You 
can create the opts object using

opts = scaleopts(hd)

For more information about scaling objects, refer to scaleopts in the Help 
system.

Examples Demonstrate the Linf-norm scaling of a lowpass elliptic filter with 
second-order sections. Start by creating a lowpass elliptical filter in zero, pole, 
gain (z,p,k) form.

ScaleValueConstraint unit Specify whether to constrain the 
filter scale values, and how to 
constrain them. Valid options are 
none, po2, and unit. Choosing 
unit for the constraint disables 
the MaxScaleValue property 
setting. po2 constrains the scale 
values to be powers of 2, while 
none removes any constraint on 
the scale values.

sosReorder auto Reorder filter sections prior to 
applying scaling. Select one of 
auto, none, up, or down.

Parameter Default Description and Valid Value 
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[z,p,k] = ellip(5,1,50,.3);
[sos,g] = zp2sos(z,p,k);
hd = dfilt.df2sos(sos,g);
scale(hd,'linf','scalevalueconstraint','none','maxscalevalue',2)

See Also cumsec, norm, reorder, scalecheck, scaleopts
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8scalecheckPurpose Check scaling of a second-order sections (SOS) filter

Syntax s = scalecheck(hd,pnorm)

Description For df1sos and df2tsos Filters

s = scalecheck(hd,pnorm)  returns a row vector s that reports the p-norm of 
the filter computed from the filter input to the output of each second-order 
section. Therefore, the number of elements in s is one less than the number of 
sections in the filter. Note that this p-norm computation does not include the 
trailing scale value of the filter (which you can find by entering 

hd.scalevalue(end)

at the MATLAB prompt.

pnorm can be either frequency-domain norms specified by L1, L2, or Linf or 
discrete-time-domain norms—l1, l2, linf. Note that the L2-norm of a filter is 
equal to the l2-norm (Parseval's theorem). This is not true for other norms.

For df2sos and df1tsos Filters

s = scalecheck(hd,pnorm)  returns s, a row vector whose elements contain 
the p-norm from the filter input to the input of the recursive part of each 
second-order section. This computation of the p-norm corresponds to the input 
to the multipliers in these filter structures, and are the locations in the signal 
flow where overflow should be avoided.

When hd has nontrivial scale values, that is, if any scale values are not equal 
to one, s is a two-row matrix, rather than a vector. The first row elements of 
s report the p-norm of the filter computed from the filter input to the output of 
each second-order section. The elements of the second row of s contain the 
p-norm computed from the input of the filter to the input of each scale value 
between the sections. Note that for df2sos and df1tsos filter structures, the 
last numerator and the trailing scale value for the filter are not included when 
scalecheck checks the scale.

For a given p-norm, an optimally scaled filter has partial norms equal to one, 
so matrix s contain all ones.

Examples Check the Linf-norm scaling of a filter.
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hs = fdesign.lowpass; % Create a filter design specifications 
object.
hd = ellip(hs);       % Design an elliptic sos filter
scale(hd,'Linf');
s = scalecheck(hd,'Linf')

Or, in another form:

[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)

hd =

         FilterStructure: 'Direct-Form I, Second-Order Sections'
              Arithmetic: 'double'
               sosMatrix: [5x6 double]
             ScaleValues: [6x1 double]
        PersistentMemory: false
                  States: [1x1 filtstates.dfiir]

1x1 struct array with no fields.

scalecheck(hd,'Linf')

ans =

    0.7631    0.9627    0.9952    0.9994    1.0000

See Also norm, reorder, scale, scaleopts
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8scaleoptsPurpose Create object containing scaling options for second-order sections (SOS) scaling

Syntax opts = scaleopts(hd)

Description opts = scaleopts(hd) uses the current settings in the filter hd to create an 
options object opts that contains specified scaling options for second-order 
section scaling. You can pass opts to the scale method as an input argument 
to apply scaling settings to a second-order filter.

Within opts, the scaling options object returned by scaleopts, you can set the 
following properties:

Parameter Default Description and Valid Value 

MaxNumerator 2 Maximum allowed value for 
numerator coefficients.

MaxScaleValue No default 
value

Maximum allowed scale values. 
The filter applies the 
MaxScaleValue limit only when 
you set ScaleValueConstraint 
to a value other than unit. 
Setting MaxScaleValue to 
a numerical value 
automatically changes the 
ScaleValueConstraint setting 
to none.

NumeratorConstraint none Specifies whether and how to 
constrain numerator coefficient 
values. Options are none, 
normalize, po2, and unit,    
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When you set the properties of opts and then use opts as an input argument 
to scale(hd,opts), scale applies the settings in opts to scale hd.

Examples From a filter hd, you can create an options scaling object that contains the 
scaling options settings you require.

[b,a]=ellip(10,.5,20,0.5);
[s,g]=tf2sos(b,a);
hd=dfilt.df1sos(s,g)
opts=scaleopts(hd)
 
opts =
 
            MaxNumerator: 2
     NumeratorConstraint: 'none'
            OverflowMode: 'wrap'
    ScaleValueConstraint: 'unit'
           MaxScaleValue: 'Not used'

See Also cumsec, norm, reorder, scale, scalecheck

OverflowMode wrap  Sets the way the filter handles 
arithmetic overflow situations 
during scaling. Choose either 
wrap or saturate

ScaleValueConstraint unit Specify whether to constrain 
the filter scale values, and how 
to constrain them. Valid options 
are none, po2, and unit

Parameter (Continued) Default Description and Valid Value 
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8set2intPurpose Configure single-rate and multirate filters for integer filtering

Syntax set2int(h)
set2int(h,coeffwl)
set2int(...,inwl)
g = set2int(...)

Description These sections apply to both discrete-time (dfilt) and multirate (mfilt) filters.

set2int(h) scales the filter coefficients to integer values and sets the filter 
coefficient and input fraction lengths to zero.

set2int(h,coeffwl) uses the number of bits specified by coeffwl as the word 
length it uses to represent the filter coefficients.

set2int(...,inwl) uses the number of bits specified by coeffwl as the word 
length it uses to represent the filter coefficients and the number of bits 
specified by inwl as the word length to represent the input data.

g = set2int(...) returns the gain g introduced into the filter by scaling the 
filter coefficients to integers. g is always calculated to be a power of 2.

Note  set2int does not work with CIC decimators or interpolators because 
they do not have coefficients.

    Examples These examples demonstrate some uses and ideas behind set2int.

The second parts of both examples depend on the following—after you filter 
a set of data, the input data and output data cover the same range of values, 
unless the filter process introduces gain in the output. Converting your filter 
object to integer form, and then filtering a set of data, does introduce gain into 
the system. When the examples refer to resetting the output to the same range 
as the input, the examples are accounting for this added gain feature.

Discrete-Time Filter Example
Two parts comprise this example. Part 1 compares the step response of an FIR 
filter in both the fractional and integer filter modes. Fractional mode filtering 
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is essentially the opposite of integer mode. Integer mode uses a filter which has 
coefficients represented by integers. Fractional mode filters have coefficients 
represented in fractional form (nonzero fraction length).

b = firrcos(100,.25,.25,2,'rolloff','sqrt');
hd = dfilt.dffir(b);
hd.Arithmetic = 'fixed';
hd.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hd,x); % Fractional mode output.
g = set2int(hd); % Convert to integer coefficients.
yint = filter(hd,x);  % Integer mode output.

Note that yint and yfrac are fi objects. Later in this example, you use the fi 
object properties WordLength and FractionLength to work with the output 
data.

Now use the gain g to rescale the output from the integer mode filter operation.

yints = double(yint)/g;

Verify that the scaled integer output is equal to the fractional output.

 max(abs(yints-double(yfrac)))

In part 2 , the example reinterprets the output binary data, putting the input 
and the output on the same scale by weighting the most significant bits in the 
input and output data equally.

WL = yint.WordLength;
FL = yint.Fractionlength + log2(g);
yints2 = fi(zeros(size(yint)),true,WL,FL);
yints2.bin = yint.bin;
max(abs(double(yints2)-double(yfrac)))

Multirate Filter Example
This two-part example starts by comparing the step response of a multirate 
filter in both fractional and integer modes. Fractional mode filtering is 
essentially the opposite of integer mode. Integer mode uses a filter which has 
coefficients represented by integers. Fractional mode filters have coefficients in 
fractional form with nonzero fraction lengths.

hm = mfilt.firinterp;
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hm.Arithmetic = 'fixed';
hm.InputFracLength = 0; % Integer inputs.
x = ones(100,1);
yfrac = filter(hm,x); % Fractional mode output.
g = set2int(hm); %Convert to integer coefficients.
yint = filter(hm,x);  % Integer mode output.

Note that yint and yfrac are fi objects. In part 2 of this example, you use the 
fi object properties WordLength and FractionLength to work with the output 
data.

Now use the gain g to rescale the output from the integer mode filter operation.

yints = double(yint)/g;

Verify that the scaled integer output is equal to the fractional output.

max(abs(yints-double(yfrac)))

Part 2 demonstrates reinterpreting the output binary data by using the 
properties of yint to create a scaled version of yint named yints2. This process 
puts yint and yints2 on the same scale by weighing the most significant bits 
of each object equally. 

wl = yint.wordlength;
fl = yint.fractionlength + log2(g); 
yints2 = fi(zeros(size(yint)),true,wl,fl);
yints2.bin = yint.bin; 
max(abs(double(yints2)-double(yfrac)))

See Also mfilt
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8setspecsPurpose Set specifications for filter specification object

Syntax setspecs(d,specvalue1,specvalue2,...)
setspecs(d,Specification,specvalue1,specvalue2,...)
setspecs(...,fs)
setspecs(...,inputunits)

Description setspecs(d,specvalue1,specvalue2,...) Set the specifications in the order 
that they appear in the Specification property for the design object d. 

setspecs(d,Specification,specvalue1,specvalue2,...) lets you change 
the specifications for the object and set values for the new specifiers. When you 
already have a filter specifications object, this syntax lets you change the 
Specification string and the associated specification values for the object, 
rather than recreating the object to change it.

setspecs(...fs) Set the fs. If you choose to specify the fs, it must be 
immediately after you provide all of the specifications for the current 
Specification. Refer to Examples to see this being used.

setspecs(...,inputunits) Specifying the inputunits option allows you to 
specify your filter magnitude specification values in different units. 
inputunits can be either of these strings:

• 'linear'—to indicate that your input specification values represent linear 
units, such as decimal values for the filter feature locations when you select 
normalized sampling frequency. 

• 'squared'—indicating that your input specification values represent squared 
magnitude values, usually dB. This is the default value. When you omit the 
inputunits argument, setspecs assumes all specification values are in 
square magnitude form.

You are not required to provide fs, the sampling frequency, as an input when 
you use the inputunits option. As you see from the syntax options, the 
inputunits option must be the rightmost input argument in the syntax—
inputunits must be passed as the final input.

Examples To demonstrate using setspecs, the following examples show how to use 
various syntax forms to set the values in filter specifications objects.
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Example 1
Create a lowpass design object d using filter order and a cutoff value for the 
location of the edge of the passband. Then change the cutoff and order 
specifications of d.

d = fdesign.lowpass('n,fc')
 
d =
 
           ResponseType: 'Lowpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
            FilterOrder: 10
                Fcutoff: 0.5000

setspecs(d, 20, .4);
 
d =
 
           ResponseType: 'Lowpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
            FilterOrder: 20
                Fcutoff: 0.4000 

Example 2
Now specify a sampling frequency after you make d.

d = fdesign.lowpass('n,fc')
 
d =
 
           ResponseType: 'Lowpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: true
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                     Fs: 'Normalized'
            FilterOrder: 10
                Fcutoff: 0.5000

setspecs(d, 20, 4, 20);

d
 
d =
 
           ResponseType: 'Lowpass with cutoff'
          Specification: 'N,Fc'
            Description: {2x1 cell}
    NormalizedFrequency: false
                     Fs: 20
            FilterOrder: 20
                Fcutoff: 4

Example 3
This example uses the inputunits argument to change from the default setting 
of square to linear unit. Start with the default lowpass design object that 
specifies the edge locations for the passband and stopband, and the desired 
attenuation in the pass- and stopbands. 

d=fdesign.lowpass
 
d =
 
           ResponseType: 'Minimum-order lowpass'
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
                  Fpass: 0.4500
                  Fstop: 0.5500
                  Apass: 1
                  Astop: 60    
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Convert to linear input values and reset the filter spec for d at the same time. 
With the linear argument included, the inputs for the response features now 
need to be in linear units.

setspecs(d,.4,.5,.1,.05,'linear')
d
 
d =
 
           ResponseType: 'Minimum-order lowpass'
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
    NormalizedFrequency: true
                     Fs: 'Normalized'
                  Fpass: 0.4000
                  Fstop: 0.5000
                  Apass: 1.7430
                  Astop: 26.0206

Example 4
Finally, use setspecs to change the Specification string and apply new filter 
specifications to d.

d=fdesign.decim(3)
 
d =
 
           ResponseType: 'Minimum-order nyquist'
          Specification: 'TW,Ast'
            Description: {2x1 cell}
       DecimationFactor: 3
    NormalizedFrequency: true
                     Fs: 'Normalized'
        TransitionWidth: 0.1000
                  Astop: 80

setspecs(d,'n,ast',16,70)
d
 
d =
 
           ResponseType: 'Nyquist with filter order and stopband attenuation'
          Specification: 'N,Ast'
            Description: {2x1 cell}
       DecimationFactor: 3
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    NormalizedFrequency: true
                     Fs: 'Normalized'
        PolyphaseLength: 16
                  Astop: 70

See Also designmethods, fdesign.bandpass, fdesign.bandstop, fdesign.decimator, 
fdesign.halfband, fdesign.highpass, fdesign.interpolator, 
fdesign.lowpass, fdesign.nyquist, fdesign.rsrc
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8sosPurpose Convert quantized filter to second-order sections (SOS) form, order, and scaling

Syntax Hq2 = sos(Hq) 
Hq2 = sos(Hq, order) 
Hq2 = sos(Hq, order, scale)

Description Hq2 = sos(Hq) returns a quantized filter Hq2 that has second-order sections 
and the dft2 structure. Use the same optional arguments used in tf2sos.

Hq2 = sos(Hq, order) specifies the order of the sections in Hq2, where order 
is either of the following strings:

•  'down' — to order the sections so the first section of Hq2 contains the poles 
closest to the unit circle (L∞ norm scaling)

•  'up' — to order the sections so the first section of Hq2 contains the poles 
farthest from the unit circle (L2 norm scaling and the default)

Hq2 = sos(Hq, order, scale) also specifies the desired scaling of the gain 
and numerator coefficients of all second-order sections, where scale is one of 
the following strings:

• 'none' — to apply no scaling (default)

• 'inf' — to apply infinity-norm scaling

• 'two' — to apply 2-norm scaling

Use infinity-norm scaling in conjunction with up-ordering to minimize the 
probability of overflow in the filter realization. Consider using 2-norm scaling 
in conjunction with down-ordering to minimize the peak round-off noise.

When Hq is a fixed-point filter, the filter coefficients are normalized so that the 
magnitude of the maximum coefficient in each section is 1. The gain of the filter 
is applied to the first scale value of Hq2. 

sos uses the direct form II transposed (dft2) structure to implement second- 
order section filters.

Examples [b,a]=butter(8,.5);
Hq = dfilt.df2t(b,a);
Hq.arithmetic = 'fixed';
Hq1 = sos(Hq)
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See Also convert, dfilt

tf2sos in your Signal Processing Toolbox documentation
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8specifyallPurpose Access fixed-point scaling modes and features in direct-form FIR filter object

Syntax specifyall(hd)
specifyall(hd,false)
specifyall(hd,true)

Description specifyall sets all of the autoscale property values of direct-form FIR filters 
to false and all *modes of the filters to SpecifyPrecision. In this table, you 
see the results of using specifyall with direct-form FIR filters.

specifyall(hd) gives you maximum control over all settings in a filter hd by 
setting all of the autoscale options that are true to false, turning off all 
autoscaling and resetting all modes—OutputMode, ProductMode, and 
AccumMode—to SpecifyPrecision. After you use specifyall, you must supply 
the property values for the mode- and scaling related properties.

specifyall provides an alternative to changing all these properties 
individually. Do note that specifyall changes all of the settings; to set some 
but not all of the modes, set each property as you require.

specifyall(hd,false) performs the opposite operation of specifyall(hd) by 
setting all of the autoscale options to true; all of the modes to their default 
values; and hiding the fraction length properties in the display, meaning you 
cannot access them to set them or view them.

specifyall(hd,true) is equivalent to specifyall(hd).

Property Name Default Setting After Applying 
specifyall

CoeffAutoScale true false

OutputMode AvoidOverflow SpecifyPrecision

ProductMode FullPrecision SpecifyPrecision

AccumMode KeepMSB SpecifyPrecision

RoundMode convergent convergent

OverflowMode wrap wrap
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Examples This examples demonstrates using specifyall to provide access to all of the 
fixed-point settings of an FIR filter implemented with the direct-form 
structure. Notice the displayed property values shown after you change the 
filter to fixed-point arithmetic, then after you use specifyall to disable all of 
the automatic filter scaling and reset the mode values.

b = fircband(12,[0 0.4 0.5 1], [1 1 0 0], [1 0.2], {'w' 'c'});
hd = dfilt.dffir(b);
hd.arithmetic = 'fixed'
hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [1x13 double]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16             
          CoeffAutoScale: 'true'           
                  Signed: 'on'           
                                         
         InputWordLength: 16             
         InputFracLength: 15             
                                         
        OutputWordLength: 16             
              OutputMode: 'AvoidOverflow'
                                         
             ProductMode: 'FullPrecision'
                                         
               AccumMode: 'KeepMSB'      
         AccumWordLength: 40             
           CastBeforeSum: 'on'           
                                         
               RoundMode: 'convergent'   
            OverflowMode: 'wrap'         
                                         
         InheritSettings: 'off'          

specifyall(hd)
hd
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hd =
 
         FilterStructure: 'Direct-Form FIR'
              Arithmetic: 'fixed'
               Numerator: [1x13 double]
        PersistentMemory: false
                  States: [1x1 embedded.fi]

         CoeffWordLength: 16                
          CoeffAutoScale: false             
           NumFracLength: 16                
                  Signed: true              
                                            
         InputWordLength: 16                
         InputFracLength: 15                
                                            
        OutputWordLength: 16                
              OutputMode: 'SpecifyPrecision'
        OutputFracLength: 11                
                                            
             ProductMode: 'SpecifyPrecision'
       ProductWordLength: 32                
       ProductFracLength: 31                
                                            
               AccumMode: 'SpecifyPrecision'
         AccumWordLength: 40                
         AccumFracLength: 31                
           CastBeforeSum: true              
                                            
               RoundMode: 'convergent'      
            OverflowMode: 'wrap'            
                                            
         InheritSettings: false             

The mode properties InputMode, ProductMode, and AccumMode now have the 
value SpecifyPrecision and the fraction length properties appear in the 
display. Now you use the properties (InputFracLength, ProdFracLength, 
AccumFracLength) to set the precision the filter applies to the input, product, 
and accumulator operations. CoeffAutoScale switches to false, meaning 
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autoscaling of the filter coefficients will not be done to prevent overflows. None 
of the other filter properties change when you apply specifyall.

See Also double, reffilter
fi, fimath in the Fixed-Point Toolbox
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8stepzPurpose Step response for filter

Syntax [h,t] = stepz(ha)
stepz(ha)
[h,t] = stepz(hm)
stepz(hm)

Description The next sections describe common stepz operation with adaptive and 
multirate filters. For more input options and for information about using stepz 
with discrete-time filters, refer to stepz in the Signal Processing Toolbox.

Adaptive Filters
For adaptive filters, stepz returns the instantaneous zero-phase response 
based on the current filter coefficients.

[h,t] = stepz(ha) returns the step response h of the multirate filter ha. The 
length of column vector h is the length of the impulse response of ha. Returned 
vector t contains the time samples at which stepz evaluated the step response. 
stepz returns h as a matrix when ha is a vector of filters. Each column of the 
matrix corresponds to one filter in the vector. 

stepz(ha) displays the filter step response in the Filter Visualization Tool    
(FVTool).

Multirate Filters

[h,t] = stepz(hm) returns the step response h of the multirate filter hm. The 
length of column vector h is the length of the impulse response of hm. The 
vector t contains the time samples at which stepz evaluated the step response. 
stepz returns h as a matrix when hm is a vector of filters. Each column of the 
matrix corresponds to one filter in the vector. 

stepz(hm) displays the step response in the Filter Visualization Tool    
(FVTool).

Note that the response is computed relative to the rate at which the filter is 
running. If a sampling frequency is specified, it is assumed that the filter is 
running at that rate.
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Note that the multirate filter delay response is computed relative to the rate at 
which the filter is running. When you specify fs (the sampling rate) as an input 
argument, stepz assumes the filter is running at that rate.

For multistage cascades, stepz forms a single-stage multirate filter that is 
equivalent to the cascade and computes the response relative to the rate at 
which the equivalent filter is running. stepz does not support all multistage 
cascades. Only cascades for which it is possible to derive an equivalent 
single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an 
interpolation factor of 2 and the second stage has an interpolation factor of 4. 
An equivalent single-stage filter with an overall interpolation factor of 8 can be 
found. stepz uses the equivalent filter for the analysis. If you specify 
a sampling frequency fs as an input argument to stepz, the function 
interprets fs as the rate at which the equivalent filter is running. 

See Also freqz, impz
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8tf2caPurpose Convert transfer function to coupled allpass

Syntax [d1,d2] = tf2ca(b,a)
[d1,d2] = tf2ca(b,a) 
[d1,d2,beta] = tf2ca(b,a)

Description [d1,d2] = tf2ca(b,a) where b is a real, symmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, returns real vectors d1 and d2 containing the 
denominator coefficients of the allpass filters H1(z) and H2(z) such that

representing a coupled allpass decomposition.

[d1,d2] = tf2ca(b,a) where b is a real, antisymmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, returns real vectors d1 and d2 containing the 
denominator coefficients of the allpass filters H1(z) and H2(z) such that

In some cases, the decomposition is not possible with real H1(z) and H2(z). In 
those cases a generalized coupled allpass decomposition may be possible, 
whose syntax is

[d1,d2,beta] = tf2ca(b,a)

to return complex vectors d1 and d2 containing the denominator coefficients of 
the allpass filters H1(z) and H2(z), and a complex scalar beta, satisfying 
|beta| = 1, such that

representing the generalized allpass decomposition.

H z( ) B z( )
A z( )
------------ 1

2 H1 z( ) H2 z( )+[ ]
------------------------------------------------= =

H z( ) B z( )
A z( )
------------ 1

2
---⎝ ⎠
⎛ ⎞ H1 z( ) H2 z( )–[ ]= =

H z( ) B z( )
A z( )
------------ 1

2
---⎝ ⎠
⎛ ⎞ β H1 z( )• β H2 z( )•+[ ]= =
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In the above equations, H1(z) and H2(z) are real or complex allpass IIR filters 
given by

 

where D1(z) and D2(z) are polynomials whose coefficients are given by d1 and 
d2. 

Note  A coupled allpass decomposition is not always possible. Nevertheless, 
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be 
factored in this manner. For details, refer to Signal Processing Toolbox User's 
Guide.

Examples [b,a]=cheby1(9,.5,.4);
[d1,d2]=tf2ca(b,a); % TF2CA returns denominators of the allpass.
num = 0.5*conv(fliplr(d1),d2)+0.5*conv(fliplr(d2),d1);
den = conv(d1,d2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp, latc2tf, tf2latc

H1 z( ) fliplr D1 z( )( )( )
D1 z( )

------------------------------------------= H2 1( ) z( ) fliplr D2 1( ) z( )( )( )
D2 1( ) z( )

--------------------------------------------------=,
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8tf2clPurpose Convert transfer function to coupled allpass lattice

Syntax [k1,k2] = tf2cl(b,a) 

[k1,k2] = tf2cl(b,a)

Description [k1,k2] = tf2cl(b,a) where b is a real, symmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, will perform the coupled allpass decomposition

of a stable IIR filter H(z) and convert the allpass transfer functions H1(z) and 
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1 
and k2. 

[k1,k2] = tf2cl(b,a) where b is a real, antisymmetric vector of numerator 
coefficients and a is a real vector of denominator coefficients, corresponding to 
a stable digital filter, performs the coupled allpass decomposition

of a stable IIR filter H(z) and converts the allpass transfer functions H1(z) and 
H2(z) to a coupled lattice allpass structure with coefficients given in vectors k1 
and k2. 

In some cases, the decomposition is not possible with real H1(z) and H2(z). In 
those cases, a generalized coupled allpass decomposition may be possible, using 
the command syntax 

    [k1,k2,beta] = tf2cl(b,a)

to perform the generalized allpass decomposition of a stable IIR filter H(z) and 
convert the complex allpass transfer functions H1(z) and H2(z) to 
corresponding lattice allpass filters

where beta is a complex scalar of magnitude equal to 1. 

H z( ) B z( )
A z( )
------------ 1

2 H1 z( ) H2 z( )+[ ]
------------------------------------------------= =

H z( ) B z( )
A z( )
------------ 1

2
---⎝ ⎠
⎛ ⎞ H1 z( ) H2 z( )–[ ]= =

H z( ) B z( )
A z( )
------------ 1

2
---⎝ ⎠
⎛ ⎞ β H1 z( )• β H2 z( )•+[ ]= =
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Note  Coupled allpass decomposition is not always possible. Nevertheless, 
Butterworth, Chebyshev, and Elliptic IIR filters, among others, can be 
factored in this manner. For details, refer to Signal Processing Toolbox User's 
Guide. 

Examples [b,a]=cheby1(9,.5,.4); 
[k1,k2]=tf2cl(b,a); % Get the reflection coeffs. for the lattices.
[num1,den1]=latc2tf(k1,'allpass'); % Convert each allpass lattice
[num2,den2]=latc2tf(k2,'allpass'); % back to transfer function.
num = 0.5*conv(num1,den2)+0.5*conv(num2,den1);
den = conv(den1,den2); % Reconstruct numerator and denonimator.
max([max(b-num),max(a-den)]) % Compare original and reconstructed

% numerator and denominators.

See Also ca2tf, cl2tf, iirpowcomp
latc2tf, tf2ca, tf2latc in Signal Processing Toolbox
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8windowPurpose Design FIR filter using  windowed impulse response method

Syntax h = window(d,fcnhndl,fcnarg)
h = window(d, win)

description h = window(d,fcnhndl,fcnarg) designs an FIR filter using the specifications 
in filter specification object d. Depending on the specification type of d, the 
returned filter is either a single-rate digital filter—a dfilt, or a multirate 
digital filter—an mfilt.

fcnhndl is a handle to a filter design function that returns a window vector, 
such as the hamming or blackman functions. fcnarg is an optional argument 
that returns a window. You pass the function to window. Refer to example 1 
below to see the function argument used to design the filter.

h = window(d,win) designs a filter using the vector you supply in win. The 
length of vector win must be the same as the impulse response of the filter, 
which is equal to the filter order plus one. Example 2 shows this being done.

Examples These examples design filters using the two design techniques of specifying 
a function handle or passing a window vector as an input argument.

Example 1
Use a function handle and optional input arguments to design a multirate 
filter. We use a function handle to the function Kaiser to provide the window. 
Since this example creates a decimating filter specifications object, window 
returns a multirate filter.

d = fdesign.decim(4,'pl',14);
hm = window(d,@kaiser,2.5);
fvtool(hm)
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Example 2
Use a window vector provided by the hamming window design function. For this 
example, the design object is a Nyquist filter, thus window returns hd as 
a discrete-time filter.

d = fdesign.nyquist(5,'n',150);
hd = window(d,hamming(151));
fvtool(hd)
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See Also firls, kaiserwin
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8zerophasePurpose Zero-phase response for filter

Syntax zerophase(ha)
[hr,w] = zerophase(ha,n)
[hr,w] = zerophase(...,f)
zerophase(hd)
[hr,w] = zerophase(hd,n)
[hr,w] = zerophase(...,f)
zerophase(hm)
[hr,w] = zerophase(hm,n)
[hr,w] = zerophase(...,f)
[hr,w] = zerophase(...,fs)

Description The next sections describe common zerophase operation with adaptive, 
discrete-time, and multirate filters. For more input options, refer to zerophase 
in the Signal Processing Toolbox. 

Adaptive Filters
For adaptive filters, zerophase returns the instantaneous zero-phase response 
based on the current filter coefficients.

zerophase(ha) displays the zero-phase response of ha in the Filter 
Visualization Tool (FVTool).

[hr,w] = zerophase(ha,n) returns length n vectors hr and w containing the 
instantaneous zero-phase response of the adaptive filter ha, and the 
frequencies in radians at which zerophase evaluated the response. The 
zero-phase response is evaluated at n points equally spaced around the upper 
half of the unit circle. For an FIR filter where n is a power of two, the 
computation is done faster using FFTs. If n is not specified, it defaults to 8192.

[hr,w] = zerophase(ha) returns a matrix hr if ha is a vector of filters. Each 
column of the matrix corresponds to each filter in the vector. If you provide 
a row vector of frequency points f as an input argument, each row of hr 
corresponds to one filter in the vector.
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Discrete-Time Filters

zerophase(hd) displays the zero-phase response of hd in the Filter 
Visualization Tool (FVTool).

[hr,w] = zerophase(hd,n) returns length n vectors hr and w containing the 
instantaneous zero-phase response of the adaptive filter hd, and the 
frequencies in radians at which zerophase evaluated the response. The 
zero-phase response is evaluated at n points equally spaced around the upper 
half of the unit circle. For an FIR filter where n is a power of two, the 
computation is done faster using FFTs. If n is not specified, it defaults to 8192.

[hr,w] = zerophase(hd) returns a matrix hr if hd is a vector of filters. Each 
column of the matrix corresponds to each filter in the vector. If you provide 
a row vector of frequency points f as an input argument, each row of hr 
corresponds to one filter in the vector.

Multirate Filters

zerophase(hm) displays the zero-phase response of hd in the Filter 
Visualization Tool (FVTool).

[hr,w] = zerophase(hm,n) returns length n vectors hr and w containing the 
instantaneous zero-phase response of the adaptive filter hm, and the 
frequencies in radians at which zerophase evaluated the response. The 
zero-phase response is evaluated at n points equally spaced around the upper 
half of the unit circle. For an FIR filter where n is a power of two, the 
computation is done faster using FFTs. If n is not specified, it defaults to 8192.

[hr,w] = zerophase(hm) returns a matrix hr if hm is a vector of filters. Each 
column of the matrix corresponds to each filter in the vector. If you provide 
a row vector of frequency points f as an input argument, each row of hr 
corresponds to one filter in the vector.

Note that the response is computed relative to the rate at which the filter is 
running. If a sampling frequency is specified, it is assumed that the filter is 
running at that rate.
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Note that the multirate filter delay response is computed relative to the rate at 
which the filter is running. When you specify fs (the sampling rate) as an input 
argument, zerophase assumes the filter is running at that rate.

For multistage cascades, zerophase forms a single-stage multirate filter that 
is equivalent to the cascade and computes the response relative to the rate at 
which the equivalent filter is running. zerophase does not support all 
multistage cascades. Only cascades for which it is possible to derive an 
equivalent single-stage filter are allowed for analysis.

As an example, consider a two-stage interpolator where the first stage has an 
interpolation factor of 2 and the second stage has an interpolation factor of 4. 
An equivalent single-stage filter with an overall interpolation factor of 8 can be 
found. zerophase uses the equivalent filter for the analysis. If a sampling 
frequency fs is specified as an input argument to zerophase, the function 
interprets fs as the rate at which the equivalent filter is running. 

See Also freqz, fvtool, grpdelay, impz, mfilt, phasez, zerophase, zplane
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8zpkbpc2bpcPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkbpc2bpc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
complex bandpass prototype by applying a first-order complex bandpass to 
complex bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The original lowpass filter is given with zeros, Z, 
poles, P, and gain factor, K.

This transformation effectively places two features of an original filter, located 
at frequencies Wo1 and Wo2, at the required target frequency locations, Wt1, and 
Wt2 respectively. It is assumed that Wt2 is greater than Wt1. In most of the cases 
the features selected for the transformation are the band edges of the filter 
passbands. In general it is possible to select any feature; e.g., the stopband 
edge, the DC, the deep minimum in the stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., complex notch filters or resonators can be repositioned at two distinct 
desired frequencies at any place around the unit circle; e.g., in the adaptive 
system.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);

Create a complex passband from 0.25 to 0.75:

[b, a] = iirlp2bpc(b,a,0.5,[0.25,0.75]);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkbpc2bpc(z, p, k, [0.25, 0.75], [-0.75, -0.25]);
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Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Comparing the filters in FVTool shows the example results. Use the features 
in FVTool to check the filter coefficients, or other filter analyses.

Arguments Z 
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter
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Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpassbpc2bpc, iirbpc2bpc
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8zpkftransfPurpose Zero-pole-gain frequency transformation of digital filter

Syntax [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen)

Description [Z2,P2,K2] = zpkftransf(Z,P,K,AllpassNum,AllpassDen) returns zeros, 
Z2, poles, P2, and gain factor, K2, of the transformed lowpass digital filter. The 
prototype lowpass filter is given with zeros, Z, poles, P, and gain factor, K. If 
AllpassDen is not specified it will default to 1. If neither AllpassNum nor 
AllpassDen is specified, then the function returns the input filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
[AlpNum, AlpDen] = allpasslp2lp(0.5, 0.25);
[z2, p2, k2] = zpkftransf(roots(b),roots(a),b(1),AlpNum,AlpDen);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

After transforming the filter, you get the response shown in the figure, where 
the passband has been shifted towards zero.
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Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

FTFNum
Numerator of the mapping filter

FTFDen
Denominator of the mapping filter

Z2
Zeros of the target filter
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P2
Poles of the target filter

K2
Gain factor of the target filter

See Also iirftransf
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8zpklp2bpPurpose Zero-pole-gain lowpass to bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bp(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a second-order real lowpass to real 
bandpass frequency mapping.

It also returns the numerator, AllpassNum, and the denominator AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “DC Mobility,” which 
means that the Nyquist feature stays at Nyquist, but the DC feature moves to 
a location dependent on the selection of Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Real lowpass to bandpass transformation can also be used for transforming 
other types of filters; e.g., real notch filters or resonators can be easily doubled 
and positioned at two distinct, desired frequencies.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
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[z2,p2,k2] = zpklp2bp(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2bp, iirlp2bp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.
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[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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8zpklp2bpcPurpose Zero-pole-gain lowpass to complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bpc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to complex 
bandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandpass transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and 
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. This transformation can be 
used for designing bandpass filters for radio receivers from the high-quality 
prototype lowpass filter.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
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k = b(1);
[z2,p2,k2] = zpklp2bpc(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bpc, iirlp2bpc
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8zpklp2bsPurpose Zero-pole-gain lowpass to bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bs(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a second-order real lowpass to real 
bandstop frequency mapping.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. This transformation implements the “Nyquist Mobility,” 
which means that the DC feature stays at DC, but the Nyquist feature moves 
to a location dependent on the selection of Wo and Wts.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2bs(z, p, k, 0.5, [0.2 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));
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Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2bs, iirlp2bs

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.
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[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Design of bandpass digital filters,” IEEE 
Proceedings, vol. 1, pp. 1129-1231, June 1969.
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8zpklp2bscPurpose Zero-pole-gain lowpass to complex bandstop frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2bsc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to complex 
bandstop frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency -Wo, at the required target frequency location, Wt1, and the second 
feature, originally at +Wo, at the new location, Wt2. It is assumed that Wt2 is 
greater than Wt1. Additionally the transformation swaps passbands with 
stopbands in the target filter. 

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to bandstop transformation is not 
restricted only to the cutoff frequency of an original lowpass filter. In general 
it is possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to bandpass transformation can also be used for transforming other 
types of filters; e.g., real notch filters or resonators can be doubled and 
positioned at two distinct desired frequencies at any place around the unit 
circle forming a pair of complex notches/resonators. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
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[z2,p2,k2] = zpklp2bsc(z, p, k, 0.5, [0.2, 0.3]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2bsc, iirlp2bsc
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8zpklp2hpPurpose Zero-pole-gain lowpass to highpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2hp(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to real highpass 
frequency mapping. This transformation effectively places one feature of an 
original filter, located at frequency Wo, at the required target frequency 
location, Wt, at the same time rotating the whole frequency response by half of 
the sampling frequency. Result is that the DC and Nyquist features swap 
places.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and the gain factor, K.

Relative positions of other features of an original filter change in the target 
filter. This means that it is possible to select two features of an original filter, 
F1 and F2, with F1 preceding F2. After the transformation feature F2 will precede 
F1 in the target filter. However, the distance between F1 and F2 will not be the 
same before and after the transformation.

Choice of the feature subject to the lowpass to highpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC, or the deep 
minimum in the stopband, or other ones.

Lowpass to highpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2hp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:
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fvtool(b, a, k2*poly(z2), poly(p2));

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2hp, iirlp2hp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.
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[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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8zpklp2lpPurpose Zero-pole-gain lowpass to lowpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2lp(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order real lowpass to real lowpass 
frequency mapping. This transformation effectively places one feature of an 
original filter, located at frequency Wo, at the required target frequency 
location, Wt.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the lowpass to lowpass transformation is not 
restricted to the cutoff frequency of an original lowpass filter. In general it is 
possible to select any feature; e.g., the stopband edge, the DC, the deep 
minimum in the stopband, or other ones.

Lowpass to lowpass transformation can also be used for transforming other 
types of filters; e.g., notch filters or resonators can change their position in a 
simple way without designing them again.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3, 0.1, 30, 0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2lp(z, p, k, 0.5, 0.25);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));
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Using zpklp2lp creates the desired half band IIR filter with the transformed 
features that you specify in the transformation function. This figure shows the 
results.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter
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Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2lp, iirlp2lp

References [1] Constantinides, A.G., “Spectral transformations for digital filters,” IEE 
Proceedings, vol. 117, no. 8, pp. 1585-1590, August 1970.

[2] Nowrouzian, B. and A.G. Constantinides, “Prototype reference transfer 
function parameters in the discrete-time frequency transformations,” 
Proceedings 33rd Midwest Symposium on Circuits and Systems, Calgary, 
Canada, vol. 2, pp. 1078-1082, August 1990.

[3] Nowrouzian, B. and L.T. Bruton, “Closed-form solutions for discrete-time 
elliptic transfer functions,” Proceedings of the 35th Midwest Symposium on 
Circuits and Systems, vol. 2, pp. 784-787, 1992.

[4] Constantinides, A.G., “Frequency transformations for digital filters,” 
Electronics Letters, vol. 3, no. 11, pp. 487-489, November 1967.
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8zpklp2mbPurpose Zero-pole-gain lowpass to M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Mth-order real lowpass to real 
multibandpass frequency mapping. By default the DC feature is kept at its 
original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2mb(Z,P,K,Wo,Wt,Pass)  
allows you to specify an additional parameter, Pass, which chooses between 
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the 
Nyquist feature stays at its original location and the DC feature is free to move. 
In the second case the DC feature is kept at an original frequency and the 
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.
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Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'pass');
[z2,p2,k2] = zpklp2mb(z, p, k, 0.5, [2 4 6 8]/10, 'stop');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));

The resulting multiband filter that replicates features from the prototype 
appears in the figure shown. Note the accuracy of the replication process.
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Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2mb, iirlp2mb

References [1] Franchitti, J.C., “All-pass filter interpolation and frequency transformation 
problems,” MSc Thesis, Dept. of Electrical and Computer Engineering, 
University of Colorado, 1985.

[2] Feyh, G., J.C. Franchitti and C.T. Mullis, “All-pass filter interpolation and 
frequency transformation problem,” Proceedings 20th Asilomar Conference on 
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Signals, Systems and Computers, Pacific Grove, California, pp. 164-168, 
November 1986.

[3] Mullis, C.T. and R.A. Roberts, Digital Signal Processing, section 6.7, 
Reading, Massachusetts, Addison-Wesley, 1987.

[4] Feyh, G., W.B. Jones and C.T. Mullis, An extension of the Schur Algorithm 
for frequency transformations, Linear Circuits, Systems and Signal Processing: 
Theory and Application, C. J. Byrnes et al Eds, Amsterdam: Elsevier, 1988.
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8zpklp2mbcPurpose Zero-pole-gain lowpass to complex M-band frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklpmbc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Mth-order real lowpass to complex 
multibandpass frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

This transformation effectively places one feature of an original filter, located 
at frequency Wo, at the required target frequency locations, Wt1,...,WtM.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature, for example, the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

This transformation can also be used for transforming other types of filters; 
e.g., to replicate notch filters and resonators at any required location. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z1,p1,k1] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);
[z2,p2,k2] = zpklp2mbc(z, p, k, 0.5, [2 4 6 8]/10);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k1*poly(z1), poly(p1), k2*poly(z2), poly(p2));
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You could review the coefficients to compare the filters, but the graphical 
comparison shown here is quicker and easier.

However, looking at the coefficients in FVTool shows the complex nature 
desired.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter
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Wo
Frequency value to be transformed from the prototype filter. It should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

See Also zpkftransf, allpasslp2mbc, iirlp2mbc
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8zpklp2xcPurpose Zero-pole-gain lowpass to complex N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Nth-order real lowpass to complex 
multipoint frequency transformation.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation. This transformation effectively 
places N features of an original filter, located at frequencies Wo1,...,WoN, at the 
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones. The only condition is that the features must be 
selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
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z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xc(z, p, k, [-0.5 0.5], [-0.25 0.25]);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Plotting the filters on the same axes lets you compare the results graphically, 
shown here.

Arguments Z
Zeros of the prototype lowpass filter
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P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency values to be transformed from the prototype filter. They should be 
normalized to be between 0 and 1, with 1 corresponding to half the sample rate.

Wt
Desired frequency locations in the transformed target filter. They should be 
normalized to be between -1 and 1, with 1 corresponding to half the sample 
rate.

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen

Denominator of the mapping filter

See Also zpkftransf, allpasslp2xc, iirlp2xc
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8zpklp2xnPurpose Zero-pole-gain lowpass to N-point frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)
[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying an Nth-order real lowpass to real multipoint 
frequency transformation, where N is the number of features being mapped. By 
default the DC feature is kept at its original location.

[Z2,P2,K2,AllpassNum,AllpassDen] = zpklp2xn(Z,P,K,Wo,Wt,Pass)  
allows you to specify an additional parameter, Pass, which chooses between 
using the “DC Mobility” and the “Nyquist Mobility”. In the first case the 
Nyquist feature stays at its original location and the DC feature is free to move. 
In the second case the DC feature is kept at an original frequency and the 
Nyquist feature is allowed to move.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and gain factor, K.

Parameter N also specifies the number of replicas of the prototype filter created 
around the unit circle after the transformation. This transformation effectively 
places N features of an original filter, located at frequencies Wo1,...,WoN, at the 
required target frequency locations, Wt1,...,WtM.

Relative positions of other features of an original filter are the same in the 
target filter for the Nyquist mobility and are reversed for the DC mobility. For 
the Nyquist mobility this means that it is possible to select two features of an 
original filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 
after the transformation. However, the distance between F1 and F2 will not be 
the same before and after the transformation. For DC mobility feature F2 will 
precede F1 after the transformation.

Choice of the feature subject to this transformation is not restricted to the 
cutoff frequency of an original lowpass filter. In general it is possible to select 
any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones. The only condition is that the features must be 
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selected in such a way that when creating N bands around the unit circle, there 
will be no band overlap.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can be easily replicated at a number of required 
frequency locations. A good application would be an adaptive tone cancellation 
circuit reacting to the changing number and location of tones.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpklp2xn(z, p, k, [-0.5 0.5], [-0.25 0.25], 'pass');

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));
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As demonstrated by the figure, the target filter has the desired response shape 
and values replicated from the prototype.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter
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Wt
Desired frequency location in the transformed target filter

Pass
Choice ('pass'/'stop') of passband/stopband at DC, ̀ pass' being the default

Z2
Zeros of the target filter

P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpasslp2xn, iirlp2xn

References [1] Cain, G.D., A. Krukowski and I. Kale, “High Order Transformations for 
Flexible IIR Filter Design,” VII European Signal Processing Conference 
(EUSIPCO'94), vol. 3, pp. 1582-1585, Edinburgh, United Kingdom, September 
1994.

[2] Krukowski, A., G.D. Cain and I. Kale, “Custom designed high-order 
frequency transformations for IIR filters,” 38th Midwest Symposium on 
Circuits and Systems (MWSCAS'95), Rio de Janeiro, Brazil, August 1995.
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8zpkrateupPurpose Zero-pole-gain complex bandpass frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkrateup(Z,P,K,N)  returns zeros, 
Z2, poles, P2, and gain factor, K2, of the target filter being transformed from any 
prototype by applying an Nth-order rateup frequency transformation, where N 
is the upsample ratio. Transformation creates N equal replicas of the prototype 
filter frequency response.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The original lowpass filter is given with zeros, Z, 
poles, P, and gain factor, K.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Upsample the prototype filter four times:

[z2,p2,k2] = zpkrateup(z, p, k, 4);

Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

Applying the upsample process creates a bandpass filter, as shown here.
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Arguments Z 
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

N
Integer upsampling ratio

Z2
Zeros of the target filter

P2
Poles of the target filter

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−350

−300

−250

−200

−150

−100

−50

0

50

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)



zpkrateup

8-1084

K2
Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkrateup, allpassrateup, iirrateup
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8zpkshiftPurpose Zero-pole-gain real shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshift(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a second-order real shift frequency 
mapping.

It also returns the numerator, AllpassNum, and the denominator of the allpass 
mapping filter, AllpassDen. The prototype lowpass filter is given with zeros, Z, 
poles, P, and gain factor, K.

This transformation places one selected feature of an original filter, located at 
frequency Wo, at the required target frequency location, Wt. This transformation 
implements the “DC Mobility,” which means that the Nyquist feature stays at 
Nyquist, but the DC feature moves to a location dependent on the selection of 
Wo and Wt.

Relative positions of other features of an original filter do not change in the 
target filter. This means that it is possible to select two features of an original 
filter, F1 and F2, with F1 preceding F2. Feature F1 will still precede F2 after the 
transformation. However, the distance between F1 and F2 will not be the same 
before and after the transformation.

Choice of the feature subject to the real shift transformation is not restricted to 
the cutoff frequency of an original lowpass filter. In general it is possible to 
select any feature; e.g., the stopband edge, the DC, the deep minimum in the 
stopband, or other ones.

This transformation can also be used for transforming other types of filters; 
e.g., notch filters or resonators can change their position in a simple way 
without the need to design them again. 

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);
[z2,p2,k2] = zpkshift(z, p, k, 0.5, 0.25);
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Verify the result by comparing the prototype filter with the target filter:

fvtool(b, a, k2*poly(z2), poly(p2));

It is clear from the following figure that the shift process has taken the 
response value at 0.5 in the prototype and replicated it in the target at 0.25, as 
specified.

Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter
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Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter

P2
Poles of the target filter

K2

Gain factor of the target filter

AllpassNum
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between 0 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpassshift, iirshift
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8zpkshiftcPurpose Zero-pole-gain complex shift frequency transformation

Syntax [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt) 

Description [Z2,P2,K2,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,Wo,Wt)  returns 
zeros, Z2, poles, P2, and gain factor, K2, of the target filter transformed from the 
real lowpass prototype by applying a first-order complex frequency shift 
transformation. This transformation rotates all the features of an original 
filter by the same amount specified by the location of the selected feature of the 
prototype filter, originally at Wo, placed at  Wt in the target filter.

It also returns the numerator, AllpassNum, and the denominator, AllpassDen, 
of the allpass mapping filter. The prototype lowpass filter is given with zeros, 
Z, poles, P, and the gain factor, K.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,0.5)  performs 
the Hilbert transformation, i.e. a 90 degree counterclockwise rotation of an 
original filter in the frequency domain.

[Num,Den,AllpassNum,AllpassDen] = zpkshiftc(Z,P,K,0,-0.5)  performs 
the inverse Hilbert transformation, i.e. a 90 degree clockwise rotation of an 
original filter in the frequency domain.

Examples Design a prototype real IIR halfband filter using a standard elliptic approach:

[b, a] = ellip(3,0.1,30,0.409);
z = roots(b);
p = roots(a);
k = b(1);

Example 1: Rotation by -0.25:

[z2,p2,k2] = zpkshiftc(z, p, k, 0.5, 0.25);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 2: Hilbert transform:

[z2,p2,k2] = zpkshiftc(z, p, k, 0, 0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Example 3: Inverse Hilbert transform:
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[z2,p2,k2] = zpkshiftc(z, p, k, 0, -0.5);
fvtool(b, a, k2*poly(z2), poly(p2));

Result of Example 1
After performing the rotation, the resulting filter shows the features desired.

Result of Example 2
Similar to the first example, performing the Hilbert transformation generates 
the desired target filter, shown here.
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Result of Example 3
Finally, using the inverse Hilbert transformation creates yet a third filter, 
as the figure shows.
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Arguments Z
Zeros of the prototype lowpass filter

P
Poles of the prototype lowpass filter

K
Gain factor of the prototype lowpass filter

Wo
Frequency value to be transformed from the prototype filter

Wt
Desired frequency location in the transformed target filter

Z2
Zeros of the target filter
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P2
Poles of the target filter

K2
Gain factor of the target filter

AllpassDen
Numerator of the mapping filter

AllpassDen
Denominator of the mapping filter

Frequencies must be normalized to be between -1 and 1, with 1 corresponding 
to half the sample rate.

See Also zpkftransf, allpassshiftc, iirshiftc

References [1] Oppenheim, A.V., R.W. Schafer and J.R. Buck, Discrete-Time Signal 
Processing, Prentice-Hall International Inc., 1989.

[2] Dutta-Roy, S.C. and B. Kumar, “On digital differentiators, Hilbert 
transformers, and half-band low-pass filters,” IEEE Transactions on 
Education, vol. 32, pp. 314-318, August 1989.
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8zplanePurpose Compute zero-pole plot for quantized filter

Syntax zplane(Hq)
zplane(Hq,'plotoption')
zplane(Hq,'plotoption','plotoption2')
[zq,pq,kq] = zplane(Hq)
[zq,pq,kq,zr,pr,kr] = zplane(Hq)

Description This function displays the poles and zeros of quantized filters, as well as the 
poles and zeros of the associated unquantized reference filter. 

zplane(Hq) plots the zeros and poles of a quantized filter Hq in the current 
figure window. The poles and zeros of the quantized and unquantized filters 
are plotted by default. The symbol o represents a zero of the unquantized 
reference filter, and the symbol x represents a pole of that filter. The symbols 

 and + are used to plot the zeros and poles of the quantized filter Hq. The plot 
includes the unit circle for reference.

zplane(Hq,'plotoption') plots the poles and zeros associated with the 
quantized filter Hq according to one specified plot option. The string 
'plotoption' can be either of the following reference filter display options:

• 'on' to display the poles and zeros of both the quantized filter and the 
associated reference filter (default)

• 'off' to display the poles and zeros of only the quantized filter

zplane(Hq,'plotoption','plotoption2') plots the poles and zeros 
associated with the quantized filter Hq according to two specified plot options. 
The string 'plotoption' can be selected from the reference filter display 
options listed in the previous syntax. The string 'plotoption2' can be selected 
from the section-by-section plotting style options described below:

• 'individual' to display the poles and zeros of each section of the filter in a 
separate figure window

• 'overlay' to display the poles and zeros of all sections of the filter on the 
same plot 

• 'tile' to display the poles and zeros of each section of the filter in a separate 
plot in the same figure window
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[zq,pq,kq] = zplane(Hq) returns the vectors of zeros zq, poles pq, and gains 
kq. If Hq has n sections, zq, pq, and kq are returned as 1-by-n cell arrays. If 
there are no zeros (or no poles), zq (or pq) is set to the empty matrix [].

[zq,pq,kq,zr,pr,kr] = zplane(Hq) returns the vectors of zeros zr, poles pr, 
and gains kr of the reference filter associated with the quantized filter Hq, and 
returns the vectors of zeros zq, poles pq, and gains kq for the quantized filter Hq.

Examples Create a quantized filter Hq from a fourth-order digital filter with cutoff 
frequency of 0.6. Scale the transfer function parameters to avoid overflows due 
to coefficient quantization. Plot the quantized and unquantized poles and zeros 
associated with this quantized filter. 

[b,a] = ellip(4,.5,20,.6);
Hq = dfilt.df2(b/2 a/2);
Hq.arithmetic = 'fixed';
zplane(Hq);

See Also freqz, impz
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Index

A
AccumFracLength 7-20
AccumWordLength 7-20
adaptfilt

about 8-22
copying 8-30

adaptfilt object
apply to data 4-25

adaptfilt object properties
Algorithm 7-110
AvgFactor 7-110
BkwdPredErrorPower 7-110
BkwdPrediction 7-110
Blocklength 7-112
Coefficients 7-112
ConversionFactor 7-112
Delay 7-112
DesiredSignalStates 7-113
EpsilonStates 7-113
ErrorStates 7-113
FFTCoefficients 7-113
FFTStates 7-113
FilteredInputStates 7-113
FilterLength 7-113
ForgettingFactor 7-113
FwdPredErrorPower 7-114
FwdPrediction 7-114
InitFactor 7-114
InvCov 7-114
KalmanGain 7-114
KalmanGainStates 7-114
Leakage 7-114
Offset 7-114
OffsetCov 7-114
Power 7-115
ProjectionOrder 7-115
ReflectionCoeffsStep 7-115

ResetBeforeFiltering 7-115
SecondaryPathCoeffs 7-115
SecondaryPathEstimate 7-115
SecondaryPathStates 7-116
SqrtInvCov 7-116
States 7-116
StepSize 7-116
SwBlockLength 7-116

adaptive filter object
 See adaptfilt object

adaptive filter properties
SqrtCov 7-116

addstages method 8-292
Algorithm 7-110
antisymmetricfir 7-54
arithmetic

about fixed-point 7-20
arithmetic property

double 7-21
fixed 7-23
single 7-22

AvgFactor 7-110

B
binary point 2-46

interpretation 2-46
bits

definition 2-45
BkwdPredErrorPower 7-110
BkwdPrediction 7-110
block method 8-292
Blocklength 7-112
Bmax

See CIC filter 3-28
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C
cascade method 8-292
CastBeforeSum 2-42
changing quantized filter properties in FDATool 

6-22
CIC filter

Bmax 3-28
MSB 3-28

CoeffAutoScale 7-36
CoeffFracLength 7-40
Coefficients 7-112
coefficients method 8-292
CoeffWordLength 7-41
context-sensitive help 6-89
controls

FDATool 6-10
ConversionFactor 7-112
convert filters 7-68
convert method 8-292
converting filter structures in FDATool 6-28

D
data format

about 2-46
Delay 7-112
DenAccumFracLength 7-41
DenFracLength 7-41
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-42
DenStateWordLength 7-43
designing fixed-point multirate filters 6-81
designing multirate filters 6-81
DesiredSignalStates 7-113
df1 7-47
df1t 7-48

df2 7-49
df2t 7-52
dfilt

cascade 8-311
df1 8-321
df1sos 8-331
df1t 8-6, 8-343
df1tsos 8-6, 8-354
df2 8-6, 8-366
df2sos 8-6, 8-376
df2t 8-7, 8-389
df2tsos 8-7, 8-400
direct-form antisymmetric FIR 8-7, 8-413
direct-form FIR transposed 8-7, 8-432
direct-form II transposed (df2t) 8-7, 8-389
direct-form IIR 8-7, 8-423
direct-form symmetric FIR 8-7, 8-442
lattice allpass 8-7, 8-453
lattice autoregressive 8-7, 8-463
lattice moving-average maximum 8-7, 8-483
lattice moving-average minimum 8-7, 8-492
parallel 8-7, 8-502
scalar 8-7, 8-503
See Signal Processing Toolbox documentation

dfilt function 8-286
convert structures 8-299
copying 8-299
methods 8-291
structures 8-286

dfilt objects
See also quantized filters

dfilt properties
arithmetic 7-20

dfilt.cascade 8-311
dfilt.df1 8-321
dfilt.df1sos 8-331
dfilt.df1t 8-343
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dfilt.df1tsos 8-354
dfilt.df2 8-366
dfilt.df2sos 8-376
dfilt.df2t 8-389
dfilt.df2tsos 8-400
dfilt.dffir 8-423
dfilt.dffirt 8-432
dfilt.dfsymfir 8-442
dfilt.latticeallpass 8-453
dfilt.latticear 8-463
dfilt.latticemamax 8-483
dfilt.latticemamin 8-492
dfilt.parallel 8-502
dfilt.scalar 8-503
direct-form I 7-48

transposed 7-48
direct-form II 7-49

transposed 7-52
double

property value 7-21
dynamic properties 7-6
dynamic range

fixed-point 2-49

E
EpsilonStates 7-113
ErrorStates 7-113
exporting quantized filters in FDATool 6-55

F
fcfwrite method 8-293
FDATool

about 6-3
about importing and exporting filters 6-53
about quantization mode 6-8

apply option 6-11
changing quantized filter properties 6-22
context-sensitive help 6-89
controls 6-10
convert structure option 6-28
converting filter structures 6-28
exporting quantized filters 6-55
frequency point to transform 6-63
getting help 6-89
import filter dialog 6-54
importable filter structures 6-53
importing filters 6-54
original filter type 6-60
quantized filter properties 6-12
quantizing filters 6-12
quantizing reference filters 6-21
set quantization parameters dialog 6-12
setting properties 6-12
specify desired frequency location 6-64
switching to quantization mode 6-8
transform filters in FDATool 6-64
transformed filter type 6-64
user options 6-10

FFTCoefficients 7-113
fftcoeffs method 8-293
FFTStates 7-113
filter

initial conditions 8-30
states 8-30

filter conversions 7-69
filter design

adaptive 4-1
multirate 8-10

Filter Design and Analysis Tool
See FDATool

filter design GUI
context-sensitive help 6-89
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help about 6-89
filter method 8-293
filter sections

specifying 7-69
filter structures

about 7-43
all-pass lattice 7-60
direct-form antisymmetric FIR 7-54
direct-form FIR 7-57
direct-form I 7-47
direct-form I SOS IIR 7-48
direct-form I transposed 7-48
direct-form I transposed IIR 7-48
direct-form II 7-49
direct-form II IIR 7-49
direct-form II SOS IIR 7-51
direct-form II transposed 7-52
direct-form II transposed IIR 7-52
direct-form symmetric FIR 7-66
direct-form transposed FIR 7-58
FIR transposed 7-58
fixed-point 7-46
lattice allpass 7-60
lattice AR 7-62
lattice ARMA 7-64
lattice autoregressive moving average 7-64
lattice moving average maximum phase 7-61
lattice moving average minimum phase 7-63

filter, fixed-point 2-29
filter,quantized 2-29
FilteredInputStates 7-113
filterinternals

fixed-point filter 7-43
multirate filter 7-122

FilterLength 7-113
filters

converting 7-68

direct-form 2-32
exporting as MAT-file 6-57
exporting as text file 6-56
exporting from FDATool 6-55
FIR 7-43
getting filter coefficients after exporting 6-56
importing and exporting 6-53
importing into FDATool 6-54
impulse response 8-795
initial conditions using dfilt 8-299
lattice 7-43
objects 8-286
states 8-299
state-space 7-43
test if filter coefficients are real 8-17
testing for allpass structure 8-17
testing for FIR structure 8-17
testing for linear phase sections 8-17
testing for maximum phase design 8-17
testing for minimum phase design 8-17
testing for purely real coefficients 8-17
testing for second-order sections 8-18
testing for stability 8-18

FilterStructure property 7-43
finite impulse response

antisymmetric 7-54
symmetric 7-66

fir 7-57
FIR filters 7-43
firt 7-58
firtype method 8-293
fixed

arithmetic property value 7-23
fixed-point 2-45

sign bit 2-45
fixed-point filter 2-29
fixed-point filter properties
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AccumFracLength 7-20
AccumWordLength 7-20
Arithmetic 7-20
CastBeforeSum 7-33
CoeffAutoScale 7-36
CoeffFracLength 7-40
CoeffWordLength 7-41
DenAccumFracLength 7-41
DenFracLength 7-41
Denominator 7-42
DenProdFracLength 7-42
DenStateFracLength 7-42
DenStateWordLength 7-43
FilterStructure 7-43

fixed-point filter states 7-96
fixed-point filter structures 7-46
fixed-point filters

dynamic properties 7-6
fixed-point format 2-46
fixed-point multirate filters 6-81
fixed-point numbers

scaling 2-50
ForgettingFactor 7-113
format 2-46
format for numeric data 2-46
fraction length 2-47

about 7-30
negative number of bits 7-30

frequency point to transform 6-63
frequency response 8-13, 8-708
freqz 8-13, 8-708
freqz method 8-293
function for opening FDATool 6-8
FwdPredErrorPower 7-114
FwdPrediction 7-114

G
getting filter coefficients after exporting 6-56
getting started 1-4
getting started example 1-4
grpdelay method 8-293

I
import filter dialog in FDATool 6-54
import filter dialog options 6-54

discrete-time filter 6-54
frequency units 6-54

import/export filters in FDATool 6-53
importing filters 6-54
importing quantized filters in FDATool 6-54
impz method 8-293
impzlength method 8-293
info method

dfilt function 8-293
InitFactor 7-114
initial conditions 8-30

using dfilt states 8-299
InvCov 7-114
isallpass 8-17
isallpass method 8-293
iscascade method 8-294
isfir 8-17
isfir method 8-294
islinphase 8-17
islinphase method 8-294
ismaxphase 8-17
ismaxphase method 8-294
isminphase 8-17
isminphase method 8-294
isparallel method 8-294
isreal 8-17
isreal method 8-294
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isscalar method 8-294
issos 8-18
issos method 8-294
isstable 8-18
isstable method 8-294

K
KalmanGain 7-114
KalmanGainStates 7-114

L
latcallpass 7-60
latcmax 7-61
lattice filters

allpass 7-60
AR 7-62
ARMA 7-64
autoregressive 7-62
MA 7-63
moving average maximum phase 7-61
moving average minimum phase 7-63

latticear 7-62
latticearma 7-64
latticeca 7-61
latticema 7-63
Leakage 7-114
least significant bit 2-46
LSB 2-46

M
mfilt object 8-838
mfilt objects 8-10
most significant bit 2-45
MSB 2-45

multiple sections
specifying 7-69

multirate filter functions 8-10
multirate filter states 7-131
multirate filters

designing 6-81
multirate object

See mfilt

N
negative fraction length

interpret 7-30
normalize 2-50
nsections method 8-294
nstages method 8-294
nstate method 8-294

O
object

adaptfilt 8-22
changing properties 8-30, 8-299
filter 8-286
mfilt 8-838
viewing parameters 8-29
viewing properties 8-298

object properties
AccumWordLength 7-20

Offset 7-114
OffsetCov 7-114
opening FDATool

function for 6-8
options

FDATool 6-10
order method 8-295
original filter type 6-60
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P
parallel method 8-295
phasez method 8-295
plots

zero-pole, command for 8-1093
pole-zero plots 8-1093
polyphase filters

See multirate filter functions 8-10
Power 7-115
precision 7-31

fixed-point 2-49
See fraction length 2-46

ProjectionOrder 7-115
properties

dynamic 7-6
FilterStructure 7-43
ScaleValues 7-86

Q
quantization 2-29
quantization mode in FDATool 6-8
quantized 2-29
quantized filter 2-29
quantized filter properties

changing in FDATool 6-22
FilterStructure 2-32

quantized filters
architecture 7-43
constructing 2-28
direct-form FIR 7-57
direct-form FIR transposed 7-58
direct-form symmetric FIR 7-66
filtering data 8-649, 8-651
finite impulse response 7-58
frequency response 8-13, 8-708
lattice allpass 7-60

lattice AR 7-62
lattice ARMA 7-64
lattice coupled-allpass 7-60
lattice MA maximum phase 7-61
lattice MA minimum phase 7-63
reference filter 7-67
scaling 7-86
specifying 7-67
specifying coefficients for multiple sections 

7-69
structures 7-43
symmetric FIR 7-54
zero-pole plots 8-1093

quantized filters properties
ScaleValues 7-86

quantizing filters in FDATool 6-21

R
range

fixed-point 2-49
realizemdl method 8-296
reference coefficients

specifying 7-67
ReflectionCoeffs 7-115
ReflectionCoeffsStep 7-115
removestage method 8-297
represent numeric data 7-30
ResetBeforeFiltering 7-115

S
ScaleValues property 7-86

interpreting 7-87
scaling

implementing for quantized filters 7-87
quantized filters 7-86
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SecondaryPathCoeffs 7-115
SecondaryPathEstimate 7-115
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